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Superresolution Modeling Using an
Omnidirectional Image Sensor

Hajime Nagahara, Yasushi Yagi, and Masahiko Yachida

Abstract—Recently, many virtual reality and robotics applica- monitoring details. In essence, catadioptric omnidirectional
tions have been called on to create virtual environments from real jmage sensors have the advantages of simultaneous omnidirec-

scenes. A catadioptric omnidirectional image sensor composed of 5| sensing and easy handling, but the disadvantage of low
a convex mirror can simultaneously observe a 360-degree field of . '
angular resolution.

view making it useful for modeling man-made environments such ! ; . .
as rooms, corridors, and buildings, because any landmarks around Besides using a catadioptric camera, another approach for ob-
the sensor can be taken in and tracked in its large field of view. taining high-resolution omnidirectional images is to rotate the

However, the angular resqlution Of. the omnidirectional image is camera around its vertical axis. Recently, Nayer has proposed
low because of the large field of view captured. Hence, the 1es0- 5 ethod to rotate the omnidirectional image sensor around an

lution of surface texture patterns on the three—dimensional (3-D) . dicular to the | is [161. We h | d
scene model generated is not sufficient for monitoring details. To axis perpendicular to the lens axis [16]. We have also proposed a

overcome this, we propose a high- resolution scene texture gener-high-resolution omnidirectional imaging system that combines
ation method that combines an omnidirectional image sequence consecutive omnidirectional images obtained by rotating an om-

using image mosaic and superresolution techniques. nidirectional image sensor around a lens axis [17], [18]. How-
Index Terms—mage mosaic, modeling, omnidirectional image €Ver, with these methods, the camera must remain motionless
sensor, SR modeling, superresolution. while recording images. Hence, these methods cannot be ap-

plied to an omnidirectional image sequence while the sensor
moves along a path.

A third method that does not involve rotating the camera is
ECENTLY, many virtual reality and robotics applicationghe use of multiple cameras. KawanigHial. constructed the
have been called on to create virtual environments frohigh-resolution omnidirectional image sensor [19] using hexag-

real scenes. An omnidirectional image sensor can observereal pyramidal mirrors and six cameras. The system can acquire
360 field of view making it useful for scene modeling. Land-a high resolution at a video-rate, however, they pointed out that
marks around the sensor can be taken in and tracked in its laggignment and calibration among each of the six cameras is dif-
field of view. ficult and not yet resolved. Further, it is difficult to build it into

Various omnidirectional image sensors have been propogsedompact system because the use of six cameras requires the

(see [1] for survey). In particular, catadioptric omnidirectionalame number of AD converters or recorders. Such a complex
image sensors using convex mirrors [2], [3] are useful f@ystem is thus difficult to handle easily.

modeling. These sensors can simultaneously capture omniditn this paper, we propose a resolution improvement method
rectional information and can continuously observe objedisr a 3—-D model generated by a catadioptric omnidirectional
while the camera moves around an environment. Another aghage sensor. The proposed method only requires an omnidi-
vantage is that the catadioptric omnidirectional image senseggtional video stream with smooth sensor motion. The method
are usually portable, and therefore an omnidirectional movi@proves the resolution of textures mapped on the geomet-
can be easily recorded while walking down a road, driving ical surface model, using image mosaic and superresolution
car, taking a train, etc. technigues, generated from an image sequence. Our modeling

Many researchers have investigated several three—dimafethod can be applied not only to an omnidirectional image

sional (3-D) modeling methods with omnidirectional imageensor but also to a standard camera. We call this concept

sensors [4]-[15]. In practice, however, the environmental modgiperresolution modeling.

generated cannot be applied to the applications mentionedany superresolution methods combining multiple low-res-

above because of the sensor’s low angular resolution, and ghgtion images have been proposed for improving resolution

image resolution of the observed surface texture is too low fi#0]-[22]. Schultz and Stevenson [23] have embedded a method
in a Bayesian framework. Cheeseman [24] has proposed a
method that utilizes parallel processing. Mann and Picard [25]
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techniques discussed above, which we call superresoluti /Object
imaging (as opposed to superresolution modeling), usua
generate a high-resolution image on the projective image ple g B>
at a viewpoint where low-resolution input images have be¢ A
captured. In contrast, our proposed method is superresolut ‘ =
on the 3-D real object surface. Our proposed method of “SyiewteZ P hosal suaed View2
perresolution modeling” directly generates a high-resolutic """ VP ‘ (A vinualviewpomy
texture that is mapped on the model. The differences betwe Sy
these two concepts are described in detail in Section .

