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Abstract—This paper proposes to maintain player’s 

engagement by adapting games difficulty according to player’s 

emotions assessed from physiological signals. The validity of this 

approach was first tested by analyzing the questionnaires 

responses, EEG signals and peripheral signals of players playing 

a Tetris game at three difficulty levels. This analysis confirms that 

the different difficulty levels correspond to distinguishable 

emotions, and that playing several times at the same difficulty 

level gives rise to boredom. The next step was to train several 

classifiers to automatically detect the three emotional classes from 

EEG and peripheral signals in a player independent framework. 

By using either type of signals the emotional classes were 

successfully recovered, with EEG having a better accuracy than 

peripheral signals on short periods of time. After fusion of the two 

signal categories the accuracy raised up to 63%. 

 
Index Terms—Emotion assessment, Electroencephalography, 

Games, Signal analysis, Pattern classification. 

 

I. INTRODUCTION 

Due to their capability to present information in an 

interactive and playful way, computer games have gathered 

increasing interest as tools for education and training [1]. 

Games are also interesting from a human-computer interaction 

(HCI) point of view, because they are an ideal ground for the 

design of new ways to communicate with machines. Affective 

computing [2] has opened the path to new types of human-

computer interfaces that adapt to affective cues from the user. 

As one of the main goals of games is to provide emotional 

experiences such as fun and excitement, affective computing is 

a promising area of research to enhance game experiences. 

Affective information can be used to maintain involvement of 
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a player by adapting game difficulty or content to induce 

particular emotional states [3]. For this purpose, automatic 

assessment of emotions is mandatory for the game to adapt in 

real time to the feelings and involvement of the player, without 

interrupting his / her gaming experience (like it would be the 

case by using questionnaires). The present work thus focuses 

on emotion assessment from physiological signals in the 

context of a computer game application. 

Physiological signals can be divided into two categories: those 

originating from the peripheral nervous system (e.g. heart rate, 

ElectroMyogram - EMG, Galvanic Skin Response- GSR), and 

those coming from the central nervous system (e.g. 

ElectroEncephalograms - EEG). In recent years interesting 

results have been obtained for emotion assessment with the first 

category of signals. Very few studies however have used the 

second category, even though the cognitive theory of emotions 

states that the brain is heavily involved in emotions [4]. 

One of the pioneering work on emotion assessment from 

peripheral signals is [5] where the authors detected eight self-

induced emotional states with an accuracy of 81%. In [6] six 

emotional states, elicited by film clips, were classified with an 

accuracy of 84%. In a gaming context, Rani et al. [7] proposed 

to classify three levels of intensity for different emotions. The 

emotions were elicited by stimulating participants with a Pong 

game and anagrams puzzles. The best average accuracy obtained 

with this method was of 86%. The classifiers developed in this 

study were used in [3] to adjust game difficulty in real time 

based on anxiety measures. In this case the accuracy dropped to 

78% but a significant improvement of player experience was 

reported compared to difficulty adjustment based on 

performance. This demonstrates the interest of using affective 

computing for the purpose of game adaption. In [8] the authors 

proposed to continuously assess the emotional state of a player 

using an approach based on fuzzy logic. The obtained results 

showed that the emotional state evolved according to the events 

of the game but no exact measure of performance was reported. 

Nevertheless, this tool could be used to include the player 

experience in the design of innovative video-games. In [9] three 

emotional states were detected from peripheral signals with an 

accuracy of 53%. The emotions were elicited by using a Tetris 

game. The current paper is a significant extension of this work, 

which in particular now takes into account the analysis of EEG 

signals. 

There is an increasing amount of psychological literature 

pointing towards the hypothesis that emotions are resulting 

Emotion Assessment from Physiological Signals 

for Adaptation of Games Difficulty 

Guillaume Chanel, Cyril Rebetez, Mireille Betrancourt, and Thierry Pun, Member, IEEE 



SMCA-09-05-0169 

 

 

2 

from a series of cognitive processes [10, 11]. There is also 

evidence of different patterns of brain activity during the 

presentation of emotional stimuli. For instance, depending on 

the nature of reactions (approach or withdrawal), Davidson 

[12] showed prefrontal lateralization of alpha waves as well as 

distinct activations of the amygdala. Aftanas et al. [13] 

reported differences in Event Related Desynchronization / 

Synchronisation (ERD/ERS) during the visualization of more 

or less arousing images. In the emotional recall context, Smith 

et al. [14] showed an augmentation of activity in the 

connections between the hippocampus and the amygdala 

during the recollection of negative events compared to neutral 

events. These works emphasize the importance of using brain 

signals to improve temporal resolution and classification 

accuracy in emotion assessment. Among the studies that 

recognize emotional states from EEG, Takahashi [15] obtained 

an accuracy of 42% to recognize five emotional states elicited 

by film clips. In [16] three self-induced emotional states were 

recognized with an accuracy of 68%. Other works tried to infer 

operator’s engagement, fatigue and workload by using EEG 

signals in order to adapt the complexity of a task [17-21]. To 

our knowledge, however, the present article is the first to 

report on the use of EEG signals for emotion assessment in a 

gaming paradigm. 

Games can elicit several emotional states but knowing all of 

them is not necessary to maintain involvement in the game. 

Many representations of the player’s affective state have been 

used in previous studies like anxiety, frustration, engagement, 

distress scales and the valence-arousal space [22, 23]. 

According to emotion and flow theories [10, 24] strong 

involvement in a task occurs when the skills of an individual 

meet the challenge of a task (Fig. 1). Too much challenge 

would increase workload which would then be appraised by 

the player as anxiety. Similarly, not enough challenge would 

induce boredom. Both these situations would restrain the 

player’s ability to achieve a “flow experience”, leading to less 

involvement, engagement and possibly interruption of the 

game [25]. 

