
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2009-07

Detection of Driver Fatigue Caused by Sleep Deprivation

Yang, Ji Hyun; Mao, Zhi-Hong; Tijerina, Louis; Pilutti, Tom;
Coughlin, Joseph F.; Feron, Eric

IEEE Transactions on Systems, Man, and Cybernetics - Part A:  Systems and
Humans, Vol. 39, No. 4, July 2009.
https://hdl.handle.net/10945/41689

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun



694 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

Detection of Driver Fatigue
Caused by Sleep Deprivation

Ji Hyun Yang, Zhi-Hong Mao, Member, IEEE, Louis Tijerina, Tom Pilutti, Joseph F. Coughlin, and Eric Feron

Abstract—This paper aims to provide reliable indications of
driver drowsiness based on the characteristics of driver–vehicle
interaction. A test bed was built under a simulated driving
environment, and a total of 12 subjects participated in two exper-
iment sessions requiring different levels of sleep (partial sleep-
deprivation versus no sleep-deprivation) before the experiment.
The performance of the subjects was analyzed in a series of
stimulus-response and routine driving tasks, which revealed
the performance differences of drivers under different sleep-
deprivation levels. The experiments further demonstrated that
sleep deprivation had greater effect on rule-based than on skill-
based cognitive functions: when drivers were sleep-deprived, their
performance of responding to unexpected disturbances degraded,
while they were robust enough to continue the routine driving
tasks such as lane tracking, vehicle following, and lane changing.
In addition, we presented both qualitative and quantitative guide-
lines for designing drowsy-driver detection systems in a proba-
bilistic framework based on the paradigm of Bayesian networks.
Temporal aspects of drowsiness and individual differences of sub-
jects were addressed in the framework.

Index Terms—Bayesian networks (BNs), camouflage, drowsy
driving, sleep deprivation, stimulus-response tasks, tracking tasks.

I. INTRODUCTION

UNTIL recently, most safety-related research has focused
on methods to reduce damage caused by transportation

accidents while they are occurring or after they happen. Passive
safety systems such as seat belts, airbags, and crashworthy body
structures help reduce the effects of an accident. In contrast,
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active safety systems help drivers avoid accidents by monitor-
ing the state of the vehicle, the driver, or the surrounding traffic
environment and providing driver alerts or control interven-
tions. Examples of active safety technologies include traction
control systems, electronic stability control systems, forward-
collision warning and lane-departure warning systems, panic
brake assist, lane-keeping aids, and automatic braking systems
[1]. Systems that monitor driver states such as where the driver
is looking or driver drowsiness also fall under the category of
active safety systems.

Our research interest centers on the detection of drowsi-
ness among fatigue-related impairments in driving. This paper
makes two major contributions. First, the camouflage nature of
drowsiness is revealed. Drivers that are deprived of sleep can
still maintain performance in some routine driving tasks. How-
ever, their ability to cope with unusual or unexpected driving
situations deteriorates. Second, a probabilistic framework based
on Bayesian networks (BNs) for inferring drivers’ state of
drowsiness is introduced.

Online driver monitoring devices in motor vehicles have
received renewed attention for helping detect fatigue in the
U.S. and Europe since the late 1990s. These devices rely on
a wide range of parameters, as there is no single commonly
accepted metric to detect driver fatigue in an operational context
[2]. Our study does not employ physiological signals such as
EEG or physical changes of drivers such as eye-closure rate,
but deals with data from driver–vehicle interaction. There are
moments when a driver still looks awake (eyes wide open) but
does not process any information [3]. Although explicit sleep-
onset episodes can cause serious performance failures, some
effects resulting from sleepiness can occur without microsleeps
[4]. This implies that falling asleep may not be the only cause
of fatigue-related accidents; performance deterioration due to
drowsiness may not be induced only by sensor degradation such
as eye closure but may be affected by controller degradation
such as brain functions associated with sleep deprivation. To
address this issue, our approach mainly uses the performance
of drivers extracted from the driver–vehicle interaction.

The rest of this paper is organized as follows. After a brief
introduction on the background and motivation (Sections I
and II), Section III presents the experiment design, which
includes a detailed explanation of different sleep-deprivation
levels of drivers, simulated driving and nondriving tasks, perfor-
mance metrics, and laboratory setup. Next, Section IV presents
the analysis on experimental results. Section V discusses the
application of BNs to detecting drowsy drivers based on the
experimental data. Section VI summarizes the study and pro-
vides future research ideas.

1083-4427/$25.00 © 2009 IEEE
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II. BACKGROUND

Specification of drowsy driving requires us to understand the
sleep–wake mechanism, which, in turn, allows us to clarify
the concept of drowsiness. It has been discovered that sleep
is a dynamic behavior instead of a passive state caused by a
decrease in stimulus level to humans [5]. People have an em-
bedded sleep–wake cycle regulator controlled by a combination
of two internal influences: circadian pacemakers and home-
ostasis [4], [6]. Environmental factors such as stress, noise,
light, excitement, anger, pain, and sleep fragment are known
to affect the sleep–wake cycle as well. However, in contrast
with common belief, they do not cause us to sleep, but simply
unmask any tendency to fall asleep that is already present. It is
frequently misunderstood that boredom can cause sleepiness. It
may unmask sleep in a human who is either originally sleep-
deprived or in circadian sleep peaks, but itself does not cause
sleepiness [6]. Masking is a critical concept for understanding
sleep in terms of the sleep–wake cycle. It is common that
people with chronic sleep deprivation can mask their level of
sleepiness at their workplace. However, when they sit still and
are deprived of external stimuli, sleep is unmasked and quickly
arises [7].

