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Evolutionary Inversion of Swarm Emergence
Using Disjunctive Combs Control

Winston Ewert, Robert J. Marks, II, Fellow, IEEE, Benjamin B. Thompson, and Albert Yu

Abstract—Given simple agent rules, a swarm’s emergent behav-
ior can be difficult to predict. The inverse problem is even more
difficult: Given a desired emergent behavior, what are the rules by
which swarm agents should operate? Disjunctive fuzzy control is
proposed as a method to model swarm agents. Compared to more
commonly used conjunctive fuzzy control such as that proposed
by Mamdani, disjunctive fuzzy control is robustly fault tolerant
and disjointly connected. Swarms are inherently disjunctive. In-
stead of agents working in coordination with one another, each
swarm agent contributes individually to the result. The disjunctive
attribute can also be applied at the sensor level for each individual
agent. Disjunctive control allows adaptation of the describing
membership function, as is commonly done in conjunctive control.
The inversion process is illustrated with numerous simulation
examples, including a predator–prey game, gang warfare, and
escaping agents. The swarm is instructed what to do but not how
to do it. Imposition of fitness constraints and repeated generations
of evolutionary molding of agent performance can then result in
unexpected emergent behaviors of the swarm, e.g., use of decoys,
self-sacrifice, flanking maneuvers, and shielding of the weak.

Index Terms—Disjunctive control, emergent behavior, fuzzy
control, inverse problem, swarm intelligence.

I. INTRODUCTION

SWARM INTELLIGENCE is based on the emergent behav-
ior of groups of individual social agents performing simple

tasks. Certain insects [16] and bacteria [86] are examples.
Swarm intelligence has found application in telecommunica-
tions [9], [24], [25], [53], [54], business [17], [60], robotics
[13], [15], [27], [43], and optimization [31], [32] and makes
use of a plurality of highly disjoint agents interacting using
simple rules. Simple swarm algorithms have been employed to
assist with load balancing of peer-to-peer networks [67], rout-
ing within mobile ad hoc radio networks [40], self-organizing
construction and assembly [58], and even health care [41], [91].

Simulations of swarm algorithms have parameters that can
be tuned [98]. Pioneering works have focused on enhancement
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of the emergent behavior for which the swarm is designed [2],
[4], [12], [14], [38], [44], [45], [71], [74]. We focus on a more
general problem of evolving unspecified emergent behavior
based on goal without regard to the manner in which success
is achieved. Results are often unexpected. In one case, for
example, sacrificial agents were evolved which act as decoys
to distract predators with the goal of maximizing the lifetime
of the swarm collective. In another, an evolved swarm devel-
oped deceptive flanking tactics to avoid capture. Some swarms
maximize their life span by being aggressive toward the en-
emy. Other swarms extend their lifetime by prolonged strategic
retreat.

Often, determination of emergent behavior from simple rules
of interaction in swarm intelligence escapes both analytic and
intuitive inspections [39]. Here are some examples from the
literature.

1) Each agent randomly roams on a floor covered with wood
particles, picking up a particle if it bumps into one. When
an agent bumps into a second particle, it unloads its load.
Now empty handed, it continues roaming looking for
another particle, and the process is repeated [16].

2) Each agent randomly identifies two other agents and
moves to place itself between the two agents [17].

3) Each agent randomly identifies two other agents and tries
to move such that one agent, a protector, is between it and
the other agent, an aggressor.

The rules in these are expressed clearly and without ambigu-
ity. The identification of the emergent behavior of the swarm,
however, is not readily evident.1

These three simple examples of the forward swarm problem
illustrate the difficulty of the analysis of emergent behavior in
even simple swarms.2 The necessity of inclusion of stochastic
chaotic behavior in swarm models further complicates intuitive
analysis [16], [26]. The inversion of the swarm, or swarm de-
sign, is even more daunting. Given a desired emergent behavior,
what is the set of simple rules needed? Using fuzzy Combs
control, we investigate such a design applied to a plurality of
cases. We also show that Combs control can, on occasion, allow
identification of local agent performance properties that gives
rise to evolved emergent behavior.

This paper has two distinct parts. The first provides a short
review of disjunctive Combs control in comparison to the more
widely used conjunctive Mamdani control. Combs control is

1Once an emergent behavior is identified, however, the relationship between
the rules and the emergent behavior can become more clear.