<Figure 1> 

In a game, the change from an emotional state to another 

can occur due to two main reasons. First, the difficulty is 

increased because of progression in the different levels but the 

increase is too fast compared to the competence increase of the 

player (potentially giving rise to anxiety, see Fig. 1). Secondly, 

the competence of the player has increased while the game 

remained at the same difficulty (potentially giving rise to 

boredom). In both cases, the challenge should be corrected to 

maintain a state of pleasure and involvement, showing the 

importance of having games that adapt their difficulty 

according to the competence and emotions of the player. 

Based on this theory, we defined three emotional states of 

interest that corresponds to three well separated areas of the 

valence-arousal space: boredom (negative-calm), engagement 

(positive-excited) and anxiety (negative-excited). 

This work attempts to verify the validity and usefulness of 

the three defined emotional states by using a Tetris game 

where the challenge is modulated by changing the level of 

difficulty. Self-reports as well as physiological activity were 

obtained from players by using the acquisition protocol 

described in Section II. Using those data, three analyses were 

conducted. The first aims at validating the applicability of the 

flow theory for games (see Section III). In the second analysis, 

detailed in Section IV, physiological signals were used for the 

purpose of classification of the different states. In this case, 

since one of the goals of this study is to go toward 

applications, particular attention was paid to designing 

classifiers that could be used for any gamer without having to 

re-train it. 

II. DATA ACQUISITION 

A. Acquisition protocol 

A gaming protocol was designed for acquiring physiological 

signals and gathering self-reported data. The Tetris game was 

chosen in this experiment for the following reasons: it is easy 

to control the difficulty of the game (speed of falling blocks); 

it is a widely known game so that we could expect to gather 

data from players with different skill levels (which occurred); 

and it is playable using only one hand, which is mandatory 

since the other hand is used for placement of some data 

acquisition sensors. 

The difficulty levels implemented in the Tetris game were 

adapted to have a wider range of difficulties than in the 

original game. The new levels ranged from 1 to 25 with the 

blocks going down a line every 0.54 seconds at level 1 and 

0.03 seconds at level 25. The speed of the falling blocks at the 

intermediate levels increased exponentially with the level. 

Other modifications to the original Tetris allowed playing 

without change of the difficulty level for a given amount of 

time. Each time the blocks reach the top of the Tetris board, a 

game over event was reported, the board was cleared and the 

participant could continue to play. 

Twenty participants (mean age: 27, 13 males, all right 

handed) took part in this study. After signing a consent form, 

each participant played Tetris several times to determine the 

game level where he/she reported engagement. This was done 

by repeating three times the threshold method, starting from a 

low level and progressively increasing it until engagement was 

reported by the participant or starting from a high level and 

decreasing it. The average of the obtained levels was then 

considered as the participant skill level. Depending on this 

skill level, three experimental conditions were determined: 

medium condition (game difficulty equal to the player’s skill 

level), easy condition (lower difficulty, computed by 

subtracting 8 levels of difficulty from the player’s skill level), 

and hard condition (higher difficulty, computed by adding 8 

levels). The participants to the study reported to be engaged at 

different levels ranging for most of them from 11 to 16, 

confirming that they had different Tetris skills. 

Participants were then equipped with several sensors to 
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measure their peripheral physiological activity: a GSR 

(Galvanic Skin Response) sensor to measure skin resistance, a 

plethysmograph to record BVP (Blood Volume Pulse), a 

respiration belt to estimate chest cavity expansion and a 

temperature sensor to measure palmar changes in temperature. 

Those sensors are known to measure signals that are related to 

particular emotional activations as well as useful for emotion 

detection (see Section II.B). In addition, an EEG system was 

used to record central signaling from 14 of the 20 participants. 

In this study 19 electrodes were positioned on the skull of 

participants according to the 10-20 system [26]. As 

demonstrated in other studies, EEG’s can help to assess 

emotional states and is also useful to provide an index of task 

engagement and workload [17-20]. Peripheral and EEG 

signals were recorded at a 256Hz sampling rate using the 

Biosemi Active 2 acquisition system
1
. This sampling rate 

allows keeping the frequency bands of interest for this study. 

Once equipped with the sensors, the participants took part in 

6 consecutive sessions (Fig. 2). For each session the 

participants had to follow 3 steps: stay calm and relax for at 

least one minute and 30 seconds, play the Tetris game for 5 

minutes in one of the three experimental conditions (difficulty 

level) and finally answer a questionnaire. The first step was 

useful to let the physiological signals return to a baseline level, 

to record a baseline activity and to provide a rest period to the 

participants. For the second step, each experimental condition 

was applied twice and in a random order to account for side 

effects of time in questionnaires and physiological data. The 

goal of participants was to perform the highest possible score. 

To motivate them toward this goal, a prize of 20 CHF was 

offered to three of the participants having the highest score 

(the participants were divided in three groups according to 

their competence). The questionnaire was composed of 30 

questions related to both the emotions they felt and their level 

of involvement in the game. The answer to each question was 

given on a 7 points Likert scale. Additionally, participants 

rated their emotions in the valence-arousal space using Self-

Assessment Manikin (SAM) [27] scales. 

<Figure 2> 

B. Feature extraction 

Once the data is acquired, it is necessary to compute 

features from the signals in order to characterize physiological 

activity for the different gaming conditions. The features were 

generally computed over the complete duration of a given 

session, except in Section IV.D where the features were 

computed on shorter time windows to analyze the effect of 

time on emotion assessment accuracy. Two sets of features 

were computed: the first set includes the features computed 

from the EEG signals and the second those computed from the 

peripheral signals. 

In this study the collected data are not analyzed for each 

participant separately but as a whole. It is thus necessary that 

 

 
1 Technical details available on http://www.biosemi.com 

the patterns of emotional responses remain stable across 

participants. Although different patterns of emotional 

responses have been found in psycho-physiological studies, 

Stemmler [28] argues that they are due to context deviation 

specificity. Since in the current study the emotions are elicited 

in the same context (the video game) this should reduce inter-

participant variability. Nevertheless, to further reduce this 

variability, the physiological signals acquired during the last 

minute of the rest period were used to compute a baseline 

activity for each session (6 baselines per participant) that was 

subtracted from the corresponding physiological features. 