The history of drowsy-driver research dates back to the
1950s, beginning with studies on aircraft pilots [8]. In the
1990s, driver fatigue began to be recognized as a major con-
cern to both automotive industry and public-safety agencies.
Recently, a 100-Car Naturalistic Study conducted by the Na-
tional Highway Traffic Safety and Administration (NHTSA)
and the Virginia Tech Transportation Institute has sought to
provide precrash data that are necessary for understanding
the cause of crashes, to support the development and the
refinement of crash-avoidance countermeasures, and to esti-
mate the potential utility of these countermeasures to reduce
crashes and their consequences [9]. Europe also has several
large-scale programs in progress, e.g., Dedicated Road In-
frastructure for Vehicle Safety in Europe, Program for Eu-
ropean Traffic with Highest Efficiency and Unprecedented
Safety, Impaired Motorists, Methods of Roadside Testing and
Assessment for Licensing, and Assessment of Driver Vig-
ilance and Warning According to Traffic Risk Estimation
[10]–[13].

Fatigue has been estimated to be involved in 2%–23% of all
crashes [14], [15]. The NHTSA conservatively estimates that
100 000 police-reported crashes are caused by drowsy drivers
each year. (That is, about 1.5% of all crashes.) These crashes
result in more than 1500 fatalities, 71 000 injuries, and an
estimated $12.5 billion in diminished productivity and property
loss [16]. The 1990 National Transportation Safety Board’s
(NTSB’s) study of 182 heavy-truck accidents fatal to drivers
showed that 31% of the accidents in this sample involved
fatigue. The NTSB’s numbers regarding fatigue-involved acci-
dents are more revealing, as the NTSB’s in-depth investigations
included surrogate measures such as the 72-h history of rest
and duty times, the amount of sleep in the last 24 h, and
the regularity of the work schedule. An extensive summary
on historical perspectives, facts, and the statistics on drowsy
driving can be found in [17].

A. Existing Measures

1) Transportation Policies: The National Center on Sleep
Disorders Research and NHTSA expert panels on driver fatigue
[18] recommend three priorities for an educational campaign:
1) educate young males (ages 16–24) about drowsy driving
and how to reduce lifestyle-related risks; 2) promote shoulder
rumble strips as an effective countermeasure for drowsy driving
and, in the same context, raise public awareness about drowsy-
driving risks and how to reduce them; and 3) educate shift work-
ers about the risks of drowsy-driving and how to reduce them.

2) Law Enforcement: The first federal bill focusing on
drowsy driving was introduced in the House of Representatives
in October 2002 by Republican Robert Andrews [19]. The
bill, i.e., HR 5543, is called Maggie’s Law: National Drowsy
Driving Act of 2002. The law narrowly defines fatigue as
being without sleep for a period in excess of 24 consecutive
hours. Under Maggie’s law, anyone causing a fatality after
being awake for 24 h or more can be prosecuted for vehicular
homicide. Currently, a number of states, including New York,
Massachusetts, Tennessee, Oregon, Kentucky, and Illinois, are
considering similar drowsy-driving legislation [19].

3) Fatigue Detection Techniques: Along with transporta-
tion policies, reliable and applicable drowsy-driving detection
techniques may help detect fatigue. Researchers have devel-
oped a variety of drowsiness-detection methods, which can be
classified in terms of their specific techniques [2], [20], [21].
References [17] and [20] have summarized the detection tech-
niques based on: 1) physiological signals, including pulse rate
and EEG; 2) physical changes, including changes of head posi-
tion, eye-closure rate, and eyelid movement; 3) driver–vehicle
data, including steering angle, throttle/brake input, and speed;
and 4) secondary tasks that periodically request responses from
drivers.

III. DESIGN OF EXPERIMENTS

A. Experimental Objectives

The simulator-based human-in-the-loop experiments are
intended to explore the characteristics of drowsy driving.
The purpose of the experiments is not to propose another
drowsiness-monitoring technique but to understand the in-
depth characteristics of driver–vehicle systems under different
sleep-deprivation levels of drivers. For instance, we will not
only compare driver performances between drowsy and alert
drivers but also investigate tasks that show little performance
deterioration under sleep deprivation.

Our main working hypothesis is that the deterioration degree
of a drowsy-driver performance is greater in “medium-level”
switching than in “low-level” regulation tasks. The rationale of
this hypothesis came from the physiological basis of the sleep–
wake cycle and the motor control of the human nervous
system [17].

B. Independent Variable

The independent variable of the experiment is the sleep-
deprivation level of the human subjects, i.e., the level of home-
ostatic need for sleep. We consider two sleep-deprivation levels,
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i.e., “partial sleep-deprivation” and “no sleep-deprivation.” The
level of sleep deprivation is determined by the amount of
sleep that each subject had before the test day. The non sleep-
deprived subjects slept for at least 7–8 h per 24 h for more than
a week before the test day. The partially sleep-deprived subjects
had less than 7 h in bed two days before the test and less than
4 h in bed on the eve of the test.

Actiwatches, which are small actigraphy-based data loggers
that record digitally integrated measure of gross motor activi-
ties, allow us to objectively measure the amount and the quality
of sleep for several days prior to the experiments. Subjects
were asked to wear the MiniMitter AW-16, which can be worn
just like a watch, for one week prior to the non sleep-deprived
session and for two to three days prior to the partially sleep-
deprived session.

