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Gait Feature Subset Selection by Mutual Information

Baofeng Guo and Mark S. Nixon, Associate Member, IEEE

Abstract—Feature subset selection is an important preprocess-
ing step for pattern recognition, to discard irrelevant and re-
dundant information, as well as to identify the most important
attributes. In this paper, we investigate a computationally efficient
solution to select the most important features for gait recognition.
The specific technique applied is based on mutual information
(MI), which evaluates the statistical dependence between two
random variables and has an established relation with the Bayes
classification error. Extending our earlier research, we show that a
sequential selection method based on MI can provide an effective
solution for high-dimensional human gait data. To assess the
performance of the approach, experiments are carried out based
on a 73-dimensional model-based gait features set and on a 64
by 64 pixels model-free gait symmetry map on the Southampton
HiD Gait database. The experimental results confirm the effec-
tiveness of the method, removing about 50% of the model-based
features and 95 % of the symmetry map’s pixels without significant
loss in recognition capability, which outperforms correlation and
analysis-of-variance-based methods.

Index Terms—Biometrics, feature selection, gait recognition,
mutual information (MI).

I. INTRODUCTION

UMAN GAIT recognition is to identify a person through
the pattern or style of walking, which becomes quite
appealing when it is difficult to get other biometrics information
at the specified resolution [1]. The information contained in gait
data, no matter the spatial-temporal measurements, such as step
length, cycle time, etc., or the kinematic measurements, such
as joint rotation, angles of the hip, knee and ankle, etc., can
all reflect the human body’s unique attributes and differ from
each other to some extent. There is also evidence in medicine
and psychophysics, showing that human gait can be unique
under certain circumstances [1]. Therefore, since the 1990s,
gait recognition has received significant attention [2]-[4].
Approaches to extract gait features can be roughly
categorized as two classes: model-based and model-free meth-
ods. The model-based methods analyze the structures under-
lying the gait data, and extract measurable parameters, such
as the kinematic values. The model-free methods generally
consider the motion pattern of the human body holistically,
for example, the silhouette of the moving subjects. However,
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the extracted features can be high dimensional in both cases.
This is partly because of the lack of knowledge about what
elements of gait best distinguish between persons, which of-
ten leads to a desire to consider as much potentially useful
information as possible. For example, the feature vectors in
a model-based method [5]-[7] have 73 components, let alone
the model-free silhouette-based data [8], [9] that is usually a
picture with the size such as 64 by 64 pixels. Research in [10]
unwraps the 2-D silhouette picture to a 1-D signal, and then
uses the boundary points as the features. This greatly reduced
the dimensionality, but the dimensionality is still too high and
principal component analysis (PCA) training has been applied
subsequently.

Such high-dimensional feature (or data) spaces present sev-
eral problems to gait recognition. First, it may affect the
performance of many classification methods. Although some
techniques, such as the k-nn method, may suffer less from this
problem, it becomes severe for probability-based algorithms.
When the number of training samples is limited, which is quite
common for the case of biometric data, parameter estimation,
e.g., inverse of covariance matrix, tends to be inaccurate.
The mean classification accuracy will at first grow and then
decline as the number of gait features increases, i.e., the so-
called “curse of dimensionality” in pattern classification [11].
Second, due to the existence of many gait-related factors, e.g.,
health, age, body size, weight, speed, etc., coupled with limited
understanding of the underlying recognition mechanism, many
redundant features tend to be included to avoid any loss of
useful information. For instance, we may argue that some
model-based parameters, such as the hip and knee rotation, are
actually correlated with each other to some degree. This is also
true in the case of silhouette-based data, where it is known that
the majority of pixels in the background area are of little value
since they are not in the region of the human torso. Finally,
high-dimensional data always imposes requirements for stor-
age space, computational load, and communication bandwidth,
which become vital factors in the actual deployment of a real-
time system, with realistic cost and time constraints.

It is therefore advantageous to identify the important features
for gait recognition, and then to remove those features which
convey little or redundant discriminatory information. This task
can be implemented by feature selection [12], [13] or other
dimensionality reduction techniques. The former technique
involves choosing a subset of original features (also called
variables or attributes) that will best represent the original data
under a certain criterion. In pattern recognition, this criterion
might be retaining the discriminatory information as much as
possible, and then achieve the best recognition accuracy with
the least computing resource. Other dimensionality reduction
methods, such as PCA, usually apply a transform to map
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the high-dimensional space into a space spanned by fewer
dimensions. Apart from meeting the computational challenges,
interpretation of the identified key features can provide valuable
clue or insight to understand what is the intrinsic mechanism
regarding gait’s uniqueness.

