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Abstract—This paper proposes an iterative bidding framework for integrated due date 

management decision making. We focus on a type of make-to-order environment, in which a firm 

needs to quote due dates and prices and to schedule the production of a variety of job orders 

required by a large group of customers. In most cases, customers prefer shorter due dates. 

However, given limited production capacity and various cost constraints, the firm has to balance 

the attractiveness of their due date quotations and the reliability in terms of scheduling and 

delivering accepted job orders. The key issue here is how to integrate due date management 

decisions such that high quality solutions which benefit both the firm and the customers can be 

obtained.  We study the integrated due date management in an economic setting where customers 

are modeled as self-interested agents and the objective of the firm is to maximize social welfare. 

We present an iterative bidding framework as a decentralized decision support tool which enables 

the integration of key due date management decisions. Effective solutions are achieved through 

the automated negotiation between the firm and its customers. We provide analytical results on the 

application of the proposed framework to two special cases of the integrated due date 

management. We also evaluate the performance of the framework on general due date 

management problems through a computational study.  

 

Keywords: Due date management; Scheduling; Make to order; Auctions; Iterative bidding; 

Bidding languages; Multilateral negotiation  

I. INTRODUCTION 

In supply chain management, the due date of an order is the promised date that the supplier will 

deliver the product(s). The task of due date management (DDM) is to determine, in a timely 

manner, if and when an order can be fulfilled profitably. As in other management processes, DDM 

involves different types of decisions, namely pricing, order acceptance (or demand management), 

due date setting, and scheduling[1]. These decisions are interrelated. In general, demand can be 

modeled as a function of market price and delivery time. Customer demand usually increases with 

lower delivery times as well as with lower prices [2, 3]. In the case of make-to-order 

manufacturing, before a firm agrees to accept an order, it evaluates the ‘profitability” of that order 

given the resources (e.g. manufacturing capacity) required to satisfy that order and other potential 

orders that could demand those resources. In addition, the customer and the firm need to agree on 
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the terms of the transactions, in particular, on the price and the due date. If the price or the due date 

quoted by the firm is too high compared to what the customer is willing to accept, the customer 

may choose not to place the order. Alternatively, if the price the customer is willing to pay is low 

or the due date requested is too short to make it a profitable transaction for the firm, the firm might 

decide not to accept the order. As the DDM decisions are tightly coupled, it is desirable to model 

the interrelations among them and consider them simultaneously. However, given the 

complexities of these decisions, in practice, they are often made sequentially.  The way that a firm 

makes DDM decisions is reflected by the time-based competition strategy it adopts.  

 There are three time-based competition strategies used by firms [3], (1) quick service with 

minimal wait; (2) “uniform” short lead time1 guarantee; (3) due date quotation. The first strategy 

does not involve order acceptance and due date quotation decisions. The focus here is how to 

schedule job orders such that they can be served as fast as possible. The second strategy promises 

a uniform lead time guarantee to all customers. Although, a firm can influence the demand rate by 

adjusting the length of the guaranteed lead time, there is no direct integration between the 

decisions of order acceptance and scheduling. In fact, under this strategy, there is a risk that 

demand may exceed the firms’ capacity to respond. Uniform lead time guarantee is widely adopted 

in the service and make-to-order manufacturing sectors [3, 4]. While the strategy may be easy to 

implement and effective in terms of attracting more customers, it has certain negative impacts, 

especially in make-to-order manufacturing. As pointed in[1], since the lead times are set without 

considering the characteristics of the order and the current status of the production, they may be 

unrealistic in terms of production scheduling, thereby worsening lead time performance, leading to 

disappointed customers, and/or  inflicting higher costs due to expediting. On the other hand, the 

lead times will be overstated when the demand is low and some customers may choose to go 

elsewhere. Furthermore, adding additional capacity may be inevitable to maintain the reliability of 

on-time delivery. The added capacity increases the total production costs and affects the price of 

the products provided. Although industry practice suggests that customers may be willing to pay a 

price premium for shorter delivery times [5], in the cases where the premium that a customer is 

willing to pay cannot compensate the cost of expediting, accepting short-lead-time orders becomes 

un-profitable.  

The third strategy encourages potential customers to get a due date “quote” prior to ordering. As 

 
1 In the context of DDM, the lead time is defined as the number of working days between the release date of the order and its due date.  
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the quoted due dates can be calculated based on the schedule of already accepted orders, this 

strategy has the potential of integrating due date quotation and scheduling decisions. In addition, 

by quoting prices and due dates, the firm makes an order selection/acceptance decision by 

influencing which orders finally end up the system. This strategy is more aggressive than the first 

one because a “quoted” lead time is considered as an irrevocable offer and, once accepted by the 

customer, the firm needs to deliver as promised. Otherwise, delay penalties may occur. Given 

limited capacities of a firm, the due date quotation strategy has the potential of effectively 

coordinating the DDM decisions and achieving optimal solutions in terms of resource utilization 

and profit. However, this strategy is difficult to implement. In addition to that more decisions need 

to be considered concurrently, if counter offers from customers are allowed, the implementation of 

this strategy also requires a multilateral negotiation mechanism between the firm and its 

customers.  

The purpose of this research is to develop an iterative bidding based multilateral negotiation 

framework to support the integration of DDM decisions under the due date quotation strategy. 

Unlike some on-line dynamic bidding systems [6, 7], we focus on an off-line setting, in which all 

the information about the problem, such as the job arrival and processing times, are available at the 

beginning of the scheduling horizon. In this setting, the resource requirements of multiple job 

orders need to be considered concurrently during the decision making process. Our main 

contribution is the design of the multi-lateral negotiation framework for DDM. The framework is 

implemented by an iterative bidding procedure. It incorporates all key DDM decisions. It also 

provides DDM process automation, which allows the firm and its customers to construct efficient 

production schedules through automated multilateral negotiation. The rest of the paper is 

organized as follows. Section 2 describes and formulates the integrated DDM problem. Section 3 

presents the structure and components of the proposed iterative bidding framework. Section 4 

provides theoretical analysis on the properties of the framework and evaluates its performance 

through a computational study. Section 5 compares the proposed framework with existing DDM 

approaches. Section 6 concludes the paper and discusses future improvements of the framework. 

II. THE INTEGRATED DUE DATE MANAGEMENT PROBLEM 

Integrated DDM is a decentralized multilateral decision making process. From the perspective of 

the firm, it combines pricing, order selection, due date setting, and scheduling decisions. The 
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decisions facing the customer are whether she should place the order given the price and due date 

offered by the firm and how to assign prices to the due dates in a counter offer to maximize her 

benefit. We assume that the firm has limited manufacturing capacity that can be used to process 

job orders from customers and the objective of the firm is to maximize the market efficiency, 

which is the sum of the values on a solution across all customers, rather than its revenue
2
. Each 

customer has one job order to be processed by the firm. An order has a release time, a preferred due 

date, and a deadline. The customer’s value on an order (the price that she is willing to pay) declines 

with the delay of the delivery date. The customers’ value functions are their private information. 

The Integrated DDM problem involves the selection of customer orders and allocation of the 

manufacturing resources of the firm to the orders such that the deadline requirements of all 

selected orders are met and the sum of customers’ values is maximized.  

 

 

Figure 1 The DDM problem setting in a windows and doors company 

 

As an example, we present a typical integrated DDM problem based on a case study from[9] as 

follows
3
. As shown in Figure 1, a firm manufactures windows and doors for home builders as well 

as individual home owners. The products are customized based on the requirements from the 

customers, which may include different types, sizes and quantities, preferred due dates, and 

deadlines. In this setting, the integrated DDM problem facing the firm is to coordinate the 

decisions regarding which order to accept, at what price, and with what delivery date. For 

 
2 We approach the integrated DDM from a social-welfare perspective. The objective of DDM in this context is to achieve efficient solutions in 

decentralized environments, which maximize the social welfare of all participants in the supply chain. In[8] D. C. Parkes and J. Kalagnanam, 

"Models for iterative multiattribute procurement auctions," Management Science, vol. 51, pp. 435-451, 2005.Parkes and Kalagnanam suggest that 
market efficiency is well suited for the design of stable long-term markets that will form the basis for repeated trade. As in most make-to-order 

cases, customers and the firm will expect repeated trade, it is appropriate to focus on market efficiency in our DDM formulation.  
3 In [9] W. Li, X. Luo, Y. Tu, and D. Xue, " Adaptive production scheduling for one-of-a-kind production with mass customization," 

Transactions of the North American Manufacturing Research Institution of SME, vol. 35, pp. 41-48, 2007., a case study, based on data collected 

from Gienow Windows and Doors Co. Ltd. (Calgary, Alberta, Canada), is presented to verify the effectiveness of an adaptive scheduling algorithm 

at shop floor level. While our scope is at supply chain level, we use this manufacturing setting to demonstrate the integrated DDM problem in 
make-to-order environments.  
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customers they need to decide how to adjust their orders in terms of requested due dates and prices 

offered if their original orders are turned down. Again we consider the off-line DDM problems, in 

which the firm needs to coordinate its DDM decisions across a larger group of customers for a 

specific production time window (say a week or a month) and the information about customers’ 

job orders are available at the beginning of the decision making process.    

