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Abstract— Traditional Genetic Programming randomly com-
bines subtrees by applying crossover. There is a growing interest
in methods that can control such recombination operations in
order to achieve faster convergence. In this study, a new approach
is presented for guiding the recombination process forGenetic
Programming. The method is based on extracting theglobal
information of the promising solutions that appear during the
genetic search. The aim is to use this information to control
the crossover operation afterwards. A separate control module is
used to process the collected information. This module guides the
search process by sending feedback to the genetic engine about
the consequences of possible recombination alternatives.

I. I NTRODUCTION

It is clear that the random recombination used in traditional
GP can easily disturb the building blocks. An attempt based
on determining the beneficial building blocks and preventing
them from disturbance during the recombination operations
can be helpful. However, for the deceptive class of problems
such an approach is questionable. The interaction between the
partial solutions is high for these problems. In other words
the contribution of a subpart of a chromosome to the overall
fitness depends on the configuration of other parts. The global
meaning of finding a possible solution goes beyond determin-
ing isolated, non-interacting building blocks and bringing them
together.

In this study, a genetic search system which can deduce
beneficial knowledge from its own experience is designed.
A different approach which focuses on a new kind of ab-
straction on the structure of the chromosomes, is presented.
A new representation is used for this scheme. The proposed
representation reflects the characteristics which are important
in denoting the overall organization of a chromosome. The
information obtained by using the new representation is named
asGlobal Information. The aim is to increase the performance
of GP in the deceptive domain, by extracting the knowledge
of what it is to be good globally and performing the right

crossover operations which would keep the search among the
localization of well-fit elements afterwards.

The proposed method has been applied to two different real-
world domains namely theContext-Free Grammar Induction
and the N-Parity Problem. Both of these domains can be
considered highly deceptive. Traditional GP has exhibited
quite a low performance for both problems. Furthermore, a
tunable benchmark problem is defined and our approach is
tested on different instances of this problem.

In the following section an overview of various approaches
in the area are given. In section III our approach is presented
in detail. In section IV the application of our approach to CFG
induction is given. Then, in section V, the N-Parity problemis
analyzed in the light of our approach. In section VI, the results
obtained on the benchmark problem are presented. In section
VII, statistical tests are presented which verify the performance
increase obtained. Conclusions and discussions are presented
in the last section.

II. RELATED WORK

Various techniques have been proposed in order to increase
the performance of GP. But a significant group of researchers
focuses on controlling and guiding the search process in GP.
Recombination in traditional GP is random and therefore
researchers have been mainly interested in controlling this op-
eration. The aim is to perform more intelligent recombination
that would increase performance.

For instance [7] proposes a method calledRecombinative
Guidance for GP. The method is based on calculating the
performance values for subtrees of a GP tree during evolution
and then applying recombination operators so that the subtrees
with high performance are not disturbed. On the other hand
[23] uses a knowledge repository which is expected to guide
the search towards better solutions. The knowledge repository
collects code segments from the genetic population together
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with some associated information like fitness, number of
occurrences, depth and so on. [23] proposes a method to
calculate a single score for each segment that would reflect its
overall contribution to the current task. The evolution proceeds
by adding new code segments with high performance to the
knowledge repository and excluding the ones which are subject
to performance loss.

It is possible to find other studies where the aim is to control
recombination. [22] uses a context free grammar to control
crossover and mutation and [4] proposes a method which tries
to preserve the context in which subtrees appear in the parent
trees before the crossover operation.

Similar approaches trying to control recombination opera-
tors can be found in the area of Genetic Algorithms, too [2],
[15], [18].

The attempts presented above are usually based on deter-
mining the important building blocks and preventing them
from being disturbed by the recombination operations. How-
ever, [17] states that for some functions, even if it is possible to
decompose the function into some components, the subcom-
ponents could interact. In such a case it becomes impossible
to consider each subfunction independently, optimize it and
then obtain the optimum by combining the partial solutions.
For this set of problems it is clear that an attempt based
on determining building blocks is not expected to increase
performance significantly.

III. E XTRACTING THE GLOBAL INFORMATION

A. General Framework

GENETIC ENGINE

CONTROL MODULE

Fig. 1. The dual structure proposed.