2The emergent behaviors for these three cases are in the Appendix.
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Fig. 1. pth agent in a swarm team of P agents. As shown here, each agent has
K sensors {Sk|1 ≤ k ≤ K}. The kth sensor makes a reading of sk which is
subjected to the actuator function in (4) to generate the sensor consequent ck .
The ck’s from all sensors are aggregated to generate the scalar consequent c for
the agent. When there is more than a single consequent, we denote them as c[1],
c[2], etc. In the examples in this paper, each agent has two consequents: one for
each of two dimensions of movement. Each consequent can have a separate set
of actuator functions.

shown to be more effective in the swarm inversion process
largely because the corresponding search dimension [28]–[30],
[79] is reduced. We demonstrate that Combs control is equiv-
alent to the use of actuator functions. The manipulation of
these actuator functions affects agent actions and, consequently,
the emergent behavior of the swarm. The second part of this
paper presents a number of swarms evolved using Combs
control. Although the swarm evolution is seeking to increase
an imposed fitness, the purpose of the simulations is not to
maximize fitness or speed of convergence but, rather, to observe
emergent behaviors in the swarm. These emergent behaviors
are often unexpected yet are effective and, upon reflection,
reasonable.

II. SWARM FORMULATION AND CONTROL

We now make the case that evolutionary determination
of disjunctive fuzzy logic parameters [22], [23], [94]–[97]
is ideally suited for evolving the emergent behavior of
swarms.

There are two levels of control in the swarm.
1) Agent control. There are P swarm agents on a team.

One is shown in Fig. 1. Each agent has K sensors
{Sk|1 ≤ k ≤ K}. For our simulations, a homogeneous
swarm is used so that each agent has the same resident
control rules. Fuzzy logic is used to control each agent.
Each sensor provides antecedents to the fuzzy control of
each individual agent. A swarm of P agents is shown in
Fig. 2.

2) Global swarm control. For the second level of the swarm
control, the consequents of each agent action provide
the emergent behavior C of the swarm. The individ-
ual agent actions are aggregated into the overall swarm
performance which is measured by a fitness function.
For a swarm of prey, for example, C might denote the
median survival time of all agents, i.e., the time it takes
for half of the swarm to be destroyed. In the common
scenario of randomness within the swarm, including ini-
tialization and agent jitter, C will be a random variable
whose character can be assessed only through repeated
trials [98].

Fig. 2. Collection of P agents of the type shown in Fig. 1 form a swarm.
We consider only the case where the fuzzy control parameters for all agents
are identical. Each agent has a consequent in accordance to its sensor readings.
Acting in concert, the swarm has a goal to achieve as measured by a fitness
measurable only after the swarm operates. Inversion is formed using the
standard search feedback shown. Through evolutionary inversion of actuator
functions, the swarm can be made to perform better and better. Our simulations
use particle swarm to update the control parameters. The manner in which the
swarm achieves its global objective consequent (C) through emergent behavior
can be unexpected.

III. CONJUNCTIVE VERSUS DISJUNCTIVE

FUZZY CONTROL

For each swarm agent consequent, traditional Mamdani con-
junctive implication [63], [64], [66] can be expressed as

K⋂
k=1

Ak → C (1)

where Ak is the kth fuzzy descriptor of the fuzzification of the
nth sensor and C is the fuzzy consequence.

For example, consider automobile control, and let C =
“turn slightly right." The Mamdani control rules then take on
the following form:

If (A1 = turn front tires slightly right AND

A2 = turn rear tires slightly left AND

A3 = lightly brake right tires AND

A4 = slightly accelerate left tires)

THEN C.

Disjunctive implication used in Combs [21] control3 is⋃
k,n

(Ak → C). (2)

Here, the contribution of each sensor to the agent’s performance
is aggregated to assess the resultant consequent. The corre-
sponding Combs control rules in the car turning example are

(If A1= turn front tires slightly right THEN C) OR

(If A2= turn rear tires slightly left THEN C) OR

(If A3= lightly brake right tires THEN C) OR

(If A4=slightly accelerate left tires THEN C).

3Application of disjunctive implication to fuzzy inference is commonly
called the Combs method [36], [48], [50], [87].



EWERT et al.: EVOLUTIONARY INVERSION OF SWARM EMERGENCE USING DISJUNCTIVE COMBS CONTROL 1065

In propositional Boolean logic,4 there is an identity between
the disjunctive and conjunctive implications dubbed the law of
importation [50](

K⋂
k=1

Ak → C

)
≡

(
K⋃

k=1

(Ak → C

)
. (3)

The fuzzy logic generalization of the law of importation is
not an identity. There is, however, often commensurate perfor-
mance in comparison to the use of fuzzy conjunctive Mamdani
rule matrices [50], [96].

