The

University

yo, Of
Sheffield.

This is a repository copy of Identification of the neighborhood and CA rules from
spatio-temporal CA patterns .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/791/

Article:

Billings, S.A. and Yang, Y.X. (2003) Identification of the neighborhood and CA rules from
spatio-temporal CA patterns. IEEE Transactions on Systems Man and Cybernetics Part B:
Cybernetics, 33 (2). pp. 332-339. ISSN 1083-4419

https://doi.org/10.1109/TSMCB.2003.810438

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

332

Correspondence

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

Identification of the Neighborhood and CA Rules From
Spatio—Temporal CA Patterns

S. A. Billings and Yingxu Yang

Abstract—Extracting the rules from spatio—temporal patterns gener-
ated by the evolution of cellular automata (CA) usually produces a CArule
table without providing a clear understanding of the structure of the neigh-
borhood or the CA rule. In this paper, a new identification method based
on using a modified orthogonal least squares or CA-OLS algorithm to de-
tect the neighborhood structure and the underlying polynomial form of the
CA rules is proposed. The Quine—McCluskey method is then applied to
extract minimum Boolean expressions from the polynomials. Spatio—tem-
poral patterns produced by the evolution of one-dimensional (1-D), two-di-
mensional (2-D), and higher dimensional binary CAs are used to illustrate
the new algorithm and simulation results show that the CA-OLS algorithm
can quickly select both the correct neighborhood structure and the corre-
sponding rule.

In this paper, a totally new approach is adopted to identify both the
neighborhood and the CA rule from complex patterns of high-dimen-
sional spatio—temporal behavior. Identifying the CA rule or model is
considered as a two-stage procedure. First, the neighborhood which
defines the spatial interaction of the cells over a temporal window is
determined and then the rules that specify the values of these cells is
estimated. Earlier studies [5]-[7] have attempted to devise solutions
to these problems based on the logical rule base which defines binary
CAs, but this involves determining the spatio—temporal rules as non-
linear combinations of cellular values.

In the present research, this problem is avoided by exploiting the
fact that the binary rules can be expressed as Boolean functions
and showing that these can be exactly represented using simple
polynomial models. The main advantage of this is that now the
problem is mapped into a linear-in-the-parameters model. A modified
orthogonal least squares algorithm, called the CA-OLS method, is

introduced which determines the neighborhood and the unknown
model parameters. The Quine—McCluskey algorithm can then be
applied to extract the minimum Boolean expression to produce the
final CA model. Mapping the problem into a polynomial model form,

determining the structure and parameters, and then mapping back to

) a logical expression produces for the first time a powerful method
Cellular automata (CA) represents an important class of models tht getermining the rules of high-dimensional CAs in the form of a
evolve in time over a spatial lattice structure of cells. CAs have begasimonious model. This is achieved from just the observations of
applied in image processing [1], pattern recognition [2], digital circuthe gata and na priori information.
design [3], and robotics [4]. Many authors have demonstrated that rel-
atively simple binary CA rules can produce highly complex patterns
of behavior. These results illustrate the potential of CAs as a model
class and suggest that it may be possible to model even very complex
spatio—temporal behavior using CA models of a simple form. However,A cellular automaton is defined by three parts: 1) a neighborhood;
very few studies have investigated how these rules can be extracte@ local transition rule; and 3) a discrete lattice structure consisting of
from observed patterns of spatio—temporal behavior. a large number of cells which are occupied by states from a finite set of
Ideally, the identification technique should produce a concise estiscrete values. The local transition rule updates all cells synchronously
pression of the rule. This ensures that the model is parsimonious &yc@ssigning to each cell, at a given time step, a value which depends
can readily be interpreted either for simulation or hardware realizati@fly on the neighborhood. Attention in this paper is restricted to binary
of the CA. Sequential and parallel algorithms for computing the loc&®A Where the cells can only take binary values. Although binary CAs
transition table were presented by Adamatzky [5], and Richards [6] iferm one of the simplest classes of CAs, they have been the focus of
troduced a method using genetic algorithms (GAs). However, no cléBPst investigations and are capable of generating complicated patterns
structure of the related neighborhoods was obtained in either of th&@global behavior and capturing the essential features of many complex
studies and the detection process was complicated. GAs were also Bgnomena.
ployed in [7] to determine the rules as a set of logical operators. Par- )
simonious local rules were found for low-dimensional CAs, but Whe@l‘ CA Neighborhoods
CA with large-size neighborhoods are involved the search process cafihe neighborhood of a cell is the set of cells over both space and
be computationally demanding, sometimes taking several hours itirae that are directly involved in the evolution of the cell. Sometimes
single run. This is mainly because of the nature of the GA evolution.this includes the cell itself. The neighborhood structure varies de-
the CA model to be identified can be reconfigured into linear-in-the-ppending on the construction of the CA. Consider a one-dimensional
rameters model, then the identification method would not have to fieD) 3-site CA for example. Denoting the cell at positiprat time
restricted to a GA related approach, and this may allow the develagep ¢ as cell(j;t), then the neighborhood ofell(j;¢) could be
ment of a fast identification procedure. This is achieved in this papea von Neumann neighborhood, illustrated in Fig. 1(a), or the two
exotic neighborhoods shown in Fig. 1(b) and (c), respectively. The
neighborhood can involve cells from different spatial and temporal
scales. The exotic neighborhood in Fig. 1(b) encompasses cells from
Manuscript received February 13, 2000; revised July 11, 2000 and Maihe same temporal scale but different spatial scale than the cells in
21, 2002. This work was supported by the University of Sheffield and the U.khe von Neumann neighborhood while the neighborhood in Fig. 1(c)
Eﬁizcéutniszegr\)’v"iﬁf [ﬁgog“emZ?tﬂfgn?yofisﬁgﬁt:ﬁsdgg:\t‘?(-)IJ-a ggrgmsetg-involves cells from the same spatial scale but different temporal
Engineering, University of Sh%fﬁeld, Sheffield S1 3JD, U.K. (e—%ailggale from the CQIIS in the von Neumann nelghborhood..Ther(_a are
s.billings@shefield.ac.uk; yingxu@acse.shef.ac.uk). many more possible neighborhood structures for two-dimensional
Digital Object Identifier 10.1109/TSMCB.2003.810438 (2-D) CA. The most commonly used are the 5-site von Neumann