The method that will be used for control of the crossover
operation is based on theglobal informationof the chromo-
somes. In order to process this information, we have designed
a new module called theControl Module. Figure 1 displays
the dual structure of our system. The genetic engine, which
can be considered as the base structure, performs the standard
genetic search. The control module, as a super structure, keeps
an eye on the search carried out by the genetic engine. It
focuses on the global information of the chromosomes and
performs meta-level learning at certain periods to determine
what is good globally. Once the first learning process has
taken place, the control module starts sending feedback to the
genetic engine about the consequences of possible crossover
operations.

It is considered that the frequency of the elements used and
the knowledge of how they are distributed in the chromosome
might contribute to the global picture of the structure at hand.
It can be claimed that these two forms of information are
quite critical in terms of forming the global solution. What
is more, traditional GP is not capable of analyzing such
information. The frequency information is important, since
using an element more or less than a certain number of times
might be critical in terms of building the global solution. The
position of the elementson the tree is an another critical factor
in terms of the solution. The contribution of an element in the
tree might depend on the distribution of the other elements.So,
it can be claimed that by using these two forms of information
it becomes possible to analyze the dependencies that might
exist in different parts of the solution.

The learning will be carried out on feature vectors that
reflect this global information about chromosomes (trees).
The feature vectors are obtained by a mapping process that
determines what is considered as global to a tree. Before going
into the details of the mapping, it is worth taking a closer look
at the importance of such global information processing in the
GP search.

In a genetic search, each individual (structure) in the popu-
lation receives a measure of its fitness based on a defined ob-
jective function. Selection mechanism focuses on high fitness
individuals in order to exploit fitness information. Recombina-
tion and mutation operations perturb those individuals in order
to provide general heuristic for exploration. However, in order
to achieve an efficient exploitation, the search space should
be continuous. That is to say, chromosomes similar in terms
of shape and size should have (mostly) similar fitness values.
In such a case, it becomes easier to proceed towards better
solutions throughout the crossover operation. However, for the
deceptive class of problems the picture is quite different.Here,
the interdependency among the subparts of a chromosome is
the most important aspect. This property makes the fitness of
recombined chromosomes fragile during crossover. A small
change on the chromosome might be hazardous or beneficial
in terms of the global dependencies that should exist in the
chromosome. Hence, the fitness value can change dramatically
during recombination. If we could use a function to denote the
similarity of chromosomes, we could observe the following
situation for the majority of the chromosomes in the search
space.Stru
tually Similar(C1; C2) 6=) Fitness Alike(C1; C2); (1)

where C1 and C2 are two non equal chromosomes.Stru
tually Similar stands for a boolean function that
would determine if two given chromosomes are similar in
terms of shape and size.Fitness Alike is a boolean function
that would check if the fitnesses of two chromosomes are
alike or not. With an increasing number of chromosomes, that
does not preserve the mentioned regularity, it becomes more
difficult to obtain an efficient genetic search. On the other
side, even for deceptive problems, some similar chromosomes
would still demonstrate regularity in terms of their fitness
values. However, the similarity in terms of shape and size
is not sufficient condition for such regularity in the deceptive
domain. Hence, there should be other aspects to be considered
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in order to achieve alike fitness values. The situation can be
described as followsStru
tually Similar(C1; C2) ^  (C1; C2) =)Fitness Alike(C1; C2): (2)

In this implication (C1; C2) represents the function that
denotes the missing aspects, which were not taken into con-
sideration by the standard procedure. The main proposal of
this study is that an approximation for these extra aspects
can be formulated by focusing on the global structure of the
chromosomes. The necessary information is extracted from
the chromosomes by a mapping process from the set of
chromosomes to a set of feature vectors.

In general, this mapping can be defined asf : C 7! F ; (3)

whereC is the set of chromosomes andF = X1
X2
:::
Xn.
Here,Xi 2 fZ ;Q;R; Eig, whereZ is the set of integers,Q
is the set of rational numbers,R is the set of real numbers
andEi is an ordered set of features.

