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Interaction Modeling and Prediction in Smart

Spaces: a Bio-Inspired Approach Based on

Autobiographical Memory
Alessio Dore,Student Member, IEEE,Andrea F. Cattoni,Member, IEEE,

and Carlo S. Regazzoni,Senior Member, IEEE

Abstract—In Smart Spaces the capability of learning

from experience is fundamental for autonomous adaptation

to environmental changes and for proactive interaction

with users. New research trends for reaching such a goal

are based on neurophysiological observations of human

brain structure and functioning. A learning technique to

provide a Smart Space with a so called Autobiographical

Memory is here presented drawing inspiration from a bio-

inspired model of the dynamics occurring between the

system and the user. Starting from the hypothesis that users

actions have a direct influence on the internal system state

variables and vice versa, a statistical voting algorithm is

proposed for inferring the cause/effect relationships among

such instantaneous variations. The main contribution of

this paper lies in proposing a general framework able

to allow a Smart Space to be aware of its present state

as well as of the behavior of its users and to be able

to predict, with a quantified probability estimation, the

expected consequences of users actions.

Index Terms—Smart Space, Bio-inspired Learning, Dy-

namic Interactions Modeling, Event Prediction

A. Dore and C. S. Regazzoni are with the Department of Biophysical

and Electronic Engineering, University of Genoa, Italy, Genova 16145,

Italy e-mail: (dore@dibe.unige.it; carlo@dibe.unige.it).

A. F. Cattoni is with the Department of Electronic Systems,

University of Aalborg, Denmark, Aalborg 9220, Denmark e-mail:

(afc@es.aau.dk)

GLOSSARY

Proto StateXP (t) vector of values acquired by

sensors related to the internal

status of the system

Core StateXC(t) vector of values acquired by

sensors related to the exter-

nal status of the system

Proto Super-stateSxP (t) semantic representation of

the internal state obtained

through a SOM feature re-

duction process

Core Super-stateSxC(t) semantic representation of

the external state obtained

through a SOM feature re-

duction process

Proto Event ǫP (t) modification of the Proto

Super-state

Core Event ǫC(t) modification of the Core

Super-state

I. I NTRODUCTION

The rather new discipline of Ambient Intelligence

(AmI) has grown in recent years and the design of

AmI systems has opened the path to different defini-

tions, issues, related studies and proposed solutions [1],
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[2]. An intelligent environment orSmart Space(SS) is

characterized by a complete absorption of technology

into everyday common objects. This point of view,

shared by the whole AmI research community, helps

in providing the user with a more natural interaction

with the system and hence to overcome the obtrusion

due to the massive use of electronic devices [3]. In

[4], McAra-McWilliam pointed out that AmI systems

are capable of interacting with humans by creating an

environment that is responsive to people’s activities. In

order to establish efficient interactions in SSs between

these two players, research focused its attention on how

to understand user’s behaviors and needs for being aware

of the current environmental situation and for being

proactive in everyday life support.

Learning human activities [5], [6] is an important

aspect in building SSs, in order to understand complex

interactions with human users [7]. In this scenario, new

paradigms, inspired by cognitive sciences [8], [9] and

neurophysiology [10], can be appropriate solutions, as

it is demonstrated in Artificial Intelligence and Robotics

[11]. Modeling cognitive and conscious capabilities [12],

[13] in intelligent systems according to the natural

understanding, reasoning, acting and learning criteria of

human brain [14], [15] can be used for solving complex

problems such as natural interaction with users [16] in

AmI systems [17].

In this paper, these concepts are explored in order

to point out the relevant role of the structural coupling

between system and environment (i.e. interaction with

the user) in the development of context-aware SSs. In

fact a model is here proposed for learning [18] in

dynamic cognitive systems [19] that is able to understand

the cause/effect relationships between the changes in

system state and the environmental perturbations due to

the presence of the user. An algorithm based on neuro-

physiological studies on how human self-consciousness

arises and evolves is proposed to extract contextual

information from heterogeneous sensors signals and to

learn and predict interactions involving users present in

a Smart Space.

A. Related Works

Since the end of the Nineties different visions of AmI

systems have been proposed both from academic and

industrial players. Examples of these strong efforts can

be found in the Philips’ PHENOM [20] or HomeLab [21]

projects, such as in MIT’s Oxygen project [22], Intel’s

Human Activity Recognition [23]–[25], and in the Italian

Virtual Immersive COMmunication (VICOM) project

[26]. Other particular systems which consider cars as

the responsive environment are introduced by Trivediet

al. [27] for enhancing driver safety and security.

All the previously cited systems share some generic

principles in architecture design. As a matter of fact, they

contemplate a structure composed by a set of hetero-

geneous sensors, tools for analyzing the gathered data,

dynamic planners for responding (in short or long time

periods) to interactional stimuli and learning methods for

understanding environmental changes. The last element

is especially important for providing Smart Spaces with

the flexibility required for naturally interacting with hu-

man users. The human adaptability should be considered

as a reference point for building dynamic systems, as

pointed out by Perlovsky [28]. From an engineering

point of view, this characteristic has been the final goal

of a different way of representing intelligence, evolving

from the cognitive [11] semantic reasoning of classical

AI (Artificial Intelligence) systems [29], where all the

knowledge was hardwired into the system by human

experts[30], to emergent and dynamics systems [31] able

to learn models of human interaction behavior [32]. The
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former ones are constructed on an extensional knowledge

representation [33], where rules are the fundamental

atomic bricks [34]. The deterministic approach founded

on rule-sets definition/extraction and on the inferential

relationships, which link different sets together, can

lead to system instability, when they have to face the

complexity of human/machine interactions and its un-

predictability. Furthermore, rule-based approach can be

not comprehensive of all the sensors states and all the

semantic events that a human can produce during its

activity with the system. Moreover, rule-based systems

have an intrinsic difficulty in representing the effects of

the interactions in the time domain, as well as a reduced

predictive capability. An intensional representation [33]

can overcome these limitations. The statistical descrip-

tion of the events allows one to avoid any deadlocking

condition, due to the intrinsic completeness of the rep-

resented knowledge.

Different works can be found in the literature focused

on learning algorithms specifically designed for AmI

applications. For example, in [35] a fuzzy learning tech-

nique, which extracts fuzzy rules to represent the user’s

behavior in an AmI system installed in a dormitory,

is presented. The learned rules relate two sets of state

variables, regarding respectively sensors and actuators,

acquired simultaneously, without considering their tem-

poral consequentiality. In [36], the authors propose an

activity recognition method for Smart Hospitals. The

system is based on multiple Hidden Markov Models

(HMMs) which interpret the interactions between hos-

pital staff, clinical objects, and patients. The statistical

model is based on a two layer HMMs where at a first

stage people and object interactions are modeled in order

to be fused in the second layer in order to recognize

activities. Layered HMMs has been used also in other

works, as in [37], [38], where complex actions can

be decomposed in sub-activities. Many other statistical

models have been proposed to handle these problems.