C. Simulated Tasks

A series of simulated driving and nondriving tasks were
given to the subjects. A full description of the driving scenarios,
including road geometry, intervals between tasks, and random
order of tasks, can be found in [17].

1) Tracking Tasks: Deterioration in lane-tracking perfor-
mance can lead to overall driving malfunction. Lane-tracking
performance has been considered a main indicator for de-
tecting drowsy drivers [21]–[25]. However, the validity of
this indicator is still controversial, as shown in [3] and [22].
Moreover, between alert and drowsy drivers, there have been
few studies on their performance in lane tracking under various
road or weather conditions. This type of study is nontrivial, as
real driving happens under a variety of situations. Thus, for non
sleep-deprived and partially sleep-deprived subjects, we exam-
ined lateral lane-tracking performance under several conditions
to evaluate the drivers’ ability to maneuver a vehicle inside the
roadway.

Five different tracking tasks were given to each subject in a
random order while driving. The drivers drove in the simulator
as if they were driving in the real world and were not supposed
to change lanes or pass a lead vehicle in front of them. The five
tracking tasks involved driving on the following: 1) a curved
road; 2) a straight road with changes in steering dynamics; 3) a
straight road with a lead vehicle; 4) a straight road without any
disturbance; and 5) a straight road with disturbances (e.g., wind
gusts), respectively.

LT: Without any disturbances or stimuli, the drivers kept
their vehicle centered on a straight road 700 m long under
a specified speed range between 80 and 100 km/h. Each test
included three straight-lane tracking (LT) events.

LV: When a lead vehicle appeared, the subjects were
instructed not to pass that vehicle but to follow the vehicle with
a safe margin that they chose. Each test included three straight-
lane tracking given a lead vehicle (LV) events, and each lead
vehicle was presented for 100 s.

WG: The drivers kept their vehicle centered in a straight
road under a specified speed range between 80 and 100 km/h,
whereas some external pseudorandom disturbances (specified
by multiple sine waves) were introduced. Each test included
three straight-lane tracking given wind gusts (WG) events, each
lasting for 24 s.

SC: The drivers kept the vehicle centered in the straight
road and maintained a specified speed range between 80 and
100 km/h, while the original steering dynamics were altered.
Each test included three straight-lane tracking given changes
of steering characteristics (SC) events, each having a length of
1900 m.

Although we can easily apply external or environmental dis-
turbances such as wind gust, bumpy roads, and fog in simulated
driving, we cannot control the presence of the environmental
disturbance in real driving. However, this internal disturbance
(SC) can easily be generated via drive-by-wire technology in
real driving. The SC was introduced to observe how the drivers
adapt themselves to disturbances and then to study how to apply
this event to real-driving situations. In the SC tasks, we applied
some nonlinearity (backlash) in the steering-alignment system,
originally modeled and implemented as a linear system.

Backlash is a common nonlinearity that limits the perfor-
mance of speed and position control, and typically happens
in worn-out cars. It causes a phase delay and, thus, a loss of
information by clipping the peaks of input signals [26]. The
discrete-time version of the backlash model is

u(t) = B (ν(t)) =

⎧⎨
⎩

m (ν(t) − cl) , if ν(t) ≤ νl

m (ν(t) − cr) , if ν(t) ≥ νr

u(t − 1), if νl < ν(t) < νr

(1)

where νl = u(t − 1)/m + cl and νr = u(t − 1)/m + cr.
Coefficients used in the simulation were m = 1, cl = −10◦,
and cr = 10◦.

CL: The drivers kept the car centered in a serpentine road
under a specified speed range between 80 and 100 km/h. The
length of each serpentine was approximately 1500 m. Each test
included three curved-lane-tracking (CL) events. Subjects prac-
ticed on a curved road before they start the main experiment.
The serpentine geometry used in the practice was different from
that used in the main experiment.

2) Stimulus-Response Tasks: Four stimulus-response tasks
were given to each subject in a random order during the
simulated driving. Stimulus can be an auditory ringing signal,
a visual red triangular symbol, or an overhead lane-change sign
on the driving lane. Definitions of the four stimulus-response
tasks are given as follows.

SLCT: Once an overhead lane-change sign appeared, the
drivers were supposed to immediately change lanes. Each lane-
change sign had an array consisting of an arrow and two X’s.
The arrow indicates the target lane that the drivers need to move
into. The rest of the lanes were marked with X’s to indicate
that the drivers should not move in those lanes. The single-lane-
change task (SLCT) sign refers to the moment when the lane
indicated by the arrow is adjacent to the current driving lane.
Each experimental session included five SLCT events.

DLCT: The lane-change sign had the same format as
described in SLCT. However, the double-lane-change task
(DLCT) sign refers to the moment when the lane indicated
by the arrow is separated from another lane, and the drivers
need to shift two lanes at once. Fig. 1 is a screenshot of the
driving simulator, showing one of the lane-change signs. Each
experimental session included five DLCT events.
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Fig. 1. Screenshot of the DLCT.

APVT: The drivers were supposed to press a green button
on the steering wheel immediately after hearing a ringing tone.
The ringing tone lasted for about 1 s. Each experimental ses-
sion included ten auditory psychomotor vigilance task (APVT)
events.