Capel and Zisserman [26] estimated the resolution enhan i Resolution dencity
ment ratio (resulting image size) from the condition numbe
of a matrix of input images and the number of input image ® Seperesluon imaging
captured by a common video camera. This is suitable for d
ciding the number of input images. However, it cannot be d Object

= Image plane of

rectly applied to our method, because the optical specificatio Image plane of o view2
of the catadioptric omnidirectional image sensors are speci 7]
For example, its input image resolution is not constant and
greatly changed by depression angles. The resolution on ;e 2= e n ety s —gview2
planar model surface is also changed by the distance and g* e vieweor (A vinual viewpoin
ture of the model surface relative to the sensor. Profecon rom

In this paper, we define a weighting table that represents t
resolution difference between the model surface and the iny Resolution denalty Resaltion denalty
image captured by a catadioptric image sensor. The weighti
table is used to precisely align input image textures to ea... (&) Super-resoluion modeling
model surface, and then used as the criterion for selecting ing%t 1
image textures for superresolution. o

rei] Image plane of
> )

view2

=

b

B
O

y - e

~

Resolution density of virtual image with SR imaging and SR modeling.

information and continuously observe objects. If input images
are captured while the robot is moving, the position of features
for geometrical modeling is not assured in the superresolution
As shown in Fig. 1(a), superresolution imaging is thémage, because absolute position alignments among input im-
generation of a high-resolution image by projecting inputs &Jes are not required for superresolution, which requires only
a target image plane. Usually, the target image plane is fixeglative position alignment.
at one point and is selected from viewpoints Viewl where On the other hand, superresolution modeling with geomet-
input images have been captured. Here, if we set the virtuilal modeling first estimates a geometrical model and then
viewpoint View2 across the real object surface as shown @stimates a high-resolution texture on a surface model. It can
Fig. 1(a), that part of the image resolution at the viewpoifnhance a texture resolution from images with consecutive
View2 is decreasing and the distribution of the resolution iBensor motion and restrict the searching region on the matching
the high-resolution image is enlarging. This means that imaggocess, because surface positions and sensor egomotion are
resolution is localized inhomogeneously. already known by the geometrical modeling before estimating
On the other hand, superresolution modeling is the generatig high-resolution texture. We can estimate the precise egomo-
of a surface model with a high-resolution texture. Input imag&@n and geometrical model using consecutive measurements of
are projected to a real object plane in a geometrical model diggtures in omnidirectional images while the camera is moving,
superresolution is done on this object plane. Therefore, we d&nthe least squares method.
optimize the texture resolution on the object plane in the geo-Thus, we considered that superresolution modeling is suit-
metrical model as shown in Fig. 1(b). Texture resolution is bogble for combining with geometrical modeling. In this paper, we
high and also uniformly distributed. develop the superresolution modeling concept that estimates a
Here, we analyzed which combination was better, superr&tperresolution texture mapped on the model surface. Our pro-
olution imaging with geometrical modeling or superresolutioRosed method first makes a 3-D geometrical model from images
modeling with geometrical modeling. captured with arbitrary smooth sensor motion, and enhances the
superresolution imaging with geometrical modeling is th@urface texture by using the superresolution and image mosaic
the camera stops and captures low-resolution images and geffghnique.
ates the high-resolution images at each point. Then, the 3-D ge-
ometrical model is generated from the high-resolution images at
each point. For instance, to generate the correct superresolution
image, we have to capture input images by rotating the cameraThe following properties of the environment are assumed for
However, it loses the advantage that the catadioptric omnidiréctage analysis. The robot (sensor) moves in a man-made sta-
tional image sensor can simultaneously capture omnidirectiotiahary environment such as a room or a corridor in which the

Il. SUPERRESOLUTIONIMAGING VERSUS
SUPERRESOLUTIONMODELING

I1l. A SSUMPTION
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floor is horizontal and almost flat. The modeling targets ai
walls and static objects such as desks or shelves that have "
tical planes. Lighting conditions are indirect.

