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Abstract—As sensors become more complex and prevalent, they
present their own issues of cost effectiveness and timeliness. It
becomes increasingly important to select sensor sets that provide
the most information at the least cost and in the most timely and
efficient manner. Two typical sensor selection problems appear
in a wide range of applications. The first type involves selecting
a sensor set that provides the maximum information gain within
a budget limit. The other type involves selecting a sensor set
that optimizes the tradeoff between information gain and cost.
Unfortunately, both require extensive computations due to the
exponential search space of sensor subsets. This paper proposes
efficient sensor selection algorithms for solving both of these
sensor selection problems. The relationships between the sensors
and the hypotheses that the sensors aim to assess are modeled
with Bayesian networks, and the information gain (benefit) of
the sensors with respect to the hypotheses is evaluated by mutual
information. We first prove that mutual information is a submod-
ular function in a relaxed condition, which provides theoretical
support for the proposed algorithms. For the budget-limit case,
we introduce a greedy algorithm that has a constant factor of
(1 — 1/e) guarantee to the optimal performance. A partitioning
procedure is proposed to improve the computational efficiency
of the algorithms by efficiently computing mutual information
as well as reducing the search space. For the optimal-tradeoff
case, a submodular-supermodular procedure is exploited in the
proposed algorithm to choose the sensor set that achieves the
optimal tradeoff between the benefit and cost in a polynomial-time
complexity.

Index Terms—Active fusion, Bayesian networks (BNs), sensor
selection, submodular function.

I. INTRODUCTION

ANY real-world applications use sensors to obtain in-

formation that will help them improve their activities.
Here, sensor is a general term; it could refer to a test, a
feature, an observation, an evidence, etc. Rarely is only one
sensor needed, however. Most applications use several sensors
of different kinds, which we refer to as sensor sets. As sensors
become more prevalent and ubiquitous, they present their own
issues of cost effectiveness and timeliness. It becomes critically
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important to select sensor sets that provide the most information
at the least cost in a timely and efficient manner. For example, in
fault diagnosis problems (medical diagnosis, computer system
troubleshooting, etc.) [8], [49], a set of informative tests needs
to be selected to provide an optimal tradeoff between the cost
of performing the tests and the accuracy of diagnoses. In sensor
networks [11], [26], [27], a subset of sensors needs to be
selected to achieve a suboptimal tradeoff between the energy
consumption of operating the sensors and the information gain.
In pattern recognition [21], [33], [42], good features need to be
selected to guarantee the performance of the classifiers.

Purposely choosing an optimal subset from multiple sens-
ing sources can save computational time and physical costs,
avoid unnecessary or unproductive sensor actions, reduce re-
dundancy, and increase the chance of making correct and timely
decisions. Because of these benefits, sensor selection plays
a particularly important role for time-critical and resource-
limited applications, including computer vision, control sys-
tems, sensor networks, diagnosis systems, and many military
applications.

Basically, sensor selection problems can be divided into
two types. The first type, called a budget-limit case, involves
choosing a sensor set with maximum information gain given a
budget limit. The other type, called an optimal tradeoff case,
involves deciding a sensor set that achieves an optimal tradeoff
between the information gain and the cost. Unfortunately, both
of them are NP-hard, since the number of sensor subsets grows
exponentially with the total number of sensors.

Most work formulates sensor selection as an optimization
problem based on information-theory or decision-theoretic cri-
teria. However, solving the optimization problem efficiently
is difficult since the search space usually is large. To be
practical, some methods [11], [26], [45] select the best sensor
myopically or select the first m sensors greedily. However,
the selected sensors could lead to poor performance, since the
selection methods cannot provide performance guarantees. Re-
cently, some sensor selection algorithms have been proposed to
achieve a balance between performance and efficiency. Isler and
Bajcsy [18] present an approximation algorithm for sensor se-
lection that aims to minimize the error in estimating the position
of a target within a sensor network. They prove that at least one
of the sensor subsets whose sizes are less or equal to six can
guarantee that the resulting estimation error is within a factor of
two of the least possible error under certain assumptions. Thus,
the algorithm is to enumerate all [-subsets (I < 6) of sensors
and choose the best one. Zheng et al. [49] use a greedy test-
selection strategy to find an optimal subset of tests in a fault
diagnosis system. Similarly, this paper provides a theoretical
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justification for the greedy test-selection approach, along with
some performance guarantees (the expected number of tests
produced by the greedy strategy is within an O(logN) factor
from the optimal solution). Krause and Guestrin [27] present
an efficient greedy approach to select the most informative
subset of variables in a graphical model for sensor networks.
The algorithm provides a constant factor (1 — 1/e — €) approx-
imation guarantee for any e with high confidence. However,
both algorithms of Zheng and Krause assume that the sensors
are conditionally independent given the hypotheses (i.e., the
event/situation that sensor fusion aims to assess).

We seek to achieve a balance between the performance and
the efficiency of the proposed sensor selection algorithms by
fully utilizing the properties of submodular functions and the
probabilistic relationships among sensors. The probabilistic re-
lationships between the sensors and the hypotheses are modeled
by a Bayesian network (BN). In addition, the informativeness
of the sensors with respect to the hypotheses is measured by
mutual information. We then prove that mutual information is
a submodular function under several conditions. Based on the
theory of submodular functions, in the budget-limit case, the
proposed sensor selection algorithms provide a constant factor
of (1 —1/e) guarantee to the optimal performance. Further-
more, we propose a partitioning procedure by exploiting sensor
dependence embedded in the BN model to compute mutual
information efficiently as well as to reduce the search space, so
that the efficiency of the algorithms is further improved. In the
optimal tradeoff case, a submodular—supermodular procedure
is embedded within the proposed sensor selection algorithm to
decide the optimal or near-optimal sensor set that maximizes
the difference between benefit and cost with polynomial-time
complexity.

The following sections are organized as follows. Section II
gives a brief overview of a related work. Section III presents
the BN model for sensor selection and fusion. Section IV
introduces the sensor selection criteria. The sensor selec-
tion algorithms for the budget-limit case and the optimal-
tradeoff case are described in Sections V and VI, respectively.
Section VII discusses the experimental results based on syn-
thetic data, and Section VIII provides an illustrative application.
This paper ends in Section IX with a summary and some
suggestions for future work.