VPVT: The drivers were supposed to press a green button
on the steering wheel immediately after recognizing a red
stimulus on the screen. The stimulus was shown for 5 s if there
was no response from the subjects. Each experimental session
included ten visual psychomotor vigilance task (VPVT) events.

D. Dependent Variables

The dependent variables of the experiments are the per-
formance measures of the simulated tasks. In this paper, we
consider the following performance measures.

1) RMT: The root-mean-square (RMS) error with threshold
(RMT) is a parameterized variation of the conventional RMS
error, which is usually used to measure the general tracking
performance. We have devised the RMT instead of the RMS
to capture common driving characteristics. The drivers tend to
ignore a certain level of errors, as they generally try to stay
within the driving lane instead of trying to follow a single line
on the road. This driving characteristic is usually called “good-
enough” or “satisfying” characteristics of drivers [20]. Thus, we
introduce a threshold γ to the RMS so that the RMT vanishes
as long as driving trajectories stay within the threshold γ.

The RMT is defined as

RMT =

√√√√√
tf∑

k=t0

max {|x(k)| − γ, 0}2

n
(2)

where x(k) is the lateral lane position of a driver with respect to
the centerline of the driving lane at time k, γ is a threshold value
varying from 0% to 50% of the road width, n is the number of
data within the sampling window, t0 is the initial time in the
sampling window, and tf is the terminal time in the sampling
window. It is apparent that (2) is reduced to a typical RMS error
when γ = 0.

2) RT: The reaction time (RT) is a measure of how fast a
driver reacts to stimuli presented abruptly, i.e.,

RT = taction − tstimulus (3)

where tstimulus is the time a stimulus is presented to the driver,
and taction is the time the man–vehicle system reacts to the
given stimulus. (For SLCT and DLCT, tstimulus is the time
when the lane-change sign appears on the screen, and taction
is the time when the driver starts to steer toward the lane
indicated.)

3) ETL: The effective time delay (ETL) of continuous tasks
can be considered equivalent to the RT of discrete tasks [27].
The ETL is estimated by applying McRuer’s crossover model to
some continuous tasks. McRuer’s crossover model [28] claims
that, for continuous tracking tasks, humans adapt themselves to
the system in such a way as to make the total open-loop transfer
function behave as a first-order system with gain and effective
time delay. Thus, the total open-loop transfer function can be
expressed as

YHYP =
Ke−τs

s
(4)

where YH models the human operation, YP is a plant, K is a
gain, and τ is the ETL.

4) CRR: The accuracy of the drivers’ response is measured
by the correct response rate (CRR), i.e.,

CRR =

n∑
i=1

1(Ri)

n
(5)

where n is the total number of responses under consideration,
and 1(Ri) is equal to 1 when Ri (denoting the ith response) is
correct, i.e., the drivers do what they are supposed or instructed
to do so. On the other hand, 1(Ri) is equal to 0 when the ith
response is incorrect. The CRR measures the accuracy of the
drivers’ response, whereas the RT measures the speed.

E. Laboratory Setup and Experiment Procedure

We developed a simulation test bed allowing human subjects
to drive with predesigned driving scenarios. Simulated driving
was programmed and run by STISIM Drive v2.06.07. A pro-
jector and a wide screen (45 × 60 in) were implemented in the
lab, showing a driving scene to the driver. A six-way power
adjustable driver’s seat was used for the experiment.

Each test session lasted for an hour, including a 10-min
demo drive during which a driver learned the tasks described
in Section III-C except SC and WG. SC and WG were not
included in the demo, as they were not rule-based tasks but
emergency-type ones, for which drivers should react with their
instinct. An experimenter explained how the subjects should
drive or react for relevant tasks. The drivers were asked to
practice each task until an adequate performance level was
achieved. The instructional and demonstrational session was
followed by the main experiment scenario. The initial 20 000 m
(approximately 10 min) of the main experiment was the un-
masking period [17]. Then, randomly placed and ordered tasks,
as described in Section III-C, were successively given to the
driver. No two tasks were simultaneously given to a driver.
The driver was not informed of the time and duration of the
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Fig. 2. RMT sampled over 350 m.

tasks, including the masking period before or during the main
simulation. This main simulation ran for up to 40 min.

Non sleep-deprived subjects participated in the experiment
between 9:00 A.M. and 12:00 P.M., whereas partially sleep-
deprived subjects participated between 2:00 P.M. and 4:00 P.M.
considering their circadian rhythm. An experimenter was
present in the laboratory throughout the whole test session.
Conversation between the subject and the experimenter was
prohibited during the main scenario unless an emergency oc-
curred. Sleep-deprived subjects were provided with transporta-
tion on the test day to avoid safety-related accidents.

IV. EXPERIMENTAL RESULTS

A total of 12 male subjects participated in the experi-
ment twice: under conditions of partial sleep-deprivation and
non sleep-deprivation, respectively. The ages of these subjects
ranged from 29 to 49 years, with an average of 41.7 years
and a standard deviation σ of 6.4 years. The average amount
of sleep these subjects had (measured by MiniMitter AW-16)
per day for two weeks prior to the sleep monitoring was 6 h
42 min (σ = 47 min). None of the subjects had any serious
health problems or were under any medication.

For the non sleep-deprived condition, the subjects had an
average of 7 h 22 min (σ = 46 min) of sleep per day for seven
days prior to the experiment. For the partially sleep-deprived
condition, the subjects had 6 h 11 min of sleep on the night
two days before the experiment (σ = 35 min) and had 3 h
27 min of sleep on the eve of the experiment (σ = 26 min) by
average. The order of the experiment was counterbalanced, and
no subject yielded a crash during the simulation.