Index Terms—Cellular automata (CA), identification, spatio—temporal
systems.

|. INTRODUCTION

Il. CELLULAR AUTOMATA AND THE DIFFICULTIES
OF CELLULAR AUTOMATA
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ed et | sited o d ’ .l temporal neighborhoods with repriori information. It is assumed

R I | PR that a sequence of the CA that at least covers the spatial and temporal
neighborhood of the CA pattern is observed. This is the standard ob-

servability condition for all CA identification algorithms. In addition,

it is assumed that the CA rule is uniform over all the observed pattern.

Hybrid CAs, where more than one rule operates, cannot be dealt with

by any current CA identification algorithms.

(a) (b) (c)

Fig. 1. Examples of 3-site neighborhoods for a 1-D CA. (a) von Neumann
neighborhood. (b) and (c) Exotic neighborhoods. [1l. | DENTIFICATION USING THE CA-OLS METHOD

In the present study, the problem of searching for the neighborhood
neighborhood and the 9-site Moore neighborhood. The neighborhamgt then the parameter values associated with a nonlinear logical model
structures for higher dimensional CA are much more complicatedll initially be mapped into an equivalent polynomial representation.
and diverse than the 1-D and 2-D cases. Neighborhoods for 2-D anile this relationship is well known it has not previously been ap-
higher dimensional CAs can also involve cells from temporal scalpseciated that the polynomial model can be reduced to a very simple
other thart — 1. For example, a 5-site 2-D neighborhood could taketructure with integer parameters, even for high-dimensional and com-
the form{cell(é, j — 1;¢ — 3), cell(4, j — 15t — 2),cell(d, j — 1;¢ —  plex CAs. Using this model form and introducing a modified orthog-
1),cell(é + 1,4;t — 1),cell(d,j + 1;¢ — 1)}. Clearly, the number onal least squares routine, the CA-OLS method, both the CA neigh-
of possible cells in a multidimensional CA over a range of temporabrhood and the unknown polynomial model parameters can easily be

scales can be huge. determined. The equivalent polynomial model is then mapped back to
aminimal logical expression to yield the final parsimonious CA model.
B. Local CA Transition Rules The steps associated with this new procedure are introduced below.

Local transition rules can be defined in several equivalent ways. The

most common method is to use a transition table analogous to a trfithBoolean Form of CA Rules
table where the first row describes the states of the neighborhood andthe local rule for a binary cellular automaton may also be considered
the second row indicates the next state of the cells. The rules are thgra Boolean function of the cells within the neighborhood. For a 1-D
labeled by specifying which neighborhoods map to zero and which@a, denote the state of the cell at positipat time steg ass(j;¢) and
1. The standard form of a 3-site 1-D ruleis shown below the states of the cells within the neighborhood of ¢eit previous time

000 001 010 011 100 101 110 111 steps adN(j; | t) where| ¢ represents time steps befagtélhe 1-D CA

can then be represented by
To 1 T2 T3 T4 T5 T6 rT

wherer;,i = 0,...,7 indicates the next-states of the cells. Every s(jit) = fF(N(53]t)) (1)
componentr; corresponds to a coefficiert’ which is essential

in computing the numerical label associated with the rule. Thgheref is the Boolean form of the local transition rule.

numerical labelD assigned to rulek? above is therefore given by  Two different ways of constructing Boolean rules are currently avail-
D(R) = .75 r:2*, whichis simply the sum of the coefficients assoable. One formulation produces Boolean rules using onlyNB&,
ciated with all the nonzero components. For example, the well-knowdND, and OR logical operators and rules for all 1-D CA with 3-site
1-D 3-site ruleRule22 is defined asRule22 = (01101000). The neighborhoods are listed in [8]. The Boolean formRofe30, for ex-
numerical label is given by (Rule22) = 2' + 22 4 2* = 22. The ample, is

transition table of this rule is shown below

000 001 010 011 100 101 110 111 s(jit) = (s(j— Lt = 1) % 5(js5t = 1) % 5(j + 15t = 1))
o 1 1 o0 1 0 0 0° 1(5( — Lit — 1) % s(j:t — 1))
(5 = Lt =1)*s(j + 1t = 1)) 2

C. Difficultiesin CA Identification _ .
where, x and|| denoteNOT, AND, andOR operators respectively. The

~Many studies of CA have focused on demonstrating that relativejfernative formulation uses only ti¢OT, AND, and XOR operators
simple CA rules can produce complex patterns of behavior. Thisstead. Lists of Boolean expressions of even number 1-D 3-site CA

demonstrates the potential of CAs as a model class but shows that {f)jgs based on this formulation can be found in [9]. Using these oper-
can only be realized if the simple underlying rules can be determingghrs Rule30 can also be represented as

from observed spatio—temporal behavior.