Previous researches in gait feature subset selection
[2]-[4], [9], [14]-[17] have mainly considered conventional
dimensionality reduction or statistical tools, such as PCA and
ANalysis Of VAriance (ANOVA). However, there are still
some remaining challenges for gait feature selection. PCA
is a popular technique in dimensionality reduction, but this
technique mainly retains those features that contribute most to
variance (energy), and is not optimized for class separability.
Therefore, the identified features may not coincide with the
discriminatory information that recognition really requires. By
incorporating discriminatory analysis, hybrid methods, such
as PCA + Linear Discriminant Analysis, can compensate for
this problem. However, as we discussed before, dimensionality
reduction is only one of the two major objectives in our
research, and the second objective, i.e., to identify the key gait
features to understand the uniqueness among human gaits, is
still difficult to meet. This is because that in the PCA-based
methods, the principal components are linear transformations
of the original features and the mapped features will lose the
original physical meaning. Although there are some strategies
[9] proposed to select the original features from the PCA
result, the accuracy of selection will be further reduced. The
ANOVA technique can help to identify the features based
on a null hypothesis test. However, the difference between
classes highlighted by ANOVA is carried out by examining
whether the population mean vectors are the same and also
lacks the explicit or definite relation with the recognition
accuracy.

In this paper, we consider feature selection for gait recog-
nition from the point of view of information theory. Like
many selection metrics, mutual information (MI) evaluates the
statistical dependence between two random variables and so
can be used to measure the utility of selected features in recog-
nition [18], [19]. Previous research has applied MI in different
areas, such as input selection for neural networks [20]-[22],
image registration [23], [24], medical signal selection [25], data
visualization [26], etc. [27], [28]. Here, MI is applied to select
the model-based and model-free features for gait recognition.
In detail, we show that applying the MI to gait feature selection
has several important advantages, such as its close relation with
the desired classification accuracy (see Section II-C1), a well-
founded calculation framework, and efficient implementation
strategy (see Section II-C2). Compared to the previous MI-
based methods, the method applied in this paper is improved
from our earlier research [19], [29], [30] and has derivation and
implementation which are distinct to formulations applied in
other areas [18], [20]-[22], [26].

II. FINDING THE MOST RELEVANT FEATURES
FOR GAIT RECOGNITION

Letx' = (X{,X}%,...,X%) be a P-dimensional gait feature
vector, with each component X € R representing an observed

variable. In gait recognition, this variable could be a parameter
in the model-based feature vector or a pixel in the model-free
pictures. The objective of feature selection is to find a subset
of the aforementioned components, x = (X1, Xo,...,Xq),
Q<P X; e{X],X5,....,Xp},j=1,2,...,Q,satisfyinga
certain cost criterion, .J, such as

J(x%) = min J(x) (1)
xeo
where = is a set of any ()-dimensional vectors selected from
the original P-dimensional vector x’. Here, the number @ can
be chosen by meeting some prespecified requirements, such as
a preset recognition rate.

In pattern recognition, a natural selection metric will be
the classification accuracy or inversely the Bayes classification
error. However, direct minimization of the Bayes error is dif-
ficult to perform analytically, and a wide range of alternative
statistics that are easier to evaluate have been considered. Two
typical measures used in gait feature selection are introduced as
follows:

A. Feature Selection by One-Way ANOVA

In statistics, ANOVA is a general method for studying
sampled-data relationships. The observed variance is parti-
tioned into components due to different explanatory variables,
such as between-class and within-class variance. “One-way
ANOVA” is the simplest case, and its purpose is to test for
significant differences between class means.

Let m§ be a sample of the random variable representing
a gait feature X € {X1, Xo,..., Xy}, where superscript i =
1,2,..., M stands for the subject class, and j =1,2,..., N;
denotes the sample number of the subject ;. ANOVA can
be used to investigate whether the population means are the
same (i.e., the null hypothesis of equality of means Hy : y; =
Mo = = UpN, i = (1/Nz) Z;vzbl JZ;), and if not, to what
extent the means differ. The result of this hypothesis can be
quantitatively given by the following F'-test with rejection of
Hj at level of a:

SSy/(M —1
F= b/fw ) > Fy gy Nvoy(@ @
SSw/ (XM Ni - M) 2
where FM—l,Zﬁi N (@) is the upper (100a)th percentile

of the F'-distribution with M — 1 and Zf\il N; — M degrees
of freedom. The between class variance SSp, = Zf\il N (2t —
7)? is the sum of square variance among classes (or
groups), where Z' and % are the group and the overall sam-
ple means, respectively. The within-class variance SS,, =
M, Zjvz’l(xz — 2")? is the total within-class sum of square
variance.