A. Within-Subject Performance Analysis

We are mainly interested in the following: which
driver–vehicle data show more or earlier differences between
two groups? Which data show the least amount of differences?
Are there any commonalities in the tasks showing performance
degradation when drivers are sleep-deprived? Each subject
participated in the experiment twice with different sleep-
deprivation levels, and this section compares within-subject
performance differences. We used a nonparametric statistical
test called the Wilcoxon signed-rank test [29] to determine
whether there exist significant performance differences
between the two groups. The p-values listed in the following
sections were obtained from the Wilcoxon signed-rank test,

unless otherwise mentioned. The significance level α was set
at 0.1, as was conventionally used in general human-factor
studies.

1) Lane-Tracking Performance: Fig. 2 shows the average
performance (lines) and one standard deviation (shaded area)
of the 12 subjects sampled over a distance of 350 m (ap-
proximately 13–15 s) of the LT, LV, WG, SC, and CL tasks.
The x-axis represents the threshold γ from the centerline
of the road, which is given in percentage unit with 100%
as the road width. (Fifty percent threshold covers the whole
road width.) The y-axis represents the RMT. The solid lines
indicate data from the non sleep-deprived group, and the
dotted line indicates data from the partially sleep-deprived
group.

Fig. 2 shows that the dotted lines are above the solid lines
for each lane-tracking task. This implies that the performance
of the partially sleep-deprived group was worse than that of the
non sleep-deprived group for all tracking tasks. (Analysis will
follow to show if there exist statistically significant differences
between the two groups.) Clearly, the RMT is a function of
the threshold; as the threshold increases, the value of the RMT
decreases. This is reasonable since the wider the threshold
is, the easier the driver stays within the threshold, and, thus,
the smaller the lane-tracking error becomes. Moreover, the
RMT versus the threshold is “L”-shaped: The RMT rapidly
varies around 0%–10% of the threshold, and the rate of change
decreases as the threshold increases. This implies that the lane-
tracking performance is more sensitive to smaller threshold val-
ues. Such trend is compatible with the drivers’ “good-enough”
strategy for lane tracking.

Fig. 2 shows possibilities of performance degradation in
drivers that are deprived of sleep. Nonparametric statistical tests
further confirmed the significance of the results in Fig. 2. Fig. 3
shows the p-values calculated from the data in Fig. 2. The x-
axis represents the same threshold as in the previous figure, and
the y-axis represents the p-values. The p-values of LT, LV, WG,
SC, and CL were plotted in lines of different styles and colors.
We set α = 0.1, and the p-values less than α were considered
to be significant.

Whereas the p-values of WG, SC, and CL are smaller than
α for a good range of thresholds, those of LT and LV are
not. This result implies that sleep-deprived drivers performed
worse than non sleep-deprived drivers in WG, SC, and CL, al-
though their performances were not significantly different in LT
and LV.
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Fig. 3. p-values calculated from the RMT values in Fig. 2.

Fig. 4. Threshold versus sampling length versus RMT.

Fig. 5. p-values calculated from the RMT values in Fig. 4.

We also want to know how quickly the performance dif-
ferences can be detected between the two groups (non sleep-
deprived and partially sleep-deprived) and how the differences
propagate as time evolves. We introduced a parameter called
sampling length, which indicates the length of data that need to
be collected to detect the differences between the two groups.
The results are shown in Fig. 4. The x-axis represents the
threshold same as in Fig. 2, the y-axis is the sampling length
(ranging from 5 to 400 m), and the z-axis represents the RMT
values. Surfaces with solid (or dotted) lines indicate the data
from the non sleep-deprived group (or the partially sleep-
deprived group). Fig. 4 shows similar trends of the RMT as
in Fig. 2, but plots RMT surfaces instead of lines. Clearly, the
RMT depended on the threshold: The RMT value decreased as
the threshold increased, and the RMT surfaces were “L”-shaped
with some folds between edges. Since it is difficult to see the
effect of the sampling length in Fig. 4, we turned to statistical
tests, which may provide more insights.

Fig. 5 presents the p-values calculated from the RMT val-
ues in Fig. 4. (Fig. 3 is just one of the vertical cross sec-
tions of Fig. 5.) The p-values were plotted in color, and the
color map (the rightmost bar) had high resolution for the
p-value ranging from 0 to 0.5α = 0.05, medium resolution

for p = 0.05−0.1, and low resolution from p = 0.1−1. In
doing so, we emphasized on the p-values that are smaller
than α.

In the subplots for LT and LV, most of the p-values were
greater than α. The plots had a noise-like shape, which implies
that it is difficult to differentiate the performance between the
non sleep-deprived and partially sleep-deprived groups.

In the subplots for WG, SC, and CL, most of the p-values
were smaller than α. This result suggests that the performance
differences between non sleep-deprived and partially sleep-
deprived groups were significant in WG, SC, and CL. Fur-
thermore, WG, SC, and CL were robust to the threshold and
sampling length since the statistical significance was observed
for a wide range of the sampling length and threshold. For
WG, the p-value decreased as the sampling length increased.
This may indicate that the subjects, when not deprived of
sleep, adapted themselves to disturbances faster than when
they were partially deprived of sleep. For SC, the p-value
was approximately 0 for most values of the sampling length
and threshold. This suggests that the SC task demonstrated
distinct and significant performance differences between non
sleep-deprived and partially sleep-deprived groups. For CL, the
differences were present, but not as significant as in WG or SC.
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TABLE I
MEAN, σ, AND SPEARMAN’S COEFFICIENTS OF RT

Fig. 6. Boxplot of RT data from stimulus-response tasks.