Coupled Hidden Markov Models [39] have been used to

model and recognize human interactions derived from

analysis of trajectories. In [40] a Hierarchical Hidden

Markov Model (HHMM) allows the decomposition of

complex activities in simpler ones in order to recognize

behaviors in a domestic scenario. Similarly the work

proposed by Duet al. [41] introduces a new statisti-

cal model, called Coupled Hierarchical Duration-State

Dynamic Bayesian Network (CHDS-DBN), to represent

interactions by considering features extracted at different

levels of detail. These approaches based on graphical

models need the a priori definition of the graph structure,

i.e. the relationships between the state and observation

node, and an off-line learning procedure to estimate

the conditional probability density functions relating

them. Another example of a learning system is ADA

[42]: involving groups of users in a big audio/visual

game, Enget al. built up a system able to learn the

proper actions that have to be used to condition human

behavior. The active learning strategy, based on various

pre-codified stimuli available to the system, was used

to parametrize a neural based adaptive system. Through

an interactive psychology-based strategy the system is

able to memorize causal relationships (stimulus-answer)

between the system and the users and to select the most

appropriate actions to be performed. A neural based

learning system was also used by Marchesottiet al. in

[43] in order to estimate the amount of usage/occupation

of a University laboratory. core of the method was a

Self Organizing Map (SOM) Neural Network used as a

hierarchic fusion method for integrating the external and

the internal status of the system.
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B. Motivations and Objectives

The proposed algorithm named,Autobiographical

Memory, is intended as the first step into a new way

of building interacting systems whose learning and pre-

dicting capabilities are inspired by the human ones.

The innovative aspect of this work is the new way of

modeling the interactions between user and system and

its engineering implication in the development of context

aware learning/predicting strategies. To do so multiple

heterogeneous data coming from a set of sensors are

jointly processed with the aim of detecting internal and

external contextual events. Then a non-parametric prob-

abilistic interaction model is learned that can be used

to predict future events to be able to design anticipative

decision strategies. The proposed mechanism, applied for

processing and passively learning interactions between

system and users introduces new functionalities and

modeling capabilities with respect to other works in the

state of the art, which can be exploited in Smart Space

design.

The paper is organized as follows: in Section II an

approach for learning interactions between Smart Spaces

and users being inspired by neurophysiological studies

is proposed. A procedure is introduced for using these

memorized data to predict changes in the system internal

status, which are caused by users interactions, potentially

allowing self-reaction and self-adaptation capabilities. In

Section III described algorithms are extensively tested in

the scenario of a Smart space, installed in a University

laboratory, that monitors internal status of its devices

and external events produced by users actions. Section

IV presents comparisons with other learning approaches

for Ambient Intelligence applications. Finally in Section

V we conclude commenting on open issues and possible

future improvements.

II. A B IO-INSPIREDALGORITHM FOR LEARNING

INTERACTIONS

A possible starting point to provide an Ambient Intel-

ligence system with two basics capabilities, like context

awareness and reasoning, is to understand howcon-

sciousness, interpreted as the capability of differentiation

between itself (self) and the external world, can be

translated into an AmI system.

In this paper, taking inspiration from the work of the

neurophysiologist A. Damasio [44], a model is devel-

oped where two key players, the intelligent organism and

the perceived object, are involved by considering their

interactional relationships. In this context, the organism

can be addressed as the Smart Space system whereas

the object is any entity that gets to be known by the

system for possible interactions; the temporal stream of

causal relationships between the organism and the object

provides the contents of the knowledge one can call

consciousness. From this point of view, consciousness

can be associated with the construction and the use of

knowledge base resulting from two occurrences: 1) the

organism is involved in the relation to some objects; 2)

the object in the relation causes a (potential) change in

the organism. Using this information a framework for

an AmI system is proposed that is able to predict the

evolution of the change of the system state conditioned

to user’s actions and when this modification can occur.

A. Neurophysiologic foundation

Through his experiments, Damasio [44] states that

consciousness probably arises from the relationship of

the organism with the representation of an object. More

in details according to Damasio’s view, consciousness

derives from the construction of knowledge about dy-

namic changes of the state of the organism while in-

teracting with an object and its modifications following
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the relationship with the other entity. This aspect is par-

ticularly suited for an Ambient Intelligence application

where the focus is the interaction between the system

and the user to efficiently supply services.

Damasio refers toimagesas the brain representations

of some objects or feelings in terms of the sensory

perceptions related to them. In this sense, images are

therefore not just visual, but also dependent to other

sensory modalities, that is visual, auditory, olfactory,

gustatory, somatosensory (i.e. coming from the body

feelings, touch, temperature, pain, etc.). The pattern of

neural activities, namely the set of neurons involved in

the sensory process, from which images arise (in a yet

unknown way) are calledneural patterns. According

to this, proto-self and core self are images of the

internal and external activities, deriving fromfirst-order

neural patterns. However, core consciousness, namely

the consciousness of what is external to the organism,

emerges fromcausalrelationships between an object and

the organism.

This element is related tosecond-order neural pat-

terns since it accounts the object coming into sensory

representation and the consequent modification in the

proto-self. Moreover, considering that the interacting

entity triggers the core self in an impulsive way it can

be observed that core consciousness is created in pulses

caused by objects affecting the organism. A second-order

neural pattern can be represented as in Figure 1 where

the proto-self at the inaugural instant, i.e. before the

interaction, the object giving rise to the core self, and the

consequent modification in the proto-self are outlined.

[Fig. 1 about here.]

This structure allows one to capture thecausal relation-

shipsbetween an object and the organism in the sense of

modifications of the internal state of the cognitive entity

caused by the interaction with an external element.

In neurophysiologic experiments Damasio observed

that core consciousness is continuously generated while

the interaction with an external element occurs. The

more the interaction lasts, the more core consciousness

occurrences will be observed and analyzed. This is

implicitly the learning process which allows one to have

memory of the past and to anticipate the future through

previous experience, and it consists in the building of

the Autobiographical Memory. Therefore, essentially,

the Autobiographical Memory is composed by a set of

objectsrelating an event with its consequences on the or-

ganism, i.e. the images generated in the core conscious-

ness process. The capability of retaining experiences

represented by the core consciousness mechanism is the

basis of the formation of thememoryof the past. This

information is then used in theextended consciousnessto

connect the consciousness (i.e. the functional assembly

of two distinct parts, self and other-than-self) and the

lived past in order to anticipate future. In this process a

new component of the brain is fundamental, that is the

autobiographical self. This element is responsible for

reactivating and displaying records of past experiences

retained in the Autobiographical Memory concerned to

the object which is currently generating the core self. The

difference between the core self and the autobiographical

self resides in the fact that core self is a transient entity

emerging in core consciousness when interacting with

some objects while autobiographical self is linked to

the idea of identity and corresponds to a non-transient

collection of unique facts and ways of beings which

characterize the interactions of a person.

The autobiographical self is a record of dispositional

(i.e. dormant, potential, implicit) core self experiences

related to an object, as, for example, the sensory aspects

(e.g. color, shape of the object) but also the motor
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activities to better gather sensor signal and emotional

reaction to the object. This object is recalled when

a core self caused by the same element emerges and

these records become explicit and sensory, motor and

emotional data connected to the object are retrieved. In

some sense that will be clear later in this paper (see Sect.

II-D), we could say that autobiographical self adds a set

of possible predictions about the trend of the dynamics

of ongoing interaction to the current core self.

B. A Bio-inspired Model of Interactions

In Ambient Intelligence one of the main targets is

to predict actions that will occur in the monitored area

in order to establish beforehand the correct activity to

accomplish the required tasks. To reach this goal, a

possible approach consists in memorizing interactions

occurred between the system and the relating entity in an

area associated with an AmI system, in order to acquire

a knowledge base to be used for prediction purposes.

Since this capacity is one of the crucial aspects for

surviving and for the evolution of life beings, a bio-

inspired learning approach turns out to be particularly

appropriate.