1) EEG features 

Prior to extracting features from EEG data, we need to 

remove noise by pre-processing the signals. Environment noise 

and drifts were removed by applying a 4-45Hz bandpass filter. 

The signals were visually checked in order to ensure that 

remaining artifacts did not exceed 5% of the signal. The 

second step was to compute a local reference by applying a 

local Laplacian filter [29] to render signals independent of 

reference electrodes position and to reduce artifacts 

contamination. For the Laplacian filter computation, the 

neighbours electrodes where considered as lying in a radius of 

4cm from the filtered electrode. 

The set of features described in this section was defined to 

represent the energy of EEG signals in frequency bands known 

to be related to emotional processes [12, 13]. For each 

electrode i, the energy in the different frequency bands 

displayed in Table I was computed for a session, using the Fast 

Fourier Transform (FFT) algorithm. Moreover, the following 

EEG_W feature (1) was computed from the Ne electrodes. This 

feature is known to be related to cognitive processes like 

workload, engagement, attention and fatigue [20], which are 

cognitive states of interest in our study. In many studies, the 

EEG_W feature is computed from only 3 to 4 electrodes [17, 

18, 20]. However, there is high discrepancy among studies in 

the electrodes used. Moreover, the playing of a video game 

can stimulate several brain areas (for instance the occipital 

lobe for visual processing, the auditory cortex of the parietal 

and temporal lobes, and the frontal lobe for emotional 

processing). For those reasons all the electrodes were included 

in the computation of the EEG_W feature. 
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The EEG_FFT feature set thus contains a total of 

3 19 1 58    features (3 frequency bands and 19 electrodes 

plus the EEG_W feature). 

 
TABLE I 

THE ENERGY FEATURES COMPUTED FOR EACH ELECTRODE AND THE 

ASSOCIATED FREQUENCY BANDS. 

Feature for electrode i Frequency band 

i 4-8 Hz 

i 8-12 Hz 
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i 12-30 Hz 

 

2) Peripheral features 

Many studies in psychophysiology have shown correlations 

between signals of the peripheral nervous system and 

emotions; effectiveness of such signals in emotion assessment 

is now fully demonstrated as detailed in the introduction. All 

data were first filtered by a mean filtering to remove noise. For 

this purpose we used a rectangular filter of length 128 for 

GSR, 128 for temperature, and 64 for chest cavity expansion.  

GSR provides a measure of the resistance of the skin 

(electrodermal activity) by positioning two electrodes on the 

distal phalanges of the index and middle fingers. This 

resistance decreases due to an increase of sudation, which 

usually occurs when one is experiencing emotions such as 

stress or surprise. Moreover, Lang et al. discovered that the 

mean value of the GSR is related to the level of arousal [30]. 

The number of GSR falls was also computed by identification 

of the signal local minima. The features extracted from 

electrodermal activity are presented in Table II. 

 
TABLE II 

FEATURES EXTRACTED FROM PERIPHERAL SIGNALS 
Peripheral 

signal 

Feature 

name 
Extracted feature Comment 

GSR GSR
  Mean skin resistance 

Estimate of general 

arousal level 

 GSR
  Mean of derivative 

Average GSR 

variation 

 

DecRate

GSR
f  Mean of derivative 

for negative values 

only 

Average decrease 

rate during decay 

time 

 

DecTime

GSR
f  Proportion of 

negative samples in 

the derivative vs. all 

samples 

Importance and 

duration of the 

resistance fall 

 

NbPeaks

GSR
f  Number of 

resistance falls in the 

signal 

- 

BVP BVP
  Mean value 

Estimate of general 

BVP 

 BVP
  Standard deviation BVP variation 

Heart rate HR
  Mean of heart rate - 

 
HR

  

HR
  

Mean of heart rate 

derivative 

Standard deviation 

of heart rate 

Estimations of heart 

rate variability 

 
LF

HR
f  Energy in 0.05Hz-

0.15Hz band 

Parasympathetic and 

sympathetic activity 

 
HF

HR
f  Energy in 0.15Hz-

1Hz band 

Parasympathetic 

activity 

 

/LF HF

HR
f  Ratio of energy in 

the LF and HF bands 

Ratio of 

parasympathetic and 

sympathetic activity 

Chest cavity 

expansion 

Rate

Resp
f  Frequency with the 

highest energy 
Respiration rate 

 
Resp

  
Standard deviation 

Variation of the 

chest cavity 

expansion signal 

 

DR

Resp
f  Maximum value 

minus minimum 

value 

Dynamic range or 

greatest breath 

Skin 

Temperature 
Temp

  Mean value - 

 
Temp
  

Mean of derivative 

Estimation of 

temperature 

variability 

A plethysmograph was placed on the thumb of the 

participant to evaluate Blood Volume Pulse (BVP). This 

signal is not only used as a measure of BVP but also to 

compute Heart Rate (HR) by identification of local minima (ie. 

foot of the systolic upstroke) and interbeat periods. Blood 

pressure and HR variability are variables that correlate with 

defensive reactions [31], pleasantness of a stimuli [30], and 

basic emotions [32]. The HR signal energy in low frequencies 

(0.05Hz-0.15Hz) and high frequencies (0.15Hz-1Hz), as well 

as the ratio of these energies were computed because they are 

indicators of parasympathetic and sympathetic activity [33]. 

Chest cavity expansion was measured by tying a respiration 

belt around the chest of the participant. Slow respiration is 

linked to relaxation while irregular rhythm, quick variations, 

and cessation of respiration corresponds to more aroused 

emotions like anger or fear [32, 34]. To characterize this 

process we rely on features from both the frequency and time 

domains (Table II). 