We can see from the above results that, when encountering
abrupt changes caused by environment (WG), vehicle (SC), or
challenging road geometry (CL), the drivers showed signifi-
cantly different adaptability to changes under different levels of
sleep deprivation. However, if there was no excitation or distur-
bances introduced (LT or LV), the drivers’ performance showed
little difference between different sleep-deprivation levels. This
implies that drowsy drivers may drive as well as alert drivers for
common driving tasks without any disturbances. More in-depth
explanation in conjunction with other performances is given in
Section IV-B.

2) Stimulus-Response Task Performance: Table I shows the
mean and the standard deviation σ of the RT for each task
under different sleep-deprivation levels. The results were also
visualized in a boxplot (Fig. 6). Each box contained horizontal
line segments at the lower quartile, the median, and the upper
quartile of the RT data. The whisker extended to the most
extreme value within 150% of the interquartile range. Outliers
with values beyond the ends of the whiskers were marked
with +. Tasks under non-sleep-deprivation and partial sleep-
deprivation were labeled A and B, respectively.

Table I and Fig. 6 show that the RT of the partially sleep-
deprived group was slower than that of the non sleep-deprived
group in general. This observation was confirmed by statistical
tests as RTs of APVT, VPVT, and DLCT all showed significant
differences between the two groups, with p-values of 0.0034,
0.0269, and 0.0049, respectively. (Previous papers [30], [31]

reported consistent results in psychomotor vigilance tasks.)
However, SLCT did not show a significant difference between
the two sleep-deprivation levels.

We are also interested in the correlations between tasks.
These correlations can be used to find alternatives to some sim-
ulated tasks that might not be available in real driving. A matrix
containing the pairwise Spearman’s rank correlation coefficient
ρ is given in Table I. Tasks with high ρ, i.e., tasks associated
with p-values less than α, were marked with bold font. APVT,
VPVT, and DLCT showed high correlations with each other,
whereas SLCT was only marginally correlated with DLCT and
showed low correlations with APVT and VPVT. Thus, the
tasks revealing significant performance differences between the
sleep-deprived and non sleep-deprived groups (APVT, VPVT,
and DLCT) were highly correlated with each other as well.

On the other hand, the RT data can directly be compared
among these tasks. The RT of VPVT was significantly different
from those of APVT, SLCT, and DLCT, with p-values of
0.0001, 0.0043, and 0.0015, respectively. A reaction to VPVT
was slower than those to AVPT, SLCT, or DLCT. The difference
between the RT data in APVT and VPVT can be explained
by the stimulus modality. It is known that drivers react faster
to auditory stimuli than to visual cues [32]. This is consistent
with our data. The difference between the RT data in VPVT
and SLCT/DLCT can be explained by the difference between
the drivers’ actions in the tasks. In the response to VPVT, the
drivers need to make an additional hand/arm movement by
pressing a button on the steering wheel. In contrast, the drivers
only need to rotate their arms to turn the steering wheel to
perform lane changes in SLCT/DLCT.

An interesting result is that the performance of SLCT did not
degrade even when the subjects were partially deprived of sleep.
However, the performance of DLCT did degrade. Note that the
stimulus and task protocols of DLCT were identical to those of
SLCT, except that the amplitude of lane changes of DLCT was
twice that of SLCT. Since SLCT is much more common than
DLCT in real driving, our result suggests that drowsy drivers
are able to maintain their normal level of performance in most
lane-change tasks.

3) Application of the Crossover Model to Lane-Change
Tasks: We considered SLCT and DLCT stimulus-response
tasks, and the performance metric was the RT. Meanwhile, lane-
change tasks can be considered tracking tasks—tracking unit
step input. We now employ the McRuer’s crossover model to
analyze SLCT and DLCT as continuous tracking tasks.

In the crossover model [28] for SLCT and DLCT, the human
operator is the driver, the plant is the vehicle, the reference
signal is the demanded change of lane, the output signal is
the lateral position of the vehicle, and the perceived error is
the difference between the reference and output signals. The
open-loop transfer function can be simplified as (4), and we can
estimate its gain K and ETL τ for each subject for SLCT and
DLCT. With these estimated parameters, we can run statistical
tests to determine whether any significant differences exist
between the non sleep-deprived and partially sleep-deprived
groups. MATLAB 6.5.1 System Identification Toolbox was
used to estimate the gain and the ETL, and the result showed
no significant differences in gain K for SLCT and DLCT.
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Fig. 7. Rasmussen skill-, rule-, and knowledge-based classifications with simulated task examples [13].

However, in DLCT, we observed an apparent difference in ETL
τ (the p-value was 0.0408). This is consistent with the result
using the RT as the performance metric in DLCT. Here, the
ETL of continuous tasks can be viewed as the RT of stimulus-
response tasks.

4) CRR: In addition to the RT, which measures how
fast the drivers respond to given stimuli, we are also interested
in the validity of the drivers’ responses. For APVT and VPVT,
the drivers were supposed to press a green button on the steer-
ing wheel immediately after a given stimulus. For SLCT and
DLCT, the drivers were supposed to change lanes immediately
after seeing an overhead lane-change sign. The data showed that
all stimulus-response tasks examined during the experiment had
no significant differences in the CRR between the non sleep-
deprived and partially sleep-deprived groups. No learning or
order effect was found for the RT and the CRR.