The aim is to learn the interaction through the

cause/effect relationships taking place between two en-

tities, namely the system and the user. In particular, two

opposite aspects of the interaction can be taken into

account for the memorization process: 1) how external

events affect the internal status of an entity is examined

when we want to describe theeffectson the analyzed

entity causedby external occurrences produced by the

other entity/entities; 2) how modifications of internal sta-

tus change the external status is analyzed when we want

to describe theeffectson the interacting entitiescaused

by an internal modification of the state. The first way

of learning interactions resembles the Autobiographical

Memory formation described above in Sect. II-A. The

names of the variables defined in the proposed model

directly recall the above mentioned neurophysiological

concepts. Anyway, such names are not intended as an

exact representation in mathematical terms of biologic

constructions, but just as a link between the engineering

framework and the biologic world.

In our model it can be also important to memorize how

the system affects the user behaviors by its actions since

this can be significant to predict his future behavior

conditioned to system activities. We will address these

two aspects of learning interactions as:

1) passive memory: external cause / internal effect

2) active memory: internal cause / external effect

The rest of the paper only deals with the problem

of constructing the passive memory for an Ambient

Intelligent system. However, the described approach can

be extended to the development and maintenance of

the active memory in a straightforward way, as it is

commented in Sect. V-B

1) Proto and Core Events Representation:In the

proposed model to consider the duality between internal

and external states, two vectors respectively describing

internal (proto) and external (core) status are defined:

XP (t) = {xP1(t), xP2(t), . . . , xPN
(t)} (1)

XC(t) = {xC1(t), xC2(t), . . . , xCM
(t)} (2)

where xPn and xCm represent, respectively, the data

acquired by proto and core sensors considered to de-

scribe the internal and the external (with respect to

the system) situation. Therefore, a set of heterogeneous

sensors are positioned in the Smart Space to monitor the

scene and the state of the components of the systems

and the acquired signals are used to compose the state

vectorsXP (t) andXC(t). However, in order to provide

a significant representation of these elements in terms of
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contextual situation to be analyzed a clustering procedure

is required to provide a more semantically meaningful

description of the ongoing situation detected by sensors.

In general, given the complexity and the high number

of signals, a pre-processing technique can be useful to

fill the memory with meaningful information. In other

words, the efficiency of the memory can take advantage

of assigning some sub-symbolic labels to each occur-

rence of the vectors in Eqs. (1 - 2) which, otherwise,

can be of difficult interpretation.

A Self Organizing Map [45] (SOM) unsupervised

classifier can be employed to convert the multidimen-

sional proto and core vectorsXP (t) and XC(t) to a

lower dimensionalM -D, where M is the dimension

(from here on we considerM = 2 without losing

generality) map (layer) where the input vectors are

clustered according to their similarities and to each

cluster is assigned a label. Labels can be associated in a

supervised way, by a human operator or according to a

priori information, to an ongoing situation that belongs

to a set of conditions to be identified pertaining to the

specific application. The choice of SOMs to perform

feature reduction and clustering processes is due to their

capabilities to reproduce in a plausible mathematical way

the global behavior of the winner-takes-all and lateral

inhibition mechanism shown by distributed bio-inspired

decision mechanisms. Furthermore, SOMs always pro-

vide an output with all the sensory data condition. Their

intrinsic robustness, due to the unsupervised Kohonen

[45] learning mechanism, ensure that new, but corre-

lated to the training data, input patterns are properly

recognized. Through this processing step it is possible

to provide the system with a contextual representation

of internal and external states in terms of maps recalling

the brain neural patterns (see Sect. II-A). Worth of

note is that the semantic labels are not necessary for

the system functioning since they can be automatically

assigned as sub-symbolic tags whose contextual meaning

can be understood by the system in an explorative way

during the interaction with the external environment.

Though, the unsupervised approaches to label states are

interesting for fully autonomous AmI spaces, they are

out of the scope of this paper.

The clustering process, applied to internal and external

data allows one to obtain a mapping of proto and core

vectorsXP (t) andXC(t) in 2-D vectors, corresponding

to the positions of the neurons in the SOM map, that

we call, respectively, protoSuper-statesSxP and core

Super-statesSxC . Each cluster of Super-states, deriving

from the SOM classifiers, is then associated with a

semantic label related to the contextual situation:

Sxi
P 7→ liP , i = 1, . . . , NP

Sx
j
C 7→ l

j
C , j = 1, . . . , NC

(3)

where the notationSxi
P and Sx

j
C indicates that the

Super-state belongs, respectively, to thei-th proto label

and to thej-th core label;NP andNC are, respectively,

the maximum number of the proto and core Super-states

labels.

Then, the result of this process is the building of a

2D map divided in connected regions labeled with a

meaningful identifier related to the ongoing situation.

Using this representation it is possible to interpret the

changes of state vectorsXP (t) andXC(t) from instant

to instant as movements in a plane (map) where each

position is representative of a super state, i.e. of a

particular circumstance. If changes of the vector states

XP (t) and XC(t) do not imply a change of Super-

state labelsSxi
P 7→ liP andSx

j
C 7→ l

j
C it means that the

modifications are irrelevant from the point of view of the

chosen semantic representation of the situation. On the

other hand, when the Super-state labelsSxi
P and Sx

j
C
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change in subsequent time instants, this fact entails a

contextual situation modification, i.e. anevent. Then, by

sequentially analyzing the dynamic evolution of Super-

states, proto and core events can be detected. Appropriate

sequences of proto and core events can be described as

core self events that can be assembled as in Fig. 2.

The resulting information becomes an approximation

of what Damasio calls theAutobiographical Memory

where the interaction between user and system are mem-

orized.

2) Autobiographical Memory Model:According to

above considerations, the Autobiographical Memory for-

mation is characterized by learning the changes in proto

Super-state caused by a core Super-state modification

(core event). Therefore, the proto Super-state preceding

the core event, the core event itself and the proto Super-

state must be memorized. More precisely, considering a

core event (ǫC) taking place at timeT1 the effects on the

internal state must be taken into account to learn how

the interaction with the external entity, which provoked

the core event, occurred. To do that, a time window of

durationT−

max is taken into account to detect what was

the proto Super-stateSx−

P (t), with T1 −T−

max < t < T1

(i.e. the initial internal condition) and its modification

subsequent to the core event, i.e.Sx+
P (t), with T1 < t <

T1 + T+
max. Note thatT+

max is the maximum time after

which we consider reasonable that the proto modification

has been caused by the core event and it was not occurred

autonomously.

Three events are, then, memorized:

• ǫ−P = Sx0
P → Sx−

P : proto event at the initial

instant. It represents the modification of the proto

Super-state fromSx0
P 7→ liP to Sx−

P 7→ l
j
P occur-

ring before the core event. The two labelsliP and

l
j
P are the ones associated, respectively, with the

Super-statesSx0
P and Sx−

P . The eventǫ−P stores

the initial internal stateSx−

P and at the same time,

if it changed in the time windowT−

max.

• ǫC = Sx−

C → Sx+
C : core event. It describes the

change of the external super state fromSx−

C 7→ lmC

to Sx+
C 7→ lnC .

• ǫ+P = Sx−

P → Sx+
P : proto event following to the

core event. It represents the change of the proto

super state fromSx−

P = l
j
P to Sx+

P = lkP .

The above triplet{ǫ−P , ǫC , ǫ+P } represents a core self

instantiation that is associated with an element of the

Autobiographical Memory, namely what, in the Damasio

work, is called core consciousness.