II. RELATED WORK

Sensor selection usually consists of two problems: selec-
tion criterion definition and sensor set selection based on the
defined sensor selection criterion. In general, sensor selection
can be treated as an optimization problem: finding an optimal
sensor set that maximizes the objective function defined by
the selection criterion. Most existing work can be divided into
two groups based on the sensor selection criterion they used:
information-theoretic methods and decision-theoretic methods.

A. Sensor Selection Criteria

Information-theoretic methods apply information theory to
define the objective function for sensor selection. The common
functions include Shannon’s entropy, mutual information, en-

783

tropy difference, and Kullback—Leibler’s (KL) cross-entropy.
Hintz [17] uses the expected change in Shannon entropy when
tracking a single target moving in one dimension with Kalman
filters. Zhang et al. [48] apply mutual information to select
an optimal sensor set based on a dynamic BN. Denzler and
Brown [9] use mutual information to determine the optimal ac-
tion (set of camera parameters, including focal length, pan, and
tilt angles) that will maximally decrease the uncertainty of the
object-state estimation process. Guo and Nixon [16] use mu-
tual information to select feature subsets for gait recognition.
Wang et al. [45] propose an entropy-based sensor selection
heuristic for target localization. Instead of using mutual infor-
mation, they use maximal entropy difference as the criterion to
choose one sensor at each step until the required uncertainty
level of the target state is achieved. The method is computa-
tionally simpler than the mutual-information-based approaches,
and their experiments demonstrate that the method can sort
candidate sensors into exactly the same order as the mutual-
information method does in most cases.

An active sensing approach, based on an entropy measure
called the Rényi divergence, is proposed by Kreucher et al. [28]
to schedule sensors for multiple-target tracking applications. At
each time step, only one sensor action is chosen to provide
measurement and thus update the probability density of the
target states. KL’s cross-entropy is used for optimal multisensor
allocation [35] and sensor management [24]. Ertin et al. [11]
employ expected posterior entropy to choose the next mea-
surement node (sensor) in a distributed Bayesian sequential
estimation framework. They show that minimizing the expected
posterior uncertainty is equivalent to maximizing the mutual
information between the sensor output and the target state.

Although information-based criteria (entropy, mutual infor-
mation, etc.) are the most commonly used functions for ranking
information sources in terms of uncertainty reduction, these cri-
teria require intensive computations, particularly when comput-
ing for multiple sensors. Therefore, the research reported in the
aforementioned papers often selects only one sensor at one time
with the information-theoretic criteria. We propose an efficient
procedure in this paper to efficiently compute mutual informa-
tion by exploiting the statistical independences among sensors.

For decision-theoretic approaches, the objective function
is defined based on decision theory, where the goal is to
choose the optimal sensory action by maximizing an over-
all utility function (e.g., tradeoff between cost and benefit).
Wu and Cameron [47] describe a mathematical framework
using Bayesian decision theory to select optimal sensing actions
for achieving a given goal, for example, for object recognition
in robot vision applications where one optimal action is de-
cided at each time step. Rimey and Brown [41], [40] build a
task-oriented computer vision system that uses BN and a
maximum-expected-utility decision rule to choose a sequence
of task-dependent and opportunistic visual operations on the
basis of their utilities.

van der Gaag and Wessels [44] build a decision tree for
selective gathering of evidence for diagnostic belief networks.
Lindner et al. [32] estimate the expected utility of each sensor
to predict the minimum cost subset of sensors for a mobile robot
application. Kristensen [29] develops a Bayesian decision tree
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to solve the problem of choosing proper sensing actions from a
family of candidates. Each sensing action is evaluated by its ex-
pected interest from sample information (EISI). The Bayesian
decision rule simply selects the one with the maximum EISI
value as the sensing action to be performed one at a time.

The most common decision-theoretic criterion is the value of
information (VOI). The VOI of a sensor set is defined as the
difference in the maximum expected utilities with and without
the information collected from the sensor set. It evaluates the
utility of the sensor set by considering both the benefit and cost
of using the sensors. The cost of operating the sensor for evi-
dence collection includes the computational cost, physical cost,
etc., while the benefits include financial benefits, performance
improvements, reduced loss, etc. Oliver and Horvitz [37], [38]
apply an expected-value-of-information (EVI)-based policy to
selective perception in SEER, a multimodal system of recog-
nizing office activity that relies on a layered hidden Markov
model (LHMM) representation. Although the system uses a
dynamic programming strategy to compute the EVI of each
feature combination based on the LHMM, it needs to enumerate
all the feature combinations and then selects the best one. The
process is therefore time-consuming.

A special group in the decision-theoretic methods is based on
Markov decision process (MDP). Bayer-Zubek [2] formalizes
the diagnosis process as an MDP to find an optimal diagnostic
policy that achieves optimal tradeoffs between the costs of tests
and the costs of misdiagnoses. Cassandra et al. [3] model the
problem of deciding optimal actions for mobile-robot naviga-
tion as a POMDP. Castanon [4] formulates the problem of dy-
namic scheduling of multimode sensor resources for classifying
a large number of stationary objects as a POMDP.

The decision-theoretic methods provide a precise formula-
tion for sensor selection problems. These measures are usu-
ally different from the information-theoretic measures such as
mutual information since they directly relate sensor/resource
allocation to decision making, while information theoretic
criterion relates sensor management to situation/event assess-
ment. On the other hand, like the information-theoretic criteria,
decision-theoretic criteria also require significant computation
for multiple sensors. As a result, like the information-theoretic
criteria, most of the aforementioned methods adopt the myopic
approach, i.e., choose only one sensing action at each step. For
example, MDP-based approaches suffer from combinatorial
explosion when solving practical problems of even moderate
size. Another problem of the decision-theoretic methods is
the subjective definition of utility functions. The utilities are
usually problem dependent and may vary as their environment
changes. In addition, for some applications, it may not be
possible to derive appropriate utilities.

B. Optimization Methods for Sensor Selection

For both the information-theoretic and decision-theoretic
criteria, optimization methods are needed to identify the opti-
mal sensor set. Methods for solving the optimization include
search methods and mathematical programming (e.g., approxi-
mate dynamic programming, integer programming, and greedy
selection strategies). One option is to use heuristic searches.

Heuristic searches use some function that estimates the cost
from the current state to the goal, presuming that such a
function is efficient. Heuristic search techniques incorporate
domain knowledge to improve efficiency over blind search.
Some heuristic searches can guarantee an optimal solution, but
they could be very slow. Thus, another search strategy is to give
up completeness and risk losing optimal subsets in exchange for
efficiency, such as sequential forward selection [46], floating
search selection [39], and simulated annealing.