Input images

IV. THREEDIMENSIONAL GEOMETRICAL MODELING UsING ~ Fig. 3. Alignment of texture images.
OMNIDIRECTIONAL IMAGE SENSOR

Our method of resolution improving is for a 3-D geometricdMmage sequence. This method is based on the superresolution
model generated from consecutive omnidirectional images capodeling concept.
tured by the HyperOmni Vision omnidirectional image sensor As shown in Fig. 3(b), observed textures are not aligned pre-
[2]. Fig. 2 shows the projective relationship for HyperOmni Vicisely on the texture coordinates because the generated surface
sion. HyperOmni Vision, using a TV camera with its optical axi§1odel has observational errors. To fuse these textures, observed
aligned with the axis of the hyperboloidal mirror, is a practicdextures should be aligned precisely. We precisely adjust the tex-
omnidirectional image sensor. With this structure, we can dgire coordinates by using the template matching method shown
quire a 360-degree view around the optical axis of the cameta Fig. 3(a). Then, we estimate the high-resolution texture on
A hyperboloidal mirror yields the image of a point in space on&D model surface from omnidirectional input image sequence
vertical plane through the poitit,, and its axis. This means thatby superresolution and image mosaic. However, the resolution
the angle in the image, which can be easily calculategl/as Of input images depends on the position, height and posture of
shows the azimuth angteof the pointP,, in space (See Fig. 2). the object plane. Moreover, a catadioptrical omnidirectional
Also, itis easily understood that all points with the same azimutfage sensor has a large resolution difference corresponding to
in space appear on a radial line through the image centert@e depression angle. Since the high-resolution textures were
shown in Fig. 2. Therefore, in the image, the vertical edges in tRetimized on the target plane on superresolution modeling, the
environment appear radially, and azimuth angles don’t vary withput image resolutions also should be evaluated on the target
changes in distance and height. Estimations of the positionf@gne for image registration of the resolution enhancement.
vertical edges and the egomotion of the omnidirectional ima§f@age resolution is not constant with the low-resolution part
sensor can be achieved by monitoring the locus of the azim@hthe input image having a negative influence on the precise
angles of vertical edges while the omnidirectional image sengdignment by template matching. However, the high-resolution
is moving. By using this relation, various researchers have pfeart is more important for the precise alignment.
posed several map generation methods [4]_[7] Even with theTherefore, this method uses a resolution-weighting table
unknown motion of the mobile robot, our proposed method célpat reflects the input resolutions on the target plane for image
estimate the robot locations and generate the environmental mizgiching and image registration.
in real time [7].

Here, the point’,,(X,Y, Z) on the sensor coordinate is pro-A. Resolution Weighting Table
jected onto the image poit; at(z,y) as (1), (2),and (3, b,¢  Here, we define the texture coordinaf®(u,v) on the
are coefficients of the hyperboloidal mirror. They have rf',f‘t'orﬂarget plane (see Fig. 2). The relation betwe®(u, v) and
ships ag X2 + Y2)/a® — 22/b* = ~1 andc = (a* +b°)"/, P,(X.,Y,Z) can be represented by (4).
Heights of vertical edges are easily calculated from (2) and (3)

if the vertical edge positiongX, Y') are given. By using such a targ — Y _Y 1)
method, the 3-D geometrical surface model with all its surface X =z
texture can be generated. More details of the 3-D geometrical _x b2 — 2 5
model generation are in our previous report [7]. v=Xf (b2 + ¢2)Z — 2be/ X2+ Y2 + 22 )
b? — ¢?
V. RESOLUTION IMPROVING METHOD FOROMNIDIRECTIONAL y=Yf (02 + )7 — 2be/ X2 1 Y2 1 22 3)
VISION BASED MODELING
X ux vx cCx
Our method improves the resolution of each surface texture Y| =uluy | +v|oy |+ |cy (4)