Details contrasting the characteristics of conjunctive and
disjunctive implications can be found elsewhere [22], [23],
[94]–[97]. Combs control has many advantages. If sensors are
lost, for example, an agent can straightforwardly adapt by seam-
lessly applying redundant resources. Likewise, new sensors can
be easily added. The conjunctive form is brittle in compari-
son. Loss of a sensor requires reassessment of the implication
(Mamdani rule matrix) structure.

If there are K sensors and a single consequent each requiring
{Nk|1 ≤ k ≤ K} fuzzy sets, the Mamdani fuzzy rule matrix
for implementation requires

N∩ =

K∏
k=1

Nk

fuzzy rules. If all of the Nk = N for all k, then N∩ = NK .
Disjunctive control, on the other hand, requires

N∪ =
K∑

k=1

Nk

rules [22], [23], [94]–[97]. If the number of fuzzy sets is the
same, then N∪ = NK. The number of fuzzy rules therefore
increases linearly with respect to the number of antecedents
rather than exponentially.5

In the inversion of the swarm, we will be searching through
a space whose dimension is determined by the number of fuzzy
rules. Therefore, besides its operational advantages, disjunctive
control reduces the search space size, thereby avoiding the
curse of dimensionality [79] for the swarm inversion process.

A. Functional Representation

We now show that fuzzy Combs control can be reduced
to the use of actuator functions for each sensor followed by
aggregation.

An example of kth sensor contributes to the agent consequent
Ak → C. If the kth sensor is tessellated into Nk fuzzy member-
ship functions, any scalar measurement, for example, sk, will be
fuzzified into a vector of Nk membership values. For disjunc-
tive control, all of the elements in this vector are used to weight
the fuzzy membership functions of the single consequent which
is then defuzzified into a single crisp consequent scalar for the

4For implication, 0 → 0 is 1, 0 → 1 is 1, 1 → 0 is 0, and 1 → 1 is 1.
5A common observation is that conjunctive control with more rules and,

therefore, more degrees of freedom has greater fine-grained flexibility than
disjunctive control.

Fig. 3. Illustration that the actuator nonlinearity from disjunctive fuzzy rules
is a 1-D equivalent to a fuzzy control surface. The antecedent and consequent
fuzzy membership functions shown respectively in (a) and (b) follow the rules
“N → L AND Z → M AND P → S.” For a sensor reading of sk = −2,
the antecedent fuzzy membership functions for (N,Z,P) read (2/3, 1/3, 0).
This is illustrated in (c). To defuzzify, the consequent membership functions
are weighted as shown in (d) and added. The center-of-mass balance point of
the sum of the weighted consequent functions, as shown in (d), is ck = 5/3.
Thus, ζk(−2) = 5/3. Repeating this process for all sk ∈ [−4, 4] generates
the piecewise linear actuator function ζk shown in (e). To our knowledge, this
is the first time that Combs control has been shown to equate to the use of an
actuator function.

kth sensor ck. From this process, we conclude that each sensor
reading is assigned a single consequent value which, in turn, is
aggregated with the consequents of the other sensors to specify
the composite consequent for the pth agent. Thus, the value of
the consequent is a simple 1-D function of the sensor antecedent
which we can write as

ck = ζk(sk). (4)

The actuator functions ζk(·) are the 1-D equivalent to the con-
trol surfaces in fuzzy inference systems [19], [49]. A detailed
example is shown in Fig. 3.

Fuzzification and defuzzification of membership functions
for disjunctive fuzzy control have been performed in previous
treatments [22], [23], [94]–[97]. As shown in Fig. 3, however,
formation and adaptation of actuator functions can be per-
formed directly without consideration of the intermediate fuzzy
components.

In summary, sensor Sk on an agent measures sk from which
we find the consequents ck using the actuator function in (4).
The ck’s are then combined using, for example, an aggregate
function [18], into each agent’s consequent c.

Each agent may have more than one consequent in which
case ck[1], ck[2], etc., are generated using possibly different
actuator functions acting on the same sensor inputs. Each is
aggregated into consequents c[1], c[2], etc., for each agent. The
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interaction of all agent actions then contributes to the emergent
behavior of the swarm.