This model of interactions relies on the following

assumptions: 1) the sequence of events considered to de-

scribe the interaction to be stored in the passive memory

is: proto - core - proto (i.e. internal - external - internal

with respect to the system); 2) just one core event is

involved in the interaction, i.e. the proto state change

is caused by onlyone core event; 3) an interaction

takes place only if a proto event, i.e. a change in proto

super state, follows the core event withinT+
max; 4) if

a proto event, preceding the core event, is involved in

the interaction it must occur withinT−

max. Note that,

to model an interaction, it is not necessary that a proto

event takes place before the core event within a time

range; in fact the system could have been in a stable

state for a long period of time since a core event

modified the internal status. In our model since we

want to memorize events, the steady condition before

the core event will be considered as a pseudo event

where the label of the super states does not change, i.e.

ǫ−P = (Sx0
P → Sx−

P ) 7→ (liP → liP ).

3) Model Discussion:In the neurophysiological de-

scription of the Autobiographical Memory it has been

outlined that its constituting elements derive from the

second order neural patterns (see Sect. II-A), i.e. by the
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conjunction of two first order neural patterns relating

proto-self and core self. According to this fact, in the

proposed model, the Autobiographical Memory can be

represented mathematically as a system of two first order

derivative equations deriving from the activities in the

SOM maps. Each derivative equation describes the proto

Super-state modification conditioned to a core Super-

state. A core event changes the core Super-state then

another equation is necessary to describe the proto super

state evolution with the new core Super-state.

The sequence of events and of Super-state modifica-

tions can be represented as in Fig. 2 where the proto

and core Super-statesSxP,C map to the corresponding

labelslP,C and it is outlined that causal relationship can

be represented as the effect of the external event on the

internal state depending on the same internal state.

[Fig. 2 about here.]

The equations can be written as follows:





H1

(
d SxP (t)

dt , SxP (t)
)

= F1 (SxC(t))

t = T1 − T−

max, . . . , T1

H2

(
d SxP (t)

dt , SxP (t)
)

= F2 (SxC(t))

t = T1, . . . , T1 + T+
max

(4)

where H1, H2, F1, and F2 can be non-linear, non-

continuous, time varying functions defined according to

the application. It must be pointed out that the initial

condition for the second equationSxP (T+
1 ) derives from

the first differential equation.

[Fig. 3 about here.]

In Fig. 3 the representation of (4) by means of

proto and core events is graphically shown. The drawn

trajectories are dotted to represent non linearity and

discontinuity due to the modification of the Super-states

in the proto/core map. Maintaining the analogy with the

neurophysiology, the trajectories connect neurons which

are fired in the proto-self, core self, and core conscious-

ness processes. Neurons are properly the Super-states

SxP and SxC which are the elements of the SOM

map. The cube represents the occurrence of the particular

triplet of events and, inside it, the evolution trajectories

in the Super-state space are drawn to outline the mapping

of the differential equations in (4) to the event space. For

what concerns the operative usage of the stored memory,

the second equation in (4) can be considered as the

prediction of the future proto-self change when a core

event takes place. In fact, when a core event happens, and

knowing what was the previous proto-state, it is possible

to predict what can be the consequence on the proto-state

by employing the second differential equation.

C. Learning Technique Based on a Voting Procedure

In Section II-B a model mathematically coherent with

the Damasio’s description of the generation of conscious-

ness is presented. However, for its digital engineering

implementation an algorithm is proposed to construct

the Autobiographical Memory by appropriately storing

triplets of events{ǫ−P , ǫC , ǫ+P } to be used for predict-

ing future situations without the need of defining or

estimating the non-linear, non continuous, time varying

functionsH1, H2, F1, andF2 that appear in (4).

During its functioning the system perceives and com-

putes continuously the data collected by its internal

(proto) and external (core) sensors, relating with, respec-

tively, the observed internal and external phenomena.

Such data are collected in the proto stateXP (t) and

in the core state vectorXC(t) (see (1)-(2)) at each

time frame t. The SOM clustering process associates

these states with the correspondent Super-statesSxP (t)

and SxC(t) which are mapped at each instantt into
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a semantic labellP (t) and lC(t). Then we define two

vectors containing the time evolution of these labels, as

follow:

LP = {lP (0), . . . , lP (t), . . . } (5)

LC = {lC(0), . . . , lC(t), . . . } (6)

A method based on a voting procedure is therefore

implemented to accomplish this task. In this way an ap-

proximation of the probability distribution of cause/effect

relationship can be constructed. More in details, the Au-

tobiographical Memory is composed by a collection of

all the possible combinations of the core consciousness

triplets{ǫ−P , ǫC , ǫ+P }, each of them receiving a vote when

the consequences of the relative proto/core/proto events

takes place. Since we want to statistically describe,

through the learning process, what is the probability of

the evolution of the proto state in consequence of a core

event, i.e. we intend to assess the conditional probability

density function (pdf)p(ǫ+P |ǫ
−

P , ǫC), the normalization

must be performed to sum up to one with respect to

ǫ+P . In fact, when the learning process is reasonably

accurate, this enables predictions to be made about the

possible consequence on the internal state provoked by

an external event considering the previous internal state.

In addition, in order to provide a short term prediction

of the effects of a certain external event on the internal

state, each element of the Autobiographical Memory can

be associated with a structure memorizing the temporal

information relative to the interaction.

Then resuming, the Autobiographical Memory is com-

posed by the following elements:

• a set of representations of the possible interactions,

described by the triplets{ǫ−P , ǫC , ǫ+P } (i.e. thecore

consciousness), each of them associated with a

point in the 3D space shown in Fig. 3

• each of these elements is associated with a prob-

ability, deriving from an estimate of the pdf

p(ǫ+P |ǫ
−

P , ǫC), which is proportional to the number

of votes that the particular triplet received, i.e. the

number of occurrences observed during the learning

process.

• each element of the Autobiographical Memory

is also associated with a temporal histogram

(Hist(ǫ−P , ǫC , ǫ+P )) storing the temporal information

regarding the triplet{ǫ−P , ǫC , ǫ+P }. The selection of

the histogram bin dimension must be performed

taking into account a trade off between the precision

of the temporal prediction that it is required by the

application and the number of training examples

available. If the temporal prediction needs to be

very accurate a large number of training examples is

needed to well represent the temporal distribution

of the events. An example of one of the learned

temporal histogram is shown in Figure 4.

[Fig. 4 about here.]

Operatively, in order to build the Autobiographical

Memory the core label vectorLC is monitored, by

comparing its subsequent elements, to detect core Super-

state labellmC (t) changes in order to detect the core

event ǫC = lmC (tC) → lnC(tC + δtC). The valueδtC

accounts for the time window considered to detect events

in the label vectorLC . When this happens, the proto

label vectorLP is analyzed to establish if, within a

time window of durationT−

max preceding the core event,

a proto event took place; in this case the proto event

liP (t−P ) → l
j
P (t−P + δt−P ) is memorized as the initial

proto eventǫ−P . On the contrary, if no label change

related to the proto Super-state happened the value of the

label liP is considered as the initial state and the proto

initial event is given byǫ−P = liP (t−P ) → l
j
P (t−P + δt−P ).