Then, by using a learning algorithm, the aim is to induce
a boolean function' which would perform the following
mapping. ' : F 7! fTrue; Falseg: (4)

The learning algorithm would use a training set consisting
of elements inF and the induced function' would divide
the space into two parts. Points having the valueTrue would
correspond to chromosomes with high fitness values and the
ones with valueFalse to low fitness elements. Hence we can
write  (C1; C2) 4= h'(f(C1)) ?= '(f(C2))i (5)

where is the boolean function in Formula 2. The above
formula denotes that if the points corresponding toC1 andC2
are in the same region ofF according to the induced function', then we can conclude that the other condition needed
to achieve the fitness alikeness is satisfied. This is general
framework which can be used to increase the performance of
the genetic search especially in a deceptive domain.

The critical decision about the formalization is the choiceof
the mapping functionf . Different alternatives exist depending
on the structure of the chromosomes used or the feature set
aimed to be extracted throughout the process.

To define this mapping, we introduce a new similar-
ity measure on the chromosomes, namely (statistical-spatial)SS Similarity. As the name implies, this new similarity
measure is based on the statistical and spatial characteristics of
the chromosomes. These characteristics are defined to be the
collection of the frequency and positioning information ofthe
terminal-functional elements that appear in the chromosome.
In this domain,SS Similarity will serve as the the function mentioned in implication 2 of this domain. For the GP
domain of interest, the claim of this study turns out to be

Stru
tually Similar(C1; C2) ^ SS Similar(C1; C2) =)Fitness Alike(C1; C2):
(6)

By this implication, it is claimed that, for the deceptive
problems, if two chromosomes are similar in terms of their
statistical and spatial characteristics in addition to their shapes
and sizes, than it is possible to expect an alikeness between
their fitness values too. We will experimentally prove this
claim in several testbeds. Note that the crossover operation
itself takes care ofStru
tually Similar(C1; C2) (based on
the size and shape of a chromosome). So, an extra testing
mechanism is needed to clarify if theSS Similarity is
destroyed or not during the genetic process. The mapping
process used to extract the statistical and spatial characteristics
of the chromosomes is defined in the following paragraphs.

As the chromosome of GP is a structured tree which can
be defined as a tupleT (V ; E) whereV is a set of vertices andE is a set of edges with some special constraints. We propose
the following choice forf and will call this choicef̂ .f̂ : T (V; E) 7! Qn: (7)

Note that the vector spaceF defined in Formula 3 has been
chosen asQn for this study. The dimension of this space
denoted byn is set asn =j Terminal Set j + j Fun
tion Set j; (8)

whereTerminal Set and Fun
tion Set are the two sets
consisting of the terminal and non-terminal elements used for
the GP search. Given a treeT (V;E), if�f̂(T (V;E))�i = xi (9)

wherei = 1:::n andxi 2 Q, then there exists a terminal or
a function element in treeT which would have the frequency
and position information denoted byxi. The integer part ofxi specifies how many times this element is used in the tree,
namely the frequency of that element.

On the other hand, the fractional part ofxi holds the position
information of the element. This is defined as the sum of the
depth values of all occurrences of the element in the tree.
This depth summation is transformed into a fractional value
by using a multiplicative constant.

The presentedf̂ has a simple formalization about the
global organization of the tree and does not have a heavy
computational load. The following can be mentioned aboutf̂ .� Each terminal and function element is mapped to a base

vector.� By using a bottom up construction, it is possible to obtain
a single vector for the whole GP-tree.

A leaf node is only mapped to its base vector while the
vector for an internal node is obtained by adding the vectors
of its children plus the base vector corresponding to it. By this
procedure, the frequency information of each element is held
in a different component of the formed vector, as of the form
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of an integer. The depth information of the same element is
stored as the fractional value of that rational.

Mathematically speaking, letP (C1; C2; :::; Ck) be a subpart
of a chromosome, whereP is an internal node andCi is a
child node connected to this parent. The vector that would
correspond toP can be obtained using the following formula.VP = VPbase [1 + 
0 � depth(P )℄ + kXi=1 VCi ; (10)

whereVCi is the vector corresponding to childCi and 
0
is the constant used to transform the depth summation into
a fractional value. Here,
0 � 1 and the constant has to be
chosen such that
0 � 24MAXl2TF 0� X8node3Label(node)=l depth(node)1A35 � 1; (11)

whereTF = Terminal Set[Fun
tion Set. The inequality
states that the multiplication of
o with the maximum possi-
ble depth summation should stay well below1 so that the
position information would not interfere with the frequency
information.
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Fig. 2. A sample chromosome.