B. Relative Performance

Using Combs control, the inverse problem [11], which has
found use in many areas of computational intelligence [33],
[46], [47], [51], [52], [80], [81], reduces to adapting the actuator
functions to maximize the fitness of the emergent behavior C.
This is a variation of fuzzy membership function adaptation
applied in Mamdani-type inference systems [6]–[8], [65], [88]
and similar to inversion of trained neural networks. Although
Mamdani control requires exponentially more tunable parame-
ters than Combs control, their performances have been shown
to be commensurate in many applications [22], [23], [94]–[97].
Combs control then emerges in preference because of the stark
reduction in the search space dimensionality.

There are other alternatives to Combs control other than
adaptive Mamdani control, including neural networks [3], [79]
and support vector machines [1], [42], [68]–[70], [82].6 After
training, both Combs fuzzy control and Mamdani fuzzy control
offer a straightforward explanation facility for performance
understanding. This is in contrast to black-box methods like
neural networks where extraction of rules can be more difficult
[81]. Explanation facilities are of specific interest in our work,
since understanding the cause of unusual emergent behavior is
important for the formulation of new tactics. We will show how
evolved actuator functions can be examined to reveal swarm
strategies. Arguably, Combs control offers a more transparent
explanation facility than Mamdani control.

IV. INVERSION EXAMPLES

Using Combs control of agents, here are some examples
of emergent behaviors observed from inversion of competitive
swarms. Results will be illustrated with figures, but videos of
the swarm performance are more instructive. They are available
online [72]. Each example has some variations as to engage-
ment rules; however, the nature of the disjunctive control is the
same in all of the cases. Elucidation of fine-grained details in
each program is beyond the scope and length constraints of this
paper. Details, though, can be found in documented code also
available online [72]. All simulations are in Python and were
run on a Linux PC cluster.

For the examples to follow, all swarm agents on a team
contain the same sensors, actuator functions, and control rules.
A performance fitness function for the swarm is chosen, and
the swarm is run. Since there are stochastic components in
every simulation (e.g., initialization and jitter), the fitness is
a random variable, and each run of the simulation generates
a single sample of the underlying random variable. Running
a swarm from start to finish7 results in a single stochastic
fitness value. Using the measured fitness of a number of simula-

6Interestingly, the training of such adaptive structures can, themselves, be
controlled using fuzzy [5], [7], [20], [65], [89] or other [59], [75] control.

7In many instances, a stop criterion is imposed before the swarm runs its total
course.

tions of swarms with different actuator functions, personal and
global best results were noted, and after updating the actuator
functions consistent with particle swarm search [34], [55]–
[57], [84], [85], [92], another generation of swarm performance
is assessed in another generation of swarms. Application of
repeated generations resulted in emerged behavior that displays
a high fitness. We refer to numerous evolutionary steps in the
optimization of a swarm team as an era.

To address the stochastic contribution of swarm interaction,
each swarm was run for 20 realizations, and the measured
fitnesses of these swarms are averaged to estimate the mean
of the underlying random variable. The particle swarm uses
a population of 80 agents and was run for ten iterations at a
time. The particle swarm algorithm has parameters CG and CP
which weight the attractiveness of a particle to the global best
of the swarm and the particle’s personal best. [34], [55]. Both
parameters were set to the commonly used default value of 2.0

All swarm agents exist on a 2-D square planar playground
using floating-point coordinates between 1 and −1 for both
axes. All agents must remain within the playground at all times.
Directions are kept on a trajectory by bounding increments in
velocity change. At each time step, a velocity is added to the
current position. Additionally, a small amount of random jitter
[73], [76]–[78] is added to the current position. A number of
consequents are assigned to each agent in a manner specific to
each game.

For each sensor, an adaptive actuator function ck = ζ(ak)
is formed for each of the consequents. The shape of ζ(ak) is
defined by three values of s, at the points 0, 1, and 2. The
values are then connected in a piecewise linear fashion to form
the actuator function. The actuator function has a range for c of
[−1, 1]. The point locations are evolved to maximize the desired
emergent behavior property. For the simulations to follow, the
control properties of all of the agents on a team are the same.

A. Bullies and Dweebs

The first game is based on a predator (bullies) and prey
(dweebs) model. The dweebs are killed when they come into
contact with the bullies. The bullies and dweebs begin uni-
formly randomly distributed across the playground. Only the
dweeb strategy is evolved.