When identifying CA rules the onlg priori knowledge will be the . .~ . . e
spatio—temporal patterns produced by the evolution of the CA. Realiy/?!) =50 = Lit = 1)@ s(jst = 1)
tically, the neighborhood structure including the size will be unknown O (st =1 =s(G+ 1t =1)) (3)
and this means that the possible combinations can number into the
hundreds of millions. It may be possible to find simple CA rules bwhere& denotes thé&XOR operator. Note that on the right side of (3)
searching through the rule space when only 1-D or 2-D CAs with velggical terms are produced by connecting the “states” or theT
small neighborhoods are involved. However, as the neighborhood sigites” of the cells within the neighborhood usA¥D operators which
or the dimensionality, or both increase the combinational possibilitiase then combined b}OR operators. It can easily be observed that
become huge. The few authors that have studied this problem [5], f8fery 1-D binary rule can be reformulated into a Boolean form which
have therefore focused on a very limited class of low-dimensional CAsllows this principle. Furthermore, note that= 1 & 4,0 & a = a.
However, there is a clear need to develop procedures which can bfence, all 1-D binary CA can be represented by a Boolean function
erate on observed data from CAs over higher dimensional spatial amith only AND and XOR operators. For example, a CA with arsite
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neighborhood of cell(j + 1;¢ — 1),...,cell(j + n:t — 1)} can be  s(j;t — 1) x s2(j+ 13t — 1); 012 = 457 (j;t — 1) x s*(j+ 1;t — 1);

expressed in the form bis = —8s(j — 13t — 1) x s>(j;t — 1) x s%(j + L;t — 1).
However, this equivalent expression will involve as many parame-
s(fit)=ao Gars(j+ Lt -1)D - ters as the number of possible combinations of all the cells within the

Gan(s(+ 1t — 1) s---xs(j+nt—1)) (4) neighborhood and little will be gained by using such a representation.
However, using the Principle of Duality and Absorption in Boolean
wherea;(i = 0,..., N, N = 2" — 1) are binary numbers and = 1 Algebra.[lo].\./vhe.re for every bipary variablea x a = a, consid-
indicates that the corresponding term is included in the Boolean furRiable simplification can be achieved. Therefore, terms in the form of
tion whilea; = 0 indicates that the corresponding term is notincluded. (j =1 t=1)s'(j;¢=1)s"* (j+1;t—1) wherel, I>, I are integers
Note that the number of possible expressions in (2} iswhich is ex- can all be reduced to one tewrty — 1: ¢ —1)s(j:t — 1)s(j+ 1;t - 1).
actly the number of all possible 1-D rules with that particular neigh=ensequently, applying the Principle of Duality and Absorption to all
borhood. This implies that the representation in (4) is unique, one §a¢ terms results in a new expression for all 1-D CAs with von Neu-
of {a;,i = 0,..., N} corresponds to one and only one CA rule. ~ Mann neighborhood of the fors;: 1) = f1s(j —1:t—1)+02s(j: 1 -
Equation (1) can be extended to higher dimensional CA&)+0ss(j+Lit—1)+0as(j—1:t—1)xs(jit—1)+055(j —1:t—
For a three-dimensional (3-D) CA, this would be denoted a9 X s(j+1it—1)+0es(jit—1) X s(j+ 1Lt —1)+07s(j — Lt —
s(i.j.l:t) = f(N(i.j.l:| 1)), wheres(i, j,I;t) is the state of the 1) X s(j;t—1)xs(j+1;¢—1), where the parametefs, ..., 7 can
cell at position(i, j,7) at time stept and N(i,j,1;|#) represents Only takeinteger values andj —1:#— 1), s(j:t —1),s(j + 1:t — 1)
the states of the cells within the neighborhood efl(i, j,7;¢). are binary values. Applying this to (6) shows that a general polyno-
The unified expression in (4) can also be extended to multidimefual expression of all binary CA rules with ansite neighborhood
sional CAs. For example any 3-D CA with a 5-site neighborhootrell(z1; | ), ..., cell(zn; [1)} can be expressed by the exact polyno-
{celli — 1,5, 5;t — 1),cell(d,j,l;t — 1),cell(d,5j + 1,5;t — mial expression
[1)1/ ;eggéré;n ei};essliz;ncell(zd,l + 1;¢t — 1)} can be represented $(23i8) = Br5(a0s | 4) 4 - Bus(am: [£) 4+
+Ons(x1s|t) X - X s(xns|t) (7)

(i, 1) = ao - Dasi(s(i— 1,4, 1t — 1 i i
s(i.g, ) =ao @ Bas(s(i— 1. ) whereN = 2" — 1 andcell(z;; ¢) is the cell to be updated. Using

xoomxs(i gy l+ Lt =1). (B)  this important observation the number of parameters to be identified

can be substantially reduced to o2fy— 1. It can also be seen that the

most important factor is the size of the neighborhaodot the order of

the dimension. For example, a 2-D CA rule with a 5-site neighborhood

may have a simpler polynomial expression than a 1-D CA rule with

s(@jit) = ao B ars(ze; [1) -+ an 8-site neighborhood. These are important observations which sur-
Gan(s(zr;|t) - xs(xa;|t)) (6) prisingly have not previously been exploited and which together with

the CA-OLS algorithm introduced below provide a new and powerful
whereN = 2" — 1 andcell(z;; t) is the cell to be updated. method of reconstructing the CA model even for high-dimensional
Equation (6) is important because it significantly reduces the corgAs.
plexity of CA identification by using a reduced set of logical operators.
The difficulty in identifying multidimensional CAs is also decreased. Identification Using CA-OLS

bet_:ause the higher dimensional CA_‘ rules are reduced t_o an t_aqua?io& CA can be viewed as a nonlinear dynamical system. Although the
which depends on the size of the neighborhood not the dlmenS|onaIgystem has a spatio-temporal structure, a single time series can be mea-
] sured at a single lattice site or a spatial series can be measured at a fixed
B. Polynomial Form of CA Rules time and traditional methods can be applied to model either. However,
Every CA with ann site neighborhood can be reformulated from #iks [11] showed that studying only a time series or a spatial series
truth table to a Boolean function of the form of (6). However, the mod#lom a spatio—temporal system without any knowledge of the system
to be identified is defined in terms &ND and XOR operators and can easily lead to the incorrect conclusion that there is no spatio—tem-
is therefore nonlinear in the parameters. However, it is often advang®ral structure. For a full characterization of the system structure time
geous to reconfigure the nonlinear model to be linear in the parametarsl space have to be considered simultaneously. Determination of the
if this is possible. This will be investigated below for CAs. spatial and temporal span of the neighborhood is therefore very impor-
If a, a1, as are binary integer variables taking the values 0 and 1 féant in identifying CA models.
true and false, respectively, then there is an exact polynomial represerin practice, the neighborhood structure will be unknown and it is