The F'-test in (2) gives a statistic which indicates to what
extent the samples of variable X are drawn from a distribution
of the same means, i.e., no differences between means of
different classes. It can be shown that this number, linked with
the between- and within-class variance (akin to the Fisher’s
linear discriminant), determines whether the groups are actually
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different by the measured characteristic. This can provide
useful information for feature selection. However, the ANOVA-
based feature selection methods are based on the assump-
tions of normality of the distributions and homogeneity of
variances. It can be argued that such assumptions cannot be
always guaranteed in biometric applications, and therefore,
the ANOVA statistics may not be sufficient to evaluate the
relationship between the features, particularly in the case where
the aforementioned assumptions do not hold.

B. Feature Selection by Correlation Metric

Correlation indicates the strength and direction of a linear
relationship between two random variables [31]. In detail,
correlation refers to the departure of two variables from linear
independence. This metric is useful to investigate how far a
feature departs from the class label, and in a broad sense was
used for feature selection. The conventional Pearson correlation
coefficient is defined by

‘H

N oo
pxy = BT Zi:lfﬁg z)(yi — ¥) )
0y

2

where x; and y; are samples of two random variables X and Y
Z and ¥ are their sample means; and o, and o, their standard
deviations.

According to the feature selection framework discussed in
(1), the selection metric should ideally quantify the causality
between the class label and features, to effectively reflect the
prediction capability for recognition. Although it is popular in
many applications and easily calculated, correlation actually
does not imply causation and cannot be validly used in the
above feature selection frame. In detail, a strong correlation is
necessary but not sufficient to establish a causal relationship.
Therefore, using correlation for feature selection cannot be
totally and logically justified.

From the aforementioned discussions, we contend that the
existing techniques lack explicit and definite relation with the
classification accuracy or Bayes classification error, and using
them for gait feature selection may deviate from the ideal
solution. Hence, it is preferable to consider other metrics to
select features for gait recognition.

C. Feature Selection Based on Mutual Information Analysis

In information theory, MI measures the statistical depen-
dence between two random variables and so can be used to
evaluate the relative utility of each feature to classification
[18]-[22], [29], [30]. Given the relationship between MI and
classification error, the feature selected by MI analysis is re-
lated to a criterion of optimizing the classification error (see
Section II-C1 for the bound relation and its proof). Moreover,
the implementation of MI imposes relatively lower computa-
tional requirement. For example, the calculations of the matrix
inverse and determinant are not needed, which makes it a
convenient alternative to approaches based on other separability
metrics.

oC

H(1X) I(X,Y) = H(Y) - H(Y|X)

Fig. 1. Illustration of ML

1) Mutual Information and Entropy: The MI is a quantity
that measures the mutual dependence of the two variables, and
is defined as

I(X)Y) // p(z,y)log ();())dxdy “

where p(z,y) is the joint probability density function of con-
tinual random variables X and Y, and p(z) and p(y) are the
marginal probability density functions, respectively. Given the
Shannon entropy (discrete) defined as

Zp

MI is related to entropy as

)log p(z Q)

I(X,Y)=H(X) - HX|Y)
=H(Y) - H(Y|X)

=HX)+HY)-H(X,)Y) 6)

where H(X) and H(Y) are the entropy of X and Y, H(X,Y")
their joint entropy, and H(X|Y") and H (Y| X) the conditional
entropies of X given Y and of Y given X, respectively. For
discrete variables, the joint and conditional entropies can be
written as

==Y play)logp(x,y) @)

zeX yeY

=3 plaly) logp(aly) ®)

zeX yeY

H(X|Y) =

where p(z|y) is the conditional probability.

The use of MI for feature selection can be intuitively justified
by the following arguments: Let Y be a variable representing
the class label (e.g., the subject’s identity), and X a variable
denoting a gait feature. The entropy H(Y) is known to be
a measure of the amount of uncertainty about Y (i.e., the
objective of recognition), while H(Y|X) is the amount of
uncertainty left in Y when knowing an observation X. From
(6), it is seen that I(X,Y) is the reduction in the uncertainty
of class label Y by the knowledge or measurement obtained
at gait feature X. Hence, MI can be interpreted as the amount
of information that the measurement at gait feature X contains
about the class label Y (see Venn diagram in Fig. 1). In other
words, MI can indicate the amount of information that a gait
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feature X contains about the class label Y. Since the variable
defined by class label Y is the required classification result,
the MI measures the capability (in the sense of information
theory) of using this gait feature to predict the class label or
the subject’s identity, i.e., the objective of gait recognition.