As an example, consider the tree in figure 2. The function
and terminal sets areF = f+;�; �; =g and T = fXg. The
base vectors would be:� V+ = [0; 0; 0; 0; 1℄� V� = [0; 0; 0; 1; 0℄� V= = [0; 0; 1; 0; 0℄� V� = [0; 1; 0; 0; 0℄.� Vx = [1; 0; 0; 0; 0℄.

The dimension of the vectors, namely5, is determined as the
total number of function and terminal elements:j F j + j T j.

For the tree in Figure 2, the vector construction mechanism
will be as follows. The base vectors are as specified above.
The three different occurrences of the terminal elementX are
labeled as(I); (II) and (III). SinceX(I) andX(II) have
the same depth value, their vectors will be the same. This
vector would be[1:02; 0; 0; 0; 0℄. The vector corresponding
to X(III) will be [1:01; 0; 0; 0; 0℄ due to the depth value
of 1. According to Equation 10, the vector of0+0 will be[2:04; 0; 0; 0; 1:01℄. Finally, the vector corresponding to0�0
which would be the vector of the whole tree, can be obtained
by using the vectors of0+0 and X(III) this time. Hence,V� = [3:05; 1; 0; 0; 1:01℄. Note that, each dimension of this
vector provides information about the usage of a terminal ora
function element. For instance the first dimension is reserved
for the terminal elementX . The value in this dimension
denotes that the terminal element occurs three times and the
sum of the depths of these three different occurrences is five.

On the other side, the second dimension denotes that0�0
operation is only used once as the root of the tree.

The constant value that is used to transform the depth value
into a fractional one is0:01. However, if the sum of the depths
exceeds100, depth and frequency information will interfere
with each other. If this is possible, a smaller constant has to
be used. At least, it should be guaranteed that the number of
such ill formed vectors is kept small enough that the learning
process is not affected.

Also note that different chromosomes can be mapped to the
same vector. However, this does not contradict our assumption
since different elements in the base structure could be similar
in terms of the super structure.

B. Implementation of the idea
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Fig. 3. Interaction between the Control Module and the Genetic search.

The interaction between the genetic engine and the control
module is as follows. For each chromosome in the population,
the corresponding vector is formed and sent to the control
module together with its fitness value. The control module
collects the vectors and fitness values for a certain period
of generations, which we call thelearning period. Then the
average and the standard deviations of the fitness values are
calculated.

The control module forms the training set using those
elements whose fitness values deviate from the average more
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than the standard deviation. Those with positive deviations
are marked as positive examples and the others as negative.
The “C4.5, Decision Tree Generator”[20] is used to generate
the abstraction over the training set. Then, for each crossover
operation to be performed, the genetic engine sends to the
control module three different alternative crossover points. The
control module predicts if the alternative offsprings willbe in
the positive or the negative class by using the decision tree
generated byC4.5. The best alternative is chosen by the ge-
netic engine and the learning process is repeated periodically.
The best case would be finding out crossover points which
can produce two positive-class offsprings. If this cannot be
achieved, certainly the best alternative would turn out to be the
operation which produces one positive-class offspring. Lastly,
if no positive class offspring could be achieved by all of the
alternatives, crossover points are determined randomly. Also,
note that the use of three alternatives is an empirical choice.

IV. TESTBED1 : CONTEXT FREE GRAMMAR

INDUCTION

Natural language sentences have been used in order to form
the training set for the CFG-induction problem. The training
set consists of21 positive examples and17 negative exam-
ples. The sentences formalize a subset of English including
sentences consisting of structures likeNP; V P andPP . The
Noun phrase(NP ) is quite simple and consists of a determiner(D) followed by a noun(N) or compound noun. On the
other hand, the verb phrase(V P ) can be intransitive, transitive
or ditransitive and the prepositional phrase(PP ) could be
attached to aV P or to anNP . The aim is to induce a CFG that
can parse the positive examples and reject the negative ones.
Each chromosome in the population is a candidate grammar
and the details of this representation can be found in [11].