The proto label vectorLP is examined to detect if,
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Algorithm 1 Pseudo-Code of the Autobiographical

Memory (AM) formation

1: while lC(tC) = lC(tC + δtC) do

2: analyze (LC)

3: end while

4: set ǫC(m,n) = lmC (tC) → lnC(tC + δtC)

5: analyze (LP )

6: for tC − T−

max < tP < tC do

7: if lP (t−P ) 6= lP (t−P + δt−P ) then

8: set ǫ−P (i,j) = liP (t−P ) → l
j
P (t−P + δt−P )

9: else if lP (t−P ) = lP (t−P + δt−P ) then

10: set ǫ−P (j,j) = l
j
P (t−P ) → l

j
P (t−P + δt−P )

11: end if

12: end for

13: analyze (LP )

14: for tC < tP < tC + T+
max do

15: if lP (t+P ) 6= lC(t+P + δt+P ) then

16: set ǫ+P (j,k) = l
j
P (t+P ) → lkP (t+P + δt+P )

17: else if lP (t+P ) = lC(t+P + δt+P ) then

18: set ǫ+P (j,j) = l
j
P (t+P ) → l

j
P (t+P + δt+P )

19: end if

20: end for

21: add vote {ǫ−P (i,j), ǫC(m,n), ǫ
+
P (j,k)}++

22: update Hist(ǫ−P (i,j), ǫC(m,n), ǫ
+
P (j,k))

with t+P + δt+P − (tC + δtC)

23: normalize w.r.t. (ǫ+P )

24: update AM
(
ǫ−P (i,j), ǫC(m,n), ǫ

+
P (j,k)

)

after tC + δtC , when the core event occurred, a proto

event ǫ+P = l
j
P (t+P ) → lkP (t+P + δt+P ) follows within

a time window T+
max. When this happens a vote is

added to the corresponding triplet{ǫ−P , ǫC , ǫ+P } in the

three dimensional space constituting the Autobiograph-

ical Memory (see Fig. 3). Also the temporal histogram

Hist(ǫ−P (i,j), ǫC(m,n), ǫ
+
P (j,k)), storing the temporal in-

formation of the interaction, is updated by incrementing

the bin associated witht+P + δt+P − (tC + δtC). In this

way, the time occurring between the external cause (core

event) and the internal consequence on the system (proto

event) is memorized. In the case that no proto eventǫ+P

comes after the core event, there are two possibilities

to be considered: a) the core event did not affect the

system, i.e. no interaction took place; b) the reaction of

the system toǫC is not to change its internal status (or to

change not so significantly to be considered as an event

by the clustering and labeling procedure). The situation

a) should not be taken into account in our memory,

but since it is not possible to automatically discriminate

between these two cases, the subsequent proto eventǫ+P

is set equal toljP (t+P ) → l
j
P (t+P + δt+P ) and the cell in

the Autobiographical Memory corresponding to the three

events detected will be increased by one. Finally, having

updated the memory as described above, a normalization

procedure with respect to the row whereǫC = lmC → lnC

and ǫP = liP → l
j
P (or ǫP = liP → liP if it is the

occurrence observed) is fulfilled to obtain an estimate

of the probabilityp(ǫ+P |ǫC , ǫ−P ). The pseudo code of the

algorithm for the construction of the Autobiographical

Memory is presented in Algorithm 1.

It is worth noting that the proposed method to derive

the probabilistic model of the cause/effect relationship

can be modeled also by a statistical graphical model (e.g.

HMM). In particular, for modeling interactions between

internal and external events Coupled Hidden Markov

Models (CHMMs) or Hierarchical Hidden Markov Mod-

els (HHMMs) are well suited as demonstrated by the

state of the art work described in Sect. I-A. In our

case the states of the models would be the proto and

core events and the conditional probability densities are

the estimated probability densitiesp(ǫ+P |ǫC , ǫ−P ). The
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proposed approach is here preferred with respect to an

HMM since it can be implemented by a simple voting

method and easily learned online without requiring a

previously acquired training set.

D. Usage of Autobiographical Memory for Prediction

The knowledge base within the Autobiographical

Memory built as presented in II-C can be used to predict

near future events by observing and processing internal

and external events occurring within the scope of the

system. This capability resembles the activation of the

autobiographical self (see Sect. II-A), which is the brain

process of recovering neuralimagesrelated to the arisen

core self.

The reference architecture describing the Autobio-

graphical Memory algorithm is presented in Figure 5.

[Fig. 5 about here.]

To perform the prediction task when an external event

ǫC(m,n) is detected by the the system the proto map is

analyzed to establish which was the previously occurred

internal eventǫ−P (i,j). The Autobiographical Memory is

then examined to establish which is the internal event

ǫ̂+P (j,∗) that is more likely to occur, carrying the internal

state to the Super-statel∗P , that is:

ǫ̂+P (j,∗) : max
ǫ+

P (j,∗)

p
(
ǫ+P (j,∗)|ǫC(m,n), ǫ

−

P (i,j)

)
(7)

Moreover the temporal histogram can provide informa-

tion about the time at which theǫ+P (j,∗) might take

place. All these data can be very useful for an Ambi-

ent Intelligence application to anticipate operations or

arrange the elements of the system that can be involved

in the interaction with the external world. Operatively

the procedure to predict events is similar to the learning

process described in Sect. II-C and Algorithm 1. In

particular, steps 1-4 and steps 5-12 of the pseudocode

presented in Algorithm 1 do not change. In fact, the

core vectorLC (see (6)) is analyzed until a core event,

for exampleǫC(m,n), is detected. When this occurrence

is observed the proto vectorLP (see (5)) is checked to

establish which proto event (ǫ−P (i,j)) happened before the

core event within a time window ofT−

max. Steps 13-16

consist in extracting from the learned Autobiographical

Memory the most likely proto event̂ǫ+P (j,∗) between

the ones that have been detected to occur after the

observed proto and core events (ǫ−P (i,j) and ǫC(m,n)).

Then also the temporal histogram associated with the

two observed events (ǫ−P (i,j) and ǫC(m,n)) and to the

predicted one (̂ǫ+P (j,∗)) is retrieved from the Autobi-

ographical Memory. The resulting pseudocode for the

usage of the Autobiographical Memory for prediction is

presented in Algorithm 2.

The predicted proto event is then the one that

maximizes the learned probability distribution

p(ǫ+P |ǫC(m,n), ǫ
−

P (i,j)). Different choices can be

made to foresee the time when this event will take

place as, for example, either the mean or the median

value of the temporal histogram related to the triplet

{ǫ−P (i,j), ǫC(m,n), ǫ̂
+
P (j,∗)} or the value related to the

most frequent bin.

The computational complexity of the Autobiographi-

cal Memory algorithm is related to number of proto and

core Super-states, respectivelyNP andNC . In particular

the number of possible proto and core events isN2
P and

N2
C since they are detected as connection of Super-states.

Therefore, the maximum number of the passive memory

element isN2
P × N2

C × N2
P considering all the possible

combinations of proto and core events for constructing

the triplets{ǫ+P , ǫC , ǫ−P }. However, it should be noted

that NP andNC are typically small values as shown in

the experimental scenario (see Section III). This property

is due to the SOM clustering process that allows one to
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Algorithm 2 Pseudo-Code for prediction using learned

Autobiographical Memory (AM)

1: while lC(tC) = lC(tC + δtC) do

2: analyze (LC)

3: end while

4: set ǫC(m,n) = lmC (tC) → lnC(tC + δtC)

5: analyze (LP )

6: for tC − T−

max < tP < tC do

7: if lP (t−P ) 6= lP (t−P + δt−P ) then

8: set ǫ−P (i,j) = liP (t−P ) → l
j
P (t−P + δt−P )

9: else if lP (t−P ) = lP (t−P + δt−P ) then

10: set ǫ−P (j,j) = l
j
P (t−P ) → l

j
P (t−P + δt−P )

11: end if

12: end for

13: retrieve ǫ̂+P (j,∗) from AM

ǫ̂+P (j,∗) = maxǫ+
P

p(ǫ+P |ǫC(m,n), ǫ
−

P (i,j))

14: retrieve Hist(ǫ−P (i,j), ǫC(m,n), ǫ̂
+
P (j,∗))

15: predict ǫ+P = ǫ̂+P (j,∗)

16: predict t+P
from
→ Hist(ǫ−P (i,j), ǫC(m,n), ǫ̂

+
P (j,∗))

encode the large variety of sensors data into contextual

low-dimensional labels providing a-priori limitation (see

[46]) to the learning complexity. Moreover, the algorithm

tends to exclude those unlikely memory elements, i.e. the

ones that occur rarely during the learning phase.