on the geometrical 3-D model by fusing observed textures in an Z Uz vz cz
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dv
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Fig. 5. Search region for template matching.
reflect the image resolution. Equation (6) shows the weighted
correlation.
N — —
C = Z Wtr(u,v) (ft(uvv) B ft)(fr(u7v> - fr)
w.v V aftafr
Upper view N ~
th = Z WtT(u7v)(ft(u7U) - ft)
Fig. 4. Resolution weighting table. u,v
N
[U,X, uy, UZ]T, [Ux,’l)y, ’Uz]T, and [Cx, Ccy, Cz]T indicate UfT = Z WtT(u7 v)(fT(u7 ’U) - fT)
unit vectors parallel to the andv axes and the origin of the v
texture coordinate on the sensor coordinate, respectively. The _ 1 Y
resolution-weighting table is defined by the following equation: fe= N Z fe(u,)
VAT T Ay? ’
W (u,v) = VALt +ay” (5)

N
VAu? + Av? fr= %Zfr(uﬂ))
Here,(Au, Av) and(Az, Ay) are resolutions of texture and Y
omnidiréctional i)nput(image c)oordinates, respectively. The re-Wer (1, v) = We(u, v) + Wi (u, v) 6)
lation betweer{Az, Ay) and(Au, Av) can be represented by Here,f;(u,v) andf,(u,v) are the texture images at thand
the (2)—(4). We prepared the resolution-weighting table for eattte reference frames, respectivelif; (u,v) and W,.(u,v) are
of the target planes at each sensor position. Fig. 4 shows exahe resolution weighting tables at thand the reference frames,
ples of a resolution weighting table of a target plane at differerdspectively, andV is the number of pixels of target texture
sensor positions P1, P2, and P3. The top and the bottom of ifmage. The reference frame is the frame in which the average
target plane cannot be observed from the nearest sensor posthe weighting table is the highest value. Search parameters
tion P1. Black regions represent unobserved parts in the tarfiatmatching are illustrated in Fig. 8u, dv, dr, dw, d¢, anddp
plane. However, a high-resolution region (white region) also agre shifts along the andv axes, the distance from the sensor,
pears at the upper side of the target plane. On the other hathe, width of the object plane, the rotation around fheaxis
from position P3, image resolution is not so high yet a full targeind the rotation around the normal direction of the target plane,
plane can be observed. Moreover, the proposed weighting tatgepectively.
contains the sensor resolution specification relative to the de-
pression angle, because the table is derived from the projecfive Superresolution Modeling and Image Registration by
relationship. Fig. 4 shows from the sensor resolution specifid@esolution Weighting Table

tion that the resolution of the upper side is higher than that OfThe proposed method is based on concepts of superresolution
the lower. modeling. To observe a full target plane, we stitch images cap-
tured at different sensor positions. As each image is observed at
a different position, sub-pixel displacement occurs among the
In this section, we describe how to align texture images Isfitched images. The surface model and sensor positions are es-
using template matching. As mentioned before, the input imatimated by above geometrical modeling method. Therefore, the
resolutions are greatly changed relative to the position and ttesolution of the texture image can be improved on the surface
posture of target plane and the sensor resolution specificatiorodel plane by using superresolution techniques such as a back
The image resolution is not constant with the low-resolutigorojection method.
part of the input image having a negative influence on the pre-First, we decide an image size for the high-resolution texture.
cise alignment by template matching. Our template matchifgne resolution-weighting table indicates the input resolution on
method is weighted by the resolution-weighting table ttexture plane. Comparing the averages of the weighting table

B. Alignment of Texture Images
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Weight table of each frame Real texture image Estimated high-resolution

Texture image /

coordinate

e o0 “

Si

Input image

Frame i i
Observed input images 9« Simulated input images 95
. s Fig. 7. Superresolution process by back projection method.