Skin temperature was measured by placing a sensor on the 

distal phalange of the ring finger. Ekman et al. [35] found a 

significant increase of skin temperature for anger compared to 

his five other basic emotions (sadness, happiness, fear, surprise 

and disgust). McFarland [36] found that stimulating persons 

with emotional music led to an increase of temperature for 

calm positive music and a decrease for excited negative pieces. 

III. ANALYSIS OF QUESTIONNAIRES AND OF PHYSIOLOGICAL 

FEATURES 

In this section the data gathered from the questionnaires and 

from the computed physiological features is analyzed to 

control the applicability of the flow theory for games. For this 

purpose the validity of the following two hypotheses were 

tested: 

 H1: playing in the three different conditions (difficulty 

levels) will give rise to different emotional states; 

 H2: as the skill increases, the player will switch from an 

engagement state to a boredom state (see Fig. 1). 

A. Elicited emotions 

1) Questionnaires 

To test for hypothesis H1, a factor analysis was performed 

on the questionnaires to find the axes of maximum variance. 

The first two components obtained from the factor analysis 

account for 55.6% of the questionnaire variance and were 

found to be associated with higher eigenvalues than the other 

components (the eigenvalues of the first 3 components are 

10.2, 8.2 and 1.7). The questionnaire answers given for each 

session were then projected in the new space formed by the 

two components and an ANOVA test was applied to those new 

variables to check for differences in distributions of judgment 

for the different conditions. By looking at the weights of the 

two components it was found that: 
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 the first component was positively correlated with questions 

related to pleasure, amusement, interest and motivation; 

 the second component was positively correlated with 

question corresponding to levels of excitation and pressure 

and negatively correlated with calm and control levels. 

<Figure 3> 

The ANOVA test, applied on the data projected on the first 

component (see Fig. 3), showed that participants felt lower 

pleasure, amusement, interest and motivation for the easy and 

hard conditions than for the medium one (F=46, p<0.01). 

Differences in the three distributions obtained from the second 

component demonstrated that increasing difficulty led to 

higher reported excitation and pressure as well as lower 

control (F=232, p<0.01). This demonstrates that an adequate 

level of difficulty is necessary to engage players in the game so 

that they feel motivated and pleased to play. Moreover those 

results also validate hypothesis H1 since they show that the 

different playing difficulties successfully elicited different 

emotional states with various levels of pleasure and arousal. 

According to the self-evaluations those states were defined as 

boredom for the easy condition, engagement for the medium 

condition and anxiety for the hard condition. 

2) Peripheral features 

The physiological features were subjected to an ANOVA 

test to search for differences in activations for the different 

conditions and analyze the relevance of those features for 

emotion assessment. For this purpose the ANOVA test was 

applied on the three distributions and the F-values and p-

values are reported in Table III. Moreover, the ANOVA test 

was also applied to check for differences between the easy and 

medium conditions as well as between the medium and hard 

condition. If a difference is significant (p-value < 0.1) the 

trend of the mean from a condition to another is reported in 

Table III. 
TABLE III. 

F-VALUES AND P-VALUES OF THE ANOVA TESTS APPLIED ON THE PERIPHERAL 

FEATURES FOR THE 3 DIFFICULTY LEVELS. ONLY THE RELEVANT FEATURES 

ARE PRESENTED (P-VALUE < 0.1). THE “TREND OF THE MEAN” COLUMN 

INDICATES THE DIFFERENCES BETWEEN TWO CONDITIONS. FOR INSTANCE  

INDICATE A SIGNIFICANT DECREASE OF THE VARIABLE FROM THE EASY TO THE 

MEDIUM CONDITION (FIRST ) AND FROM THE MEDIUM TO THE HARD 

CONDITION (SECOND ), WHILE  INDICATE NO SIGNIFICANT DIFFERENCES 

BETWEEN THE EASY AND MEDIUM CONDITION AND A SIGNIFICANT INCREASE 

TO THE HARD CONDITION. 

Feature F-value p-value Trend of the 

mean 

GSR
  4.4 0.01  

GSR
  2.7 0.07  

DecRate

GSR
f  3.1 0.05  

DecTime

GSR
f  6.7 < 0.01  

NbPeaks

GSR
f  18.3 < 0.01  

HR
  3.4 0.04  

LF

HR
f  2.4 0.09  

Resp
  5.8 < 0.01  

Temp
  9.4 < 0.01  

Temp
  10 < 0.01  

The decrease observed for the 
GSR

 , 
GSR
 , DecRate

GSR
f features 

and the increase of the NbPeaks

GSR
f  between the easy and medium 

conditions indicate an increase of electrodermal activity when 

progressing from the easy to the medium difficulty level. 

Between the easy and medium conditions a significant 

decrease of temperature is also observed. Those results are in 

favor of an increase of arousal between the easy and the 

medium condition. More specifically, the increase in the 

number of GSR peaks indicates that the changes in arousal are 

not only due to workload increase but also to some specific 

events that triggered emotional reactions. When analyzing the 

GSR features changes between the medium condition and the 

hard condition, only the DecTime

GSR
f  feature (percentage of 

negative samples in the GSR derivative) is significantly 

increasing. An increase of mean HR and a decrease of 

temperature are also observed between the same conditions. 

Those results suggest that there is also an increase of arousal 

between the medium and hard conditions but to a lesser extent 

than between the easy and medium conditions. In summary, an 

increased arousal is observed for increasing game difficulty, 

supporting the results obtained from the analysis of the 

questionnaires. 

As can be seen from Table III a total of ten features were 

found to have significantly different distributions among the 

three difficulties. This suggests that the conditions correspond 

to different emotional states and demonstrates the interest of 

those features for later classification of the three conditions. 

One feature of particular interest is LF

HR
f , the HR energy in low 

frequency bands, because it has a lower value for the medium 

condition than for the two others, showing that this condition 

can elicit particular peripheral activation. This is also one of 

the only features that can help to distinguish the medium 

condition from the two others. 