A. Centralized Formulation 

As previously mentioned we consider integrated DDM as a decentralized decision making 

problem in the sense that the actual valuation of a customer on due dates is private information to 

the customer, which is not known to the firm. However, to clearly demonstrate the combinatorial 

optimization nature of the problem, we first assume a centralized environment, i.e., customers’ 

valuations are known to the firm.  With this assumption, we can conveniently model the problem 

as a mixed integer program. The decentralized characteristic of the problem will be considered 

when we develop the game theoretic modeling and iterative bidding framework.  

Consider a type of the DDM problem which consists of a set of   customers, denoted  , and a 

firm. Each customer           has a job to be processed by the firm. A job requires the 

processing of a sequence of operations                . An operation                

        has a specified processing time         and its execution requires the exclusive use of a 

designated resource for the duration of its processing. There are precedence constraints among 

operations of a job, that is,      must precede      .             , if     and        need to be 

processed on the same resource, otherwise              . A job   has a release 

time                           .    is the earliest time that job   can be available for processing. 

    is the latest completion time of job   in a schedule. For a schedule   which contains an 

allocation of the firm’s production resources to customer orders, a customer will have a valuation 

on  . In this paper we follow the definition of valuation as described in the private value model, 

introduced by Vickrey [10]. In integrated DDM, each customer has a value for each schedule and 

these values do not depend on the private information of the other customers. Each customer 

knows her values, but not the values of the others. A customer will not accept any schedule   if its 

job to be completed after the job’s hard deadline    or before its release time   . In these cases, the 

customer’s valuation on   is zero or, in terms of DDM, the customer’s job is not accepted. In our 

model, we also allow customers to request preferred due dates. For customer  , her preferred due 
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date is denoted as   .   (  ) is the valuation customer   assigns to a schedule in which her job is 

completed before    . Completion of a job after its preferred due date is allowed. However, for 

delayed jobs, there are extra costs incurred to the customer. For a schedule  , if  customer   has her 

job completed at   , her valuation on   is defined as         (  )   (  ), where    is the 

completion time of job   in  ;   (  ) is a non-decreasing function gives the cost incurred for a 

delayed     within the acceptable delay window         . For the time window            

in which the job is not delayed,   (  )   . The DDM involves the selection of a set of job orders 

     such that the scheduling constraints for all selected jobs are satisfied and, at the same time, 

the sum of customer values is maximized. Let      be the starting time of the operation    of the job 

 ; let       if job   is selected and      otherwise; also let              if       is performed 

before         and              otherwise (        The optimization problem, denoted CDM, is to 

solve  

   ∑   (  (  )    (  ))
 
    ,                          (1)    

subject to 

        
      

 ,                                 (2) 

                                                (3) 

(     
      

)                                       (4) 

                                                     (5) 

                                                     ,           (6) 

                                                ,              (7) 

                                                               (8) 

           {   } ,                                 (9) 

   {   }                                     (10) 

                                             (11) 

where           ,      ,           (         in (5)) and           .  The set of 

constraints (3) and (4) ensures that the operations of a job do not start before its release time and 

finish after its deadline. The set of constraints (5) ensure that an operation does not start before the 

previous operation of the same job is completed. The set of constraints (6) is a set of logical 
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constraints which states the following: if two jobs   and    are selected in the schedule, and 

operations      and        are to be processed on the same resource (            ), and      

precedes        (            ), then                 . These constraints ensure that, at most, one 

operation can be processed by a particular resource at a time, where   is a large positive constant, 

which is used for the linearization of the logical constraint “if”. Explanations on how this “large 

positive constant technique” is used in scheduling problem formulation can be found in [11]. The 

minimum value of   depends on the problem instance. In general, a      (    )     (    ), 

where          and          , is large enough to enforce the logical “if” constraint. 

Constraints (7) and (8) ensure the values assigned to the two related variables             and 

          

 

are consistent, that is, if      and         are to be processed on the same resource, 

then                         . Constraints (9), (10), (11) are non-negative and integer constraints. 

Having modeled the integrated DDM in a job shop environment, we gain insights to the 

complexity of the problem in terms of number of constraints and variables. We also know that 

CDM is a nonlinear model as the objective function of CDM is nonlinear. Now we turn our 

attention to the game theoretical modeling of the problem by considering customer valuations as 

private information not known to the firm. As the computational complexities inherited from the 

combinatorial nature of the scheduling problem are not related to the game theoretical modeling, 

we ignore the scheduling details and focus only on strategic interactions. We first model the 

integrated DDM as a game. We then construct a Vickrey-Clarke-Groves (VCG) auction that 

solves the game with an economically efficient outcome.  

B. Game Theoretic Modeling and an Auction Construction 

In the centralized formulation, we have assumed that customers’ valuations are known to the 

firm. In the game theoretic modeling, we remove this assumption and consider customers’ 

valuations are private information and they will behave strategically to maximize their own 

benefits. To reflect this self-interested property of the customers, we call them agents
4
. Let   

denotes a set of   job agents. Each represents a job order from a customer. Job orders need to be 

scheduled in the firm. Let   be the set of all feasible schedules
5
. An agent    needs to pay the firm 

 
4 In this paper, agents also refer to the trading software entities that represent the customer. From this point forward, when we mention customers 

in the context of system modeling and design, we will use the term “agent”.  
5   can be obtained by solving constraints of CDM as a constraint satisfaction problem. Note that, unlike in classical scheduling theory, a feasible 

schedule for a DDM problem does not have to include all job orders. If a job order is not included in a schedule, the customer’s valuation on the 
schedule is zero.  
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      in exchange for producing its job order as scheduled in  .  The agents must collectively 

choose a schedule    , and a vector of payments                             .  

Our goal is to design a mechanism which enables the collective selection of schedules. As we 

have assumed that the firm maximizes market efficiency, the chosen schedules need to maximizes 

the sum of agent valuations. We use Vickrey’s private value model. Therefore, an agent’s payoff is 

linear in the agent’s valuation of the schedule and the price paid for the schedule, that is 

           . Agents maximize their payoffs. So an agent is willing to pay up to its valuation 

      to obtain the schedule  . In the following, we construct a VCG auction for the DDM 

problem. Let             ∑           and              ∑           . The auction 

proceeds as follows. Each agent submits its valuations on each element of the set of all feasible 

schedules   . The auctioneer chooses    from   as the final schedule, such that     maximizes 

∑         , that is,     solves     . In addition, the auctioneer also computes a schedule for 

each    , such that the schedule solves           . After the schedules are computed, agent   

pays 

    
             ∑     

                                        (12)                    

and agent  ’s payoff from participating is 

    
    [         –∑     

     ]      
   ∑     

                       (13) 

                    

It is clearly that                   is non-negative, which means agents always get 

non-negative payoffs when participating in the auction. In addition to providing agents with the 

incentive to participate, the auction is also strategic proof meaning that submitting truth valuations 

to the auctioneer is a dominant strategy. Suppose agent   reports       instead. The auctioneer 

then chooses a   ̃     that solves       [∑               ]. Agent  ’s payoff becomes 

∑   ( ̃)      ( ̃)                                                 (14) 

It is clear that no agent can benefit from misreporting its valuation function.  

Given that the CDM can be used to obtain   and we have constructed the VCG auction that finds 

the optimal schedule in   , it seems that we have everything needed to solve the DDM game. 

However, the reality is, despite VCG’s theoretical elegance, its limitations in terms of 

implementation restrict its application to DDM problems. From the auctioneer’s side, the 

implementation of the VCG auction requires the solution of a      and a           for all      , 
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that is n+ 1 NP-hard optimization problems. The computation cost can be prohibitively expensive 

if the auction is applied to non-trivial size problems. In our case, the underlying scheduling model 

CDM is nonlinear, which usually demands more computation than a linear one. From the agents’ 

side, the VCG auction requires an exponential number of schedules in   to be valued by each agent, 

which presents hard valuation problems to agents. In addition to computation, communicating the 

large number of schedules to agents can also be a huge burden to the system. Most importantly, 

VCG requires complete valuation on alternative schedules to be revealed to the auctioneer. In 

DDM, customers are often reluctant to do so when that information might leak out and adversely 

affect other decisions or negotiations. Transparency is another practical concern in VCG auctions. 

It can be difficult to explain to the customers why a certain schedule is chosen.  In the following 

section, we propose an iterative bidding framework aimed at addressing some of the limitations 

arising in the application of VCG to DDM.   