TABLE |

RESOLUTION IMPROVEMENT AGAINST THE MODELING ERROR
Target plane

) . ) ) o Standard deviation of locus error PSNR
Fig. 6. Selection of input frame based on resolution weighting table. Model(mm] _ Sensor{mm] _ Pitchingldeg ] (dB]
of the whole texture plane at each frame, we use the highest 00 00 00 H
average of the weighting to decide the image size for estimating 300 150 0.0 b
high-resolution. The coefficient of resolution magnitude ratio 100.0 30.0 0.0 40.7
multiplied by the average weight was estimated on preliminary 200.0 60.0 0.0 19.7
experiments. 100.0 30.0 2.0 36.0

As shown in Fig. 6, the object plane is divided into a particular Single input 25.0

cell size. All resolution-weighting tables corresponding to each
cell are compared. The magnitude of the weighting table and the
frame number of the cell with the highest magnitude are memaeans the contribution @; by P;. c is a constant normalizing
rized. If the magnitude of the weighting table so chosen is lowfzctor. The kernel is calculated from (7) by a voting algorithm.
than a certain threshold, the highest of the remaining framPs, . is the set ofP; that has an effect of?;. This superreso-

is selected. Until the sum of the selected resolution weightsligion method can simultaneously perform not only superreso-
higher than a particular threshold, other frames are selected. Titéon but also blur restoration.

selected frames are then used for superresolution. We decide

the adequate image size for the high-resolution texture and reg- VI. SIMULATION

ister the input images at each cell to have uniform input image . . .
informatior?througgh the target plane by this procedurr)e. supgr--rhe proposed method was evaluated by simulation. The size

resolution by back projection is done iteratively. The process%the target plane was:2 2 m. The sensor was setin a2 m
described in (8) and illustrated in Fig. 7. square area at random. Distances between the target plane and

the sensor were from 0.5 m to 2.5 m. The sensor height was

gr(P;) = Z fn(pt)hPSF(Pt) (7) 1.28m.Tonumerically estimate the resolutionimprovement, we
P, used the peak signal noise ratio (PSNR) between the resultant

high-resolution texture and the ideal texture image.

FrN Py = f7(Pr) + Z (g1 (Ps) Table | shows PSNR results comparing the proposed method
Pi€U, Py p, from 25 input images with the bilinear interpolation from a
. (h?gfp_)z single input. In this simulation, we assigned an estimated error
= 95 (Ps)) . BP (8)  tothe sensor and the target edge positions. For example, (model

c y - hp s Do 2o
2r €O Pisp TP 100, Sensor 30) indicates the situation of a 100 mm random error

WhereP, andP; are pixels on texture and input image coorto the model position and a 30 mm random error to the sensor
dinates, respectively:"(P;) is the estimated texture afterit- position. PSNRs were increased against the single input result
eration on the texture coordinateg.(P;) is the predicted input in cases where the locus errors of the model and sensor were
image simulated frony™(P;) as shown in (7). Heréh"SF is  within 100 and 30 mm, respectively. The result was declined
the optical relation of HyperOmni Vision defined by the pointvhen the errors were 200 and 30 mm. For this reason the tem-
spread function (PSF). The PSF and the resolution specifiggate matching failed because of its large locus errors. However,
tion of the sensor were analyzed in [17], [18]).(P;) is a real it is sufficient to apply to a real scene, because the locus errors
input image. As shown in (8), iterative estimation is done untitere within 100 and 30 mm in experimental results [7]. More-
the difference between the predicted input image and the reskr, in practice the inputimages have a pitching noise when the
inputimage is minimizedL,‘%fPZ_, is a back projection kernel thatimages are captured by the robot. The fifth line in Table |
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Fig. 8. Resolution improvement across the number of input images.

Fig. 10. Result of geometrical surface model.

(a) Freme 00 (b) Frame 08

Fig. 9. Experimental environment.

shows the result where the simulated input images have a
deg pitching noise. The result was better than the single ing}
case. From these results, we confirmed that our method co |
improve image resolution and was robust enough to estima
position error of both the sensor and the model.

The proposed method uses the weighting table for templ:
matching and for the registering process. Fig. 8 shows the PS |
against a number of input images for resolution improvemel}
The solid and dotted lines in Fig. 8 indicate the results with ar
without using the weighting table, respectively. In a comparisc
of cases using and not using the weighting table, there are no Target plane
ferences if less than ten images are used. However, after ak
20 frames, the PSNR converged at approximately 39.5 dB. Tl Frame 00 Frame 08 Frame 11
shows that the use of the weighting table is effective for in
proving resolution.