The important theoretical evidence that can support using
MI for feature selection is given by various bounds between
MI and the classification error. Although several papers cited
some examples of these bounds [26], its proof is either absent
or based on some special cases, such as the Renyi entropy [32]
or the two-class problem [33]. For the convenience of under-
standing, a full proof from a general classification perspective
is presented as follows:

First, the conditional entropy H (Y| X) is related to the Bayes
classification error by the following inequality (i.e., the Fano’s
inequality):

H(Y|X) < H(P.) + Palog(l — 1) )

where the error probability P, = P{f(X) # Y}; f is a classi-
fication function; and [ is the number of classes. Its proof is as
follows:

Let the class label Y € {c1,ca,...,¢}, the feature vector
X € R", and the classification result f(X) € {c1,ca,..., ¢}
Z is the Bayes cost, i.e.,

_{1 if f(X)£Y

0 if f(X)=Y. (10

According to (8), we have
Zp HY|X =x)
= b)Y plyf)log
" ” p(ylz)
= Zp z,y)1
plylz)
=Y pz,y,2)log —— !
p(yl)

B AN Py, 2)

H(Y|X) =

1
. 11
%oy P

Applying Jensen’s inequality (i.e.,
[34] with ¢(-) =

H(Y|X) <Y p(2)log [ Plo,%, 2 ]

p(ylz)

E{p(Y)} > o(E{Y})
—log(+)) to (11), we get

_ 1 p(@,y,2)

—ijp( logp(z +Zp logzy y\x

=> p(2) logzﬁ +Zp logzp (zlz,y)
(P)+ > p(z logzp p(zlz,y).  (12)

Now, considering the definition of Bayes cost in (10), the last
term of the right side of (12), denoted as L, becomes

L= p(z)log Zp (2|2, y)
=> p()log > D ppizlr,y)
2 z {yly=f(2)}

DIEDY

z {yly#f(x)}

p(x)p(z|z,y)

—0log | Y )
T {yly=F (@)
=Dlog Y > px)

z {yly#f(z)}

=0)log (Z p(m))

P(Z = 1)log [(l - 1) me]

=P, log(l —1). (13)

Combining the results of (12) and (13), we get (9), i.e.,
Fano’s inequality.

Given C; = H(PF,) and Cy = log(l — 1), and using the sec-
ond row of (6), the inequality of (14) is derived as follows:
HY)-I(X,Y)—
( ) (C’ ) ) Cl S Pe- (14)
2

From (14), it is seen that the classification error P, has a
lower bound tied by a term decided by I(X,Y) and H(Y).
Thus, given a fixed H(Y) (e.g., the same prior distribution),
maximization of MI can optimize the lower bound of classi-
fication error, and using MI for feature selection is actually
indirectly guided by recognition accuracy. Comparing with the
statistical tools introduced in Section II, we can see that the
MI has more clear and definite relation with the recognition
objective. From the point of view of statistics and information
theory, the MI measures more the general dependencies in the
data, and therefore may lead to better capability in feature
selection.

2) Calculation of Mutual Information for Feature Selection:
Applying the MI to the feature selection framework in (1),
we can carry out a new gait feature subset selection based on
information theory. To implement this method, there are two
obstacles to overcome:

1) how to evaluate multidimensional MI;

2) how to search for the maximum.

Aiming to solve these problems, we apply a gradient ascent
optimization strategy improved from our earlier research [19],
[29], [30], described as follows. First, we show that a multidi-
mensional MI can be decomposed into a series of 1-D MlIs:
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Letx = (X1, X2, ..., X ) be arandom vector representing
the selected features X;, ¢ = 1,2,..., M, and Y the random
variable corresponding to the class label. The MI between them
can be written as

I(x,Y)=1((X1,Xz,....,Xm),Y). 15)

If x only has two components, i.e., x = (X1, X2), (15)

becomes

I(x,Y) =1((X1,X2),Y)
= H (X1, X2) — H(X1, Xo|Y). (16)
From (6), we can derive the following two equations:
H(X1, X2) =H(X1) + H(X2) — (X1, X2) (17)
H(X1, Xo|Y) = H(X1]Y) + H(Xo|Y) — I(X1, Xo|Y).
(18)

Substituting H (X7, X3) and H(X1, X2|Y') of (17) and (18)
into (16), we get

I(xY) =Y I(X;,Y)—I(X1,X2)+1(X1, Xo[Y).  (19)

i=1,2

To extend (19) to more than two components, we can replace
X of (19) with X| and redefine X{ = (X3, X3). Then, by
using the above decomposition, we have

I(x,Y)
=1 (X1, Y)+1(X5,Y)—1 (X1, Xa)+1 (X7, Xo|Y)

= | Y I(X0,Y)—I(Xy, X3)+I(X1, Xs|Y) | +1(X2,Y)
i=1,3

— | D I(X;, X2)—I(X1, X3)+1(X1, X3] X2)

i=1,3

+ ZI X, Xa|Y)—
:13

I(X1, X3]Y)+1(X1, X3|X5,Y)