Both the bullies and dweebs make use of the same sensors as
follows:

1) S1 = distance to the nearest team agent;
2) S2 = distance to the nearest agent on the other team;
3) S3 = distance to the center of the playground.
They both have the following consequents:
1) movement toward the nearest enemy agent;
2) movement toward the nearest friendly agent;
3) movement toward the center of the play area.
The swarm’s fitness is defined as

C =

T∑
i=1

di (5)

where di is the number of living dweebs at time step i and T =
2000. The dweebs are evolved around the fixed operation of the



EWERT et al.: EVOLUTIONARY INVERSION OF SWARM EMERGENCE USING DISJUNCTIVE COMBS CONTROL 1067

Fig. 4. Bullies are distracted by the decoy dweebs; eventually, a single
sacrificial dweeb emerges and is chased by the bullies until it is caught. The
remaining dweebs seek refuge as far away from the bullies as possible. The
simulation software and a more illustrative and insightful video of the evolved
swarm (video #1) are on NeoSwarm.com [72].

Fig. 5. Swarm of dweebs spreads out as the bullies attack. The simulation
software and a more illustrative and insightful video of the evolved swarm
(video #2) are on NeoSwarm.com [72].

bullies. Variations were observed to emerge dependent on the
fixed point behavior of the bullies. Two cases are considered.

1) Slow Chases: In this scenario, the speed of a bully toward
the nearest dweeb is set proportional to the separating distance,
i.e., a bully will run quickly toward a dweeb that is far away
and slowly toward a dweeb nearby. The dweebs are able to find
a “sweet spot” where they can run slowly immediately in front
the bully and avoid getting caught. One of the dweebs would
typically “dance” with the bully while the others would hide
out of range.

The interesting emergent dweeb behavior is one of self-
sacrifice. One dweeb at a time attracts the bullies in a prolonged
chase while the remaining dweebs move to a nonthreatening
position. Eventually, the sacrificial dweeb is killed. After
transient activity, a fresh self-sacrificing dweeb emerges, and
the cycle continues. This emergent self-sacrifice strategy per-
formed the desired function of maximizing the overall lifetime
of the dweeb swarm as measured by the fitness. See Fig. 4 and
the video available online [72].

2) Center: In the second scenario, bullies attack dweebs at a
speed independent of their separation. Swarm inversion results
in the dweeb strategy of clustering in the center of the playing
field. The bullies attack, causing a scattering of the dweebs.
The bullies then concentrate on sacrificial dweebs while other
dweebs return to temporary safety in the center. As in the slow
chase, the effect was of self-sacrifice albeit not as dramatic. See
Fig. 5 and the video available online [72].

Fig. 6. Initial positions of the opposing gangs. Snapshots of the conflict are
shown in Figs. 8 and 9. Also see the online video [72].

B. Gang Warfare

In gang warfare, a second type of wargame, there are two
gangs, red and blue, both able to retreat or to attack and kill the
other. Each team agent has a randomly assigned strength, and
when agents collide, the weak is killed and the strongest agent
survives. However, the winning agent loses strength. When an
agent is killed, the strength of the survivor is decayed by a factor
of 0.9. Furthermore, when an agent is far enough away from any
enemy agent, its strength slowly increases. If the nearest enemy
agent is at least 0.1 units away, strength increases by 0.001 per
iteration. Both teams are alternately evolved, and a number of
different strategies emerge.

The sensors used for both the red and blue teams are as
follows:

1) S1 = distances to the nearest enemy agent;
2) S2 = agent’s self-assessment of its strength;
3) S3 = strength of the nearest enemy agent.

The two consequents for each agent are as follows:

1) movement toward the nearest enemy agent;
2) movement perpendicular to the nearest enemy agent.

Fitness is defined to be

C =

T∑
i=1

(ti − ei) (6)

where ti is the number of agents of one team alive at time step
i and ei is the number of agents alive on the opposing team at
time step i and T = 2000.

The gangs are alternatingly evolved. Blue is first. As shown
in Fig. 6, the two gangs begin at the opposite sides of the play
area. Snapshots of the game are shown in Figs. 6–9. Also see
the video [72].

Different strategies are observed to arise.

1) Orbiting
Strategically, it makes sense to attack the weak mem-

bers of the enemy forces while keeping your own weak
members out of the fight. The agents begin from the initial
configuration in Fig. 6. The strong and weak blue agents
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Fig. 7. Blue team divides.

Fig. 8. Attacking from the west wall.

Fig. 9. Red clockwise circling the blue finishes the contest.

separate in Fig. 7. The stronger agents charge into the
enemy territory to kill off the enemy agents in Fig. 8.
After the weak members have been killed off, the agents
spin around the stronger enemy agents in Fig. 9.