III. THE ITERATIVE BIDDING FRAMEWORK 

The iterative bidding framework proposed in this paper is an auction-based approach to the 

integrated DDM problem. The framework contains three major components, a requirement-based 

bidding language, a linear integer programming model for winner determination, and an iterative 

bidding procedure. The requirement-based bidding language allows an agent’s bid to be expressed 

by a requirement of processing a job, which naturally represents scheduling constraints and 

objectives. The winner determination model takes bids expressed in the requirement-based 

language as input and computes feasible schedules which maximize the auctioneer’s revenue. The 

iterative bidding procedure provides a structure for agents and the auctioneer to interact in a 

systematic way and eventually evolve the provisional solutions towards an optimal or near optimal 

one. Iterative bidding also reduces agents’ information revelation and adds the potential of 

accommodating dynamic changes during the bidding process.  The iterative bidding framework is 

a multi-attribute auction, which allows negotiation over price and a non-price attribute: the due 

date of an agent’s schedule. In addition, the framework has good privacy preserving properties. 

For example, unlike VCG auctions, it does not require agents’ knowledge about the resources, 

such as their capabilities, availabilities and configurations. Also, it does not require complete 

revelation of agents’ valuations.  
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A. Requirement-Based Bidding Languages 

In integrated DDM, customers derive values based on how their jobs are scheduled according to 

their objectives. From a scheduling perspective, the quality of a schedule can be measured by time 

related parameters, e.g. completion times, tardiness. During the due date negotiation with a firm, a 

customer can often express her preferences using a conditional statement. For example, a customer 

may say she is willing to pay a specific price if her job is completed within a time window, e.g. 

        . There are three components in this conditional statement, the job, the time window 

and the price. In this section, we propose a requirement-based language for the representation of 

customers’ preferences in terms of these three elements. We first define the atomic bid (C-Bid) of 

this language. 

C-Bid is a 4-tuple 〈           〉 where R is the requirement of processing a job consisting of a 

set of operations to be performed, the precedence constraints among them and resource 

requirements.   is the price that the agent is willing to pay for   to be completed within the time 

window             where   denotes the completion time of R ,     stands for earliest 

finishing time, and     stands for latest finishing time, which is the required due date by the 

customer. C-Bids can be connected by XOR connective as a XOR-C-Bid to represent values that a 

customer has on different time windows. For example, 

〈                   〉   〈                   〉 indicates that the customer   is willing to pay   if 

  is completed with                  and    if    is completed with                  . 

Implicitly here, the customer only wants    to be processed once and there is no overlap between 

the two time windows. If we restrict the value of   to integers, the requirement based language has 

full expressiveness in terms of representing customers’ valuations using an XOR-C-Bid with finite 

number of C-Bids.  

Proposition 1 If the value of     is restricted to integers for a customer    , any valuation of 

customer    in integrated DDM can be represented by an XOR-C-Bid with finite C-Bids. 

Proof: See the Appendix. 

In Proposition 1, we have proved that if    is restricted to integers, a customer   can express her 

full preferences by assigning a value to each possible    with         . This restriction is 

reasonable as customers usually define their due dates in terms of the number of certain time units 

such as hours or days from the time when a job is released. In addition, by restricting the values of 
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the completion times of all jobs to integers, we will have a finite set of     , which provides us 

with the possibility of formulating a linear winner determination model as shown in the next 

section. 

B. Linear Winner Determination Model 

Given the set of XOR-C-Bids from customers, the task of winner determination is to select a 

subset of the bids such that all scheduling constraints are satisfied and, at the same time, the sum of 

customer’s value is maximized. A C-Bid can represent a customer’s value over a time window 

defined by the     and    . This is natural because, very often, a customer could be indifferent 

between the completion times within a certain time interval (a block of adjacent time units). 

Suppose a customer has    indifferent time intervals within the acceptable delayed window 

        . Accordingly an XOR-C-Bid with    C-Bids can be constructed to represent the 

customer’s valuations within the window.  With the non-delayed          interval included, 

the full valuation of a customer can be represented by  

〈                   〉   〈                   〉   〈                   〉     

   〈          
        

    
〉 (or in short,          

〈                   〉 ), where           , 

         ,      (  ). We assume that the     time intervals are adjacent, that is          

       for       . Given that        can be obtained from   , it is sufficient to represent the 

customer’s valuations through a simplified version of the XOR-C-Bid,           
〈            〉 . 

The simplified version does not use    , however, it contains all the information needed to 

uniquely construct a corresponding full version of the XOR-C-Bid.     

In fact, in most due date quotation scenarios, customers usually use the format of the simplified 

XOR-C-Bid to express their preferences. For example, they might say “if you promise to complete 

the job by Thursday, I will pay you $1000; however, if the completion time is Friday, I can only 

pay you $900”. In many cases, an XOR-C-Bid without     can be a natural format for expressing 

customers’ preferences. In the following, we formulate a winner determination model, denoted 

LDM, which takes the simplified version of XOR-C-Bids from customers as input. By doing this, 

we make the format of the inputs more intuitive for customers. Note that, as stated in Proposition 1, 

an XOR-C-Bid has the capability to represent a customer’s full valuation. However, this does not 

mean a customer will reveal her valuation in the XOR-C-Bid submitted to the firm. Iterative 
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bidding is essentially a price system, not a direct revelation mechanism. The bidding prices do not 

necessarily correspond to a customer’s valuations. In LDM, we denote the bidding price from 

customer   on        as   (      ). We also need to define several variables.  Let        if job   is 

completed before        and         otherwise; let      be the starting time of the operation    of 

the job  ; also let              if       is performed before         and              otherwise 

(         Let             , if     and        need to be processed on the same resource, 

otherwise             . The winner determination model LDM can be formulated as follows.   

   ∑ ∑       (      )
  

   
 
   ,                            (15) 

 ∑     
  

   
  ,                                   (16) 

        ∑     
  

   
                                   (17) 

 (     
      

)             ,                             (18) 

                                                      (19) 

                                                           ,          (20) 

                                                     ,             (21) 

                                                                  (22) 

           {   } ,                                 (23) 

     {   }                                     (24) 

                                             (25) 

where           ,      ,           (         in (14)),           and           .   

Unlike that of CDM, the objective function of LDM is linear. Constraints (16) ensure that only one 

C-Bid of an XOR-C-Bid is selected in the schedule. Constraints (17) to (25) are essentially 

constraints (3) to (11) from CDM, except that here variable   has a two dimension index. For the 

sake of completeness and readability, we reproduce the constraints here. 

LDM takes simplified XOR-C-Bids as input. Constraints (18) show that LDM only requires a 

job to be finished before the    . Job completion after the     is not required. Adding constraints 

(17), the actual semantic meaning of a simplified C-Bid 〈            〉 in LDM is interpreted as 

〈               〉 (LDM interpretation). However, the original meaning of 〈            〉 as it is 

constructed should be interpreted as 〈                   〉(EFT interpretation, as it considers     ). 
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Would this “misinterpretation” make any difference in winner determination? The answer depends 

on whether the agents submit their full valuation in XOR-C-Bids. In the case that agents submit 

their full valuation (this happens in a direct revelation mechanism), as stated in Proposition 2, 

interpreting 〈            〉 as 〈               〉 does not lead to different optimal solutions. Before 

presenting Proposition 2, it is useful to go through a small example which demonstrates the basic 

idea of the proposition.  

Example1: Suppose that agent  ’s full valuation can be described by a simplified XOR-C-Bid, 

〈             〉   〈             〉  and from    we know         . In LDM the 

XOR-C-Bid is interpreted as 〈                   〉   〈                   〉 . Since 

〈                   〉is equal to 〈                   〉   〈                   〉 , agent 

 ’s full valuation can be written as 〈                   〉   〈                   〉   

   〈                   〉. Note that, in these three C-Bids, the first one and second one have 

identical   ,     and    . That is they can be processed by the same production resources. 

Whenever a schedule can accommodate the second C-Bid, it must be able to accommodate the first 

one. Because the two C-Bids are connected by XOR, only one of them can be included in a 

schedule. Given that the two C-Bids require the same production resources and the price of the 

first C-Bid is $200 is greater than that of the second one,  the second C-Bid will never be selected 

in a final schedule because LDM maximizes the sum of prices. Therefore removing the second 

C-Bid from the valuation does not change the optimal solutions. Customer ’s valuation now can be 

represented by 〈                   〉   〈                   〉 , which is the EFT 

interpretation of the simplified XOR-C-Bid.  

Proposition 2 If customers submit their full valuations in the format of simplified XOR-C-Bids, 

for the winner determination model LDM, LDM interpretation and EFT interpretation of the bids 

do not lead to different optimal solutions.  