3
:ZI(X,L-, Y)— Z I(X;, X2) —I(X1, X3|X2)

i=1 i=1,3

+ 3 I(X, Xo|V)+I(X1, X5/ X2, Y).
i=1,3

(20)

It is known that given variables A, B, and C, I(A, B|C) <
I(A,B) and I(A, B) = I(B, A). Therefore, (21) becomes

3

=Y I(X:,Y) -

i=1

+ ) I(Xi, Xo|Y) + I(Xy, X3|X5,Y)
i=1,3

I(x,Y) D I(Xi, Xa) — I(Xy, X3|X2)

i=1,3

> I(Xi, Xa) — I(X1, X3)
i=1,3

3
<Y I(X,Y) -
=1

+ Y (X Xo|Y) + I(X1, Xa|Y)

i=1,3
3
= Z (X:,Y) — ZZI Xi, X;)
i=1 =1 j>1
3
+ 0 I(X, X|Y). 1)
i=1 j>i

After repeating this decomposition, we can get the following
approximation:

Y) &~ ZI(X“Y) - ZZI(XZ-,X]-)

+D 0D I(X XGY).

i g>i

(22)

Based on (22), a fast approach to maximize /(x,Y") can be
implemented as follows: the first variable is chosen as:

XV = max I(X;,Y) (23)

where X{ represents the result of maximization at step 1).
Then, the second variable is chosen as

X9 = max [I(X;,Y)

(X, X0 X0
e, I(Xe, X9) +1 (X5, X0Y)].

(24)

The remaining variables are chosen in the same way

ngxmgo I(X;,Y) ZI (Xi,X]Q)JrZI (X, X9Y)
J J

(25)
where X]Q, j=1,2,...,n—1 are the variables already se-
lected. This selection is repeated until the prespecified number,
N, of variables is reached. For a general classification task, the
number N can be decided by the tolerance of degradation for
detection accuracy or false alarm probability. Moreover, other
application-related requirements, such as computing capability,
storage space, communication bandwidth, etc., can also be used
to decide this number.

To calculate 1-D MI, we can treat each gait feature com-
ponent as a random variable X with continuous measured
values, and its class category as Y with discrete identity labels
w1,ws, . ..,wy. Thus, MI between X and Y can be evaluated
as follows (with a similar formula for I(X;, X;)):

—/()logp dac—ZP )log P(y

X

I(X,)Y) =

+Z/p(x,y) log p(x,y)dz. (26)
v X
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Fig. 2.
database.

Ilustration of one frame of a sequence of Southampton HiD Gait

In the estimation of the MI from the data, the probability
densities can be estimated based on histograms, and a flexible
binning scheme is applied in this paper. In detail, to represent
the class label’s histogram, we usually know the number of
classes (i.e., the number of subjects in a gait gallery). Therefore,
the number of bins for the variable Y can be chosen by this
a priori knowledge. For the feature variable X, an adaptive
binning is adopted, where the number of bins ny, is decided by
the number of data samples ng, i.e., n, = \/n_s . Other binning
methods that can optimize the probability density estimation
may also be applied, but this discussion is not in the scope of
this paper.

III. EXPERIMENTS

To assess the MI-based gait feature selection, an indoor
Southampton HiD Gait database [35] (http://www.gait.ecs.
soton.ac.uk/database) is used. This database consists of 2163
sequences from 116 subjects walking both to the left and to the
right. Each subject was filmed from a fronto-parallel viewpoint
at a resolution of 720 x 576 pixels, in controlled laboratory
conditions. The sequence is recorded at a rate of 25 frames
per second with approximately 90 frames per gait sequence. An
example of one frame of such a sequence is shown in Fig. 2.

A. Gait Feature Sets

Based on this data set, two approaches to obtaining a raw set
of features are used. The first approach is a model-based method
[5], which extracts a 73-dimensional measurement vector for
each gait sequence, based on techniques such as adaptive model
and deformable contours. The head and torso are modeled using
ellipses; each leg is modeled by two tapered pairs of lines,
and the foot by a rectangle. The extracted feature components
include 18 model parameters based on joint rotation models
for the hip, knee and ankle, and 28 parameters describing the
subjects’ speed, gait frequency, body proportions, etc. Fig. 3(a)
shows a list of human body model parameters and shows how
they are measured [36].

The second approach is a model-free method based on
analyzing the symmetry of human motion [8]. This method
is supported by the psychologists’ view that human gait is

a symmetrical pattern of motion, and therefore suggesting
symmetry is suitable for gait recognition. The generalized
symmetry operator was applied to locate features according
to their symmetrical properties without relying on the borders
of a shape or on general appearance. For each sequence, the
obtained gait signature is a 64 by 64 pixel symmetry map, such
as Fig. 3(b).