5) Other Parameters: The lateral position of the vehicle can
approximately be modeled as the double integration of the
steering movement of drivers [32]. Thus, we might expect that
the performance analysis of steering may provide a result that
is similar but more sensitive to the sleep-deprivation levels of
the drivers than the lane-tracking performance. However, our
data showed that the performance differences in steering control
between the non sleep-deprived and partially sleep-deprived
groups were not as apparent as in lane tracking. This suggests
that the drivers’ control strategies might not be affected by sleep
deprivation.

We were not able to find significant differences in either
longitudinal velocities or throttle-and-brake control under the
two sleep-deprivation conditions in LT, LV, WG, SC, and CL.
The metric used for the steering behavior and the longitudinal
control was the RMT as in the tracking tasks.

B. Camouflage Nature of Drowsy Driving

We can analyze the experimental results within the frame-
work of information processing introduced by Rasmussen [33].
The Rasmussen classification claims that human behavior is
based on a skill, rule, and knowledge hierarchy. Skill-based

tasks need the least cognitive resources; little or no conscious
control is used to perform an action. These tasks include
highly automated tasks such as walking. Rule-based tasks
need more information-processing stages to properly perform
relevant tasks. They require us to identify the system state
to execute the appropriate rules. Knowledge-based tasks are
the highest level tasks involving advanced problem-solving or
decision-making.

Fig. 7 depicts the Rasmussen hierarchy. Obvious examples of
skill-based tasks from our simulated driving include LT and LV.
Both are common driving tasks for which the drivers need little
“conscious” control. However, other driving tasks such as WG,
SC, and CL hold the characteristics of both skill- and rule-based
tasks. The drivers need to pay more attention to control their
vehicles in these tasks since unexpected external disturbances
may occur. The stimulus-response tasks have the characteristics
of the rule-based tasks. In APVT, VPVT, SLCT, or DLCT, a
set of rules are assigned, and drivers are supposed to follow the
rules. However, SLCT also possesses skill-based characteristics
because the drivers perform SLCT very often and are familiar
with this maneuver. We have not included any knowledge-based
task in our experiments, but an example of it could be path
planning.

Recall that the sleep-deprived drivers performed worse only
in tasks 1) WG, SC, and CL (tracking tasks with disturbances),
and 2) APVT, VPVT, and DLCT (stimulus-response tasks).
Performance differences cannot be differentiated in LT, LV,
and SLCT between the two levels of sleep deprivation. When
connecting these observations with the classification introduced
in Fig. 7, we claim that the performance of the sleep-deprived
drivers mainly degrades in rule-based tasks rather than in skill-
based tasks. This result implies that drowsiness has greater
effect on the tasks related to the rule-based (medium-level)
cognitive functions than skill-based (low-level) cognitive func-
tions. This interpretation uncovers important characteristics
of drowsy driving since most driving tasks are skill-based
tasks. Drowsy drivers are robust enough to perform the routine
tasks such as lane tracking or single-lane changing, and
drowsy driving is unobservable in those skill-based tasks. This

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on July 2, 2009 at 12:42 from IEEE Xplore.  Restrictions apply.



702 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 39, NO. 4, JULY 2009

Fig. 8. Bipartite static Bayesian network for drowsiness detection.

camouflage nature of drowsy driving suggests that we should
avoid using skill-based tasks in the detection of drowsy
driving.

V. DETECTION OF SLEEP-DEPRIVED DRIVERS

In Section IV, we focused on finding the performance differ-
ences between drivers with different levels of sleep deprivation.
In this section, our focus is on inferring the drivers’ states based
on their performances. This will be made possible by using a
probabilistic graphical model, i.e., the BN [34]. In the follow-
ing, we provide quantitative guidelines for the application of a
static BN (SBN) and a dynamic BN (DBN).

We utilize the BN paradigm because it is capable of incorpo-
rating prior information, explicitly modeling uncertainties and
temporal aspects of the problem, and modeling data at different
levels of abstraction. The BN has recently been introduced in
drowsiness detection based on monitoring the physical behavior
of the drivers [34], and it has been shown that the BN is able to
capture dynamics associated with fatigue.

A. Formulation of the SBN for Drowsiness Detection

We first utilized the SBN to infer the driver’s drowsiness
based on our experimental data. A detailed introduction of the
SBN can be found in [35].

Fig. 8 shows a bipartite structure with only one parent
node. This structure directly reflects our experimental setup
described in Section III, where the only independent variable
was the sleep-deprivation level of drivers, and the dependent
variables were task performances. The sleep-deprivation level
was modeled as a parent node in Fig. 8. Each task performance
such as the performance of APVT, CL, DLCT, EM, LT, LV, SC,
SLCT, VPVT, or WG was a child node of the sleep-deprivation
level. They are shown as Task #1, #2, . . ., #n in Fig. 8. We
did not include any direct links among the task performances
because there were no causal dependencies among them.