Proof: See the Appendix. 

As described in the next section, LDM is used for winner determination for the iterative bidding 

procedure. In each round of the bidding, agents do not submit a complete valuation. In fact, partial 

revelation of customers’ valuations is one of the main benefits of iterative bidding. Without 

complete revelation, neither full version nor simplified version of C-Bids can guarantee optimal 

solutions. However, the simplified C-Bids provide potential gains in terms of accommodating 
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more customers in the provisional schedule. This is because constraints (18) in LDM do not 

require jobs to be completed after    . The simplified C-Bids in LDM can result in a larger solution 

space.  

Terminate

Price Update and Bidding:

Agents update bidding prices 

and  calculate utility 

maximization bids and send 

them to the auctioneer

Termination Checking:

Auctioneer checks termination 

condition based on the bids 
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Winner Determination:

Auctioneer computes a new 
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informs agents whether they 

won or lost in current round  

No

Initialization: 

Agents set the initial bidding 

prices  for their job 

requirements 

Starting point of 

a new round of 

bidding

Bids Screening:

Auctioneer screens out and 

rejects invalid bids

 

Figure 2 Overview of the iterative bidding and pricing process  

 

C. The Iterative Bidding  

The iterative bidding procedure is depicted as a flow chart in Figure 2.  Initially, an agent has a job 

to be processed. Before submitting the first bid, the agent needs to initialize a reserve price for the 

job to be completed between its preferred due date and any other delayed due dates, i.e.     . The 

reserve price reflects the basic cost of processing a job. Usually a firm will not go below it for a 

loss.  If an agent has no estimation about the reserve price, it can set the initial reserve prices as 

zero. However, appropriate setting-up of initial bidding prices can speed up the overall bidding 

process and, at the same time, maintain the solution quality. In our iterative bidding framework, 
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agents have the incentive to obtain the right reserve prices. It is irrational to submit bids below the 

reserve prices because those bids will be rejected by the auctioneer. An alternative way is to 

acquire reserve prices from the auctioneer before the bidding starts.  After setting up the reserve 

prices, agents use them as the first round bidding prices.  

1) Price Update and Bidding  

At the beginning of round        , agents need to update their bidding prices for each of their 

due dates. This is based on the provisional schedule which resulted from the winner determination 

at round    . If an agent was not included in the provisional schedule at round    , it has three 

price updating options at round  : 

(1) It can increase its bidding prices by    on due dates it bid for at round     or rounds before 

   , where   is the minimum increment imposed by the auctioneer. Since agents are assumed to 

be rational in maximizing their utilities, they, in general, do not bid with an increment more than   

. However, an agent is allowed to bid aggressively with higher bidding prices than the minimum 

increment. This may happen when an agent believes that the competition is heavy and bidding 

with minimum increment is just a waste of time and communication cost and the minimum 

increment will not get her into a provisional schedule.  

(2) It can also keep the bidding prices unchanged (taking a  discount). However, if an agent takes 

this  discount, the auctioneer will consider the agent has entered into final bid status and the agent 

is forbidden from increasing the bidding prices at any of its due dates in future rounds; 

(3)Alternatively, it can of course withdraw from the bidding process 

If an agent is included in the provisional schedule at round    , it can keep its bidding price 

unchanged at round  . That is, it is allowed to repeat its bid at round    . However, the bidding 

procedure does not prevent them from bidding higher.  

After updating its bidding prices, an agent needs to compute its set of utility maximizing C-Bids 

based on the updated bidding prices and its valuation on indifferent time intervals. In computing 

such a set, an agent   solves a maximization problem       {        }
[  (      )    

 (      )] and 

obtains the set of C-Bids which equally maximize its utility, where   
 (      ) is the bidding price 

for        at round  . That is, for any two due dates   and   in the utility maximizing set, 

  (      )    
 (      )=  (       )    

 (       ).  After obtaining the set of utility maximizing 

C-Bids, the agent joins them together as an XOR-C-Bid and submits it to the auctioneer. If an 
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agent has entered into final bid status, it is no longer allowed to increase it bidding price. However, 

the auctioneer can choose to allow the agent to repeat its final bid in future rounds until 

termination. The purpose for this final bid repeating arrangement is to boost auctioneer’s revenue. 

During the iterative bidding process, some bids can be temporarily “excluded” from the 

provisional schedule by a particular combination of scheduling constraints and resource 

requirements from other bids with higher combined values.  After several rounds, that particular 

combination may have changed and this change may allow the space for the previously excluded 

bids to be included in the schedule. However, without final bid repeating, those bids will not be 

submitted again if their valuations have been reached during the “excluded” periods. Therefore, 

they cannot be included anymore, even though there are spaces for them in provisional schedules 

later on. 

2) Bids Screening and Termination 

Once receiving XOR-C-Bids from the agents, the auctioneer first screens out invalid bids. Those 

bids will not be considered in the following winner determination procedure. Invalid bids are 

defined as follows: 

 Any bidding price for a due date, which is below the highest bidding price for that due date 

received in previous rounds. 

 Bids with increased prices from agents who already declared their final bidding status in 

previous rounds.   

 Bids with bidding prices which are below the reserve prices. 

The auctioneer then checks the termination condition against the valid bids. The auction 

terminates if there are no price updates for all valid bids in this round. That is, all agents that bid in 

the last round have repeated their bids. After the auction terminates, the auctioneer implements the 

final schedule and the agents pay their bidding prices.  If the termination condition is not satisfied, 

the auctioneer will take the set of valid bids as input and solve the winner determination model. 

3) Winner Determination 

The auctioneer needs to compute a new provisional schedule in each round as long as the auction is 

not terminated. At round t , the new provisional schedule    solves:  
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∑   

 (      )         
                             (26) 

where    is the set of all feasible schedules given the valid bids submitted at round  . By           

we mean the due date        of agent   is satisfied in the provisional schedule   . As the input for 

winner determination is a collection of XOR-C-Bids consisting of simplified C-Bids, the LDM 

model can be used for winner determination. 

LDM can be solved using standard integer programming optimization packages or dedicated 

winner determination algorithms. In [12], we have developed a constraint-based winner 

determination algorithm which allows only one single C-Bid from an agent. The algorithm was 

designed for the single attribute (price) negotiation and did not take XOR-C-Bids. For the 

Multi-attribute negotiation model LDM, we expand the capability of the algorithm allowing agents 

to negotiate over both prices and due dates. LDM can take an agent’s preference over these two 

attributes in the format of an XOR-C-Bid. However the constraint is at most one C-Bid of an 

XOR-C-Bid can be awarded. To handle this restriction, we have added a checking mechanism to 

the constraint-based winner determination algorithm to prevent the algorithm from selecting more 

than one C-Bids from the same XOR-C-Bid into a provisional schedule. The checking mechanism 

is implemented in the Select-Unassigned-Bid ( AV ) method of Algorithm 1 in [12] . When the 

method selects an unassigned C-Bid, it first checks the current schedule. If there is a C-Bid from 

the same XOR-C-Bid has already included, the unassigned C-Bid will be excluded from the 

selection. For the details of the constraint-based winner determination algorithm, readers are 

referred to [12].  

 

Figure 3 Example of a DDM problem, in which two agents with multiple-due-date-valuations compete for the 

processing of their one-operation jobs. 

 

D. An Example 

This section presents a worked example of the iterative bidding procedure. As shown in Figure 
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3, Agent1’s valuation can be expressed by XOR-C-Bid: 2,$11,10,5,$10,8, 11 RXORR , where 1R

is the job requirement of Agent1;  Agent2’s valuation can be expressed by XOR-C-Bid: 

2,$11,9,6,$9,8, 22 RXORR , where 2R is the job requirement of Agent2. Assume that the resource 

has the reserve price of 1 dollar an hour and the price increment 2$ . The bidding prices and 

allocation of each round of the iterative bidding are shown in Table 1.  

Table 1 Bidding process of an iterative bidding example 

Round Utility Maximizing Bids Bidding Prices Allocation Auctioneer Sum of 

# Agent-1 Agent-2 Agent-1 Agent-2 

Agent-1 Agent-2 

Revenue    values 

  (8,10] (10,11] (8,9] (9,11] (8,10] (10,11] (8,9] (9,11]     

  $5  $2  $6  $2  $5  $2  $6  $2      

1 *   *   2 1 1 2 (8,10]   2 5 

2 *   *   2 1 3 2   (8,9] 3 6 

3 * * *   4 1 3 2 (10,11] (8,9] 4 8 

4 * * *   4 1 3 2     4 8 

 

The iterative bidding proceeds as follows: 

1) Round #1: the agents use the reserve prices for their jobs as the bidding prices. Agent1 uses a 

simplified XOR-C-Bid and bids on due date 10:00, 〈        〉, which requires the time interval 

(8, 10], and Agent2 bids on due date 9:00, 〈       〉, which requires the time interval (8, 9], 

because, given the current bidding prices, these two due dates maximize agents’ utilities. The 

auctioneer includes only Agent1 into the provisional schedule because the two bids cannot coexist 

in a schedule and Agent1’s bid maximizes auctioneer’s revenue.  