Extending this further, every CA with an site neighborhood
{cell(x1;]1t),...,cell(xy; | t)} may be written as

tation of each of the logical functions necessary to extend the assumed neighborhood to a more general case
which encompasses cells from different spatial and temporal scales.
a=1—a, ajas=a X as, Hence a set of models which are over-specified on both the spatial and

temporal spans will be introduced as the model set. For a 3-D CA, the

a1 T as = a1 +as —2a1 X as. )
model set can be defined as

Therefore, all CA rules can be represented by exact polynomial expres-

. X s(i,5,0;t) = f(s(i+i1,5 +j1, I+ 1t =1),...,
sions. The 1-D von NeumarfRule30, for example, can be written as s(isJ )=fsltini+inl+h Do

s(j;t) = Zf; bi,whereb; = s(j—1;t—1);b2 = s(j;t—1);b3 = s(i =2, J = Jo. = last = 1);.. 5

s(J+ 1Lt —1);0a = =2s(j — Lit = 1) X s(j5t — 1);b5 = =2s(j — s(i+in, g+ l+ st —h),...,

Lt = 1) x s+ Lit = 1)ibs = —s(jit = 1) x s(j + L;¢ —1); s(i =i, j — jo.l — lpit — h)) (8)

br =2s(j—1;t—1)xs(j;t—1)xs(j+1;t—1);6s = =257 (55—

1) xs(f+1;t—1); 09 = =2s(j5t — 1) x s°(j + 1;¢t — 1);010 =  whereiy, iz, j1, jo2, 11, andls denote the maximum space scale the 3-D

4s(j—15t—=1)xs2(jit—1)xs(j+1;t—=1); b1 = 4s(j—1;t—1)x  CA could possibly span antl denotes the maximum time scale the
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3-D CA could possibly span. Reducing the dimensions in (8) will yield
models for 1-D and 2-D CAs as special cases while increasing the ¢
mensions will produce models for four-dimensional (4-D), five-dimen
sional (5-D), and higher dimensional CAs.

Finding the neighborhood can now be defined as determining just t| G B
relevant or significant terms in (8) for the 3-D case and analogous {a) (b) {c} )
for other dimensions. The neighborhood can therefore be thought of
as equivalent to the model structure in nonlinear system identificatidfig. 2. Evolution of the 1-D CARule30 with four different neighborhoods: (a)
Using (8) and the 3-D case as an example, the neighborhood musR#&30 (01111 000) von Neumann; (Rule30 left-shift; (c) Rule30 right-shift;
determined from a set @it T2tV GLH2+D)(iH2 DR possible and (d)Rule30 temporal-shift.
candidate model terms. Consider, for example, a very simple 3-D CA
wherei; = i = n=p=h=L=h=1 this produceg™” — _D. Extracting the Boolean Form of the CA Rules
1 = 134217727 candidate terms. This clearly shows the complexity
of the task even for a simple 3-D case. Higher dimensions produce eve "€ polynomial form of the model can be determined using the or-
more frightening numbers and clearly show why there are no existiff¢Pgonal estimator which yields both the CA neighborhood and the
solutions to these important problems. To overcome these problemsfiedel parameters. Although the polynomial model can be used to di-
new CA-OLS algorithm is introduced below. rectly reproduce the complex spatio—temporal patterns, hardware real-

Initially using the 3-D case to illustrate the method, denote the stat@&tion of the CA may not be straightforward based on the polynomial
of the neighborhoods (i + i1, j + ji. I +11:t — 1),...,s(i — iy, j— formand it is therefore important to extract the equivalent Boolean
o l=lyit=1), ..., s(idir. j+jr. I+l t=h), ..., s(i—is, j—jo,1— rules. While |t. is straightforward to extract canonical forms [10] of
Iyst —h)}in (8) as{ui.....u, }, where the size of the neighborhood590|ea“ functions frqm truth tables constructe_d onthe bas[s of polyno-
n = (j1+ j2 + 1)(i1 + iz + 1)(I1 + I, + 1)h. Then expanding (8) Mial rules the canonical forms are often unwieldy and typically more
into the polynomial form shown in (6) yields operations than are necessary are involved. However, this problem can
be solved by using the Quine—McCluskey [10] method to extract the
parsimonious Boolean expressions from identified polynomials. The
Boolean rules extracted using the Quine—McCluskey method involves
NOT, AND, andOR operators. To obtain rules employitNT, AND,
whereN = 2" — 1, andd, ..., 8~ are a set of integers such that (9)andXOR instead, see details in [9, Ch. 1].
mapss(i, j,7; ) into {0, 1}. Note that (9) can be readily extended from
the 3-D case to be valid for all binary CAs.

The CA-OLS algorithm is derived by applying a modified
Gram-Schmidt orthogonal procedure to (9). The CA-OLS algorithm Three simulation examples are included to demonstrate the appli-
is given in the Appendix. cation of the new algorithm. Initially a simple 1-D example will be

The simple 3-D example above shows the number of possible caliscussed to show all the steps involved in a transparent manner. More
didate terms can be excessive, but simulations by many authors shiealistic 2-D and 4-D examples will then be discussed.
that often complex CA patterns can be produced using simple models.