However, due to the high computational cost of search al-
gorithms, in most applications involved with sensor selection,
the greedy strategy is used. This strategy can be regarded
as the simplest form of sequential search, where, at each iter-
ation, the best sensor is incorporated into the candidate sensor
set until there is no improvement in the value of the objective
function. A more complex sequential search approach, called
entropy adaptative aggregation algorithm, is proposed in [12]. It
includes an aggregative phase to heuristically choose the initial
subset and an adaptative phase to iteratively aggregate and dis-
aggregate the current subset until it converges. Kalandros et al.
[23] explore the use of randomization and superheuristics
search [31] for sensor selections in target-tracking applications.
The search begins with a base sensor set and then generates
more alternative solutions via a probabilistic assignment rule.
The best solution is decided only from the generated solutions,
and so, it may not be optimal. Kundakcioglu and Unluyurt [30]
integrate concepts from one-step look-ahead heuristic algo-
rithms and basic idea of Huffman coding to construct a
minimum-cost AND/OR decision tree bottom-up for sequential
fault diagnosis. In [1], Amari and Pham develop a method to
provide lower and upper bounds on the optimal number of
spares for each subsystem of complex repairable systems. In
this way, the search space is reduced dramatically and a near-
optimal solution can be found efficiently.

Our work differs from the foregoing work in that it explicitly
exploits the theory of submodular functions with respect to the
sensor selection criterion, and the probabilistic relationships
among sensors to achieve both efficient and accurate sensor
selections in two typical scenarios: the budget-limit case and
the optimal-tradeoff case. Hence, the proposed algorithms are
not only efficient but also they provide performance guarantees.

III. SENSOR SELECTION AND FUSION MODEL

We use dynamic BNs, as shown in Fig. 1, to model the
relationships between sensors and the hypotheses the sensors
aim to assess. Given the dynamic Bayesian network (DBN),
sensor fusion is performed through probabilistic inference. A
BN is a directed acyclic graph that represents a joint proba-
bility distribution among a set of variables [5], [22]. In a BN,
nodes denote variables and the links between nodes denote the
conditional dependences among the variables. The dependence
for each node is characterized by a conditional probability
table. A DBN additionally models the temporal relationships
of the variables. Such a model is capable of representing the
relationships among different sensors in a coherent and unified
hierarchical structure, accounting for sensor uncertainties and
dependences, modeling the dynamics in situation development
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(a) Dynamic BN for active sensor selection and fusion, where ©, X, I, and S denote hypothesis variables, intermediate variables, information variables,

and sensors, respectively. (b) All the hypotheses shares the same sensors (the naive BN). (c) Each hypothesis has its own individual sensor set. (d) Each hypothesis
has individual sensors and/or shares sensors with other hypotheses. The BN in (a) is more appropriate for high-level sensor fusion, while (b), (c), and (d) can be
regarded as special cases of the BN in (a) and are more appropriate for low-level sensor fusion.

with temporal links, and providing principled inference and
learning techniques to systematically combine the domain in-
formation and statistical information extracted from the sen-
sors. These capabilities make DBN a good choice to model
sensor selection and fusion.

As shown in Fig. 1(a), the root node © of such a net-
work, named as the hypothesis node, represents a mutually
exclusive and exhaustive set of possible hypotheses about the
events/situations we want to assess. For example, © could be
the system states in a fault diagnosis system, class labels for a
classification problem, enemy intents in a battlefield situation-
assessment scenario, etc. Sensors occupy the lowest level nodes
without any children. Evidence is gathered through sensors.
To model the integrity/reliability with sensory readings, an
information node I; is introduced for each sensor S;. I; contains
the information that sensor .S; measures. The conditional prob-
abilities between the information node I; and the corresponding
sensor node S; quantify the reliability of sensor measurements,
and the sensor reliability may change over time. The interme-
diate nodes X’s model the probabilistic relations between the
hypothesis and information nodes at different abstraction levels.
The DBN in Fig. 1(a) represents a typical structure for active
sensor selection and fusion using BN. However, the BN struc-
ture could be more flexible. For example, © is not necessarily a
root node, and there may be multiple ©’s. In addition, .S; is not
necessarily a leaf node either, and the intermediate nodes X’s
are not needed for some applications. Fig. 1 (b)—(d) shows the
different BN configurations for sensor fusion.

IV. INFORMATION GAIN AND SENSOR COST

The goal of sensor selection is to select a group of sensors
that achieves a good balance between the information gain
(benefit) and the cost of the sensors. In recent years, a com-
monly used method to measure information gain is mutual
information. With respect to Fig. 1(a), let S be a sensor set, S =
{51, 54, ...,S,}; the mutual information of S with respect to
0, 1(0;5),is defined as follows: 1(0;S) = H(O©) — H(O|S),
where H indicates the entropy function. 1(©;.S) measures the
uncertainty reduction of © given the sensors in S.

Mutual information may have a very interesting property,
called submodularity. Before we prove it, we first give the
background information about submodular functions.

Let V be a finite set, and let f be a set function: 2V S R A
function f is submodular if the inequality

f(A)+ f(B) = f(ANB) + f(AUB)
holds for every pair of sets A, B C V' [34]. Equivalently

fLAUX) = f(A) = f(BUX) - f(B)
for VA C B CV, X € V. It means that the marginal value of
X with respect to A is larger than the marginal value of X with
respect to a larger set such as B. In other words, for submodular
functions, adding X into a smaller set helps more than adding
it into a larger set. For example, entropy functions, cut capacity
functions, and matroid rank functions are submodular.

The negative of a submodular function is called a supermod-
ular function. In other words, a function f is supermodular if

the inequality
f(A)+f(B) < f(ANB) + f(AUB)

holds for every pair of sets A, B C V. In addition, a function
that is both submodular and supermodular is called a modular
function.

In general, mutual information is not a submodular function
[27]. However, we show that it is submodular under several
conditions.

Proposition 1: Let A be any subset on S and f(A)=
I(©; A). If any sensor in S is conditionally independent of each
other given ©, then f is submodular.

Proof: See Appendix.

Although people usually make the assumption of conditional
independence in their frameworks such as in [27] and [49], it is
still a strong assumption for most applications. Proposition 2
shows that f is still a submodular function under a relaxed
assumption.