2) Round #2: While Agent1 repeats its bid at Round#1 〈        〉, Agent2 increases its bidding 

price on (8, 9] to $3, 〈       〉. After price update, (8, 10] from Agent 1 and (8, 9] from Agent 2 

become utility maximizing bids. The auctioneer selects only (8, 9] from Agent 2. 

3) Round #3: Agent2 repeats its bid because it was included in the provisional schedule in Round 

#2. Agent1 increases its bidding price on (8, 10] to $4. After bidding price update, both (8, 10] and 

(10, 11] becomes utility maximizing bids from Agent1. So Agent1 sends 1,$11,4,$10, 11 RXORR

to the auctioneer. Given the bids submitted by Agent 1 & 2, it is easy to see that there are two 

solution schedules with the same revenue $4 for the auctioneer, 〈             〉  or 

〈                            〉.  According to the winner determination rule, if there are 

more than one solutions with identical revenue, winner determination prefers the one that includes 
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more agents. Therefore, 〈                             〉 is selected.  

 4) Round #4: Both Agent 1 & 2 repeat their bids. The iterative bidding terminates with an 

optimal schedule.  

IV. PROPERTIES OF THE ITERATIVE BIDDING FRAMEWORK 

Compared to one-shot auctions, such as VCG, iterative bidding promises reduced computation 

at auctioneer side and partial revelation of the private information at agents’ side. Also, higher 

system transparency makes its adoption easier. However, in general, these benefits are obtained 

with a cost of efficiency. This section evaluates the proposed iterative bidding framework in terms 

of the trade-offs among four properties, namely efficiency, computation, revenue and information 

revelation. The evaluation is conducted in the context of integrated DDM.  We first develop 

efficiency and revenue analysis on the application of the iterative bidding framework to two 

special cases of DDM. We then evaluate the performance of the framework by comparing it with 

VCG auction through a computational study. 

A. Theoretical Results of Two Special Cases 

We have proposed an iterative bidding framework for integrated DDM. It provides a platform 

for customers and the firm to negotiate on both prices and due dates concurrently. However, in 

some cases, negotiation along multiple attributes is not always needed. For example, a customer 

might have a firm single due date (deadline). She would not consider placing an order if the single 

due date is not satisfied. In addition, she is indifferent between the actual completion times as long 

as they are within the single due date. We refer to this type of valuation functions as 

single-due-date-valuation. If all customers’ preferences are single-due-date-valuation, negotiation 

is conducted only along the price dimension because the single due dates are not negotiable. On 

the other hand, prices in certain industries are largely dictated by the market or industrial standards 

(i.e. the case of vehicle maintenance and repair industry). In these industries, the manufacture or 

service provider may not have much flexibility in setting the prices. Therefore, negotiation is 

mainly along the due date dimension. We refer to this type of scenarios as fixed-price scenario. We 

first provide the efficiency result of applying iterative bidding to DDM with 

single-due-date-valuation customers.    

Proposition 3 In integrated DDM problems, if all customers’ preferences are 

single-due-date-valuation and their values on the single due date are congruent to the reserve 

prices modulo   ,the iterative bidding procedure with final bid repeating always maximizes the 
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sum of customers’ valuations at its termination.  

Proof: See the Appendix. 

Proposition 3 states, in the case of single-due-date-valuation, if customers’ values are congruent 

to the reserve prices modulo the minimum increment, the iterative bidding procedure can always 

maximize the social welfare of customers without revealing complete valuation information. The 

purpose of the hypothesis, agents’ valuations are congruent to the reserve prices modulo  , is to 

make sure that an agent can bid exactly at its valuation when necessary given the minimum 

increment requirement. If we relax the minimum increment requirement at least once during the 

bidding, such that, when an agent is approaching its valuation, it can always adjust the bidding 

increment as needed and hit the valuation exactly. In this case, the hypothesis is not necessary.  

Let’s now turn our attention to the fixed-price scenario. In fixed-price, the price of processing a 

particular type of jobs is dictated by a commonly known market price or industrial standard. 

Agents have different valuations on different     , however, unlike in the multi-attribute case, 

they cannot signal the auctioneer about their preferences using price mechanism as prices are fixed 

and known up front. The only attribute that they can negotiate with the auctioneer and other agents 

is the    . As previously assumed, an agent will strictly prefer a shorter    . Therefore, there is no 

reason for an agent to submit an XOR-C-Bid consisting of multiple C-Bids with different     . An 

agent will not submit a longer     during the iterative bidding unless they are excluded from the 

provisional schedule. Due to fixed-price restriction, agents cannot indicate their preferences by 

setting bidding prices. Without the guidance of bidding prices, the iterative bidding procedure 

cannot guarantee to converge to the schedule that maximizes agents’ social welfare as it does in the 

single-due-date-valuation case. However, as stated in Proposition 4, the iterative bidding 

procedure with final bid repeating can achieve Pareto optimality, which means, at termination, no 

agent can improve its schedule without hurting at least one agent.    

Proposition 4 For the fixed-price cases of integrated DDM, the iterative bidding procedure with 

final bid repeating terminates with a Pareto optimal schedule.   

Proof: See the Appendix. 

We have established some theoretical results on applying the iterative bidding framework to the 

two special cases of DDM. For general DDM problems, we evaluate the performance of our 

framework through a computational study. We start with defining the evaluation metrics. 
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B. Experimental Evaluation Metrics   

As mentioned at the beginning of this section, we evaluate the iterative bidding framework in 

terms of efficiency, computation (running time), revenue and information revelation. These 

metrics were developed in[13] for testing the performance of iBundle, an iterative combinatorial 

auction for general combinatorial auction problems. We redefine them in the context of integrated 

DDM: 

Efficiency of Scheduling,       , is measured as the ratio of the value of the final schedule S to 

the value of the optimal schedule that maximizes total value across the agents: 

        
∑   (      )        

∑   (      )         
  ,                      (27) 

where    is the optimal schedule given customers’ valuations.  

Running Time of Auction refers to the computation time needed to terminate the auction on a 

DDM problem instance. 

Revenue of Auction,       , is measured as the ratio of auctioneer’s income to the value of  the 

optimal solution: 

               
∑   (      )        

∑   (      )         
 ,                     (28) 

where  
 
(      ) is the maximum bid from customer  for the due date        during the auction. 

Information Revelation for customer  ,       , is measured as the sum of the final price bid by 

the customer for all due dates in its valuation function, as a fraction of the sum of the true values of 

each due date.  

               
∑   (      )

  
   

∑   (      )
  
   

 ,                       (29) 

The overall auction information revelation,  , is computed as the average information revelation 

over all agents. The auction often terminates before agents have revealed complete information 

about their values for due dates. The information revelation metric is designed to measure the 

extent to which an agent has revealed its value for each due dates to the auctioneer during the 

auction.  

C. Problem Sets 

We construct our DDM testing problem sets using a two-step procedure. We first generate 

single-due-date-valuation problems. The design of the single-due-date-valuation problems is 
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based on a suite of job shop CSP benchmark problems developed in [14].  Two parameters were 

adjusted to cover different scheduling conditions. The first one is a range parameter, RG, which 

controls the distribution of job due dates and release times. The second is a bottleneck parameter, 

BK, which controls the number of major bottleneck resources. Due dates are randomly drawn from 

a uniform distribution            , where        represents a uniform probability 

distribution between   and  , and   is an estimate of the minimum makespan of the problem, 

which is determined by the average duration of all operations and the average duration of the 

operations requiring bottleneck resources. This estimate was first suggested in [15]. Similarly, 

release times are randomly drawn from a uniform distribution of the form:         . The price 

of bid j  is randomly drawn from a uniform distribution on              , where    is the 

average duration of all bids, and     is the duration of bid   . By considering different 

combinations of RG, BK, and problem sizes (number of operations and number of bids), problems 

with various configurations can be randomly generated. For testing the iterative bidding 

framework, we have generated 15 groups of single-due-date-valuation problems (detailed 

configurations are summarized in Table 2).   