If the appropriate terms that are significant can be selected therefore ghq dentification of 1-D 3-Site CA Rule30
remainder can be discarded without any deterioration in model preci- . .
sion or prediction accuracy and a concise CA model can be obtainedThe Spatio—temporal p{itterns generat.ed by thg evolution - of
One way to determine which terms are significant or which should &ﬂe?)O on a 200x 20.0 lattice with fqur different nelghbgrhoods,
included in the model can be derived as a by-product of the CA-OL% YO Neumann ne|ghborh00@cell(J: - Lt - 1)’(:611(J;t N
estimation algorithm and is very simple to implement. From the Apl-)’mu(], +1:# — 1)}, a left-shift neighborhoodcell(j — 2:# —
pendix, the quantityct] is defined as 1),Cell'(_] - 1;t - 1),cell(j;t — '1)}, a right-shift nelghborhoqd
{cell(j; t—1),cell(j+1;¢—1),cell(j+2;¢t—1)}, and atemporal-shift
-, M neighborhood{cell(j — 1;¢ — 2),cell(j;t — 1), cell(j 4 15t — 1)}
[ctla = 9d;; 2= calt) are shown in Fig. 2(a), (b), (c), and (d), respectively. An initial
iy 5201, 4,15 1) inspection of Fig. 2(a), (b), (c), and (d) shows that the structure of
the neighborhood corresponds to the pattern produced. The randomly
and measures the contribution that each candidate term makes todistributed triangle structures in Fig. 2(b) are simply the left half of the
updated state(i, j,/;¢) and provides an indication of which termstriangles in Fig. 2(a), whereas Fig. 2(c) is composed of the right half
to include in the model. Usinfyt] the candidate model terms can beof the triangles in Fig. 2(a). The patterns demonstrate the difference
ranked in order of importance and insignificant terms can be discardationg these three neighborhoods. The pattern in Fig. 2(d) is produced
by defining a value ofct], below which terms are considered to conby operatingRule30 on a temporal-shift neighborhood which involves
tribute a negligible reduction in the mean-squared error. The threshoklls from both time steps — 1 and¢ — 2. However, the blurred
value of|ct] for the CA model can be set to zero because the polynonage and the rotated triangles that this produces barely shows any
mial model is not an approximation but an exact representation of tresemblance to the patterns in Fig. 2(a), (b), or (c).
CA rules. The threshold value is set to zero to ensure that sufficientBecause of the special construction of CA which are synchronously
terms are included and the prediction errors are reduced to zero. Npdated using the same Boolean function over the whole lattice, the
tice that the forward-regression orthogonal algorithm [12] is used in tdata points that are available are redundant for identification purposes
Appendix, this provides gt] test which is independent of the order ofand can be extracted in two ways as shown in Fig. 3(a) and (b), respec-
inclusion of terms in the model. The structure of the neighborhoodtisely. In Fig. 3(a), data points are extracted row by row/spacewise,
therefore defined by retaining only the significdnt] terms and the while in Fig. 3(b), data points are extracted column by column/time-
CA rule can then be computed by linearly combining all the selectedse. Since each cell is synchronously updated under the same Boolean
terms with the estimated parameters. function, a change of the rows or columns when extracting the data is

s(i,j, it) =0rur + -+ 0pup + -+ Onur X - Xun  (9)

IV. SIMULATION STUDIES
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(2 0 0 0 0 O [ 1.0000 T
12 0 0 00 —2.0000
g e 1 0 00 0 0 1.0000
3 i MT=1|1 3 0 0 0 0 g = | —2.0000
300 000 1.0000
1 2 3 000 2.0000
12 3 0 0 0 0] | —1.0000 |
space space Model 1-(1))
(a) (b) [4 0 0 0 0] [ 1.0000 T
3 4 0 0 0 0 —2.0000
Fig. 3. Extracting data points from 1-D CA patterns. 300000 1.0000
MT=(3 5 0 0 0 O # = | —2.0000
5 0 0 0 0 0 1.0000
not important. Assume initially that the largest possible neighborhood 345000 2.0000
isdefined by{cell(j —2;t—1), cell(j—1;¢t—1),cell(j; ¢ —1), cell(j + 45000 0 —1.0000
it — 1), cell(j + 2;¢ — 1), cell(j + 1;¢ — 2)} and hence define the Model 1‘_(0) - - -
neighborhood vector 40 0 0 0 0 " 1.0000 7
. . . 4 6 0 0 0 0O —2.0000
a(t)y=1[s(j — 25t — 1)s(j — 1;t — 1)s(j;t — 1) 60000 0 1.0000
Xs(j+1;f—1)s(j+2;t—1)5(j+1;t—2)]1. (10) MT = 36 0 0 0 O 6= —2.0000
300 000 1.0000
The candidate model term set (MT) will initially be constructed as 34 6 0 0 0 2.0000
i i 3 4 0 0 0 0] | —1.0000 |
100000 Model 1-(d)
000 00 The terms in model 1K) represent the left-shift neighborhood be-
12 0 0 0 0 cause all the model entries are selected ffontl(j —2;¢—1), cell(j —
MT = ; 1;¢ — 1), andcell(j: t — 1)}. Notice how the CA-OLS algorithm has

correctly selected only the appropriate three cells and discarded the re-
mainder. Combining the terms with the corresponding paraméters
: the identified model describes the CA rule in the polynomial form:
1 2 3 4 5 6] s(jit) = s(j— Lt —1) = 2s(j — 23t — 1) x s(j — L;it — 1) +
s(J—=23t=1)=2s(j — 25t = 1) x s(jst = 1)+ s(jst — 1) +

where 1, 2, 3, 4, 5, and 6 denote the rows in the neighborhood vectsr(j — 2;t — 1) x s(j — 1it — 1) x s(js;t — 1) — s(j — 1;t —
For example, an entry of “4™ represents the fourth row in (10) and i) x s(j:t — 1). The terms in model 1a) represent the von Neumann
therefore associated withll(j +1;t—1), and so on. The full model set neighborhood{cell(j — 1:¢ — 1), cell(j; ¢ — 1), cell(j + 1;¢ — 1)}
MT consists ofV = 63 terms/rows. Each row in this model representwhile the terms in model 1ef correspond to the right-shift neighbor-
a candidate term which corresponds to atesml = 1,..., Nin(11) hood{cell(j;t— 1), cell(j + 1;¢t — 1), cell(j + 2;¢ — 1)}. The result
in the Appendix. For example, the first row (1 0 0 0 0 0) represents model 1-@) covers entry 6, which in (10) represents a cell at time
5(j — 2;t — 1) only while the last row (1 2 3 4 5 6) corresponds to &tept — 2, cell(j — 1;¢ — 2). Model 1-@) therefore defines a tem-
product of six states(j — 2;¢ — 1) x s(j — 1;¢ — 1) x s(j;t — 1) x  poral-shift neighborhood involvingell(j — 1;¢ — 2),cell(j, ¢ — 1),
s+ Lt—1)xs(7+2;t—1) xs(j+1;¢—2). andcell(j + 1,# — 1).