Proposition 2: Let A, B be any subset on S and f(A) =
I(©;A).If I(©; B\ A|JANB) > I(©; B\ A|A) or I(©; A\
B|ANB) > I(0; A\ B|B), then f is a submodular function.

Proof: See Appendix.

I1(0; B\ A|[AN B) > I(©; B\ A|A) shows that the mutual
information between © and the sensors in B\ A is related
to how much information is already known. It is reasonable
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AnB

Fig.2. Graph illustration of Proposition 2: I(©; B\ A|[AN B) > I(©; B\
AlA) & I(©; A\ BJANB) > I1(0; A\ B|B). The “\” sign means set
subtraction.

to assume that observing the sensors in B\ A reduces the
uncertainty of © less if more sensors have already been ob-
served. Thus, the mutual information between © and the sen-
sorsin B\ A given A is less than that when a smaller set A N B
is observed. Fig. 2 shows such a concept.

In addition, the following proposition shows that f is a
nondecreasing function.

Proposition 3: Let A be any subset on S. If f(A)=
I1(©; A), then f is nondecreasing and f(2) = 0.

Proof: See Appendix. We will show that the submodular-
ity and nondecreasing of the information gain function help
to provide a performance guarantee to our sensor selection
algorithms.

The cost function for each sensor or sensor set can be
simple or complex. The sensor cost could be computational
cost, operational cost, cost of energy consumption, and others.
The cost could be constant and the same for different sensors,
or the cost could vary with the sensors. How to define the
cost is application dependent. In order to simplify the sensor
selection problems, most applications assume that each sen-
sor S; has a constant cost ¢(S;), and the cost of a sensor
set A; is D g -4, c(Si). However, it is often the case that
the cost of operating a collection of sensors (jointly) is less
than the combined cost of operating each sensor individually.
In that case, it is reasonable to model ¢ as a submodular
function.

No matter how the benefit and cost are defined, the sensor
selection problems can be divided into two categories. One
involves finding a best sensor set with maximum information
gain when the cost is within a budget limit. Another involves
finding a best sensor set that achieves the best tradeoff between
the information gain and the cost. Since both of these categories
play an important role in the vast majority of applications, we
propose efficient sensor selection algorithms for both of them.

V. SENSOR SELECTION WITH A BUDGET LIMIT

In this section, we present the sensor selection algorithms
for the budget-limit case. In the next section, we will present
the selection algorithms for the optimal-tradeoff case. Let S =
{81,85,...,S,} indicate the available sensors, and let A =
{44,..., A} be a collection of sets over S. The cost of each
Aj is defined as ¢(A;) = > g . 4, ¢(S;), and the benefit of each
Ay is f(A;) = 1(©; A;). Given a budget-bound L, the optimal
sensor set A* is

A" = arg max {f(A;):c(4;) < L}. (1)

TABLE 1
PSEUDOCODE OF ALGORITHM 1: GREEDY-BRUTE FORCE

Algorithm 1: A*=SensorSelect1(BN, S, L, k)
Let G = {Az : ‘Az| = k.C(AZ) S L, AZ S A},
Al — argn}ﬁx{f(Ai) A <k, Ap € A e(A) < LY

A — 0
for each A; € G
G — S\A;;
while & +# ()
5" argmax( L US(s); M) 5o
if ¢(A;) +¢(S™) < L then A; — A; U{S"};

G/ — G/\S*;
if f(A;) > f(A3) then A5 = A;
Return A* = argmax(f(A7), f(A3));

A. Initial Greedy Algorithm

Based on the aforementioned definition, the sensor selection
problem can be regarded as a budgeted maximum coverage
problem [43]. Although, in general, such a problem is NP-hard,
an approximate solution is available, which is near optimal and
computable in polynomial time. We modified the algorithm
from [27] as shown hereinafter. Similar algorithms can also be
found in [25] and [43].

Table I illustrates the pseudocode of Algorithm 1. In the first
phase, Algorithm 1 arrives at a solution A} by enumerating
all possible l-element (I < k) subsets that satisfy the budget
constraint. In the second phase, Algorithm 1 starts from all
possible k-element subsets for some constant k& and then uses
a greedy approach to supplement these sets in order to produce
a solution Aj. Finally, the algorithm outputs Aj if f(AF) >
f(A%) and A} otherwise. The time complexity of the algorithm

is O(n**+1ylogn), where n is the size of the whole sensor set
and +y is the time required to compute the function value of f.

Theorem 1: The worst case performance guarantee of
Algorithm 1 for solving the problem (1) is equal to (1 — 1/e),
if £ > 3 and f is a submodular and nondecreasing function.

Theorem 1 shows that the information gain of any sensor set
selected by Algorithm 1 will not be less than (1 — 1/e) of the
information gain of the optimal sensor set. The theorem has
been proven by the studies in [13], [27], and [43].

Since f is a submodular and nondecreasing function as we
proved in the previous section, Algorithm 1 can be used to find
a near-optimal solution for problem (1) in polynomial time with
a performance guarantee.

B. Algorithm Speedup With Partitioning

In Algorithm 1, for each updated A;, we need to compute
f(A; US;) for each possible candidate sensor S; at each loop.
As the size of A; increases, the computation could be time-
consuming. Therefore, it is important to speed up Algorithm 1.
We propose a partitioning procedure to compute f efficiently
by exploiting the probabilistic dependence among the sensors.
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Assume that the target is to compute f(S)=
1(0;5y,...,5,). The partitioning procedure is to divide S
into several groups, where the sensors in one group are
conditionally independent of the nodes in other groups given ©.
The partitioning procedure consists of three steps.

1) Decide whether two sensors S; and S; are conditionally
independent given © by exploring the BN structure based
on four rules: i) if there is a path between S; and S
without passing ©, S; and S; are dependent; ii) if both S;
and S; are the ancestors of ©, S; and S; are dependent
given O; iii) after removing the links to and from © from
the original BN, if S; and S; have common ancestors,
or S; is S;’s ancestor, or vice versa, then S; and .S; are
dependent; and iv) in all the other cases, S; and S; are
conditionally independent given © (time complexity for
step 1): O(h), where h is the longest path in a BN).

2) Build an undirected graph to model the relationships
among the sensors. In such a graph, each vertex repre-
sents a sensor .5;, and each edge between two vertices in-
dicates that the two corresponding sensors are dependent
according to the rules in Step 1).