Table 2 Configuration of the DDM Test Problem Sets 

Group Due Dates Operations Bids BK RG Instances 

1 1 5 5 2 0.4 5 

2 1 5 6 2 0.5 5 

3 1 3 7 1 0.5 5 

4 1 2 8 1 0.5 5 

5 1 2 9 1 0.5 5 

6 1 2 10 1 0.5 5 

7 3 5 6 1 0.4 10 

8 3 5 7 1 0.4 10 

19 3 5 8 1 0.4 10 

10 3 5 6 1 0.5 10 

11 3 5 7 1 0.5 10 

12 3 5 8 1 0.5 10 

13 3 5 6 2 0.5 10 

14 3 5 7 2 0.5 10 

15 3 5 8 2 0.5 10 

 

The next step is to generate multiple-due-date problem sets by adding two more due date 

valuations to problem instances of the single-due-date-valuation problem sets. The first due date 

added represents a delay up to 20%. Accordingly, the agent’s value on the delayed due date 



24 

 

decreases 20%. The second due date added represents a delay up to 40% and the agent’s value 

decreases 40%. For example,   if the single-due-date-valuation of an agent’s valuation can be 

represented as a C-Bid 10,$10,R , the multiple-due-date-valuation of the agent can be represented 

as an XOR-C-Bid 6$,14,8$,12,10$,10, RXORRXORR .   As shown in the Table 2 we 

generated 9 multiple-due-date-valuation problem sets (Group7-15) all with 5 operations.  

D. Comparison Results 

We compare the iterative bidding framework with VCG in which agents report their complete 

valuations over different due dates at the beginning of the auction and the auctioneer computes the 

optimal schedule to maximize the summation of agent values. We have coded LDM into ILOG 

Optimization Programming Languages (http://www-01.ibm.com/software/websphere 

/products/optimization/) and solved the single-due-date-valuation problems (Group 1-6) using 

ILOG CPLEX. The reason for using ILOG for computation is to validate the correctness of LDM 

and test the performance of ILOG CPLEX on the model. For the multiple-due-date-valuation 

problem sets, we have applied the modified version of our previously developed constraint-based 

winner determination algorithm [12] because CPLEX is relatively slow on these 

multiple-due-date-valuation problem sets.  

 

Figure 4, 5 &6 go around here 

 

We tested the efficiency and the revenue performance of the iterative bidding framework on 

both single-due-date-valuation problem sets and multiple-due-date-valuation problem sets. For 

single-due-date-valuation problems, we tested two price updating options, final bid repeating and 

non final bid repeating. The optimality result for single-due-date-valuation with final bid 

repeating stated in Proposition 3 is validated by the experiments. As we see from the experiment 

data, when 1  , which makes every valuation congruent to every reserve prices, the iterative 

bidding procedure always finds optimal solutions. Figure 4 shows the efficiency and revenue 

performance of the iterative bidding framework over the 6 groups of single-due-date-valuation 

problem sets. It is demonstrated in all 6 problem sets, in general, bidding with final bid repeating 

has higher efficiency and revenue than bidding without it. However, the cost is increased 

computation time. As shown in Figure 5, for the single-due-date-valuation problems, bidding with 
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final bid repeating significantly increases computation time, especially when the minimum 

increment is small. Figure 5 also shows that computation times for both single and multi-due-date 

valuation problems are reduced by increasing the minimum increment.    

 It is interesting to see that for the problem sets with small numbers of bids, such as group 1, when 

bidding without final bid repeating, increasing minimum increment can sometime increase the 

efficiency. This is due to the “temporary exclusion” we mentioned previously. With small 

increments, there will be larger number of rounds before termination, which increases the 

possibility for a bid to be “excluded”. For a problem with a small number of agents, if one is 

“mistakenly excluded” the efficiency cost could be high in terms of the percentage of values across 

a small number of agents. As shown in Figure 6, a larger number of agents help mitigate the 

problem to some extent as we see efficiency goes higher with larger number of bids under non 

final bid repeating. To completely avoid this “temporary exclusion” problem, we have designed 

the final bid repeating price updating rule. From Figure 4, it is clear that final bid repeating is very 

effective in terms of boosting the efficiency. For all 6 groups, bidding with final bid repeating has 

close to 100% efficiency for different values of increments. The same reasoning applies to revenue 

as well.  

 

Figure 7, 8 & 9 go around here 

 

  For the multi-due-date-valuation problem sets (Group 7-15), Figure 7 plots the efficiency of the 

iterative bidding over the 9 problem sets with bid increment 4 . Compared to VGA (100% 

efficiency), on average, the iterative bidding without final bid repeating can achieve more than 

90% efficiency.  Figure 8 shows the Information Revelation performance of the iterative bidding 

procedure. Compared to VCG which requires 100% Information Revelation, the auction requires 

less than 50% at increment=2 and 4. Bigger increment value requires slightly more Information 

Revelation. This makes sense because bigger increments may pass some low price equilibrium 

points which smaller increments may find. Figure 9 compares the run time between the iterative 

bidding procedure and VCG over 9 multi-due-date-valuation problem sets. On average, the 

iterative auction is more than 10 times faster than VCG with the cost of losing 6%-10% efficiency 

as shown in Figure 7.  
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V. RELATED WORK 

DDM involves four types of decisions, namely pricing, order acceptance, due date setting, and 

scheduling. In this paper, we have proposed a framework which allows the integration of these 

decisions. Compared with existing DDM approaches, the main contribution of this work is the 

multi-lateral negotiation framework implemented by iterative bidding, which allows decentralized 

DDM decision making between the firm and its customers.  In this section, we discuss this 

contribution in the context of the DDM literature. Since the proposed framework is an application 

of iterative auctions to DDM, we will also compare the applicability of several economic-based 

software systems to the DDM problems and position our bidding framework in the literature.  

DDM policies proposed in the literature integrate DDM decisions at different levels. To 

facilitate the comparison of the proposed framework with the literature, we group existing DDM 

policies into four categories, namely DS, DSO, DSOP, and BB.  We first describe these categories. 

We then summarize them and provide exemplary references in Table 3.  

DS policies only consider due-date setting and scheduling decisions. They ignore the impact of 

quoted due dates on customers’ decisions to place the orders and usually assume that customers are 

indifferent as to when an order is completed (i.e., due date indifferent) as long as it is within the 

specified deadline. DSO policies add order acceptance decisions to the DS by modeling the 

probability of a customer placing an order as a decreasing function of the quoted due date. DSOP 

policies extend the DSO by modeling the probability of a customer placing an order as a function 

of both quoted price and quoted due date. Negotiation between the firm and its customers is an 

important aspect of the due date quotation strategy. BB policies incorporate a bargaining process 

into bilateral due date decision making. In the model, both the customer and the firm have a 

reservation tradeoff curve between price and due date, which is private information. BB provides a 

negotiation mechanism between the firm and its customers. However, it is a bilateral bargaining 

model, which is not directly applicable to the off-line situations, where the firm needs to optimize 

the DDM decisions across a group of customers concurrently. In the case of a large number of 

customers involved in the negotiation, a multilateral model is required.   
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Table 3 Summary of the four categories of DDM policies 

DDM 
approaches 

DDM decisions 
integrated 

Decentralized decision 
making 

  References 

DS 
Due-date setting 
Scheduling 

No support [16], [17], [18], [19] 

DSO 
Due-date setting 
Scheduling 
Order acceptance 

No support  [20], [21], [22], [23], [24]  

DSOP 

Due-date setting 
Scheduling 
Order acceptance 
Pricing 

No support [25], [4], [3], [26], [27],[28] 

BB 
Due-date setting 
Scheduling 
Pricing 

Bilateral bargaining  [29], [30] 

 

Compared with existing work in the DDM literature, the proposed framework integrates all DDM 

decisions and it also supports decentralized decision making through a multi-lateral negotiation 

mechanism. Specifically, the framework extends DSOP by providing decentralized decision 

making through a multilateral negotiation mechanism. It is also more applicable than BB in the 

DDM situations, where the firm needs to deal with multiple customers concurrently because it 

supports multi-lateral concurrent negotiation.   

In this paper, we have modeled the customers as agents who compete with each other for the 

firm’s production resources to schedule their own jobs according to their respective objectives, the 

integrated DDM can be seen as a subclass of scheduling problems in decentralized settings. This 

type of scheduling problems is known as decentralized scheduling problems [31]. In decentralized 

scheduling problems, agents exhibit complementary preferences over discrete goods. As a 

subclass, DDM problems also exhibit complementary preferences in agents. For example, a 

customer usually needs a specific combination of time units on different production resources to 

complete his/her job. Part of the combination may have no value to the customer because the job 

cannot be completed without obtaining the combination as a whole. In the rest of this section, we 

first review economic models that are relevant to DDM; we then analyze their applicability to 

DDM problems and position our approach in the literature.  
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Table 4 Summary of the economic models and their applicability to DDM 

Economic 
models 

Key Characteristics Applicability to DDM   Exemplary References 

General 
equilibrium 
mechanisms 

Solve resource allocation 
or scheduling problems by 
constructing 
computational markets 
based on general 
equilibrium theory.  