B. Experimental Results

After gait features have been extracted, tests of recognition
accuracy were carried out to assess the performance of the
feature selection methods. Three methods of feature selection
are used, the one proposed here (i.e., MI-based) and two com-
parison methods introduced in Sections II-A and B. To calculate
the selection metrics, i.e., the correlation coefficients Px y,
one-way ANOVA’s f-statistics, and the values of I(X;,Y)
and I(X;, X;), half of the sequences from each subject were
randomly chosen as the training set. This training set is assumed
as the known data samples, and then can be used for multiple
purposes, such as to learn the selection metrics and validate
classifier’s parameters. The remaining 50% sequences are as-
sumed as the unseen data, and form the testing set on which
the recognition accuracy was assessed. To avoid bias, random
sampling was used to generate the testing set and training set,
and repeated ten times to allow an estimate of the error inherent
in this sampling process.

Currently-popular  support vector machines (SVMs)
[37]-[39] were chosen as the classifiers in these experiments
since they are less sensitive to the data ’s dimensionality.
Although SVMs are used here, the proposed method is not
limited to this particular classifier and other classification
algorithms are also applicable. The relevant SVM formulas are
listed as follows:

Let x; = (X1, X, ..., X ) be an M-dimensional gait fea-
ture (data) vector, y; € (+1,—1) be the class label (i.e., the
subject identity), « = (a1, aq, ..., an), be the Lagrange mul-
tipliers, /N the number of examples and b a threshold. The SVM
classifier can be represented as

M
f(x) =sgn <Z yic; K (%3, %) + b>
i=1

where K (x,x') = ®(x)T®(x') is an appropriate kernel func-
tion which has a corresponding inner product expansion ®. The
commonly used functions are polynomials and Gaussian radial
basis functions

K(x,x') =(xTx'+ 1)d
K (x,x) = exp {—[lx — x'[|*}.

27)
(28)

Since SVMs are inherently binary (two-class) classifiers, a
“one-against-one” scheme was used with subsequent majority
voting to give a multiclass result. The kernel function used
is an inhomogeneous polynomial [i.e., (27)], and the SVMs’
parameters, i.e., polynomial order d and the penalty parameter
C are chosen by a validation procedure based on the training
data (i.e., to further split the training set for cross-validation).
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Static Parameters Static Parameters x
HW Head width TL*  Thigh length
HH Head height SL*  Shin length oy HOY
HDX  Head x offset PW*  Pelvis width 4 K H
HDY Head v offset Dynamic Parameters /5
™ Torso width LX(7)  x centre of torso HH
TH Torso height (1) v centre of torso
LWH  Legwidth at hip O,.(n) x pelvis rotation
LWKU Leg width at knee (upper) |0,,(n) v pelvis rotation
LWKL Leg width at knee (lower) |@;(») Hip rotation Hoxs ™
LWA Leg width at ankle O;(n) Knee rotation
HPDY* Hip y offset 0,(n) Ankle rotation
FW* Foot width [0) Gait frequency \\ /
FH* Foot height ¢ Gait phase L
Bx «—t s LWH
\ HPDY
\ JH TL
H - )/»Lmu
*x W sL \
L i
H <> LWA
y FW
FH
(a) (b)

Fig. 3.

(a) List of some geometric human body model parameters and their illustration [36]. (b) Example of a gait symmetry map.

Correct Classification Accuracy (%) + Std

Number of features selected

Fig. 4. Cumulative recognition rates as the model-based features are progressively selected, accuracy (%) =+ standard deviation; two features increment at

each step.

Then, experiments are carried out to test the aforementioned
three feature selection methods on the test set to obtain the cor-
responding recognition rate [i.e., Correct Classification Recog-
nition (CCR)] on the reduced feature subsets.

The main objective of feature selection is to choose the most
“informative” or “relevant” features and achieve the possible
highest recognition accuracy on the reduced feature set. The
experiments were thus designed to assess the change of recog-
nition accuracy as features are progressively selected (i.e., the
cumulative recognition rate). The feature selection results for
the model-based feature set are shown in Fig. 4, where the
points marked with “O” represents the results of the MI-based
method, benchmarked by that of the correlation-based method
(the points marked with “+”) and the ANOVA-based method
(the points marked with “A”). Data points are at two feature
increments at each step, and the corresponding recognition rates

with their error bars (i.e., CCR =+ stand deviation) are also
shown in Fig. 4.