3) Partition the graph into disjoint connected subgraphs.
A depth first search algorithm [6] is used to partition
the graph into several connected components (disjoint
connected subgraphs) so that each component is discon-
nected from other components. The sensors in each con-
nected component are conditionally independent of the
sensors in any other connected components. Therefore,
each connected component corresponds to one group
[time complexity for step 3: O(|V| + |E|), where V is
the set of vertices and FE is the set of edges in the graph].

Based on the time complexity, we can see that the partition-
ing procedure is quite efficient. In addition, we only need to
perform the partitioning procedure once for the whole sensor
set. To divide the sensors in any subset into several groups,
we need only look at the subgraph related with the targeted
sensors. Thus, the whole procedure is efficient. The partitioning
procedure returns several independent groups A%, A2, ... A™.
Then, the following lemmas stand.

Lemma l: H(©,S1,...,S,)=> 1", H(AL®)+ H(O).

Proof: See Appendix.

Lemma 2: The mutual information I(0;S7, Sa, ..

H(AL ... A7) = Y, H(AL[®).
Proof: See Appendix.

Based on Lemma 2, computing 7(0; S1,...,S,) is equal to
computing H(AL, ... A™) and each H(AL|©),i=1,...,m.
To compute H(AL, ... A™) efficiently, one key issue is to
compute p(AL, ..., A™). We notice that

P(S1, -, Sm) = > {p(AL,..., A" AT1©) p(©)}
(S)

aSn):

= { 1:[ P (4:10) - p(AT6) -p(@)}-
© i

Since Algorithm 1 always starts from a smaller sensor set
to a larger set, each p(Al|©), i=1,...,m — 1, is usually
already computed before computing p(Al, ... Am~1 A™),
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TABLE 1I

PSEUDOCODE TO COMPUTE I(©; S1,...,Sn)

Partitioning S into conditionally independent groups
AL A2 ..., A™ by the DFS (depth first search) algorithm;
for cach AL, i=1,...,m
if H(A%) is computed before
Reuse the values of p(A%L) and H(AL)
else
compute H(AY)
compute 3" {TT/" ' p(AL|©) - p(AT'|©) - p(©)}
compute H(AL, ..., A™)
compute Y7 | H(AL|©)

compute 7(©; S1,...,S,) based on lemma 2

Then, p(A"|©) is the only new factor that must be com-
puted. This factor can be easily computed with a BN in-
ference algorithm. Thus, p(AL, ..., A™ 1) can be computed
much more easily. Similarly, for the second term in Lemma 2,
S H(AL®), each H(ALO), i=1,...,m — 1, is usually
already computed, so H(A”*|©) is the only term that needs to
be computed. Overall, the partitioning procedure allows com-
putation sharing between different sensor sets. In particular, the
f function of each large sensor set becomes easy to compute
because of sharing computations with its subsets. Therefore, the
partitioning procedure is able to speed up Algorithm 1 signifi-
cantly as shown in the experiments. The pseudocode to compute
mutual information I(©; Sy, ...,.S,) is shown in Table IL

C. New Algorithm With Partitioning

The partitioning procedure helps only with computing mu-
tual information and does not affect the selection proce-
dure in Algorithm 1. However, in order to further speed up
Algorithm 1, we can also apply the partitioning procedure to
sensor selection and thus get a new selection algorithm. This
algorithm exploits both the submodularity property and the
sensor dependence embedded in the BN model through the
partitioning procedure. The pseudocode is shown in Table III.

Algorithm 2 consists of three phases. In the first phase, it
uses the partitioning procedure to divide all the sensors into
several groups, AL A% ... A™. Then, in the second phase,
for each group A, a subfunction, Algorithm 1 or a brute-force
algorithm, is called to select a local optimal sensor set subject
to the local budget L;. If the size of the group is small (< 1),
the brute-force algorithm is used to find the local optimal set.
Otherwise, Algorithm 1 is applied to decide the local optimal
set. In the third phase, a new sensor set A* is constructed by
combining all the local optimal sets. For this set, Algorithm 1
or the brute-force method is applied again to decide the global
optimal sensor set.

There are two dynamic parameters, [ and L’i, in the algorithm.
I decides which algorithm is applied to each group to obtain
the local optimal set: the brute-force method or Algorithm 1.
If [ is too large, the brute-force algorithm will slow down the
speed. Empirically, [ is set as 6. Another parameter L decides
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TABLE III
PSEUDOCODE OF ALGORITHM 2: OPTIMAL
SELECTION WITH PARTITIONING

Algorithm 2: A*=SensorSelect2(BN, S, L)

Partitioning S into conditionally independent groups
Al A% .. A™ by the DFS (depth first search) algorithm;
for cach AL, i=1,....m

n g cai F(Si)/e(S;) i
[ ) S, €A, |Ac
L= Llevmrs, Searasy Tew)

if |AL <1
use brute-force method to select the best sensor
set A7’ from A% under the cost constraint of L};
else
A}’ = SensorSelectl (BN, A%, L}, 3)
A =AY, AL )
if |A*] <1

A* is decided from A*" with brute-force method;

else
A* = SensorSelect1(BN, A*' | L,3),
Return A™;

the budget for each group. It is dynamically decided by two
factors: 1) (1/|A%]) 2sieai f(5i)/c(S;), the average ratio of
f(S:)/c(S;) in each group A%, and 2) |A%], the size of A’.

Obviously, the time complexity of Algorithm 2 depends on
the two subfunctions: Algorithm 1 and the brute-force method.
For the brute-force method, since the size of the input group
is always less than [ (I < 6), it is time efficient. Since the
input is a subset when calling Algorithm 1, it costs much less
time than when the input is the whole sensor set. Therefore,
Algorithm 2 is more efficient than Algorithm 1 in general. If
all the sensors are conditionally independent of one another,
Algorithm 2 degenerates to Algorithm 1.

In addition, the performance of Algorithm 2 can be justified
by two factors: 1) algorithm 2 performs sensor selection on
each sensor subset, instead of starting from the whole sensor
set; thus, it is more efficient; and 2) the sensor subsets are
conditionally independent from each other through partitioning;
thus, the sensors selected from each subset are more likely to
be included in the optimal sensor set, compared to dependent
sensor subsets. Therefore, Algorithm 2 significantly improves
the speed of Algorithm 1, yet with comparable accuracy.