The parent node has two states, defined as T = partial
sleep-deprivation and F = non sleep-deprivation, respectively.
A child node, e.g., the node corresponding to task j (one of the
driving tasks), also has two states, denoted Ttaskj

and Ftaskj
,

respectively. For example, when task j is LT, the two states are
denoted TLT and FLT. A child node corresponding to a tracking
task is in state Ttaskj

if RMTtaskj
≥ θtaskj

(θj is a preset
threshold for task j), and in state Ftaskj

otherwise. Table II
presents a conditional probability table (CPT) calculated from
the experimental data for a sampling length of 350 m and an
RMT threshold of 20%. The CPT for stimulus-response tasks
can be found in [17].

TABLE II
CPT

TABLE III
ESTIMATED PROBABILITY OF SLEEP-DEPRIVATION

BASED ON EACH TASK PERFORMANCE

Fig. 9. SOC curve of tracking tasks.

B. SBN Simulation Results

Successful alarm (SA) and false alarm (FA). We first exam-
ined the positive and negative outcomes of the inference based
on the driving performance. SA is a positive consequence and
FA is a negative consequence of the inference [17]. Table III
shows both the SA and the FA when the performance of only
one driving task was considered. We can also calculate the
inference when we have the performance of multiple tasks.
A system operating characteristics (SOC) curve [36] is shown
in Fig. 9, where the SA and the FA from the different lapse
thresholds based on a single task are presented. The thresholds
varied from the mean value of non sleep-deprived drivers minus
100% of σ to the mean plus 150% of σ. We also formulated
the SBN for each individual subject. Figs. 10 and 11 show
two examples of the SOC curves from subjects 9 and 10,
respectively.

C. Formulation of DBN

We have investigated the SBN mainly considering causal-
ity between variables, but the SBN did not consider the
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Fig. 10. SOC curve: subject 9.

Fig. 11. SOC curve: subject 10.

Fig. 12. Temporal model of drowsiness detection. (Double arrow) Temporal
link from time slice t to slice t + 1.

temporal aspects of the drowsy-driving detection. Drowsiness
may be caused by either sleep deprivation or circadian rhythm;
many other factors such as boredom or motivation can also
mask/unmask sleepiness (Section II). Therefore, drowsiness
is time-dependent, and the temporal aspect of it should be
considered in the detection. We assume that a DBN for drowsy-
driving detection is repetitive in the sense that the structures
of time slices, temporal links, and conditional probabilities are
time invariant. Formulation of the DBN is explained in [17],
and Fig. 12 shows a sketch of the DBN.

Fig. 13. DBN curve: subject 9.

Fig. 14. DBN curve: subject 10.

D. DBN Simulation Results

Figs. 13 and 14 show two examples of the probabilities of
drowsiness estimated from the DBN for subjects 9 and 10,
respectively. We created time slices for every 40 m starting from
the first 150 m in each tracking task. In each figure, the data
corresponding to the non sleep-deprived and partially sleep-
deprived conditions were plotted in solid and dashed lines,
respectively. For subject 9, we can distinguish the driver’s states
of drowsiness based on his performances in LT, LV, and SC. For
subject 10, only SC can provide us with sufficient information
to distinguish the driver’s drowsiness. For each one of the other
subjects, at least one driving task can significantly reveal the
driver’s drowsiness in driving.

VI. CONCLUSION AND FUTURE WORK

This paper has revealed the characteristics of drowsy driving
through simulator-based human-in-the-loop experiments. We
have observed that drowsiness has greater effect on rule-based
driving tasks than on skill-based tasks. We have confirmed this
finding by inferring driver alertness using the BN paradigm.
Based on this paper, we suggest that the driving performance
of the rule-based tasks should be investigated further for the
effective design of drowsy-driver detection systems. The rule-
based tasks examined in our experiments were RT tasks and
tracking tasks with unexpected disturbances. Other rule-based
tasks such as stopping at traffic signals should be examined.
Skill-based tasks, which cover most driving tasks, should also
be considered in the detection system. Although skill-based
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Fig. 15. Detection of impaired drivers.

tasks cannot be used to provide early indicators of drowsy
driving, deterioration of such tasks may indicate the existence
of other driving impairments such as inebriation.

We can generalize the methods developed in this paper to
detect other driving impairments, once we understand the char-
acteristics of impaired driving under the influence of alcohol,
motion sickness, stress, or inattention. For example, we can in-
clude the associated nodes for each impaired driving condition
in the BN structure to assess the driver’s state. Fig. 15 presents
an extended version of Fig. 8, including alcohol and inattention
nodes as other possible causes of impaired driving. We expect
each impaired driving state to possess distinct characteristics.
For example, alcohol influences the function of the cerebellum
more than that of the basal ganglia, whereas drowsiness has the
opposite effects. Therefore, performance degradation resulting
from different driving impairments should manifest different
characteristics.

Complex tasks involving higher level cognitive functions
(such as knowledge-based tasks) should be addressed in further
studies. It is often thought that complex tasks are more sensitive
to sleep loss than simple tasks. However, the tasks that most of-
ten reveal sleep loss early and profoundly are simple sustained
attention RT tasks, which can hardly be considered complex
tasks [37]. As there is a confounding effect of additional
performance degradation due to tedium and a loss of interest
in the task [37], human motivation may significantly affect the
performance in complex tasks. This needs to be addressed in
further studies.

Collaborations between policy makers and research engi-
neers are essential. For example, we need to have a priori
information of drivers to utilize the BN paradigm. Drivers’
information may systematically be obtained through fatigue-
related public policies or regulations. We may consider includ-
ing fatigue-related tests for commercial drivers along with their
training processes. Information obtained from these tests can
then provide driver characteristics that are necessary for the
implementation of individualized detection systems.
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