The orbiting action comes from the agents moving both
toward and perpendicular to the enemy agent. Spinning

Fig. 10. Actuator functions evolved for the blue agents as used in Figs. 6–9.
The upper left function indicates that the agent should retreat from the enemy
unless the enemy is far away. The middle left function indicates that, the
stronger the blue agent, the more that it is inclined to move toward its enemy.
Conversely, as shown in the bottom left, the stronger an enemy, the more
inclined an agent is to retreat. The clockwise circular motion of the blue agents
around the red agents in Fig. 9 is due to the actuator functions controlling
perpendicular motion. As is the case with satellites orbiting the Earth, the
combination of perpendicular motion (the satellite’s momentum) and attraction
to Earth results in orbiting.

around the agent would possibly bring a weaker agent
into view. In the end stage, the perpendicular movement
prevents the circling agents from coming into contact
with a strong enemy agent and being killed.

Fig. 10 shows the actuator functions optimized for the
blue to fight this battle.

2) Defensive strategy
After the blue team is evolved for an era, its behavior

is fixed, and the red team is evolved to counter the
performance of the blue team. In this section, we look at
the effects of the blue team being evolved a second time
to counter the counters of the red team. We denote this
process by → B → R → B. Each right arrow denotes
an evolution era. Snapshots of the swarming are shown
in Figs. 11–15. Also see the online video [72]. The
blue team has evolved a defensive strategy. Instead of
attempting to kill the enemy agents, the strategy now
prioritizes not getting killed.
a) Fig. 11. The battle begins as shown. The blue team is

applying a defensive strategy. The stronger blue agents
move closer to the red enemy, thereby attracting their
attention. The weaker blue agents retreat to the south-
east corner.

b) Fig. 12. The red enemy agents continue to chase the
blue agents but do not attack because the blue agents
have too much strength. The weaker blue agents at
the bottom right gain strength over time while this is
happening.

c) Fig. 13. The blue agents in the southeast corner have
gained strength and are moving up the east wall in
order to join the battle. The blue agent cluster at the
top of Fig. 12 has bifurcated. One portion is in the
middle of a string of red agents who are circling in
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Fig. 11. Initial move after four eras of evolution: → B → R → B. Blue, last
evolved, adopts a defensive posture.

Fig. 12. With blue engaging in a defensive strategy, the red enemy goes after
the nearer strong army but does not actually attack it due to its strength.

Fig. 13. Red circles blue counterclockwise.

a counterclockwise direction. The other blue cluster
in the northwest corner has temporarily escaped the
attention of the red agents.

d) Fig. 14. After some time has passed, all agents are
now at or near maximum strength. Using a philosophy

Fig. 14. Blue retreats from red.

Fig. 15. Red pursues blue decoys.

that “the best offense is hiding,” the blue agents are
retreating from the red agent cluster by moving to the
north and west.

e) Fig. 15. Blue decoys have broken from the group
and are being pursued by the single red cluster. The
other blue agents hide along the north wall. The red
continues to chase the blue decoys but never captures
them. In this way, blue has evolved a retreat strategy
that allows it to survive for a very long time.

Fig. 16 shows the functions for the blue’s defensive
logic. All values for attraction to enemy red agents are
negative, so blue will always try to run from the red
enemy. However, blue’s propensity to run is tempered by
its strength which allows the separation shown in Fig. 11.

3) Aggressive strategy
The defensive strategy depended on the opponent blue

not being willing to attack strong red agents. Additional
generations of evolution of the red army address this.
The evolution eras are now → B → R → B → R. When
given a chance to optimize against the defensive strategy,
an aggressive strategy arose. The defensive blue strategy,
effective in → B → R → B, remains unchanged. The
evolution of the red agents, though, has made the blue
strategy ineffective. Here are some snapshots of the ac-
tion. Also see video #5 [72].



1070 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 5, SEPTEMBER 2013

Fig. 16. Functions for the blue team engaged in a defensive strategy. Figs. 6–9
show this strategy as blue against an aggressive red strategy.

Fig. 17. Red uses an aggressive strategy against blue’s defensive strategy.
While the defensive strategy divides its army, the aggressive strategy pushes
against the top wall and moves toward the upper left corner. Sequential
snapshots of the conflict are shown in Figs. 18 and 19.

a) Fig. 17. The red agents move along the north wall to
the right. There is some separation of the blue agents.
Mostly, stronger blue agents move up the east wall,
and some of the weaker blue agents move down.

b) Fig. 18. The red agents make a sharp right turn at
the northeast corner and move toward the meek blue
agents who begin to retreat down the east wall.

c) Fig. 19. The red agents move downward on the east
wall. The strong agents lead the way. The red agents
catch the defensive agents in the bottom left corner
and rapidly kill them.