3) EEG features 

An ANOVA test was also performed on each EEG feature 

to test for differences between the three conditions. Table IV 

gives a list of the EEG features that are relevant (p-value < 

0.1). No feature corresponding to the energy in the alpha band 

was significantly different among the three conditions. 

However, several features in the theta and beta bands were 

significantly different; which shows their interest for automatic 

assessment of the three conditions. To illustrate the EEG 

activity we focused on the EEG_W feature since it is a 

combination of the other features and is known to be related to 

cognitive processes such as engagement and workload [20]. 
TABLE IV 

LIST OF THE RELEVANT EEG FEATURES (P-VALUE < 0.1) GIVEN BY FREQUENCY 

BAND AND ELECTRODE. 

 Left electrodes Midline 

electrodes 

Right electrodes 

Theta band C3, T7, P3, P7, 

O1 

Fz, Cz F4, C4, T8, O2 

Beta band Fp1, P7, O1 Cz C4, T8, P8, O2 
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Significant differences were observed for the EEG_W 

feature between the three conditions (F=5.5, p<0.01). Fig. 4 

shows the median and quartiles of the EEG_W values for each 

condition. Since for the medium difficulty the participants 

reported higher interest and motivation than for the easy and 

hard conditions, it was expected that the mean of the EEG_W 

values would be significantly higher for the medium condition. 

However, as can be seen from Fig. 4, there is increase in the 

median of the EEG_W values as the difficulty increases. The 

differences between the medium and hard conditions as well as 

between the easy and hard conditions are significant according 

to the ANOVA test. In our view this reflects the fact that the 

EEG_W feature is more related to workload than to 

engagement. The participants involved more executive 

functions in the hard condition than the medium one, even if 

they were less engaged. 

<Figure 4> 

B. Evolution of emotions in engaged trials 

Hypothesis H2 was tested by focusing on the data of the two 

sessions corresponding to the medium condition where the 

participant is expected to be engaged. Both physiological and 

questionnaire data were analyzed using a pairwise t-test to 

verify that there was a decrease of engagement from the first to 

the second session. 

The pairwise t-test on the variables of the questionnaire 

showed a significant decrease from the first to the second 

medium condition for the questions “I had pleasure to play” 

(t=-1.8, p=0.09) and “I had to adapt to the interface” (t=-3, 

p=0.06). From peripheral signals, a decrease in the number of 

GSR peaks NbPeaks

GSR
f  (t=-2.4, p=0.02) as well as an increase in 

the average of temperature 
Temp

  (t=2.6, p=0.02) and in the 

average of temperature derivative Temp
  (t=2.3, p=0.03) was 

found. 

Those results are indicative of a decrease of arousal and 

pleasure while playing twice in the same condition, thus 

supporting hypothesis H2. The result obtained for the question 

“I had to adapt to the interface” gives a cue that this decrease 

could be due to an increase of player’s competence. However 

the competence changes were not measured with other 

indicators to confirm this possibility. In any case, those results 

demonstrate the importance of having automatic adaptation of 

game’s difficulty when the challenge of the game remains the 

same. 

IV. CLASSIFICATION OF THE GAMING CONDITIONS USING 

PHYSIOLOGICAL SIGNALS 

A. Classification methods 

In this section, the classification accuracy that can be 

expected from emotion assessment is investigated. For this 

purpose classification methods were applied on the data 

gathered from the gaming protocol. The ground-truth labels 

were defined as the three gaming conditions, each one being 

associated to one of three states: boredom (easy condition), 

engagement (medium condition) and anxiety (hard condition). 

Three classifiers were applied on this data set: a Linear 

Discriminant Analysis (LDA), a Quadratic Discrimant 

Analysis (QDA) and a Support Vector Machine (SVM) with 

Radial Basis Functions (RBF) kernel [37, 38]. The 

diagonalized versions of the LDA and the QDA were 

employed because of the low number of samples, which 

sometimes gives rise to the problem of singular covariance 

matrices. The size of the RBF kernel was chosen by applying a 

5-fold cross-validation procedure on the training set and 

finding the size yielding the best accuracy. The tested size 

values belonged to the 5.10
-3

 to 5.10
-1

 range with a step of 

5.10
-3

. 

The following cross-validation method was employed to 

compute the test accuracy of the classifiers. For each 

participant a classifier was trained using features of the other 

participants; accuracy was then computed by applying the 

trained model on the physiological data of the tested 

participant. Since the classifier is tested on the data of 

participants that are not present in the training set, this method 

allows evaluating the performance of the classifier in the worst 

case where the model is not user-specific, i.e. no information 

about the specificity of the user’s physiology is required for 

emotion assessment, except for a baseline recording of 1 min. 

Due to the inter-participant variability that remains in 

physiological activity after baseline subtraction, player 

independent classifiers will certainly yield a lower accuracy 

than player dependant classifiers. However, this approach 

allows designing applications where it is not necessary to train 

a classifier for each user which is drastically time consuming 

[3]. 

Three feature selection algorithms were applied on this 

problem to find the features that provide good generalization 

across participants. All those algorithms were applied on the 

training set to select features of interest and only the selected 

features were used for classification of the test set. An 

ANOVA feature selection was applied to keep only the 

features that are relevant to the class concept (p-value < 0.1). 