Five hundred data points were extracted from the patterns inlneach case, the CA-OLS algorithm has correctly determined the ap-
Fig. 2(a), (b), (c), and (d), respectively, and these were used to fiopriate neighborhood. Notice that the parametérsmodels 1-§),
the models. Noa priori information regarding the neighborhoodsl-(b), 1-(c), and 1-(l) are all exactly the same but that each operates on
or rules was assumed. In the simulation the threshold for the tefndlifferent neighborhood and hence produces a different CA pattern.
contribution|ct] values for the four models were all chosen as 0 anthe measured output and the model predicted output (MPO) for the
the CA-OLS estimator searched through 63 possible candidate ten8 Neumann neighborhood are compared in Fig. 4 where the MPO is
for each model. Finally, four different models were selected whidgtefined as
were associated with four different neighborhoods. The models and
tlklc(ec)lcc;rrzzsf%r)l.dmg parametefsare shown in models 1a), 1-(b), SonGi) = PG rit = Do (G — jort— 1)
Sm(J it =h)soo,8m(f — jast = 1)).

(4 0 0 0 0 0] [ 1.0000 T
; 3 g 8 g g _120%%%0 Thg MPOQ is a more strict criteria for evalu.at.ing the perforljnan.ce of.the
: : estimator than the one-step ahead prediction (OSA) which is defined
MT=1[2 3 0 0 0 0 6 = | —2.0000 as
300 000 1.0000
23 4 0 00 2.0000 R
34000 0] | —1.0000 | Sm(f3t) = flsm(f+ it = 1), sm(f — Jast = D)5

Model 1-(z) $m(j 4 Jiit = D)yevy 8m(f — jost — ).
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2 L Lit—1),celli +1,j — 1;¢—1),cell(i + 1, ;¢ — 1), cell(i + 1, j +
1;¢ — 1), andcell(7, j; t — 1), respectively.
4L
g P ﬂﬂ FMP W H D r‘ P { (4 7 9 0 0 0 0 0 07 [—1.00007
g 0.8f 8 90 000 0 000 1.0000
< 4 0 000 0 0O0O0 1.0000
2 el i 2 45 00 0 000 1.0000
E 500 00 00 0 1.0000
§ 04l _ 25 0 0 0 0 0 0O —2.0000
‘3 4 5 0 0 0 0 0 0O —1.0000
§ o2l | 279 00 0000 1.0000
§ MT=(2 9 0 0 00 0 0 0 6 = | —2.0000
oJ | J L \_J U u U I U J U 20 000 0000 1.0000
25 9 00 0 0 0O 2.0000
59000 0 O0©O00O0 —1.0000
0% 10 20 a0 40 50 _e'o 70 80 90 100 249000000 2.0000
order of data point 24590000 0 —2.0000
Fig.4. Comparison of the measured (solid line) and the model predicted output 240000000 —1.0000
(dashed line) foRule30 with a von Neumann neighborhood. 4 90000 O0O0TO0 —1.0000
14 59 00 0 0 0 0} L 1.0000 |
The comparison in Fig. 4 clearly shows that the measured output ancJ\AOdeIQ_(a')

the predicted output using the estimated model are almostcoincidentalo th d dat int tracted f the CA patt .
The dashed line follows the solid line without any deviation. ThE' ne thousand data points were extracted irom the patterns in

variance is virtually zero because the polynomial expression is not s 5and the threshold fortlﬁet_] cutoff was set to zero. The ;:A'OLS
T . . timator produced a model with only 17 rows after searching through
approximation of the CA rules but an equivalent representation. T g

7o 9 _ — 5 H
MPOs for other neighborhoods also match the corresponding measqa{%\;\;;‘:éemn;%i?;z)t :Ij;argl 52h0w51 th_at ;ﬁé éaArlgﬁgt;;eémﬁ}nTEZs
outputs exactly. For simplicity, the comparisons are not shown in th'srrectly selected cells 2, 4, 5, 7, and 9 which correspond to the

) C
paper. The Quine—McCluskey [10] method was then used to extratl . . . . .
the minimum Boolean expression from the estimated polynomial for\[/r;?n Neumann neighborhootell(i — 1, j; # — 1), cell(i, j — 151 —

for Rule30 with the left-shift neighborhood. The Boolean expression ’Ceu(z."];t = D),cell(i, j + 1t = 1), andeell(i + 1,j;¢ = 1)},
obtained was(j: ) = 5(j — 2t — 1) xs(jit — 1) 5 — 24— 1) % respectively. The MPO was exactly equal to the measured output over

s(—Tit— 1) s(j = 2t —1)%5(j — i — 1) % 5(j: £ — 1) which the data points. For simplicity, this comparison is not shown in this

. paper.
_(:orrequn(_js exactly tq the entry c_>f the Boolean expressioRui@30 Applying the Quine-McCluskey method to model @:(the fol-
in [8]. Similarly, applying the Quine—McCluskey method to model? ing final prime implicant btained:
1-(a), 1-(c), and 1-¢l) will produce correct results, respectively. owing final prime Implicants were obtained:

As(i, it — D) x50, )+ Lt —1)xs(i— 1,55t — 1)
B:s(i,j—Lit—1)*s(i,j+ 1Lt —1)x5(i— 1,5t —1)
The spatio—temporal patterns produced by a 2-D CA evolutionona  (C:5(i,j;t — 1) * s(i,j 4+ 15t — 1) *5(i — 1,55t — 1)
200x 200 lattice with a von Neumann neighborhood are illustrated in _s . . . .
. . . . D:s(i+ 1,55t — 1) s(i,j;t—1)xs5(e —1,5;t =1
Fig. 5. Assume initially that the largest possible neighborhood for this f(7 ) ! ) * 5(1. ] )x i(z ] J )
2-D rule is the 9-site Moore neighborhood. Define the neighborhood ~ £:5(#,J = 13t = Dxes(i,jst =1) x50 j + 14 = 1)

B. ldentification of a 2-D 5-Ste CA Rule

vector as F:5(i+ 1,5t — D xs(i,j— 1;t—1)x5(,5+ 1;¢ — 1)
Gis(i,j — Lt — 1) x5(i,5;t — 1) 50,5+ 1;6— 1)

a(t)=[s(i—1,j — Lit = 1) H:5(i+ 1,56 — D) sxs(i,j— Lt — 1) x50 —1,5;¢—1)
) s(i— gt = 1)s(i—1j+ Lt —1) Iis(ioj — 1t — 1) x50, jit — 1) # 56 — 1, jit — 1)
) (i — Lt — 1)s(ij 4 1ot — D)+ 1j— 1t — 1) Jis(ivj— Lt — 1) %50, jit — 1) % 8(i,j + 1;4 — 1)

X s(i+1,7it— s+ 1,5+ Lt — 1)s(i, j:t — 1)]". Kis(inj—Lit = 1)« 500, j+ Lt = 1) = s(i — 1,jst — 1)

Lis(i+1,j;t— 1) x5(i,j+ Lt —1)xs(i — 1,55t — 1)
M:s(i+1,5;t—1)%5(¢,j — Lit— 1) xs(d, 55t —1).
The initial model was constructed as M:s (i " ) 3(ing ' )xslisg )
Finally, the Boolean expression of this 5-site 2-D rule is@ficom-
1 00 0 0 0 0 00 bination of all the abovel—Af 13 items.
MT = . e .
C. ldentification of a 4-D CA
Data extracted from a 4-D 1212 x 12x 12 cellular automaton
with null boundary conditions will be used to illustrate the iden-
where 1,2,3,4,5,6,7,8,and9represetit;—1, j—1;t—1),cell(— tification. The initial neighborhood was assumed to encompass
1,7;¢ — 1),cell(i — 1,5 + 15t — 1), cell(z, j — 1;¢ — 1), cell(é, 5 + {cell(i — 1,7,L kit — 1),cell(s + 1,50, k;t — 1),cell(i,j —

12 3 45 6 7 8 9
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Fig. 5. Evolution of a 2-D CA rule with a 5-site von Neumann neighborhoo
(h)t = 60; (i) t = 70; and (j)t = 80.

LLkt — 1),cell(i,j + 1,1kt — 1),cell(i,j,l — 1.kt —
1),cell(, 7,1 + 1, k;t — 1),cell(z, 5,1,k — 15¢ — 1), cell(z, j, I, k +
1;¢—1),cell(i, 4,1, k;t — 1)}. This, in turn, defines the neighborhood
vector asu(t) = [s(i — 1, 5,1, kit — D)s(i + 1, 5,1, kst — 1)s(i,j —
1,0kt — 1)s(iyg + 1,1 kst — 1)s(4, 5,0 — 1, kst — 1)s(i, 5,0 +
Lkst—1)s(ij k=1t —1)s(isj. L k+1;¢—1)s(i, j. 1 kst —1)].
The initial model was constructed as

100000000
MT = :
123456789

where 1, 2, 3, 4,5, 6, 7, 8, and 9 repres¢aill(: — 1,1, k;t —
1), cell(i4+1, 4,1, k;t—1), cell(i, j—1,1, ks t—1), cell(d, j+1,1, k; t—
1),cell(s, 5,1 — 1, k;t — 1), cell(z, j, 1 + 1, kst — 1),cell(z, j, 1,k —
1;t—1),cell(z, j, I, k+1;¢t—1), andcell(s, 7,1, k; t—1) }, respectively.
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SR O (O I O ()

d: a)0; (b))t = 1; (c)t = 10; (d) £ = 20; (e)t = 30; (f) t = 40; (9) ¢ = 50;

V. CONCLUSION

While many authors have demonstrated that simple CA models can
produce complex spatio—temporal patterns, few investigators have
studied how to recover such models given only the data patterns. One
possible solution to this important problem has been introduced in this
study using the new CA-OLS estimator.

The new estimator exploits the observation that binary CA rules can
be exactly represented as polynomial models which collapse to rela-
tively simple forms even for high-dimensional CAs. This transforms
the problem from a nonlinear-in-the-parameters to a linear-in-the -pa-
rameters formulation. The neighborhood of the CA can then be deter-
mined using a modified orthogonal least squares estimator. Identifying
the neighborhood of the CA is critical if the underlying rules are to
be estimated and it has been shown that the term contribution test is an
efficient solution to this problem. Once the neighborhood and the poly-
nomial model parameters have been obtained, the model can then be

The [¢#] threshold was again set to zero and the number of possitifépped back to a Boolean form using the Quine-McCluskey method.

candidate models was — 1 = 511. The CA-OLS estimator produced

The only information required is to set the range of the largest ex-

amodel with only 14 rows and the associated integer parameters gif&gted neighborhood over which the algorithm searches for candidate

in model 4-6) model terms. The CA-OLS estimator then searches through all the pos-
sible terms and discards all terms below ¢ threshold to yield the
4 00 0000 0 0 - 1.0000 7 estimated model. The MPO is used as a metric of performance to vali-
600000000 1.0000 date the model.
156000000 1.0000 Several simulated exampleg show the power of the new approach
and demonstrate for the first time how CA models can be extracted
4 6 00 0 0 0 0 0 —1.0000 . . -