Fig. 20 shows the functions used to control the red
aggressive agents. The actuator functions for the blue
remain those shown in Fig. 16. Rather than avoiding
strong agents, the red agents aggressively attack them to
good effect. The propensity for moving toward enemy
agents is related to an agent’s strength. The constant value
of 1.0 for perpendicular movement based on strength
results in the wall following behavior.

Fig. 18. Red uses an aggressive strategy against blue’s defensive strategy. The
defensive blue strategy retreats to the corner, while the aggressive red strategy
follows. Note how the weaker red elements are safely protected behind the
army.

Fig. 19. Red uses an aggressive strategy against blue’s defensive strategy.
Blue attempts to hide in the corner while red’s entire army comes upon it,
resulting in a quick red victory.

Fig. 20. Actuator functions for the red team engaged in an aggressive strategy.
These actuator functions are the result of evolving the red team against the
defensive blue team strategy whose actuator functions are shown in Fig. 16.
The initialization is the same as shown in Fig. 6. The resulting performance is
illustrated in Figs. 17–19.
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Fig. 21. Starting position for the foxes and rabbits. The foxes are red, while
the rabbits are blue. The green circle is the hole.

C. Foxes Versus Rabbits

A third example used to illustrate swarm inversion using
disjunctive Combs control is a contest dubbed “foxes versus
rabbits.” In this model, a husk of rabbits attempts escape to a
hole guarded by a skulk of predator foxes. Like that in the war
model, each rabbit and fox agent is assigned a strength which
determines whether or not it will survive in combat. However,
unlike before, strength neither degrades nor increases over time.
There are 200 foxes and 50 rabbits.

The sensors used in this model are as follows:

1) S1 = distance to the center of friendly agents;
2) S2 = distance to the nearest opponent agent;
3) S3 = distance to the exit (hole);
4) S4 = difference between self-strength and nearest oppo-

nent’s strength.

Fitness is defined as

C =

T∑
i=1

(10ei + si) (7)

where ei is the number of rabbits who have escaped by time i
and si is the number of rabbits who have neither escaped nor
been killed and at time T = 2000.

The behaviors observed are as follows.

1) Rush. First, the foxes are evolved, and then, the rabbits
are evolved. Thus, the scenario is

→ F → R.

The performance snapshots are shown in Figs. 21–24. In
this simplest case, the foxes head for the rabbits, and the
rabbits run away from the foxes. The rabbits have not yet
learned to run to the hole.
a) Fig. 21. This is the initialization of the contest.
b) Fig. 22. As the foxes close in, the rabbits move toward

the hole in order to escape from the foxes.
c) Fig. 23. The foxes continue to push the rabbits into

the hole. The rabbits are not actually trying to move
toward the hole but rather away from the foxes. This

Fig. 22. Rabbits head for the hole, while the foxes chase after them.

Fig. 23. Rabbits head for the hole, while the foxes chase after them.

Fig. 24. All rabbits have either escaped or been caught.

happens to cause them to move close to the hole,
allowing many to escape.

d) Fig. 24. The simulation ends quickly as the foxes kill
any nonescaping rabbits.

2) Confusion. The foxes are next evolved to counter the Rush
scenario

→ F → R → F.
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Fig. 25. Rabbits are confused and thus sit in the middle rather than running
for the hole.

Fig. 26. Foxes hang around the outside corners, while the rabbits make it
directly to the hole.

Since the rabbits were running away from the foxes rather
than toward the hole, when the foxes were evolved against
this behavior, they developed a strategy of confusion. The
foxes occupy the corners of the area, thus keeping the
rabbits in the center. This is shown in Fig. 25.

3) Confusion resolution. The rabbits were again evolved

→ F → R → F → R.

Predictably, the rabbits head toward the target unimpeded
while the foxes, still applying their confusion tactics,
remain huddled in the corners. This is shown in Fig. 26.
However, the agents are not actually trying to move
toward the hole. Instead, they are heading to the nearest
foxes who are behind the hole.

4) Flanking. Evolution continued. At the end of a rabbit
evolution, deception and flanking emerged as a winning
strategy. The repeated evolutions resulted in clever rabbit
behavior. As the foxes placed themselves between the
rabbits and the hole, the rabbits move away from the
foxes, thereby drawing the foxes further from the hole.
The rabbits then sneak little by little around the foxes and

Fig. 27. In the initial stages of the flanking strategy, the rabbits wait for the
foxes to approach.

Fig. 28. After the foxes have gotten close enough in the flanking strategy, the
rabbits run, leaving the foxes in a clump.