From Fig. 4, it is shown that the feature subset selected by MI
achieves a better recognition rate with fewer model parameters
than for the correlation and ANOVA based methods. This is
particularly significant when up to 35 features are selected. For
example, the MI-based method achieves 90% correct recog-
nition rate with 25 features, compared with 29 features for
the ANOVA-based method and 37 features for the correlation-
based method. For the MI-based method, when more than
37 features (accounting for about 50% of all 73 features) are
selected, the recognition rate then improves only slightly. This
indicates that for this particular model-based feature set, about
50% of parameters are almost redundant and can be removed
without significant loss of recognition accuracy. When more
and more features are selected, the differences between the
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TABLE 1

ToP 15 SELECTED MODEL-BASED PARAMETERS BY USING THE THREE METHODS

Rank  MI method Correlation method ANOVA method

1 Ankle Width LWA Leg Width 08 Leg Width 08

2 Leg Width 08 Leg Width 09 Leg Width 09

3 Hip Rotation Amplitude Knee Width LWKU Leg Width 04

4 Leg Width 01 Ankle Width LWA Leg Width 05

5 Head dx HDX Leg Width 07 Leg Width 07

6 Y Motion Amplitude Ay  Head Height HH Leg Width 06

7 Torso Width TW Knee Rotation angle(12) Ankle Width LWA

8 Knee Width LWKU Knee Rotation Mean Knee Width LWKL

9 Knee Rotation angle(02) Head dx HDX Leg Width 03

10 Gait Frequency omega Knee Width LWKL Leg Width 01

11 Knee Rotation angle(11) Knee Rotation angle(04) Leg Width 00

12 Ankle Rotation angle(07)  Ankle Rotation angle(12)  Leg Width 02

13 Hip Rotation Mean Knee Rotation angle(03) Gait Frequency omega
14 Knee Rotation angle(13) Leg Width 06 Y Motion Amplitude Ay
15 Leg Width 03 Ankle Rotation angle(06)  Head dx HDX

43

OV 1 | 1 1 1 1

20
. Feature number 10

Correct Classification Accuracy (%) + Std

10 20 30 40 50 60
Number of features selected
(a)

70

(b)

Fig. 5. (a) Comparison of cumulative recognition rates for two MI maximization schemes: “O” stands for the results of maximizing EZ I(X;,Y) and “A” for
maximizing I(x,Y") of (22). (b) Three-dimensional illustration of the MI matrix, i.e., I(X;, X;), which is used for maximizing I(x,Y") of (22).

three methods tend to be small. This is because at this stage,
most of the essential features have already been included. The
results in Fig. 4 also suggest that the ANOVA-based method is
generally better than the correlation-based method.

Table I further lists the names of the 15 top model-based
features selected by the MI, the correlation and the ANOVA-
based methods, respectively. It is intuitively suggested that
the features selected by the MI seem to contain the wider
range of gait information and more dynamics than other two
methods. For example, the results show that the MI-based
method includes information from more body parts, such as
ankle, leg, hip, head, knee, as well as their dynamic characters,
such as rotation angle, motion amplitude, etc. The other two
methods concentrate more on the major body parts, such as leg,
knee, and its static information, such as width, etc. Given the
complexity of human anatomy, the selection using MI is quite
appealing for recognition purpose.

To justify the MI maximization method presented in
Section II-C2, two different optimization schemes are also com-
pared. The first one is based on the features’ independent MI
ranking and is to maximize the term ) _, I(X;,Y") of (22). This
scheme only needs to calculate the MI between each feature
and the class label, which is faster and can be implemented
easily. The second scheme considers the combinatorial MI
of a group features x = (X7, Xs,...), i.e., maximization of

I(x,Y). It needs to calculate the MI between each pair of
features I(X;, X j) as well, and search for the maximum of the
combinatorial term. This requires extra computational load but
gives a more accurate result. Fig. 5(a) shows the cumulative
recognition rates for these two schemes.

It is shown from Fig. 5(a) that the second scheme (the points
marked with “A”) is better than the first one (the points marked
with “O”). This result indicates that the feature-independent
assumption, on which the first scheme is based, may not hold in
this application. Fig. 5(b) further shows the MI between each
pair of features. It is shown that except the most significant
values appear in the leading diagonal, other considerably higher
values can also be found in other areas [as in the many peaks
in Fig. 5(b)]. This observation reinforced the aforementioned
conclusion regarding the independence assumption.

The feature selection results for the model-free gait symme-
try pictures are shown in Fig. 6. The points marked with “O”
are the results of the MI-based method, comparing with the
correlation-based method (the points marked with “+’) and the
ANOVA-based method (the points marked with “A”). It is seen
that for the case of the MI-based method, the recognition rate
changes little when more than 100 important symmetry pixels
are selected, which compares to 150 important pixels selected
by the ANOVA-based method. Moreover, the correlation-based
method cannot reach the 95% accuracy rate that is achieved by
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20 —
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0 100 200 300 400 500 600
Number of features selected
Fig. 6. Cumulative recognition rates as the model-free symmetry pixels are progressively selected.
TABLE II

both the MI and the ANOVA-based methods, even after using
about 200 pixels in the symmetry maps (these account for about
5% in all 64 x 64 pixels).