The problem can be considered as a highly deceptive one. It
is possible to divide a grammar into subparts like NP, VP or PP,
however these subparts do not have clear borders. Overlapping
exists due to the fact that NP can be a part of VP and PP.

The fitness function used is the standard one. For grammarG, if S is the set of sentences consisting of the positive
examples thatG cannot parse and the negative examples thatG parses, then the fitness ofG is defined as:F (G) = XSi2S SENTENCELENGTH(Si) (12)

So the aim is to minimize the fitness function. For the test
data used, the worst fitness for a grammar could be243 which
is the sum of the length of all sentences both in the positive and
the negative set. And the best fitness is, of course, zero which
can be achieved when a grammar parses all of the examples
in the positive set and rejects all of the negative set.

The grammar evolved is subject to only one restriction.
The number of right hand side elements in a grammar can
be at most two. The terminal and function sets areT =fD;N; V; Pg and F = fF1; F2; :::; F10g, whereFi can be
used as a variable in an evolved grammar and the terminal
elements denote the syntactic categories of the words used
in the training set, namely determiner(D), noun (N), verb

(V ) and preposition(P ). Considering the restriction specified
above each element of the function set can have one or two
arguments.

The mapping process described in section III is used to form
the vectors for the control module. Since the total number of
elements in the function and the terminal set is14, the vectors
will be formed inR14.

For the first trial the learning period has been set as30. The
genetic parameters used for the trials are as follows:� Population size= 100� Crossover at function point fraction= 0:1� Crossover at any point fraction= 0:7� Reproduction fraction= 0:1� Mutation fraction= 0:1� Number of Generations= 5000� Selection Method: Fitness Proportional.
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Both the controlled search and the straightforward applica-
tion of GP were run using8 different random seeds. Certainly,
the random seeds are kept same for each method. Surprisingly,
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it was observed that the controlled search performed worse
than the straightforward application. It seems that the infor-
mation sent by the control module to the genetic engine was
misleading and directed the search to a local minima, resulting
a performance worse than random crossover. An increase in
the performance was obtained with simpler data and with a
smaller number of function elements. The details of this initial
attempt can be found in [11]. The main difference with this
initial attempt is the total number of function and terminal
elements used. This total number is14. It is thought that the
learning period of30 might be too low for making reasonable
abstractions over vectors with this dimension. On the other
hand, it was observed that the decision trees induced for this
case were simple and contained less information. Thereforeit
was decided to increase the learning period.

Figure 4 presents the comparison with basic GP when
the learning period is increased to200. Again the results
denote an average of8 runs with different random seeds.
The performance of the controlled search clearly increased,
compared to the trial with a learning period of30. However,
it was still not the case that the controlled search outperformed
the straightforward application.

The increase in the performance parallel to the increase
in the learning period was however, encouraging. Therefore
another trial was carried out, this time with a learning period of500 generations. Figure 5 presents the best fitness averages ob-
tained in the new trial, together with the confidence intervals.
This time the average of80 different runs were used in order
to increase the reliability of the result. As can be seen in the
figure, the desired performance increase was obtained. From
this experiment, it can be concluded that the learning period
is a critical parameter of the proposed system; and setting it to
a small value may even worsen the performance compared to
ordinary GP. Significance in performance increase starts with
a learning period of500 generations.

V. TESTBED2 : N-PARITY PROBLEM
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The N-parity problem was selected as the second to analyze
our approach. As is well known, in this test problem, the aim is
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search. The learning period is500. Number of Sample runs is45
to induce a function which takes a binary sequence of lengthn
and returns true if the number of ones in the sequence is odd,
and is false otherwise. The function would consist of internal
operatorsAND;OR;NAND andNOR, [12].

The problem is relevant to our purposes as it is highly
deceptive. [3] states that the problem quickly becomes more
difficult with increasing order. He also notes that flipping any
bit in the sequence inverts the outcome of the parity function
and states this as a fact to denote the hardness of the problem.

The 5-parity problem was chosen for the test cases since
[3] denotes that GP is unable to provide a solution to it.