III. R ESULTS

A. Case Study - The Smart Lab

The developed system is a Smart space controlling a

University laboratory where two sensors sets monitor the

activity of people entering and using laboratory resources

(external sensors) and the internal activity of the devices

themselves (internal sensors). In particular, the approach

of the present work lies in the study of the related

evolution of the two state vectors representing user and

system. The definition of events occurring in the two

opposite vectors and the properly filtered collection of

these events yields data about delay and probability

of the expected relationships and provides new and

automatically found associations. In other words, we

define a learning technique in order to allow a Smart

Space to be able to predict with a reasonable probability

the logical consequence of a user action. This knowledge

gives the system an inference capacity to try and foresee

its own devices behavior and the users requirements and

to adapt accordingly. In this way, it would be possible,

for example, to guide the user, using multimodal com-

munication devices belonging to the Smart Space (e.g.

speakers, screens, mobile devices handled by the user,

etc.), toward the PC with more computational or network

resources available (e.g. not used remotely).

As previously stated, the implemented system is made

up of two sensors sets grouped according to their target:

the adjectives internal and external do not refer to the

hardware features but to the nature of the observed quan-

tity. That is to say, the former group collects information

about the system behavior (proto-self), the latter one

about the user (core self). For instance this justifies the

fact that a mouse activity sensor is an external sensor

because it is useful to guarantee the presence of a human

user in front of a personal computer. In the current

implementation the involved machines are three: two

computers used by the students (PC1-2) and a third one,

called Processing Unit (PU), collecting data and running

the central fusion and processing tasks.

The exerted sensors are partly hardware devices and

partly software routines. For the external (core) set we

employ (refer to Figure 6): a software simulated badge

reader (BR); two video cameras with partially overlapped

fields of view to cover the room and locate the users by

employing a blob tracker and a calibration tool to obtain
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the position in the map plane of the lab (TLC); two

mouse activity sensors (MOU) and two keyboard sensors

(KEY) to let the system distinguish whether the resources

load on a PC is due to the automatic simulations or

to the user activity. On the internal variables sensing

side we use: two login controllers (LOG); two CPU

computational load sensors (CPU); two network adapter

activity monitors (LAN); two hard disk usage meters

(HD). They collect data at a rate of 1 Hz and send

them to the PU where they are filtered and put in the

two following vectors (where the numerical subscripts

indicate the PC):

XP (t) = {CPU1(t), CPU2(t), LAN1(t), LAN2(t),

HD1(t),HD2(t), LOG1(t), LOG2(t)}

(8)

XC(t) = {TLC1(t), TLC2(t),MOU1(t),

MOU2(t),KEY1(t),KEY2(t), BR(t)}

(9)

[Fig. 6 about here.]

Then the information is stored and processed in order

to locate significant events: the concept of Autobio-

graphical Memory cited in the model arises here, in

the collection of significant events, as described in the

following Section III-B.

B. Detect cause/effect relationships

In the central processing unitPU, vectors (8) and

(9) are processed to obtain, respectively, the two global

Super-states (SxP andSxC) defining the instantaneous

situation of the two system sides (internal and external).

These labels are obtained through appropriately trained

Self Organizing Maps (SOM) neural network classifiers.

Seven different situations of interest have been identified

and played several times by human “actors” in order to

train the SOMs. The same number is coherently mirrored

in the number of clusters identified and labeled with the

correspondinglP and lC by both the external and the

internal state (see Table I) SOM classifiers. Considering

that the classifiers provide the system with these two

global states once per second, we are interested in

evaluating which differential relationships are connecting

state changes occurring on the two maps. As stated in

Sect. II-B1 events are defined as transitions between

two Super-states; this implies a transition between two

different clusters, not necessarily contiguous, on the

SOM map (Figure 7), that is the Unified-distance Matrix.

[TABLE 1 about here.]

[Fig. 7 about here.]

Events are symbolized as in Sect. II-B1, then by

writing:

ǫ(P,C)(t) = li(P,C) → l
j
(P,C) (10)

we mean that the global internal state is changing at

time t from a situation in which the proto/core Super-

states labels change from the valueli(P,C) to l
j
(P,C). For

instance, the eventǫP (t) = WL1 → WLA corresponds

to a condition in which PC1 sensors observe a working

load state to the situation of high load on both the

computers.

C. Autobiographical Memory Learning

The AmI system has been trained using the data

gathered over different session of acquisition in the nor-

mal working condition of the laboratory where students

working on their thesis projects could freely enter and

uses the hardware and software resources. There is no

need for specificad-hoc training by human experts,

since, as described in the following, the learning method-

ology is designed to be robust to noisy conditions and to
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adapt to new conditions thanks to the incremental voting

mechanism. During the learning phase, the activities

performed by the students were, after accessing the

lab, login, operative system common operations (file

browsing, file opening, etc.), Internet browsing, and text

writing (documents or programming) with common text

editors. After having collected a representative training

set in on-line working mode, we process the time-

ordered series of the internal and external SOM classifier

outputs to vote and infer frequent logical relationships.

The voting procedure is driven by the events of the core

self: for each triggering eventǫC(t) a vote is assigned

to the interaction triplet{ǫ−P , ǫC , ǫ+P }. After having pro-

cessed the whole training set, noisy non significant votes

are eliminated by cutting all the sequences receiving a

number of votes below thresholdTh, which has been set

in order to preserve the 75 % of the assigned votes. This

threshold has been chosen opportunely by several tests

in order to preserve the maximum amount of information

carried by detected cause/event relationship but eliminat-

ing those which are not frequent. This process, clearly,

prevents from memorizing anomalous situations which

are not handled by the proposed system. In Table II some

training parameters are reported. The learning phase has

been performed over different days and at different hours

collecting 1800 minutes of activities performed by five

different students allowed to use the two laboratory PCs

acquiring sensors data every second at 1 Hz rate. More-

over the PCs have been accessible also remotely and

a multi-user Linux platform enable their contemporary

utilization. Data acquisition was automatically stopped

when no activity was detected on the sensors for more

than 5 minutes in order to use only relevant data for

training. It must be pointed out that a correct evaluation

of T−

max andT+
max is determinant to produce a significant

set of events. The duration of these time windows

is assessed empirically processing training data with

different values in order to be able to detect a meaningful

configuration of events. In fact when the most probable

third event is not one of those considered in the training

phase, it means that the threshold does not allow correct

consideration of the causal relationship. For example,

when T−

max = T+
max = 10sec some occurrences of

Autobiographical Memory elements (triplet of events)

observed in the training set are significantly rare and not

representative of the simulated cause/event relationships.

One of the expected situations that is not represented

with T−

max = T+
max = 10sec is when there is not work

load on either PCs (ǫ−P ), a user enters (ǫC), and no log

in is observed. This happens because the log in typically

needs more than 10 seconds to be performed. The most

appropriateT+
max and T−

max are chosen by analyzing

different memories trained with a predefined set of real

life scenarios to find those whose temporal histograms

contain the highest number of values, that is they are

able to capture most of the considered situations.