The Fast Correlation Based Filter (FCBF) [39] was applied to 

select relevant features and remove redundant ones. The δFCBF 

threshold was set to 0.2 because (i) it was shown in [40] that 

this value is relevant for FCBF EEG features selection and (ii) 

the number of features that have a correlation with the classes 

higher than 0.2 (7 for peripheral features and 23 for EEG 

features) is similar to the number of relevant features found 

using the ANOVA test (10 for peripheral features and 20 for 

EEG features). Finally, the SFFS algorithm [41] was also used 

to select features of interest, including potentially interacting 

features. To search for features that have good generalization 

across participants, the accuracy of a feature subset was 

estimated by computing the participant cross-validation 

accuracy on the training set. The maximum size of a feature 

subset for the SFFS algorithm was set to 18 for peripheral 

features and 20 for EEG features. 
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The fusion of the EEG and peripheral information was 

performed to improve classification accuracy. This fusion was 

performed at the decision level [42], by combining the outputs 

of the classifiers using the Bayes belief integration [43]. For 

Bayes belief integration, the errors produced by the classifiers 

are expressed by the probabilities ˆ( | )
q

P y y  that a classifier q 

estimates a class as being ˆ
q

y , while the true class was y. These 

probabilities can be computed from the confusion matrices 

obtained from the training set. The fusion is then performed by 

assuming classifiers independency and choosing the class y 

that maximizes the following probability: 

1 | | | | 1

ˆ( | )

ˆ ˆ( | ... )
( )

q

q Q

Q Q

P y y

P y y y
P y







 (2) 

where Q is the ensemble of classifiers used for the fusion. 

Since the EEG signals were recorded only for 14 out of the 

20 participants, the available number of samples for EEG 

based classification is not the same as for peripheral based 

classification. For this reason the results obtained from EEG 

and peripheral features are separated in two sections with 

classification algorithm applied on 14 participants for EEG 

and 20 participants for peripheral features. In Section IV.D the 

classification accuracies obtained with EEG and peripheral 

features on different time scales are compared while the fusion 

of peripheral and EEG modalities is investigated in Section 

IV.E. In both cases, the classification accuracy was computed 

only on the 14 participants having EEG recorded. 

B. Peripheral signals 

Fig. 5 presents the accuracies obtained by applying the 

classification methods on the features extracted from the 

peripheral signals. Without feature selection the LDA obtained 

the best accuracies of 54% showing its ability to find a 

boundary that generalizes well across participants. In any case, 

the accuracies are higher than the random level of 33%. 

Except for the ANOVA, the feature selection methods always 

improved the classification accuracies. The best accuracy of 

59% is obtained with the QDA combined with SFFS feature 

selection. However the FCBF results (58%) are not 

significantly different from those obtained with the SFFS 

algorithm because of the high variance of the accuracies. 

Moreover, the variance of the accuracies obtained with SFFS 

tends to be higher than those obtained with the FCBF which 

shows that the FCBF is more stable than the SFFS algorithm in 

selecting the proper features. According to the results and 

considering that the FCBF is much faster than the SFFS, the 

FCBF can be considered as the best feature selection algorithm 

for this classification scheme. 

<Figure 5> 

Since the participant cross-validation method was used, the 

feature selection algorithms were applied 20 times on different 

training sets. For this reason, the features selected at each 

iteration of the cross-validation procedure can be different. 

The histograms of Fig. 6 show for each feature the number of 

times it was selected by a given feature selection algorithm. 

The average number of selected features is 3.5 for the FCBF, 

9.35 for the ANOVA feature selection and 4.8 for the SFFS. 

The ANOVA nearly always selected the features that were 

found to be relevant in Section III.A but with poor resulting 

accuracy (Fig. 5). Thanks to the removal of redundant features, 

the FCBF strongly reduces the original size of the feature 

space with a good resulting accuracy. Moreover this algorithm 

nearly always selected the same features independently of the 

training set showing its stability. The SFFS also obtained good 

performance but as can be seen from Fig. 6, some of the 

features were selected only on some of the training sets, 

showing that this algorithm is less stable than the FCBF. 

<Figure 6> 

By inspecting the SFFS, FCBF and ANOVA selected 

features, the DecTime

GSR
f  and NbPeaks

GSR
f  features were always 

selected which shows their importance for classification of the 

three conditions from physiological signals. To our knowledge 

similar features have been used only in [44] for emotions 

assessment despite of their apparent relevance. The 
HR

  

feature was frequently selected by the FCBF but never by the 

SFFS and vice-versa for the 
Resp

  feature. The 
Resp

  feature 

was removed by the FCBF because it was correlated with 
HR

 . 

However the SFFS kept the 
Resp

  feature based on its 

predictive accuracy which suggests that this feature may be 

better than 
HR

  for classification. Finally, the temperature 

features were also found to be frequently relevant. 

Because of its good accuracy and low computational time 

the FCBF algorithm coupled with QDA classification was used 

for further analyses involving the peripheral modality. Table V 

presents the confusion matrix for the 3 classes: it can be seen 

that the boredom condition was well classified, followed by 

the anxiety condition. Samples from the engagement condition 

tend to be classified mostly as bored samples and also as 

anxious samples. This is not surprising since this condition lies 

in between the others. Notice that 21% of the samples 

belonging to the anxiety class are classified as bored samples; 

this can be due to fact that some participants completely 

disengaged from the task because of its difficulty, reaching an 

emotional state close to boredom. In this case, the adaptive 

game we propose would increase the level of difficulty since 

the detected emotion would be boredom, which is not the 

proper decision to take. A solution to correct this problem 

could be to use contextual information such as the current 

level of difficulty and the direction of the last change in 

difficulty (i.e. increase or decrease) to correctly determine the 

action to take. 
TABLE V 

CONFUSION MATRIX FOR THE QDA CLASSIFIER WITH FCBF FEATURE 

SELECTION. 

Estimated 

True 

Easy 

(Boredom) 

Medium 

(Engagement) 

Hard 

(Anxiety) 

Easy (Boredom) 80% 10% 10% 

Medium (Engag.) 37% 33% 30% 

Hard (Anxiety) 21% 19% 60% 
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C. EEG signals 

All the classification methods obtained accuracy higher than 

the random level of 33% (Fig. 7). Without feature selection the 

LDA had the best accuracy of 49%, followed by the RBF 

SVM with 47%. As with the peripheral features, these results 

demonstrate the ability of linear and support vector classifiers 

to well generalize across the participants. The best result of 

56% was obtained by the LDA coupled with ANOVA feature 

selection. The ANOVA feature selection method always had a 

better performance than the other methods. To our knowledge 

these are the first results concerning the identification of 

gaming conditions from EEG signals, especially considering 

that the classifiers were trained using a cross-participant 

framework. 