The function and the terminal sets areF = fAND;OR;NAND;NORg and T =fX1; X2; X3; X4; X5g. T represents the binary input
sequence of length five. The number of possible input binary
sequences is32 for the 5-parity problem. The fitness function
simply adds a penalty of one if the induced function returns
the wrong answer for an input sequence. Hence, the fitness
value ranges between0 and32.

The genetic parameters used for the trials were as follows:� Population size= 100� Crossover at function point fraction= 0:1� Crossover at any point fraction= 0:7� Reproduction fraction= 0:1� Mutation fraction= 0:1� Number of Generations= 20000� Selection Method: Fitness Proportional.

The first test case was repeated using a learning period of30. Similarly, 8 different runs were carried out with various
random seeds both for basic and controlled GP. The results
obtained were consistent with the CFG-induction problem.
Again the controlled search exhibited a worse performance.
Considering the total number of terminal and function set
elements, which is9, obtaining such a performance was not
surprising. Therefore, for the second test case a period of200 generations was used. The results of this test case are
presented in figure 6. Again the results are consistent with the
results obtained for CFG-induction. The controlled searchcan
compete with the straightforward application but still cannot
outperform it. A test with a learning period of500 generations
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was carried out and the results are presented in figure 7. Again,
the number of sample runs is increased for this successful
case and the average of45 different runs are presented for
this learning period, together with the confidence intervals.
This period is sufficient for the 5-parity problem too and the
performance increase is outstanding.

VI. D ETERMINING THE L IMITS OF OUR APPROACH

In the previous sections the method was tested on two real
world problems. Obviously obtaining performance increase
in only two domains is not sufficient to claim a general
improvement for all deceptive problems. In order to get more
insight into the contribution of the control module, it was
decided to use a tunable benchmark problem. It was hoped
that applying the method to different instances of the problem
would confirm that the significance of the method increases
as the problem is made more deceptive.

A. Choosing a Benchmark Problem

Not so many benchmark problems have been proposed in
the area of GP. The benchmark problem proposed in [19] is
notable since their formalization shares some characteristics
with the Royal Road Problem. This is a commonly used
benchmark problem for tuning the genetic parameters in the
field of GA [8]. The formalization in [19] is based on the
definition of a “perfect tree” of some depth. For instance a
level-a tree is perfect when its root is the functiona with a
single child. Similarly a perfect level-b tree’s root should be
functionb having two perfect level-a trees as children, a perfect
level-c tree will have three perfect level-b trees connected to
root 
, and so on. The terminal set consists of a single elementx. Note that the series of functionsa; b; 
; d::: are defined with
increasing arity. The raw fitness of such a tree is defined as
the score of its root. On the other side the score of each
function is calculated by adding the weighted scores of its
children. The weight is a constant larger than one (bonus) ifa
child is a perfect tree of the appropriate level. When the child
is not a perfect tree, the weight turns out to be a constant
smaller or equal to one (Penalty or Partial Bonus) depending
on the child’s configuration. It is suggested that perfect trees
of different depths can be used as benchmark problems for
GP.

The proposed definition in [19] has certain drawbacks. Our
main focus is to be able to control the degree of deception
in the problem. Deception usually appears as an outcome of
Epistasis. That is the interdependency among the subparts of
the chromosome should have an influence on the global fitness
of the chromosome. However, the formalization provided by
[19] enables each child to contribute to the global fitness inde-
pendent of other children. What is more, since the functions
are defined with increasing arity, the search space increases
rapidly for high levels. The problem becomes too difficult
after leveld and e. On the other hand, levelsa, b and 
 are
too simple. It is possible for the solution to appear in the
initial random population in these levels. Lastly, more than
one constant is used in [19] and this makes the definition
unnecessarily complicated.

B. A New Benchmark Problem

Considering the drawbacks mentioned in the previous sec-
tion, it was decided to simplify and reorganize the definition
of a perfect tree. The aim is to obtain a tunable benchmark
problem where epistasis can easily be controlled. The new
perfect tree is defined as a full binary tree of some depth.
The function set consists ofn functions with arity two(F =fF1; F2; ::Fng). The terminal set consists of a single terminal
elementt, (T = ftg). The raw fitness of a tree is again defined
as the score of its root. The fitness of a terminal node is simply
defined as1. The fitness of an internal node is defined as the
sum of the fitnesses of its two children. The two constraints
used to create epistasis for the problem are the following.