VI. SENSOR SELECTION WITH OPTIMAL TRADEOFF

The algorithms in Section V maximize the benefit of a set of
sensors as long as the cost is within a budget. A further goal is to
find a sensor set with the best tradeoff between the cost of the
sensors and the potential gain (benefit) obtained by using the
sensors. In certain applications, it is more reasonable to achieve
the optimal sensor set A* such that

A* = arg max {f(A;) —c(4;)}. (2)

Taking sensor networks for example, ¢ could be sensor power
usage. It is desirable to have sensors that maximize the gain
while consuming as little power as possible in sensor networks.
This is an NP-hard problem too. Based on the previous analysis,
f is a nondecreasing submodular function. If ¢ is a modular
function as assumed by most researchers, f(4;) — ¢(4;) would
still be a submodular function but not necessarily a nonde-
creasing one. Therefore, problem (2) becomes a submodular
function maximization problem, which can be solved with
global solutions by some well-known polynomial algorithms
such as the combinatorial strongly polynomial algorithm Iwata,
Fleischer, and Fujishige (IFF) developed by Iwata et al. [20], a
faster scaling algorithm in [19], etc. However, in some cases,
it is not reasonable to define ¢ as a modular function. For
example, usually, the cost of operating a collection of sensors
(jointly) is less than the combined cost of operating each sensor
individually. Thus, assuming that the cost of a sensor set is
the sum of the cost of each individual sensor may not be
appropriate. In that case, it is more practical to model c as a
submodular function.

Unfortunately, if ¢ is also a submodular function, the dif-
ference between two submodular functions like f and c is
not necessarily a submodular function. However, if we could
transfer f(A4;) — c¢(4;) into a submodular function, the optimal
sensor set A* can be obtained efficiently with one of these well-
known algorithms. One solution is to seek a modular function
h that closely approximates the cost function c. Since h is a
modular function, f(A;) — h(A;) will still be a submodular
function. Proposition 4 shows how to find such a function h,
which is referred from the studies in [10] and [36].

Proposition 4: Let w be a random permutation of the sen-
sorset S = {S;,...,S,}.Let W; = {n(1),7(2),...,7(4)}. A
function h : S — R is defined as follows:

W), ifi=1
h(rm(i)) = {c(Wi) —¢(W;_1), otherwise.
In addition
h(A)= > h(S:) VA CS.

Si€A;

Then, the following are defined.

2) h(Wy,) = c(Wy,), for1 < m < mn.

Proof: See [15].

With this procedure, the generated function % is modular and
bounded above by c. Furthermore, this modular approximation
is the tightest possible approximation to c¢ in the following
sense [36].

Proposition 5: Every h obtained in Proposition 4 is a vertex
in the extended base polymatroid of ¢, and every vertex in the
extended base polymatroid of ¢ can be obtained by picking an
appropriate permutation.

Proof: See [15].

Now, we can use Algorithm 3, as depicted in Table IV, to de-

cide the optimal or near-optimal solution for the problem (2) by
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TABLE 1V
PSEUDOCODE OF ALGORITHM 3: SELECTION
WITH MODULAR APPROXIMATION

Algorithm3: SensorSelect3(BN, S, §)

max «— —oo;
mark «— true;
A —0;
while mark = true do
if A® is empty
7 «— a random permutation of S;
else
7 «— random permutation starting with A",
define h with the method in Proposition 4 given ;
A" — arg max(f —h)(A:)
if (f —h)(A") —maz>§
mark = true;
maz = (f — hu)(A%);
else

mark = false;

Return A™;

using Proposition 4 and the submodular function maximization
algorithm.

As shown in the pseudocode, it repeats generating new
permutation of the sensor set S based on the selected sensor
set A* at the previous step until no obvious improvement is
achieved, which is controlled by the parameter §. Correspond-
ing to each new permutation, a modular function h is generated
to approximate ¢, and A* — argmax,cs(f — h)(4;) can be
decided with the IFF algorithm by Iwata ez al. [20]. The time
complexity of IFF algorithm is O(n"ylog(n)), where  is the
time required for computing the function value of (f — h).

If the cost function ¢ is a modular function, no modular
approximation is necessary, and Algorithm 3 actually returns
the global optimal solution. When the cost function c is a
submodular function, because of introducing h to approximate
¢, local optimum can be returned. However, since h is very close
to ¢ (as shown in Proposition 5) and we also use J to control
the precision effects, the returned solution is usually optimal or
near optimal (as will be shown in the experiments).

VII. EXPERIMENTS

In the experiments, we analyze the performance of the pro-
posed sensor selection algorithms in terms of both accuracy
and speed. To demonstrate the robustness of the algorithms to
different BN structures and parameters, we generate BNs with
random structures and parameters, whose maximal number of
nodes is 50. In each BN, 12 nodes are randomly selected as the
sensor nodes and 1 node is selected as the hypothesis node. For
the budget-limit case, the cost of each sensor is randomly set
at each testing case and the budget-limit L is set as a constant
for all the cases. For the optimal-tradeoff case, the sensor cost
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Fig. 3. (a) Example BN where all the sensors are conditionally independent
of one another given ©. (b) Example BN where the sensors can be dependent
of one another given ©.

TABLE V
PERFORMANCE OF THE SENSOR SELECTION ALGORITHMS WHEN
SENSORS ARE CONDITIONALLY INDEPENDENT IN 500 TESTING CASES

Alg. 1a | Alg. 1b | Greedy
Error Ratio 0.05 0.05 0.21
Mutual Information Ratio 0.98 0.98 0.91
Running Time Ratio 0.35 0.06 0.03
TABLE VI

PERFORMANCE OF THE SENSOR SELECTION ALGORITHMS WHEN
SENSORS ARE DEPENDENT IN 500 TESTING CASES

Alg. la | Alg. 1b | Alg. 2 | Greedy
Error Ratio 0.06 0.06 0.10 0.22
Mutual Information Ratio 0.99 0.99 0.97 0.91
Running Time Ratio 0.35 0.10 0.06 0.03

is defined as a submodular function. The ground truth of the
optimal sensor subset is obtained by a brute-force approach.

A. Sensor Selection With a Budget Limit

To demonstrate the performance of the proposed algorithms,
we compare Algorithm 1, Algorithm 2, a greedy approach, and
the brute-force method. For Algorithm 1, k is set as 3. The
greedy approach is similar to Algorithm 1 with & = 1.

In order to demonstrate whether the performances of the
algorithms are affected by the relationships among the sensors,
we designed two sets of testing cases. The first set consists of
500 BNs where all the sensors are conditionally independent
of one another; and the second set consists of 500 BNs where
the sensors can be dependent of one another. Fig. 3 shows two
example BNs.