<Figure 7> 

As can be seen from Fig. 8, the FCBF selected less features 

than the two other feature selection methods. It selected 3.1 

features in average compared to 20.3 for the ANOVA and 13.0 

for the SFFS coupled with the LDA. This explains the low 

accuracy obtained with the FCBF and shows that good 

accuracies on this problem can be obtained only by 

concatenating several features. The ANOVA algorithm often 

selected the features described in Section III.A. The SFFS 

coupled with the LDA had accuracies close to those of the 

ANOVA with LDA but by selecting less features in average. 

For this reason the features selected by this method are of 

particular importance for accurate classification of the three 

gaming conditions. The more often selected features (selected 

more than 8 times) were the theta band energies of the T7, O1, 

Cz, P4 and P3 electrodes and the beta band energies of the P7, 

Pz and O2 electrodes. This result shows that the occipital and 

parietal lobes were particularly useful for differentiation of the 

three gaming conditions. 

<Figure 8> 

The confusion matrix displayed in Table VI for the LDA 

and FCBF methods shows that the different classes were 

detected with similar accuracies. The medium condition still 

has the lowest accuracy but is better detected than when using 

the peripheral features. On the other hand, the easy condition 

is detected with less accuracy than with peripheral features. 

This indicates that the fusion of the two modalities should 

increase the overall accuracy. 
TABLE VI 

CONFUSION MATRIX FOR THE LDA CLASSIFIER WITH ANOVA FEATURE 

SELECTION. 

Estimated 

True 

Easy 

(Boredom) 

Medium 

(Engagement) 

Hard 

(Anxiety) 

Easy (Boredom) 57% 43% 0% 

Medium (Engag.) 21% 50% 29% 

Hard (Anxiety) 19% 19% 62% 

D. EEG and peripheral signals 

In order to compare accuracies obtained using either EEG 

or peripheral signals, the best combinations of classifiers and 

feature selection methods were applied on the physiological 

database with the same number of participants for both 

modalities (the 14 participants for whom EEG was recorded). 

Moreover, the comparison was conducted for different time 

scales to analyze the performance of each modality as a 

function of the signal duration used for the features 

computation. For this purpose, each session (see Fig. 2) was 

divided into 1 to 10 non-overlapping windows of 300/W 

seconds, where W is the number of windows and 300 seconds 

the duration of a session. EEG and peripheral features were 

then computed from each window and the label of the session 

was attributed to these features. By using this method, a 

database of physiological features was constructed for each 

window size ranging from 30 to 300 seconds. 

For a database in which the features were computed from W 

windows, the number of samples for each class is 20 2 W   

(20 participants, 2 sessions per class and W windows per 

session). Thus the number of samples per class increases with 

W. Since the number of samples can influence classification 

accuracy and the goal of this study is to analyze the 

performance of EEG and peripheral features at different time 

scales, it is important that this comparison be conducted with 

the same number of samples for each window’s length. To 

satisfy this constraint one sample was chosen randomly from 

each session using a uniform distribution to have 20 2 40   

samples per class. The classification algorithms were than 

applied on this reduced database. This was repeated 1000 

times for each value of W to account for the different possible 

combinations of the windows (except for W=1). Notice that it 

is not possible to perform classification for all windows 

combinations since there are W
40

 such combinations. 

By using this method the average accuracies over the 1000 

iterations are displayed in Fig. 9. The small accuracy 

oscillations that can be observed for small time windows (less 

than 100 seconds) are likely due to the increase of the number 

of possible combinations of windows. As can be seen from 

Fig. 9 the accuracy obtained for the peripheral signals with the 

original duration of the sessions (300 seconds) is not 

significantly different from the one obtained with all of the 20 

of participants (See Section IV.B). Thus having 13 or 19 

participants for classifiers training (because of participant 

cross-validation) does not significantly change the 

classification performance. This suggests that adding more 

participants to the current database would not increase 

classification accuracies and that recording 14 to 20 

participants is enough to obtain reliable accuracy estimations. 

<Figure 9> 

For both modalities, decreasing the duration of the window 

on which the features are computed leads to a decrease of 

accuracy. However, this decrease is stronger for peripheral 

features than for EEG features. For the EEG features, the 

accuracy drops from 56% for windows of 300 seconds to 

around 51% for windows of 30-50 seconds. For the peripheral 

features the accuracy is 57% for windows of 300 seconds and 

around 45% for windows of 30-50 seconds. Moreover, the 

EEG accuracy remains approximately the same for windows 

having duration inferior to 100 seconds while the peripheral 

accuracy continues to decrease. All those results demonstrate 
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that the EEG features are more robust on short term 

assessment than the peripheral features. For our application, 

adapting the difficulty of the Tetris game based on the 

physiological signals gathered during the 5 precedent minutes 

may be undesirable since there is a high probability that the 

difficulty of the game has changed during this laps of time due 

to usual game progress. Having modalities, like EEG, that are 

able to estimate the state of the user on shorter time periods is 

thus of great interest. 

E. Fusion 

As can be seen from the confusion matrices obtained from 

the classification based on the peripheral and EEG features 

(Table V and Table VI), the errors made with these two 

feature sets are quite different. The Bayes belief integration is 

well suited for this type of problem, and thus was employed 

for fusion of the best classifiers found for each feature set (the 

LDA couples with ANOVA for EEG features and QDA 

coupled with FCBF for peripheral features). Another 

advantage of the Bayes belief integration is that the 

probabilities ˆ( | )
i q

P y  of (3) can be estimated independently 

for the two classifiers. It was thus possible to use the training 

data of 19 participants to compute probabilities for the 

peripheral features while only 13 participants were used for the 

EEG features. The resulting accuracy and confusion matrices 

were obtained by using the participant cross-validation applied 

on the 14 participants for whom both EEG and peripheral 

activity were recorded. 
TABLE VII 

CONFUSION MATRIX FOR THE “BAYES BELIEF INTEGRATION” FUSION. 