When the children of an internal node are not terminal
elements:

(i) The index of the parent function should be smaller than the
index of its children.

(ii) The index of the right-hand child should be larger than the index
of the left-hand child.

Based on these constraints, the fitness function for an
internal node is defined as:f(P ) =8><>: f(C1) + f(C2) (i)Cepis � f(C1) + f(C2) (ii)f(C1) +Cepis � f(C2) (iii)Cepis � f(C1) + Cepis � f(C2) (iv) (13)

In equation 13, part(1) is chosen if both of the children
are terminal elements or none of the constraints are violated.
If the first constraint is violated by any child, the fitness of
that child is multiplied with a constant smaller than one. This
constant is called theepistasis constant(Cepis). Parts(2) and(3) in equation 13 reflect this situation. Lastly, part(4) is used
when both of the children violate the first constraint or when
the second constraint cannot be achieved.

These two constraints create interdependency among the
subparts of a chromosome. When the epistasis constant is
decreased the interdependency increases. Hence it becomes
impossible for a subpart of the chromosome to contribute
to the global fitness independent of other parts. A well-fit
chromosome can easily be ruined when a node that violates
a constraint appears after a recombination operation. Hence
fitnesses of similar chromosomes might differ remarkably and
the search space becomes discontinuous. In addition to this,
when the function set is kept small, it becomes more probable
for the search to get stuck in a local minima. Since the
index of the functions should increase as you go down in a
chromosome, a wrong choice close to the root might make it
impossible to form a perfect tree at all.

C. TESTBED3 : The Benchmark Problem

For the testing phase the function set is fixed asF =fF1; F2; :::; F8g and the terminal set isT = ftg. Also the
depth of the perfect tree to be searched is determined as4.
In figure 8 a possible solution is given for depth4. Here the
functionF8 has not been used, however other solutions exist
that would include the eighth function too.

The different epistasis constants used for the testing process
were0:5,0:35, 0:2, 0:05, 0:002. The genetic parameters were
set as follows:
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/.-,()*+F1
/.-,()*+F2 ssgggggggggg

/.-,()*+F4 wwoooo

/.-,()*+F5�������
��������t�� ��������t��///// /.-,()*+F6��/////

��������t�� ��������t��///// /.-,()*+F5''OOOO

/.-,()*+F6�������
��������t�� ��������t��///// /.-,()*+F7��/////

��������t�� ��������t��/////
/.-,()*+F3++WWWWWWWWWW

/.-,()*+F4 wwoooo

/.-,()*+F5�������
��������t�� ��������t��///// /.-,()*+F6��/////

��������t�� ��������t��///// /.-,()*+F5''OOOO

/.-,()*+F6�������
��������t�� ��������t��///// /.-,()*+F7��/////

��������t�� ��������t��/////
Fig. 8. A possible solution of depth four.
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Fig. 9. (Non-deceptive Case)Comparison of controlled search and
basic GP. The broken line denotes the performance of the controlled
search. The learning period is500. The epistasis constant is0:5.
Number of sample runs is100.� Population size= 100� Crossover at function point fraction= 0:1� Crossover at any point fraction= 0:7� Reproduction fraction= 0:1� Mutation fraction= 0:1� Number of Generations= 3000� Selection Method: Fitness Proportional.

As seen in figure 9, it is not possible to obtain an im-
provement when the epistasis constant is0:5. However, as the
problem is made more deceptive by decreasing the epistasis
constant, the performance increase becomes more significant.
In figure 10, the comparison between basic GP and the con-
trolled search is presented for the smallest epistasis constant0:002. The controlled search clearly outperforms basic GP
when such a low epistasis constant is used.