The cumulative recognition results on the model-free gait
data shown in Fig. 6 are consistent with our previous findings
in the model-based feature set shown in Fig. 4, with the best
recognition rate achieved by the MI-based method, followed by
ANOVA and correlation-based methods. These results confirm
the effectiveness of using MI as the feature selection metric
with its suitability to approximate the classification accuracy,
which is in contrast to the correlation coefficient that is based
on a linear rather than the causal relationship, and the ANOVA,
which is built on the assumptions of normality distribution
and homogenized variances. These empirical findings are based
on the specific data set, and many application-related factors
should be taken into account to extend them, such as the
variability of data set, noise on the symmetry maps, etc.

The above experiments used half of the sequences from each
subject as the training set, which covered the general variability
within data (e.g., how far the sequences were apart for each
subject). In biometric applications, it is also important to assess
the performance with respect to temporal variability, such as on
the data taken on the order of weeks or months. To address this
scenario, further experiments are carried out by separating data
into three sets: a training set accounting for 50% of the subjects
to find the important features, a validation set accounting for
25% of the subjects to validate the classifier’s parameters, and
a test set accounting for the remaining 25% of the subjects to
assess classification accuracy. In this case, since the training
and the test data set are drawn from different subjects, they
are person-disjoint. Meanwhile, this is a suitable configuration
to increase the considerable amount of time variability based
on the current data set. The classification results on selecting
several typical numbers of features are listed in Table II for
the model-based feature set and in Table III for the model-
free symmetry feature set, respectively. The results shown in
Tables II and III reconfirmed our previous finding, i.e., bet-
ter performance has been achieved by the MI-based method.
Compared to the earlier results shown in Figs. 4 and 6, it
can be found that the numbers in Tables II and III present
a better situation. This is because the new experiments used
50% and 25% of the subjects for the training and validation,

CLASSIFICATION ACCURACY (%) BY USING THE THREE METHODS;
BASED ON THE MODEL-BASED PARAMETERS SEPARATED BY SUBJECTS

Number of features 5 15 25 35 45 55

MI-method 86.17 9695 9829 9873 98.61 98.66
ANOVA-method 7406 9464 9723 9813 9828 9845
Correlation-method 64.06 90.13 95.08 96.38 9747 98.13

respectively, but the former experiments used half of the se-
quences from each subject for these purposes. Therefore, more
training data has been used in the new experiments, showing
improved accuracies. The different configurations are mainly
used to check different variability. This may produce slightly
different results, but will not affect the overall conclusions on
performance comparison.

In this section, results are presented for each of the two types
of raw feature sets (i.e., the model-based and model-free gait
features), comparing the performance of the MI-based method
to that of the reference correlation and ANOVA-based methods.
The MI-based method is found better in the range of a lower
number of features selected. With enough features, all three
methods reach the same performance level for the model-based
feature set and MI and ANOVA-based methods reach the same
performance for the model-free feature set.

IV. CONCLUSIONS

We have presented a feature selection method for gait recog-
nition based on MI analysis. This feature selection technique
has a definite relation with the classification accuracy, and
can effectively identify the most pertinent features to improve
system’s efficiency. To assess the proposed method, experi-
ments were carried out on a model-based gait feature set and
a model-free symmetry gait data. The results showed that the
MI-based method has good application capability in gait feature
selection, with fewer features that can obtain good recognition
accuracy. It also outperformed the correlation-based and the
ANOVA-based methods. Further research is ongoing to explore
the selected results to understand the underlying distinctiveness
among human gaits.

Currently, the algorithms were tested on the indoor
Southampton HiD Gait database, which was filmed in
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TABLE III
CLASSIFICATION ACCURACY (%) BY USING THE THREE METHODS; BASED ON THE MODEL-FREE SYMMETRY FEATURES SEPARATED BY SUBJECTS
Number of features 5 10 20 30 40 50 60 110 190
MI-method 5478 80.34 9022 92.14 93.67 94.11 9445 9566 9534
ANOVA-method 4994  64.02 7470 79.11 8191 83.80 85.78 91.50 94.08
Correlation-method 39.69 64.63 79.83 84.88 87.04  88.23 89.37 91.88 93.89

controlled laboratory conditions. To obtain more general results
for different surface types, times, clothing, etc., future research
will be carried out to extend the algorithm on gait data sets with
other variability, such as the HumanID gait data set [4].
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