Fig. 29. Rabbits head both directions around the foxes.

make their way to the rabbit hole. Snapshots are shown in
Figs. 27–31.
a) Fig. 27. The rabbits allow themselves to be sur-

rounded.
b) Fig. 28. Just before the foxes close in for the kill, the

rabbits break out moving away from the hole, leaving
the foxes in a clump.

c) Fig. 29. At the northwest corner, the rabbits bifurcate
and begin to run around the flanks of the fox clump.
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Fig. 30. Since the foxes are distracted by the nearest agents, the other rabbits
sneak to the hole.

Fig. 31. Eventually, there are insufficient rabbits to attract the attention, and
the foxes move close to the hole, preventing any future rabbit escapes.

d) Fig. 30. The sneaky rabbits then manage to make it
to the exit. This works because the foxes only have a
sense of the nearest rabbit. The flanking rabbits are, in
this sense, invisible to the foxes.

e) Fig. 31. Eventually, the foxes detect the flanking rab-
bits. The strategy of the rabbits then ceases to work,
and the foxes move to a better defensive position. The
remaining rabbits are now blocked from the hole and
are doomed to a life above ground.

V. CONCLUSION

Combs control of sensors on swarm agents adjusted in accor-
dance to swarm performance is a methodology which can reveal
interesting and unexpected emergent swarm properties. This
paper, to our knowledge, is the first to explore such generalized
experimental investigation of such properties. Although there
is a (stochastic) fitness used in the evolution of the swarm,
the aim is not fitness maximization but, rather, observation of
emergent behavior as the swarm was evolved. Once the swarm
was evolved, the relatively transparent explanation facility char-
acteristic of Combs control can be examined to help understand

why the emergent behavior occurs. Combs control also has
the advantage of requiring fewer tunable parameters, thereby
reducing the dimensionality of the search space.

There are numerous variations of swarm inversion not yet
considered.

1) Application of coevolution [61] can potentially evolve
strategies superior to a large number of strategies rather
than in response to a single opponent strategy.

2) Each agent can have a different control mechanism. Evo-
lution can then be applied within a single simulation
wherein killed agents are immediately replaced by repli-
cation of a mutated agent more fit.

3) Agents can be fitted with adaptive states as is the case,
for example, when worker ants are recruited to be soldier
ants when the colony is under attack [16].

Graceful degradation of performance with loss of agent count
as promised by property characteristic at the swarm level has
yet to be empirically tested as has graceful degradation of
swarm performance due to loss of sensors at the agent level as
promised by Combs control. Fitness in the swarm evolution is
determined in many cases by the evolved strategies of the oppo-
nents. In order for evolved strategies to be placed into practice
as viable tactical options, the robustness of the strategies must
be tested on perturbations of the fitness. As witnessed by the
necessity of the use of the Linux cluster, these and other studies
involving swarm inversion are computationally intensive. De-
velopment of gaming models to capture the emergent properties
theoretically would be useful in circumventing the need for
this overhead. Although theoretical properties such as stability
[39] or a swarm of distributed wireless agents converging to
a Nash equilibrium [37], [83] are useful, the tactics by which
properties are achieved, e.g., flanking, self-sacrifice, deception,
and protecting the weak, are the focus of the current work.

Swarm inversion can result in effective survival strategies in
swarm games. Through a process of evolutionary tuning, simple
rules in agents allow emergent behavior that extends survival
time for the swarms. More sophisticated simulations could find
use in the development and experimental analysis of swarming
in business models [17], military tactics [10], [35], finance [62],
social science [90], and game theory [93].

Videos of the simulations discussed in this paper are avail-
able online and are highly instructive in the visualization of
the interesting emergent behaviors discussed [72]. Documented
Python code for all of the simulations is also available on the
same site. Since all simulations contain stochastic components,
running the code does not exactly replicate the contents of the
video. Our experience, though, is that the general emergent
tactics remain consistent.

APPENDIX

The emergent behaviors resulting from the three simple
swarm rules in Section I are as follows.

1) This is a simple model used for termites stacking wood or
ants collecting their dead into piles [16].

2) The emergent behavior is attraction of all the agents to a
fixed set of points. If, in the coupling, all agents can be
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linked in the rules to all other agents, convergence is to a
single point.

3) All agents diffusively disperse.

The problems in 2) and 3) were proposed by Bonabeau
and Meyer [17] and analyzed by Gravagne and Marks [39].
Additional details and videos illustrating the behaviors of all
three of these swarms are available on NeoSwarm.com.
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