Tables V and VI demonstrate the experimental results, where
Alg. 1a represents Algorithm 1 without using the partitioning
procedure to compute mutual information, while Alg. 1b rep-
resents Algorithm 1 with the partitioning procedure. Table V
does not list the performance of Alg. 2 because it has the same
performance as Alg.1 when all the sensors are conditionally
independent. The error ratio is the ratio between the number
of misselection cases and the overall number of cases, where a
misselection case is defined as the case that the selected sensor
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TABLE VII
PERFORMANCE OF ALGORITHM 3 VERSUS GREEDY
APPROACHES IN 500 TESTING CASES

Error Ratio  DIC rate
Algorithm 3 0 0.99
Greedy approach (k=3) 0.25 0.94
Greedy approach (k=1) 0.42 0.82

set has more than one sensor different from the optimal selec-
tion. The mutual information ratio is the mutual information
between the selected sensors and ©, divided by the mutual
information between the optimal sensor set and ©. The running
time ratio is the ratio between the computational time of the
algorithm in each column and that of the brute-force method.
Both the mutual information ratio and the running time ratio
are averaged over the 500 testing cases.

As shown in the tables, the performance of each algorithm
is rarely affected by the relationships among the sensors. Com-
pared to the greedy approach, Alg. 1a, Alg. 1b, and Alg. 2 have
much lower error ratio, which means that they are able to return
the near-optimal solutions for most testing cases. In addition,
Alg. 2 is faster than Alg. 1a and Alg. 1b because the partitioning
procedure is applied to both mutual information computation
and selection procedure. Alg. 1b is faster than Alg. 1a because
of the savings in mutual information computation. Greedy ap-
proach, on the other hand, is faster than both algorithms 1 and 2
for both types of networks, but with much worse error ratios.

B. Sensor Selection With Optimal Tradeoff

To test Algorithm 3, 500 BNs are randomly generated. How-
ever, the cost of sensors is defined as a submodular function.
We compare Algorithm 3 to a greedy method, which is very
similar to Algorithm 1 except that the budget limit is removed.
The overall performance is shown in Table VII. The DIC rate is
the ratio between the DIC (difference of mutual information and
cost) of the selected sensor set and that of the optimal sensor set.
Both the DIC and error ratio are averaged over the 500 testing
cases.

Table VII shows that the error ratio of Algorithm 3 is zero.
It demonstrates that Algorithm 3 always returns an optimal or
near-optimal solution. For the greedy approach, although it has
good performance for the budget-limit case since the objective
function is submodular and nondecreasing, it performs worse in
the optimal tradeoff case. Since (f — c) is neither a submodular
function nor nondecreasing, there is no performance guarantee
for the greedy approach even with k£ > 3 in the optimal tradeoff
case. Fig. 4 shows the performance of Algorithm 3 versus
greedy approaches in 50 cases. In the majority of the cases, the
DIC is 1, which means that the proposed algorithm returns the
optimal sensor sets, while the greedy approaches rarely return
the optimal sensor sets.

When n is small, Algorithm 3 is not much faster than the
brute-force method, although the time complexity of the former
is polynomial and the latter is exponential. However, when n
is large (e.g., n > 25), it is much faster than the brute-force

1
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Fig. 4. Performance of Algorithm 3 versus greedy approaches. The
z-coordinate is the test case index, and the y-coordinate is the DIC rate.

method, in addition to its capability of providing optimal or
near-optimal solutions.

VIII. ILLUSTRATIVE APPLICATION

We apply the proposed sensor selection algorithms to an
application of multistage battlefield situation assessment. The
scenario here is inspired from the study in [7]. In this applica-
tion, dynamic BN is used to model the sensors and hypothesis.
Although we focus on static BNs in the previous sections, our
algorithms can also apply to dynamic BNs one frame at a time,
as shown in this application.

The scenario develops during a period of growing hostility
between the Blue force and the Red force who poses a threat.
The goal of this scenario is for the Blue force to selectively use
its surveillance assets to quickly and efficiently infer the intent
of the Red force. More detail is given in [7]. The Blue force
surveillance facilities include a number of offshore sensors,
unmanned aerial vehicles, surveillance helicopters (RAH66
Comanche), etc. The Blue forces on duty in the restricted zone
consist of the following: 1) a Fremantle Class Patrol Boat
(FCPB); 2) a Maritime Patrol Aircraft (MPA); 3) a Night Hawk
Helicopter; and 4) one F111 (Maritime Strike Aircraft). The
Red forces include the following: 1) a major fleet unit; a Guided
Missile Frigate (FFG); 2) one FCPB; and 3) a communication
ship. In addition, the Red force has two surface units armed
with an M386 Rocket Launcher and a 110 SF Rocket Launcher
that are ready to move to the locations where the Blue force is
within their fire range.

A dynamic BN, as shown in Fig. 5, is constructed to assess
the situations for the scenario above. A set of hypotheses
representing possible Red force intents includes the following:
1) Passive—monitor the Blue forces in the restricted zone and
assume that the Blue forces will not interfere with the fuel sup-
ply; 2) Defensive—conduct active reconnaissance and maintain
a defensive presence to guard the supply routes against the
Blue force interference; and 3) Offensive—mount a naval attack
or infantry artillery engagement (surface-to-air or surface-to-
surface attack) on the Blue forces with the intent of destroying
the Blue forces as well as their offshore surveillance facilities.
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Fig. 5. BN model for the battlefield scenario. S1—S10 are information sources.

We assume that there are external modules that receive
sensor data and make the data available as input evidence to
the network. The model in Fig. 5 shows that there are ten
sensors available to supply information. The conditional prob-
abilities and sensor costs are given subjectively. A Blue force
commander needs to select appropriate sensors over time in
order to assess the hypothesis of the Red force intent (Passive,
Defensive, or Offensive in a timely and efficient manner).

In order to further demonstrate how the sensor selection
algorithms help predict enemy intents, a simulation system is
developed to generate synthetic data. The simulator consists of
two independent but related models: a source model simulating
the intents of the Red force to produce evidence reflecting them,
and a working model simulating the Blue force that estimates
enemy (Red force) intents and determines appropriate sensory
actions by selectively collecting the evidence. We assume
that the enemy intents are passive in the beginning, gradually
change to offensive, and finally become defensive.