Another aspect of this experiment that is worth not-

ing is that the number of the cause/effect relationships

learned, i.e. the elements of the Autobiographical Mem-

ory, is 2634. This shows both the complexity of the

analyzed scenario and the capability of the algorithm

to memorize only a subset of all the possible causal

relationships, that are76 ≈ 116000 (see Section IV for

detailed explanation about the computational complex-

ity).

[TABLE 2 about here.]

Finally, what we obtain is an Autobiographical Mem-

ory representation that can be interpreted as a sta-

tistical knowledge database carrying information on

more frequently experienced passive cause/effect rela-

tionships as well as on their distribution along the
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time axis. For example, by processing the information

stored in the Autobiographical Memory, data can be

obtained aboutp(ǫ+P (j,k)(tC + τ)|ǫC(m,n), ǫ
+
P (i,j)) =

p(ǫ+P (j,k)|ǫC(m,n), ǫ
−

P (i,j)) · p(τ |ǫ−P (i,j), ǫC(m,n), ǫ
+
P (j,k))

that is the estimated probability that the proto event

ǫ+P (j,k) takes placeτ seconds after the core eventǫC(m,n)

given that the the latest proto-self event isǫ−P (i,j). Also

in this case the probabilityp(τ |ǫ−P (i,j), ǫC(m,n), ǫ
+
P (j,k))

is estimated from the temporal histogram relative to the

triplet {ǫ−P (i,j), ǫC(m,n), ǫ
+
P (j,k)}.

D. Predicting Events using Learned Autobiographical

Memory

In the on-line phase, the triggering of the Autobi-

ographical Memory by means of the observed cou-

ples of {ǫ−P (i,j), ǫC(m,n)} events at timetC can pro-

duce the activation of a row of the Autobiographi-

cal Memory, identifying a distribution regarding the

proto eventsǫ+P (j,∗) and the related temporal histograms

Hist(ǫ−P (i,j), ǫC(m,n), ǫP (j,∗)). This information resem-

bles the activation of the autobiographical self (see Sect.

II-A), the brain process of recovering neural images

related to the emergences of a particular core self. Sim-

ilarly to the autobiographical self that contains data re-

garding activities to react to the object that has produced

the core self, here the estimated probability distribution

deriving from the Autobiographical Memory formation

can be employed for prediction purposes directed to

accomplish a suitable action.

[TABLE 3 about here.]

An example of the foreseen response is shown in Table

III, where only the most likely internal event is indicated.

The complete table of the detected cause/effect rela-

tionships is composed by approximately 800 elements

which corresponds to the number of possible types of

interaction observed during the training of the system.

It is also interesting to note (see first row of Table

III) that the system is able to autonomously figure out

that when an access into the empty lab (EMPTY →

ARRIV E) is detected it is likely that the system internal

status passes from stand-by (NULL → NULL) to a

login event in one of the PCs (NULL → LOGIN ).

This example shows the capability of the system of

learning meaningful contextual information regarding

the interaction with the user of the Smart space.

Tests on the trained system have been performed

in order to evaluate the predictive performances: the

knowledge base was built through an approximately

1800 minutes long training set. The system found 13800

core events and 13800 proto events. Setting the voting

filtering threshold to a minimum of 100 votes, approx-

imately 75% of the votes were considered somehow

significant. To prove the predicting capabilities of the

proposed approach, users accessing to lab resources

during normal and non controlled working sections have

been monitored. Two agent modules, the proto and core

Event detector, are responsible for transforming raw data

gathered from sensors into a meaningful contextual rep-

resentation. When a core event is detected, the prediction

module investigates the list of previous proto events in a

time window of durationT−

max precedingǫC : the proto

event occurred before the core event is considered as the

initial proto eventǫ−P . If more than one proto event is

detected, the closest is selected; on the other hand if no

proto event happens beforeǫC , then, as mentioned in

Sect. II-C, it is definedǫ−P = liP → liP , whereliP is the

internal status label observed beforeǫC . The value of

the couple{ǫ−P , ǫC} is used to perform a query to the

memory and retrieve the most likely subsequent proto

eventǫ+P and its most probable time delay.
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Results of this process are compared to the Ground

Truth obtaining encouraging performances as summa-

rized in Table IV. It can be seen that both the pre-

diction of the upcoming proto event after that a core

event has happened and the temporal evaluation of

the interaction are assessed with satisfactory accuracy

considering the proposed scenario and the training and

test conditions. As a matter of fact results show that

the method is sufficiently robust to handle the different

situations observed during training and test phase which

have been performed in different days and different

hours. Moreover, it must be outlined that the output

of the algorithm is intended to provide an anticipative

basis to decide actions to be performed by the Smart

Space. Then, eventual wrong predictions, when they are

detected, can be handled by specific decision techniques

and online memory updating strategies (see Section IV)

to avoid a successive occurrence of the same problem.

Also the probabilistic nature of the prediction derived

from p(ǫ+P (j,k)|ǫC(m,n), ǫ
−

P (i,j)) can provide further use-

ful information and the possibility of realizing multiple

hypothesis decision approaches that will be not imme-

diately available with, for example, a linear regression

approach.

[TABLE 4 about here.]

IV. D ISCUSSION ANDCOMPARISONS

The Autobiographical Memory has been used to allow

a Smart Space to learn user/system interaction by a bio-

inspired causal relationship model and to predict near

future events together with their temporal occurrence

with the aim of enabling preventive or proactive actions

on the environment. Moreover, it is worth noting that the

Autobiographical Memory can model different types of

interaction to perform event prediction in a wide range

of Ambient Intelligence scenarios, just by appropriately

defining what it is to be considered the internal and ex-

ternal states of the system and the corresponding events.

For example, in [47] the Autobiographical Memory is

applied in a security scenario where a guardian chases

an intruder by following guidance messages sent on

a mobile device (e.g. PDA or 3G/4G mobile phone)

by an intelligent surveillance system monitoring the

environment. In this application the active memory (core-

proto-core) is used to predict if theproto event(change

of guidance message) leads to a bettercore event(change

of position in a map of guard and intruder) with the

aim of reducing the distance between the two players. In

this way the learned interaction model allows the user to

understand if the pursuing strategy (intent) of the guard

is effective and can lead to reduce the distance between

him and the intruder. It must be pointed out that, in

this case, the usage of the active memory directly allows

definition of the action to be performed to help the user

in his task, that is to pursue the intruder. Instead, in the

case study presented in Section III, the prediction is not

directly related to the action to be taken. The prediction

of the future state of the system (e.g. work load on

PC1, no activity, etc.) has been considered to indicate

the PC on which the user should login. A simple rule-

based approach associates the situation to a message to

be communicated to the user (for example on a palm)

to guide him/her towards the most appropriate PC.

[TABLE 5 about here.]