Estimated 

True 

Easy 

(Boredom) 

Medium 

(Engagement) 

Hard 

(Anxiety) 

Easy (Boredom) 82% 14% 4% 

Medium (Engag.) 29% 39% 32% 

Hard (Anxiety) 4% 27% 69% 

The accuracy obtained after fusion was 63% which 

corresponds to an increase of 5% compared to the best 

accuracy obtained with the peripheral features. Table VII 

presents the confusion matrix obtained after fusion. By 

comparing this table to Table V and Table VI it can be 

observed that the detection accuracy of the easy and the hard 

classes was increased by 2% and 7% respectively compared to 

the accuracy obtained with the best feature set (peripheral 

features for the easy class and EEG features for the hard class). 

The accuracy obtained on the medium class with fusion (39%) 

is lower than the one obtained with EEG features (50%) but 

higher than with peripheral features (33%). When performing 

classification based either on EEG or peripheral features many 

of the hard samples were classified as easy while this problem 

was solved after fusion. All these results demonstrate the 

interest of peripheral and EEG fusion at the decision level for 

a more accurate detection of the three conditions. 

The accuracy obtained in the present study is 15% lower 

than the one obtained in [3]. However, according to the 

confusion matrix presented in Table VII, the adjusted level of 

difficulty using the current method should oscillate around the 

true difficulty level where the participant experiences 

engagement. It is thus expected that our method will also 

improve player experience. Moreover, as stressed before, the 

current method only requires a baseline recording of 1 min for 

each new player, compared to the recording of six 1 hour 

training game sessions for each participant in [3]. 

V. CONCLUSION 

This study investigated the possible use of emotion 

assessment from physiological signals to adapt the difficulty of 

a game. A protocol was designed to record physiological 

activity and gather self-reports of 20 participants playing a 

Tetris game at three different levels of difficulty. The difficulty 

levels were determined according to the competence of the 

players on the task. Two types of analysis were conducted on 

the data: first a statistical analysis of self-reports and 

physiological data was performed to control that different 

cognitive and emotional states were elicited by the protocol, 

secondly classification was conducted to determine whether it 

is possible to detect those states from physiological signals. 

The results obtained from the analysis of self-reports and 

physiological data showed that playing the Tetris game at 

different levels of difficulty gave rise to different emotional 

states. The easy difficulty was related to a state of low 

pleasure, low pressure, low arousal and low motivation which 

was determined as boredom. The medium difficulty elicited 

higher arousal than the easy difficulty, as well as higher 

pleasure, higher motivation and higher amusement. It was thus 

defined as engagement. Finally the hard condition was 

associated to anxiety since it elicited high arousal, high 

pressure and low pleasure. Moreover, the analysis of 

consecutive engaged trials showed that the engagement of a 

player can decrease if the game difficulty does not change. 

These results demonstrate the importance of adapting the game 

difficulty according to the emotions of the player in order to 

maintain his / her engagement. 

The classification accuracy of EEG and peripheral signals to 

recover the three states elicited by the gaming conditions were 

analyzed for different classifiers, feature selection methods and 

durations on which the features were computed. Without 

feature selection the best classifiers obtained an accuracy 

around 55% for peripheral features and 48% for EEG features. 

The FCBF increased the best accuracy on the peripheral 

feature to 59% while the ANOVA selection increased the 

accuracy to 56% for EEG features. The analysis of the 

classification accuracy for EEG and peripheral features 

computed on different durations demonstrated that the EEG 

features are more robust to a decrease in duration than the 

peripheral features, which confirms the importance of EEG 

features for short term emotion assessment. 

Future work will focus on the improvement of the detection 

accuracy. Fusion of physiological information with other 

modalities such as facial expressions, speech and vocal signals 

would certainly improve the accuracy. Including game 

information such as the evolution of the score can also help to 
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better detect the three states. Another question of interest is to 

determine the number of classes to be detected. Since boredom 

and anxiety are detected with higher confidence than 

engagement it might be enough to use those two classes for 

adaptation to the game difficulty. Moreover, from the 

observation of Fig. 1, one can conclude that it is more 

interesting to adapt the difficulty of the game solely based on 

the increase of competence because it leads to a stronger 

change of state in the flow chart and stimulates learning. In 

this case only the detection of boredom is of importance to 

modulate difficulty. This also implies to more clearly define 

what are the relations between emotions and competence 

changes. A future study would be to implement an adaptive 

Tetris game and verify that it is more fun and enjoyable than 

the standard one. Finally, analysis of physiological signals for 

different types of games is also required to see if the results of 

this study can be extended to other games. 
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Fig. 1.  Flow chart and the suggested automatic adaptation to emotional 

reactions. 

 

 

 

 

 

 
Fig. 2.  Schedule of the protocol. 

 

 

 

 

 

 
Fig. 3.  Mean and standard deviation of judgments for each axis of the two 

components (comp.) space and the different difficulties (diff.): easy, medium 

(med.) and hard. 
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Fig. 4.  Boxplot of the EEG_W values for the three conditions. The middle 

line represents the median of the EEG_W values, the box the quartile and the 

whiskers the range. NS: non significant. 
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Fig. 5  Accuracies of the different classifiers and feature selection methods on 

the peripheral features. 
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Fig. 6.  Histograms of the number of cross-validation iterations (over a total of 20) in which features have been selected by the FCBF, ANOVA and SFFS feature 

selection algorithms. The SFFS feature selection is displayed for the QDA classification. 
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Fig. 7.  Accuracies of the different classifiers and feature selection methods 

on the EEG features. 
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Fig. 8.  Histograms of the number of cross-validation iterations (over a total of 14) in which features have been selected by the FCBF, ANOVA and SFFS feature 

selection algorithms. The SFFS feature selection is displayed for the LDA classification. 

 

 

 

 

 
Fig. 9 Classification accuracy as a function of the duration of a trial for EEG 

and peripheral features. 
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