The behavior of basic GP and the controlled search can best
be seen in figure 11. In this figure the comparison of the best
fitness averages obtained at the end of3000 generations is
presented for each epistasis constant. As seen in the figure,
the controlled search is misleading for the epistasis constant0:5. Basic GP can achieve a better average at the end of the
search. However, as the epistasis constant is decreased theper-
formance of basic GP rapidly goes down. On the other hand,
the controlled search can compensate the deception, and the
performance decrease is not dramatic as deception increases. It
can be claimed that the results obtained are consistent withour
proposal and the significance of the controlled search becomes
more apparent with high deception.
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Fig. 10. (Highly-deceptive Case)Comparison of controlled search
and basic GP. The broken line denotes the performance of the
controlled search. The learning period is500. The epistasis constant
is 0:002. Number of sample runs is100.
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Fig. 11. Best fitness averages obtained at the end of3000 runs.

VII. T ESTING THERELIABILITY OF THE RESULTS

OBTAINED

The results presented in the previous sections are the best
fitness averages obtained by a certain number of sample
runs. This is a common comparison method used in the GP
community. Usually20 � 30 runs are considered sufficient
for a satisfactory comparison between two methods. However,
this is questionable in terms of statistics. Statistical signif-
icance between two means depends on two parameters, the
population size(number of sample runs for our case) and
the variancein the population. Therefore it is not possible to
set a general lower limit for the number of sample runs that
can be satisfactory for all problems. This lower limit changes
depending on the standard deviation that appears throughout
the runs. Statistical tests are needed to determine if the number
of runs used are enough for a satisfactory comparison between
methods.

Although this approach is not common in evolutionary
computation community, some researchers have started to
highlight the importance of the subject. In [16], for instance, it
is noted that performance comparison is an important subject
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in GP research, since much published research includes the
comparison of one technique with another.

T-test is offered as a statistical method that can be used for
comparing small samples. The formulation for calculating thet value is given in [6]. Thet-value obtained by the equation
corresponds to a risk level depending on the initial hypothesis.
Our task is to determine if the best fitness averages obtained
during the controlled search are really smaller than the ones
obtained by basic GP. Therefore we used theone-tailedversion
of the test, [16]. The risk level denotes the probability of
obtaining the difference between the two means by chance. In
statistics a risk level smaller than0:05 is usually considered
to be statistically significant.

In order to apply the test to our method, the t-value for the
difference between the two means were calculated for each
generation. Then, using an automated tool corresponding risk
levels were obtained. There is no difference between the two
means until the end of the first learning period. Therefore the
risk level was0:5 before the controlled search started. After
the first learning period, the risk level was expected to decrease
below 0:05 in a certain amount of generations.
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Fig. 12. T-test for the CFG induction problem. The learning Period
is 500 and number of sample runs is80.
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Fig. 13. T-test for the N-Parity problem. The learning Period is500
and number of sample runs is45.

The test was first applied to the instances of the benchmark
problem except the instance with epistasis constant0:5. Note
that no improvement had been obtained for that case. The
number of sample runs used for this problem was100. This
can be considered as quite a big population for the test and,
as expected, all four instances of the problem were able to
pass the test. It was possible to obtain risk levels smaller
than 0:01 towards the end of the search. This denotes that
the performance increase obtained is statistically significant
with a probability larger than0:99.

The test was also applied to the two real world domains.
In figures 5 and 7, the output of the t-test is presented for the
two problems. As seen in the figures, the difference between
the means turns out to be statistically significant after about2000 generations and the risk level stays far below the critical
value0:05 throughout the search.

VIII. C ONCLUSION AND FUTURE WORK

Our initial question was, whether it could be possible
to extract information during genetic evolution and use this
information to increase the performance of GP by controlling
recombination operations afterwards. Our focus has been on
highly deceptive problems, therefore we have tried to extract
information about the global structure of chromosomes. The
results obtained in different domains exhibit strong evidence
of the success of our approach.

The performance increase obtained in only two domains is
not sufficient to claim a general improvement for GP in the
deceptive domain. However, the experiments carried out on the
benchmark problem provides an insight into the contribution
of the approach. The different instances of the problem has
made it possible to carry out a controlled experiment to trace
the behavior of the new method. The results obtained clearly
show that the performance decrease that occurs due to high
epistasis can be blocked by the control module. Interestingly,
the contribution of the module becomes significant when inter-
dependency among the subparts of chromosomes is increased.
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