_ from data generated from high-dimensional CA systems.
145600000 —1.0000 Further research is required to address the case of hybrid CAs, where
160000000 1.0000 more than one CA rule applies in a pattern, and to confirm that the

MT— |} #0000 000 , |-10000 CA-OLS algorithm can be used to identify-dimensional CA rule
150000000 —2.0000 given the evolution over an + 1-dimensional space.
5 0 0 0 0 0 0 0 0 1.0000
1 45000000 2.0000 APPENDIX
4 50000000 —1.0000
5 6 000 0O0O0O0 —1.0000 A. The CA-OLS Algorithm
160000000 —1.0000 Consider the polynomial expression for 3-D CAs in (9), for example.
L1 46 0000 0 0l L 1.0000 | Denote(t1, ... . ... uy X+ X, )as(si,...,sx). Equation (9)
Model 4-(a). can then be written as
A comparison of the measured output and MPO again produced vir- s(i j,l;7) = i sa(7) x 84 =s(7) x 8 (11)

tually coincidental results showing that the correct model of the CA

d=1

has been estimated. For simplicity, this comparison is not shown in this

paper. Comparing the estimated modeb}with model 2-&) shows
that the structure in model 4 is much simpler than that in model
2-(a) although the former is extracted from a 4-D CA while the later i

wherer indicates the order of the data point and

s =16 6. --- 6n]"

from a 2-D CA. The computation time for both are approximately the s(1) = [si(1) sa2(7) -+ sn(7)]

same. It can be seen that the efficiency of the CA-OLS estimator re-
lies largely on the size of the neighborhood, that is the number of ceiguation (11) can also be represented in a matrix form as
within the neighborhood, rather than the order or dimension of the CA _
and this can dramatically simplify the problem of identifying higher s(i,j,1) =8 x 6 (12)
dimensional CA.

Applying the Quine—McCluskey method to the polynomial producedhere
from model 4-§) the correct Boolean expression of & combina- o o o o .
tion of nine prime implicants was obtained. For simplicity, the prime s(i, g, 1) = [s(i, 5, 1) s(i,5,1:2) -+ (i, 1 M)
implicants are not listed. S=1[s"(1) "2 - sTAM]" =[si - sn]
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andM denotes the number of data points in the data set. M&tgan
be decomposed &= E x Q, where

er(l) -+ en(l)
E = = [e1 e eN]
er(M) - en(M)
is an orthogonal matrix, that iy’ xE = Diag[e] xe; -+ ek xex]

andQ is an upper triangular matrix with unity diagonal elements

1 q2 qi3 -  @nN
1 q23 qda2N
Q:
1 gnvoin
1

Equation (12) can then be represented as

S(ivjal):EXQXé:Exé (13)
wheref = Qxf= [51 éN]T_
Therefore, (11) can be written as

N

s(i, j, ;1) = Zed(T) X B (14)

d=1

The contribution each ternjsq,d = 1,...,N} in (12) makes to
s(i,7,1) can then be calculated as

ctly =
et Yoy 82064 )

The sum of all théct] values will be unity so ifct] were multiplied by

2

~

3)

100 this would give the percentage contribution that each term makes

to s(4, j,1). The orthogonalization o8 simplifies the term selection

process and allows each relevant term to be added to the identified terri]

set MT independently of other terms. The parameter vectan then
be estimated by computing eaghone at a time. However, in the term
selection proces$;t], may depend on the order in whigh(7) enters
(11). A change of the position af;(7) in (11) may result in a change
of the associatefdt], value. Consequently, simply orthogonalizing the
columns inS into (13) in the order in which.(7)s happen to appear in

—
N
—

(3]

(11) may produce the wrong information regarding the corresponding[4]

contributions. To avoid this problem, the following forward regression
algorithm is used. This algorithm will forward add terms instead of
forward deleting terms and will therefore disregard the ordersthat)
enters (11).

The forward regression CA-OLS algorithm is given by the following.

1) Consider all the.(r) as possible candidates for(r). Ford =
1, N, calculate

egd)(T) = sq(7)
g _ Xty i (Dslinji i)
L . 2
Z;uzl (ng)(T))
F(d)\ 2 =M d 2
i) T (7))

Yooty 8206415 )

M@z(

(5]
(6]
(71

8

[9]

—_

[10]
(11]

(12]

Find and denote the maximum dt¢]\” as [cf]{"” =
Iuax{[ct](ld),l < d < N}. The first relevant terme(7)

is selected as”(r) and6; = 6, [ct], = [ct]\”). The
corresponding,(7) is then included in the identified model set
MT.

Allofthesq(7),d = 1,..., N, d # v are considered as possible
candidates foel” (7). Ford = 1,.... N, d # v, calculate
et (1) = sa(r) — a1 ()
5 _ ety ey (D)s(ingi L)
2 - 2
S (47m)
<\ 2 s d 2
o () 5 (£0)
ctly’ = , ,
: oLy (i)
where

4D = S ei(r)sa(7)
12 — 7 <M o5, ~
Zyzl 6%(7)

Find and denote the maximum dtt]\" as [ct]}?
max{[ct]gd), 1 < d < N,d # v}. The second term
ea(7) is therefore selected a8’ (r) = s,(7) — ¢\9 e1 (7) and
d12 = ¢\9, 8, = 89 [et]y = [ct]\). The corresponding, ()
is then included in the identified model set MT.

The procedure is terminated at thgth step either when —
ZQ’;l[ct]d < Cog (desired tolerance)y, < N, orwhenN, =
N.

From the selected orthogonal equatiori,j,/; ) =
S22 ea(r)fa, it is then straightforward to calculate the
correspondingN, parameters using fx, = On.,0m =
B — Z;:SM_H gmkbr,m = N, —1,...,1.
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