These examples show possible usage of the predictive

capabilities of the Autobiographical Memory in Ambient

Intelligence applications. As already described in Section

I-A, other learning algorithms have been proposed in

this domain. Though the other algorithms have different

objectives and they are therefore specifically designed
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for their scopes, it is interesting to outline some of

the features that motivated the usage of Autobiographi-

cal Memory for modeling and predicting interaction in

Smart spaces. Table V summarizes the characteristics

that makes the proposed algorithm particularly suitable

in many systems aiming at proactively interacting with

humans. In particular, the Autobiographical Memory

creates a probabilistic (intensional) and neurophysiolog-

ically motivated model of interaction by distinguishing

between the internal or external nature of the events and

organizing them in a second-order structure where the

consequence of an external event on the internal state

is memorized. Instead, in most of the existing works

internal and external data are combined for recognizing

events (e.g. [43] and [36]) and the interaction modeling

is limited to a first order (if-then rules or stimulus-

answer) analysis (e.g. [35] and [42]) that does not allow

a context awarerepresentation of the causal relationship

between the Smart Space and the user. As a matter

of fact the interaction modeling and prediction based

just on core event and the following proto event misses

the initial condition, i.e. the context. Therefore, these

characteristics, with the capability of predicting the

temporal occurrence of future events can represent an

improvement in the design of Ambient Intelligent sys-

tems able to proactively interact with its users. It should

be noted that a quantitative performance evaluation of

these methods is not presented since the aim of the

proposed approach is to provide new functionality to

learning approaches oriented to improve the interaction

between human and a Smart Space rather than improve

the predicting capability of future events. Moreover, the

presented methods are strongly application dependent

and their different domains of usage are very difficult

to be compared one another.

An AmI system should be able to manage theinnova-

tion, i.e. the new events that can be detected during the

functioning. However recalling the concept of embod-

ied cognition [48] that is consistent with the proposed

approach, the system creates its knowledge based on its

physical capabilities. It can be said that the memory is

embodied, i.e. it is established according to the “body”

of the system, namely the controlled devices and the

sensors that monitor the external world. In this way it

is reasonable to say that new states can arise only if

a relevant contextual (i.e. detectable at the Super-state

level) change of the system and environment configura-

tion occurs. A relevant consequence of this consideration

is that, when the Super-state values are defined, the

Autobiographical Memory can be easily employed in an

on-line way by just sequentially applying the learning

and predicting algorithms (see Algorithm 1 and 2) during

the unsupervised usage of the system.

V. CONCLUSION

A. Summary

The described work has the purpose of building a

framework for automatic learning interactions occurring

between an Ambient Intelligence system and its users

for predicting future events. A learning technique named

Autobiographical Memory, which is inspired by neu-

rophysiological evidences of how consciousness arises

in the human brain, has been presented. The goal of

the method is to train a multisensor system and to

create a knowledge base keeping track of the cause/effect

relationships taking place in a system described in terms

of instantaneous internal and external states. These states

are derived by a pair of trained SOM neural network

classifiers. Given the observations of the user activity

(mapped in the external state), the knowledge provided

to the Smart Space by the voting algorithm can be used
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to predict near future events occurring in the system

internal state. Experimental tests show promising results

of learning interactions and predicting their evolution

in the scenario of the “Smart Lab”. The prediction

capability aims at optimizing the interaction with users,

through the possibility to autonomously react and adapt

to the ongoing relationships between the components of

the system and the users.

B. Issues and Future Work

In this work, only the passive memory learning

problem, namely the collection of instances of inter-

nal effects given external causes (see Sect. II-B), has

been addressed. However, by using the same procedure,

the active memorylearning can be performed in order

to store instances of triplets of core/proto/core events,

enabling the possibility of predicting future external

events given an internal modification and the preceding

core event. The active memory allows the system to

be able to make predictions on the influences on the

external world caused by an internal action. One of the

possible improvements of the predictive capability of a

cognitive system can be based on the combination of

the data stored in the passive and the active memories.

Practically, the two interdependent triplets{ǫ−P , ǫC , ǫ+P }

and{ǫC , ǫ+P , ǫ+C} must be learned. Although the passive

memory can be efficiently employed for predictive pur-

poses, as demonstrated by results in Section III-D, the

combination of active and passive memory can be very

useful to select an action to be performed by the system

to cope with external environment changes.
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FIGURES 23

Fig. 1: Second order neural pattern representation (as presented in [44])
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FIGURES 24

Fig. 2: Sequence of proto/core events in the Autobiographical Memory formation. On the ordinate axes the label
changes of the proto/core Super-states are outlined

January 12, 2010 DRAFT



FIGURES 25

Fig. 3: Graphical representation of the mapping of the differential equations in (4) to the event space{ǫ−P , ǫC , ǫ+P }
(see the text for further details). Proto and Core maps represents the result of the SOM clustering procedure on the
data collected by sensors. SymbolslxP/C are the contextual labels associated with each cluster
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FIGURES 26

Fig. 4: Example of learned temporal histogram from which is possible to evaluate the probability that a proto event
ǫ+P (j,k) takes placeτ seconds after the core eventǫC(m,n) given that the latest proto event isǫ−P (i,j)
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FIGURES 27

Fig. 5: Reference Architecture for the Autobiographical Memory (Learning and Prediction). Note that the Active
Memory part is not considered in this work
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FIGURES 28

Fig. 6: Smart space logical/physical architecture
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FIGURES 29

Fig. 7: Internal state event represented as a transition between two different clusters on the map, that is the Unified-
distance Matrix
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TABLES 31

TABLE I: Meaning of the labels of internal (lP ) and external (lC) Super states obtained by SOM clustering

Proto label lP Meaning core label lC Meaning
LOGIN New login to a PC EMPTY Empty lab

LOGOUT User disconnection ARRIVE New user entering
WL1 Work load on PC1 EXIT A user goes out the lab
WL2 Work load on PC2 WH1 User(s) presence near PC1
WF PC1 and PC2 in low work load WH2 User(s) presence near PC2

WLA High work load on both PCs WHA Users presence near both PCs
NULL No activity WA No user detected close to both PCs
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TABLE II: Main parameters and data for the training phase

PARAMETER VALUE

T
−

max 10 sec.
T

+
max 30 sec.

Duration of training set
acquisition 1800 min.
Number of Proto Super States Observed105030
Number of Proto events Observed 13800
Number of Core Super States Observed103020
Number of Core events Observed 13800
Cause/effect relationships
voted after thresholding 2634
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TABLE III: Example of learned Autobiographical Memory withestimated probability associated with the most
probable event and to the related most likely time delayτ (mean value ofHist(ǫ−P , ǫC , ǫ+P )) of the distribution)

ǫ
−

P
ǫC ǫ̂

+

P
p(ǫ̂+

P
|ǫC , ǫ

−

P
) τ

NULL→NULL EMPTY→ARRIVE NULL→LOGIN 0.24 17 sec.
WL1→WF EXIT→WH1 WF→WF 0.45 5 sec.

LOGOUT→WL1 WHA→WH1 WL1→WF 0.50 26 sec.
WL1→WL1 ARRIVE→WH1 WL1→LOGIN 0.23 13 sec.
WL2→WF WA→WH2 WF→WL2 0.50 5 sec.
WL1→WL1 WH1→EXIT WL1→WF 0.54 17 sec.

· · · · · · · · · · · · · · ·
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TABLE IV: Real-time prediction test results

NUMBER OF TEST SECTIONS 50
TEST SECTION LENGHT 20 min.

NUMBER OF PREDICTED PROTO EVENTS 1232
CORRECT PREDICTION RATIO 85% (1047/1232)
TIME OFFSET MEAN ERROR 2.5 sec.
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TABLE V: Comparison of characteristics and capabilities oflearning algorithms for prediction in Smart Space
applications

Learning technique Internal/external Intensional context Second-order Event prediction Prediction event
event separation interpretation causality model capability temp. occur.

Marchesottiet al. [43] Self Organizing Map No Yes No No No
Doctor et al. [35] Fuzzy Yes No No Yes No
Eng et al. [42] Distributed Adaptive Control Yes Yes No No No
Sánchezet al. [36] Hidden Markov Model No Yes No Yes No
Proposed method Autobiographical Memory Yes Yes Yes Yes Yes
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