DDM problems exhibit 
indivisibility of goods and 
complementary preferences of 
agents, which violate the ideal 
conditions of the general 
equilibrium theory.  
Performance cannot be 
guaranteed. 

[32], [33], [34] 

Sequential 
and 
simultaneous 
auctions 

These auctions do not 
allow bids on bundles of 
items. Sequential auctions 
sell multiple items in 
sequence. Simultaneous 
auctions sell multiple items 
in separate markets 
simultaneously. 

In DDM, customers have 
complementary preferences 
over the firm's resources. These 
auctions fail when there are no 
prices that support an efficient 
solution and also when agents 
bid cautiously to avoid 
purchasing an incomplete 
bundle. 

[35],[36],[37],[38],[39] 

Combinatorial 
auctions (CAs) 

Allow bidders to submit 
valuations on bundles of 
items.  

Computation demanded to solve 
hard valuation problems and 
winner determination problems 
can be prohibitive, especially for 
large size DDM problems. 

[40],[41],[42],[43] 

Iterative 
bundle 
auctions 

Allow bidders to submit 
multiple bids during and 
auction and provides 
information feedback to 
support adaptive and 
focused eliciation.   

Compared with CAs, iterative 
bundle auctions have smaller 
sizes of bids and winner 
determination problems, 
resulting in lower computational 
costs. For DDM problems, they 
are more practical in terms of 
computation than CAs.  

[44],[8],[45],[46],[31] 

 

 Many economic models that have been studied in the literature can be applied to decentralized 

scheduling and DDM to some extent.  While giving a comprehensive review of these models is 

beyond the scope of this paper, in Table 4, we summarize four of them which are of importance to 

DDM. In economics, the concept of a set of interrelated goods in balance is called general 

equilibrium. General equilibrium theory provides a distributed method for efficiently allocating 

goods and resources among agents based on market prices. In applying general equilibrium based 

mechanism to DDM problems, the goods in the markets need to be specified by imposing a 

discretization on the continuous timeline to be scheduled on the firm’s production resources. 

These goods are discrete ones, which violate the infinite divisibility goods condition of general 

equilibrium theory. Markets with discrete goods and complementary preferences of agents can 

lack equilibria [33]. The performance of general equilibrium based market mechanisms on DDM 

problems is not guaranteed.  
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Sequential and simultaneous auctions price bundles as the sum price of the individual items. 

However, they do not allow bidders to bid on bundles of items. Sequential auctions suppose that 

the set of items are auctioned in sequence. Bidders bid for items in a specific, known order, and can 

choose how much (and whether) to bid for an item depending on past successes, failures, prices, 

and so on. Sequential auctions are particularly useful in situations where setting up a combinatorial 

or simultaneous auctions are infeasible. Simultaneous auctions sell multiple items in separate 

markets simultaneously. Bidders have to interact with simultaneous but distinct markets in order to 

obtain a combination of items sufficient to accomplish their task. Real-world markets quite 

typically operate separately and concurrently despite significant interactions in preferences. A 

typical example is the series of FCC spectrum auctions [37] . In [44]simultaneous auctions are 

designed for decentralized train scheduling problems. A review of the uses of economic theory in 

simultaneous auction design can be found in [47]. Sequential and simultaneous auctions tackle the 

complementarities over resources in the same spirit of general equilibrium theory. These auctions 

fail when there are no prices that support an efficient solution (the existence problem) and also 

when agents bid cautiously to avoid purchasing an incomplete bundle (the exposure problem). 

However, given that these auctions are more practical in terms of computation, they are two 

important models worth further studying.  

Combinatorial auctions (CAs) allow bidders to place bids on bundles of items. It addresses 

complementary preference issue explicitly. However, computation demanded to solve hard 

valuation problems and winner determination problems can be prohibitive. In general, CAs are 

likely to be practical for smaller size problems. The computational complexities of CAs have been 

studied by various researchers [43]. Some sophisticated algorithms have produced promising 

results [42] . In terms of applying CAs to DDM, if general bundle languages, such as LG or LB 

[48], are used, the timeline of the firm’s production resources needs to be discretized into small 

time units. This timeline discretization usually results in large amount of items to be sold in the 

auction, which lead to bigger size problems.  Applying CAs to a big size DDM can inflict heavy 

computation burdens on both customer side and the firm side. Another limitation with VCG is the 

so called “lying auctioneer” problem [49], which partially explains why Vickery auction is not 

widely used in practice, even though it has been proposed since 1960’s.  

Iterative bundle auctions are iterative implementations of CAs. This class of auction has 

practical significance because it addresses the computational and informational complexities of 
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CAs by allowing bidders to reveal their preference information as necessary as the auction 

proceeds, and bidders are not required to submit (and compute) complete and exact information 

about their private valuations. With careful design of the structure and components, iterative 

bundle auctions have the potential of significantly reducing computational costs in CAs. In 

addition, iterative auctions specially designed for scheduling problems have also been proposed in 

the literature. In [46]  iterative auctions are applied to the job shop scheduling problem. The focus 

in [46] is to investigate the links between combinatorial auctions and Lagrangean relaxation, and 

to design auctions based on the Lagrangean based decomposition. In [31], the properties of several 

iterative auction protocols are investigated in the context of decentralized scheduling. In [50] [38], 

price prediction and bidding strategies for simultaneous auctions are studied in the setting of 

market-based scheduling. The proposed framework in this paper is an iterative bundle auction 

specially designed for DDM problems. In many cases, iterative auctions present better 

computational and privacy properties than those of CAs. In addition, iterative auctions have the 

potential of accommodating dynamic events, which is a common requirement in real-world DDM 

applications. Compared with existing iterative bundle auctions, the novelty of our design is that it 

uses a requirement-based bidding language to represent DDM domain specific due date, pricing, 

and job requirements. Unlike general iterative auctions which use bundle languages, the 

requirement-based language avoids imposing timeline discretization, which causes large amount 

of items sold in the auction; the adoption of this language also enables the design of more efficient 

winner determination algorithms which take advantage of the domain specific information to 

improve the search efficiency. Our previous study [51] has shown that, in auction-based 

decentralized scheduling, requirement-based language results in more efficient winner 

determination models than bundle languages do.  

In agent-based manufacturing control literature, the contract net [52] and its later variants have 

been used in DDM as a class of distributed decision making protocols. Unlike auctions, which 

usually require a mediator, contract nets are purely distributed models, in which any agent can act 

as a manager and subcontract tasks to other agents. Most of the agent-based control systems were 

designed for the coordination of production processes within the boundary of an enterprise 

focusing only on the planning and scheduling part of the DDM.  The integration with due date 

quotation and order selection decisions is usually not considered. References and reviews of this 

line of research can be found in [53] and [54].  
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VI. CONCLUSION 

One of the major challenges facing organizations today is the demand for ever-greater levels of 

responsiveness and shorter defined lead times for deliveries of high-quality goods and services. In 

order to gain an edge over competitors, firms need to gear their management toward time-based 

competition, i.e. providing competitive and reliable lead times. However, shorter lead times are 

not always translated into profits.  Given a firm’s existing production and supply chain 

management processes, shorter lead times usually incur higher costs due to expediting. The 

proposed iterative bidding framework aims at striking the balance between shorter lead times, 

reliable delivery and anticipated profits.  

The uniqueness of the proposed approach is that it integrates the exploration of customers’ due 

date flexibility and the support of the firm’s due date management decisions within an iterative 

bidding framework, which has the potential to coordinate the behaviours of self-interested parties 

in decentralized supply chain environments. For combinatorial (or combinational) auction 

problems[41], linear programming formulations have been developed[55], which enable the 

construction of incentive compatible iterative bidding auctions based on the primal-dual design 

paradigm[44, 56]. For our due date management problem model, the decentralized procedure 

proposed in this paper does not approaches the pricing equilibrium corresponding to the social 

opportunity cost. As our iterative bidding procedure does not terminate with VCG payments, it is 

not incentive compatible under the game theoretic assumption of agent behaviour. However, we 

are designing the system for the type of make-to-order environment in which a firm supplies a 

large group of customers, such as the case of the Windows & Doors, Co, Ltd example. In this 

context, it is reasonable to take the market (price-taking) assumption, that is, agents will bid 

myopically given that each individual agent will have very little impact on the market prices. 

Despite this game theoretic vs. market argument, designing an incentive compatible iterative 

bidding auctions for the integrated due date management problems is a very important research 

task on our agenda. 
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Appendix  Proofs of propositions 

Proposition 1 If the value of     is restricted to integers for a customer    , any valuation of 

customer    in integrated DDM can be represented by an XOR-C-Bid with finite C-Bids. 

Proof.  By the definition of customers’ value function, we know that for any        and    

 ̅ ,   (  )    . For         , since    is restricted to integers, there are finite number of    

between    and    . For each of them, we can construct a unique C-Bid 〈            〉 where  

    (  ) . By joining these C-Bids, we can construct a XOR-C-Bid which expresses the 

valuation of the customer on          and this XOR-C-Bid contains finite number of C-Bids. 