Fig. 6 shows the estimation results when different sensor
selection algorithms are used. The dotted line represents the
ground-truth enemy intent P(Offensive), and the other three
curves represent the inferred enemy intent by collecting evi-
dence from the selected sensors with the corresponding three
sensor selection algorithms: Alg. 1b, Alg. 2, and the greedy
approach. As shown in the figure, the enemy intent estimated
by Alg. 1b and Alg. 2 is quite close to the true enemy intent
after 5 time steps, while the enemy intent estimated by the
greedy algorithm is not close to the truth until after more than
20 time steps. After about 30 time steps, as P(offensive) de-
creases, Alg. 1b and Alg. 2 are able to follow enemy intent
more closely than the greedy algorithm as well. In other words,
Alg. 1b and Alg. 2 are able to select optimal sensors in time
and thus track the enemy intent better. In addition, Alg. 2 is
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Fig. 6. Sensor selection results of the military example.

TABLE VIII
CASE STUDY OF SENSOR SELECTION WITH ALG. 1b

Assessment Stage Probability of Hypothesis Sensors Selected
1 P(Pas)=0.33, P(Def)=0.33, P(Off)=0.33 Sy, S
8 P(Pas)=0.17, P(Def)=0.32, P(Off)=0.51 S, S
19 P(Pas)=0.01, P(Def)=0.18, P(Off)=0.81 S, S1a, S16
30 P(Pas)=0.03, P(Def)=0.05, P(Off)=0.92 Sy, S13, Si7
45 P(Pas)=0.01, P(Def)=0.24, P(Off)=0.75 Sy, S1a, Si6

Note: Pas, Def, and Off represent Passive, Defensive, and Offensive, respectively.

40% faster than Alg. 1b. Table VIII shows the specific sensors
used in certain time slices.
IX. CONCLUSION

In this paper, we propose several algorithms to per-
form efficient and accurate sensor selection in two typical
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scenarios: the budget-limit case in which the best sensor set is
the one with maximum information gain under a budget limit,
and the optimal-tradeoff case in which the best sensor set is the
one that achieves the optimal tradeoff between the information
gain and the cost. Although finding an optimal solution is NP-
hard for both of them, we introduce efficient and near-optimal
solutions by fully utilizing the properties of the sensor selection
criterion and the probabilistic dependences among sensors.

Specifically, for the budget-limit case, to ensure performance
of the proposed algorithms, we first prove that mutual informa-
tion is a submodular function under a relaxed condition. Based
on this property, we introduce an efficient greedy approach with
a constant factor of (1 — 1/e) performance guarantee to the
optimal performance. Furthermore, to improve the efficiency
of the algorithms, we propose a partitioning procedure for
both efficient sensor selection and efficient mutual information
computation. For the optimal tradeoff case, if the cost function
is a modular function, the proposed algorithm can provide
the global optimal solution in polynomial time; if the cost
function is a submodular function, a submodular—supermodular
procedure is embedded with the proposed sensor selection
algorithm to choose the optimal or near-optimal sensor set in
polynomial time. The experimental results with both synthetic
and real data demonstrate the performance and efficiency of our
algorithms.

This paper focuses only on sensor selection. Our future goal
is to model sensor selection, sensor fusion, and decision making
in a unified framework. More issues will be addressed, e.g., how
to fuse the information collected from the sensors efficiently,
how to decide the optimal action based on the fused results, and
how to learn the parameters of the BN framework. In addition,
we will apply the framework as well as the algorithms to more
real-world applications.

APPENDIX
Proof of Proposition 1:
f(A)=H(©) - H(O]A)

=H(©) - [H(A,0) — H(A)]
=H(©) - (H(©) + H(A|©)) + H(A)
=H(A) - H(A[©).

Thus, VA, B C S

f(A)+ f(B) =H(A) + H(B) — H(A|©)

— H(B|®)f(ANnB)+ f(AUB)
=H(ANB)+ H(AUB)

— H(ANB|©) — H(AU B|O).

From the fact that Entropy is a submodular function [14],
thus H(A)+ H(B) > H(AN B) + H(AU B). In addition,

since the sensors are conditionally independent given ©

S H(S|e)+ Y H

Si;€eA S;eB

= > H(S|e)+ Y  H(Sie)

S,€ANB S, AUB

H(A|©)+H(B|©)= (Si1©)

=H(ANB|©)+H(AU B|©).

Therefore, f(A) + f(B) > f(AN B) + f(AU B); in other
words, f is a submodular function.

Proof of Proposition 2: Based on the chain rule of mutual
information, we find the following:

I(6; B\ AJANB) = H(O|AN B)
—H(O|(B\A)U(ANB))
—H(6|AN B) — H(|B)
1(©; B\ A|A) =H(O[A) — H(6[(B\ A)U (A))
— H(O|A) — H(O|(AU B).
Thus
1(6; B\ AJAN B) > I(©; B\ A|A)
= H(O|ANB) — H(O|B) > H(6|A) — H(O|AU B)
= H(©) — H(O|A) + H(©) — H(O|B)
> H(©) — H(O|ANB) + H(©) — H(O|AU B)

= f(A)+ f(B) =z f(ANB) + f(AU B).

If 1(©;A\ BJANB)>1(0;A\ B|B) is true, the proof
is similar. We thus skip the details. In fact, I(©;B\
AJANB) > 1(0; B\ A|A) is equivalent to I(0; A\ B|AN
B)>1(0; A\ B|B). We skip the proof since it is very
straightforward.

Proof of Proposition 3: Let X be any sensor belonging to S,
but not in A

fLAUX) - f(A)=H(®) — HO|AUX)
— (H(©) — H(6]A))
=H(0,A)— H(A)+ H(A,X)
—H(0,A,X).
Since entropy is a submodular function [14]=
H(©,A)+H(A,X)>H(A)+H(6,A,X) [because
(0, A)N(A,X)=Aand (0,4A)U(A,X)=(0,4,X)].

Thus, f(AU X) — F(A) > 0; in other words, f is nonde-
creasing. It is also obvious that f(2) = 0.
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Proof of Lemma 1:

H(®7817527"'7Sﬂ)
=H(0,A, A2 ... A7)

>

0,A1,...

c

{p (@,A}:,...,AZ’)
VAL

X logp (@,Ai,...,A;’:”)}

>

0,Al

cottny

Am

m

x log |p(©) [ (4L©)

i=1

>

0,AL,...

c

P (@,Ai, . ,A;"')
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