(c) Frame 11 (d) Frame 24

VII. EXPERIMENTAL RESULTS

An experiment was carried out using a real robot syste
(Nomad200) with HyperOmni Vision. The experimental envi
ronment was a corridor in a building as shown in Fig. 9. Threc
hundred and fifty input images were captured while a hum%. 11. Example of input images for resolution improvement and sensor
operator controlled the robot. Edges not needed for geometrigation.

Frame 24
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u_ [pix/mm]
0.3

\ v

Fig. 12.  An example of resolution weighting table.

\ \

Fig. 14. Texture images transformed from a single image (Left: frame 05,
right: frame 24).

(a) Proposed method

M T

Fig. 13. Result of high-resolution texture and the number of images
resolution improvement (Left: High-resolution texture with proposed metho
right: the number of registered images for resolution improvement).

(b) Single input texture from frame 05

modeling were eliminated by hand. Fig. 10 shows the results
the geometrical surface model.

The input images around the target plane were selected fr
the 350 input images. The maximum number of textures for
perresolution was 25. Fig. 11(a)—(c) and (d) show the omni
rectional inputimages at frames 00, 08, 11, and 24, respectiv
Each observed position relative to the target plane is shown
Fig. 11(e). Note that these input images were reversed owing (c) Single input texture from frame 24
the optics of HyperOmni Vision being composed of a reflective
mirror. Fig. 12 shows the resolution weighting tables at ea&#g: 15 Magnified image in part of texture.
frame.

As frame 00 was captured at the left side of the object plartbe image with the highest resolution of the inputimages. Frame
the weight at the left upper part was high. As frame 08 wasl shows the widest field of view in the input images. From
captured at the middle front position of the object plane, ttike aspect of the field of view, we can confirm the effect of the
weight at the center upper part was high. From these results, ith@ge mosaic because the widest field of view is maintained.
resolution weighting tables indicated the resolution differendaurthermore, it is interesting that the resolution of Fig. 15(a) is
corresponding to that part of the object plane and the sensagher than that of Fig. 15(b), even if frame 05 has the highest
position relative to that plane. weighted image on the focused area. The sampling artifact is

Fig. 13 shows the results of the resolution improved imagkecreased and the edge lines are smoother on the high-resolu-
and also the number of input images used for resolution imien image. This result shows that the effect of superresolution
provement. In this figure, many input images (white region) aimproves the resolution by fusing the information from mul-
used at the bottom of the output image. Two texture imagestiple sub-pixel displaced images. Fig. 16(a) and (b) show re-
Fig. 14 were transformed from the input image at frames @bilts of the magnified high-resolution images with and without
and 24, respectively. Fig. 15(a)—(c) show a magnified image tbie weighting table for template matching and image registra-
Figs. 13 and 14, respectively. The texture image at frame ORiisn, respectively. The edge lines are discontinuous and blurred




614 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 4, AUGUST 2003

an omnidirectional image based geometrical modeling. We
explained the distinction between superresolution imaging and
superresolution modeling, and discussed that superresolution
modeling is more suitable for application with geometrical
modeling. The proposed method improves the resolution of
textures mapped to a geometrical model by using superresolu-
tion modeling. High-resolution textures can be made from the
input image sequences used for the geometrical modeling. Our
resolution-weighting table was used for precise alignment of
texture images, and was effective for improving resolution. We
confirmed the improved resolution of texture images in both
simulation and experimental results. The proposed resolution
improvement method can also be used with other geometrical
modeling methods, and with other omnidirectional image
sensors with convex mirrors such as paraboloidal ones. In this
paper, we show the prototype of a superresolution modeling
I o . ) .. .system. However, each process needs to be studied more
Magnified high-resolution images using and no using the Welghtlné% . .. .

refully and the algorithm optimized. For instance, we used a
template marching scheme to align the input texture images, but
a gradient descent alignment method would be more efficient
for computational costs. What kind of matching method is most
suitable for superresolution modeling needs considering. This
is area we intend to address in the future.

(a) Using the weighting table

(b) No using weighting table

Fig. 16.
table.
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