Implicitly here, for any        and     ̅ ,   (  )   .  █  

 

Proposition 2 If customers submit their full valuations in the format of simplified XOR-C-Bids, for 

the winner determination model LDM, LDM interpretation and EFT interpretation of the bids do 

not lead to different optimal solutions.  

Proof.  Suppose that the complete valuation of a customer is represented by a simplified 

XOR-C-Bid,           
〈            〉. According to the definition, its LDM interpretation is 

          
〈               〉 ,                          (30) 

For a C-Bid 〈               〉 (        within (30), it can be written as an XOR-C-Bid,  

        〈                   〉 ,                         (31) 

where,           . We call the C-Bids in (31) sub-bids of a C-Bid in (30). Each of the sub-bids 

represents an indifferent time interval of the customer. Note that for a C-Bid in (30), say the      

C-Bid 〈               〉 , its last sub-bid is 〈                   〉 , which is actually the EFT 

interpretation of the corresponding simplified C-Bid 〈            〉. We, therefore, call this last 

sub-bid EFT sub-bid. Given that the EFT interpretation is a sub-bid of the corresponding LDM 

interpretation, if we prove only the EFT sub-bids are effective in the LDM model, other sub-bids 

will be dominated (as seen in Example 1), we can conclude that LDM and EFT interpretations lead 

to same optimal solutions. In the following, we prove that only the EFT sub-bids are effective 

using the format of mathematical induction.  

Basis step:  

Let     . The customer’s valuation becomes  〈        〉    〈            〉  . Since, under 
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LDM interpretation, 〈            〉 will be interpreted as 〈               〉, which can be written as 

〈           〉   〈                   〉 , the LDM interpretation of the customer’s valuation 

becomes 〈           〉   〈           〉   〈                   〉 . In our model, we have 

assumed that customers prefer shorter due dates, that is       . As 〈           〉 requires the 

same resources, release time and due date as those required by 〈           〉, however, with a 

lower price, 〈           〉 will be dominated by 〈           〉 in the optimization process. That is, 

given the presence of 〈           〉, 〈           〉 will never be selected in the final schedule. 

Therefore, for 〈               〉, only the EFT sub-bid 〈                   〉 is effective. 

Inductive step:  

Let     .  Assume that, for all C-Bids in         〈               〉, only the EFT sub-bids  are 

effective and other sub-bids will be dominated in the optimization process. We need to prove that 

for       ,  for all C-Bids in           〈               〉 , only the EFT sub-bids  are 

effective.   

The LDM interpretation of a customer’s valuation (with       ) is 

          〈               〉, which can be written as 

            〈               〉   〈               〉   〈                   〉      (32) 

The last C-Bid in (32) (with     indifferent time intervals) can be represented by XOR-C-Bid: 

  〈                 〉    〈               
     

     〉                (33) 

The first sub-bid 〈                 〉  in (33) will be dominated by 〈               〉 in (32) 

because          . Therefore, for the two sub-bids in (33) only the EFT sub-bid (last one) is 

effective. Since we have assumed for all C-Bids in         〈               〉, only the EFT 

sub-bids  are effective, it follows that for       ,  for all C-Bids in 

          〈               〉, only the EFT sub-bids  are effective.  Therefore, LDM and EFT 

interpretations of          
〈            〉 lead to the same optimal solutions in LDM.  █ 

 

Proposition 3 In integrated DDM problems, if all customers’ preferences are 

single-due-date-valuation and their values on the single due date are congruent to the reserve 

prices modulo   ,the iterative bidding procedure with final bid repeating always maximizes the 

sum of customers’ valuations at its termination.  
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Proof.  Since customers’ preferences are single-due-date-valuation, they only need to send 

simple C-Bids (no XOR-C-Bids) to express their preferences. We assume private value module for 

all customers. Under this model, each customer has a value for her schedule. A customer’s payoff 

for a schedule is the difference between her value on the schedule and the bidding price. To 

maintain positive payoff, the customer is willing to pay up to her value to get her job scheduled.  

Therefore, if a customer is not included in a provisional schedule, she will keep increasing her 

bidding prices in future rounds until she is included or she reach her valuation. Since we have 

assumed final bid repeating, customers repeat their previous bids at termination (round   . 

Therefore, all customers that are not included in the termination schedule (denoted     ) have bid 

with their valuations and the customers that have room to increase their bidding prices at 

termination are all included in   . We prove the proposition by showing that    is identical to the 

optimal schedule    computed by solving the winner determination problem using all customers’ 

valuations as inputs.   

We construct the customers’ bidding prices for an additional round (round    ) as follows. 

Pick a customer      with bidding price at termination (denoted as   
 ) smaller than her 

valuation. Let   
      

    .    is selected to make sure that    
    is the 

single-due-date-valuation of   . Since we have assumed that customers’ single-due-date-valuations 

are congruent to the reserve prices modulo  ,   must be an integer. For any other customer 

     and    ,    
      

 . Let      be the resultant schedule generated by the winner 

determination for round    . We first proof that          by contradiction. Suppose that 

       , we consider the following two cases. 

Case #1:        

Because    is the schedule that maximizes the auctioneer’s revenue given the set of bidding 

prices at round   and we have assumed        , it follows that  ∑   
 

     ∑   
 

      . 

By adding    to both sides, we have  ∑   
 

         
     ∑   

    
            . That 

is ∑   
 

         
    ∑   

    
   

        . Because∑   
   

       ∑   
 

           
   , 

it follows that ∑   
 

         
    ∑   

   
       , which means      does not contain the 

set of customers whose bidding prices at round     maximize the auctioneer’s revenue. 

This is a contradiction to our assumption.   
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Case #2:        

Because    is the schedule that maximizes the auctioneer’s revenue given the set of bidding 

prices at round   and we have assumed        , it follows that  ∑   
 

     ∑   
 

      . 

Since ∑   
 

     ∑   
 

         
 , it is clear that ∑   

 
         

     ∑   
 

      . 

Given the way that bidding prices at round     are constructed and       , we have 

∑   
   

         
    ∑   

   
      ,  which means      does not contain the set of 

customers whose bidding prices at round     maximize the auctioneer’s revenue. This is 

also a contradiction to our assumption.  

By deriving two contradictions in case #1 & #2, we can conclude that        .  

 We are now ready to prove that    is optimal, that is      . Note that    is a schedule 

computed using all customers’ valuations as input. In      , customer   has bid with its valuation. 

Since   was a arbitrary pick,          can be a general conclusion for all other customers 

included in   . By repeating the above process for other customers, we can reach a final round 

where all customers included in    bid with their valuations.  Note that, by definition, the resultant 

schedule at this final round is   . Since the resultant schedules do not change during the bidding 

process after round T ,  it follows that      .  Therefore,    maximizes the sum of customers’ 

valuations. █ 

 

Proposition 4 For the fixed-price cases of integrated DDM, the iterative bidding procedure with 

final bid repeating terminates with a Pareto optimal schedule.   

Proof.  Under the fixed-price restriction, at termination, if an agent is not included in the final 

schedule, it must have submitted its deadline. This is because an agent will keep extending its     

in its C-Bids if it is not included during the bidding procedure until the deadline is reached. Given 

that agents also repeat their final bids, at termination, the schedule    is computed based on the 

deadlines from all agents that are not included and the      from the agents that are included. To 

improve their individual schedules, for the agents that are excluded, they have to be scheduled into 

  ; on the other hand, for the agents that are already included, they have to move to positions with 

shorter     . Since    is the optimal solution at termination given the inputs from all agents, in 

both cases, in order to improve an agent’s schedule, at least one other agent will be excluded or 

pushed to a position with a larger    . Therefore,    is a Pareto optimal schedule. █  
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Figures: 

 
Figure 4-a 

 

 

 

 
Figure 4-b 
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Figure 4-c 

 

 

 

 

 
Figure 4-d 
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Figure 4-e 

 

 

 

 
Figure 4 Efficiency and Revenue performance of the iterative bidding framework on 6 groups of 

single-due-date-valuation problems 

Figure 4-f 
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Figure 5 Running time of the iterative bidding on a single due date valuation problem set and a multiple due 

date problem set 

 

 
Figure 6 Larger number of bids help mitigate the “temporary exclusion” problem  

 
Figure 7 Efficiency comparison of VCG and the iterative bidding procedure on 9 multi-due-date-valuation 

problem sets.  
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Figure 8 Information revelation performance of the iterative bidding procedure over 9 problem sets with bid 

increment 4  and 2  

 

 
Figure 9 Run time comparison of VCG and iterative bidding over multiple-due-date-valuation sets 
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