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Abstract— Traditional Genetic Programming randomly com-  crossover operations which would keep the search among the
bines subtrees by applying crossover. There is a growing ietest |ocalization of well-fit elements afterwards.
in methods that can control such recombination operations ni The proposed method has been applied to two different real-
order to achieve faster convergence. In this study, a new appach . .
is presented for guiding the recombination process forGenetic World domains namely th€ontext-Free Grammar Induction
Programming The method is based on extracting theglobal and the N-Parity Problem Both of these domains can be
information of the promising solutions that appear during the considered highly deceptive. Traditional GP has exhibited
genetic search. The aim is to use this information to control quite a low performance for both problems. Furthermore, a

the crossover operation afterwards. A separate control modle is ; : ;
used to process the collected information. This module guiab the tunable benchmark problem is defined and our approach is

search process by sending feedback to the genetic engine abo tested on different instances of this problem.
the consequences of possible recombination alternatives. In the following section an overview of various approaches
in the area are given. In section Ill our approach is presente
in detail. In section IV the application of our approach toGCF
. INTRODUCTION induction is given. Then, in section V, the N-Parity problam
It is clear that the random recombination used in traditionanalyzed in the light of our approach. In section VI, the Hssu
GP can easily disturb the building blocks. An attempt basedbtained on the benchmark problem are presented. In section
on determining the beneficial building blocks and preventinvil, statistical tests are presented which verify the parfance
them from disturbance during the recombination operatioircrease obtained. Conclusions and discussions are pedsen
can be helpful. However, for the deceptive class of problemsthe last section.
such an approach is questionable. The interaction betvien t
partial solutions is high for these problems. In other words
the contribution of a subpart of a chromosome to the overall
fitness depends on the configuration of other parts. The hlobaVarious techniques have been proposed in order to increase
meaning of finding a possible solution goes beyond determite performance of GP. But a significant group of researchers
ing isolated, non-interacting building blocks and brirggthem focuses on controlling and guiding the search process in GP.
together. Recombination in traditional GP is random and therefore
In this study, a genetic search system which can dedussearchers have been mainly interested in controllirggapi
beneficial knowledge from its own experience is designeetation. The aim is to perform more intelligent recombioati
A different approach which focuses on a new kind of althat would increase performance.
straction on the structure of the chromosomes, is presentedror instance [7] proposes a method calRdcombinative
A new representation is used for this scheme. The propogedidance for GP The method is based on calculating the
representation reflects the characteristics which are itapb performance values for subtrees of a GP tree during evolutio
in denoting the overall organization of a chromosome. Thad then applying recombination operators so that the sgebtr
information obtained by using the new representation isathmwith high performance are not disturbed. On the other hand
asGlobal Information The aim is to increase the performancf3] uses a knowledge repository which is expected to guide
of GP in the deceptive domain, by extracting the knowleddke search towards better solutions. The knowledge repgsit
of what it is to be good globally and performing the rightollects code segments from the genetic population togethe

Il. RELATED WORK



with some associated information like fitness, number of It is considered that the frequency of the elements used and
occurrences, depth and so on. [23] proposes a methodthe knowledge of how they are distributed in the chromosome
calculate a single score for each segment that would refectrmight contribute to the global picture of the structure atdha
overall contribution to the current task. The evolutiongeeds It can be claimed that these two forms of information are
by adding new code segments with high performance to thaite critical in terms of forming the global solution. What
knowledge repository and excluding the ones which are stibjés more, traditional GP is not capable of analyzing such
to performance loss. information. The frequencyinformation is important, since

Itis possible to find other studies where the aim is to contraking an element more or less than a certain number of times
recombination. [22] uses a context free grammar to contnwlight be critical in terms of building the global solutionhd
crossover and mutation and [4] proposes a method which trjgssition of the elemenisn the tree is an another critical factor
to preserve the context in which subtrees appear in the parienterms of the solution. The contribution of an element ia th
trees before the crossover operation. tree might depend on the distribution of the other elem&us.

Similar approaches trying to control recombination oper#-can be claimed that by using these two forms of information
tors can be found in the area of Genetic Algorithms, too [2}, becomes possible to analyze the dependencies that might
[15], [18]. exist in different parts of the solution.

The attempts presented above are usually based on detefFhe learning will be carried out on feature vectors that
mining the important building blocks and preventing themeflect this global information about chromosomes (trees).
from being disturbed by the recombination operations. Howhe feature vectors are obtained by a mapping process that
ever, [17] states that for some functions, even ifit is gossio determines what is considered as global to a tree. Beforeggoi
decompose the function into some components, the subcante the details of the mapping, it is worth taking a closexdo
ponents could interact. In such a case it becomes impossiatehe importance of such global information processindnen t
to consider each subfunction independently, optimize @ aiGP search.
then obtain the optimum by combining the partial solutions. In a genetic search, each individual (structure) in the popu
For this set of problems it is clear that an attempt baséstion receives a measure of its fithess based on a defined ob-
on determining building blocks is not expected to increagective function. Selection mechanism focuses on high ditne

performance significantly. individuals in order to exploit fitness information. Recands
tion and mutation operations perturb those individualsraeo
I1l. EXTRACTING THE GLOBAL INFORMATION to provide general heuristic for exploration. However, rder

to achieve an efficient exploitation, the search space shoul

be continuous. That is to say, chromosomes similar in terms

of shape and size should have (mostly) similar fithess values

In such a case, it becomes easier to proceed towards better

solutions throughout the crossover operation. Howeveth®

deceptive class of problems the picture is quite differelete,

the interdependency among the subparts of a chromosome is

the most important aspect. This property makes the fitness of

recombined chromosomes fragile during crossover. A small

GENETIC' ENGINE change on the chromosome might be hazardous or beneficial

in terms of the global dependencies that should exist in the
chromosome. Hence, the fitness value can change dramgaticall
during recombination. If we could use a function to denote th
similarity of chromosomes, we could observe the following

Fig. 1. The dual structure proposed. situation for the majority of the chromosomes in the search
space.

The method that will be used for control of the crossover

operation is based on thglobal informationof the chromo- _ , .

sgmes. In order to proce?; this information, we have dedigneStMCtm”y'Smlar(Cl’ C2) 7= Fitness-Alike(C1, C2), (1)

a new module called th€ontrol Module Figure 1 displays where C; and C; are two non equal chromosomes.

the dual structure of our system. The genetic engine, whidliructually_Similar stands for a boolean function that

can be considered as the base structure, performs the sfanj}Quld determine if two given chromosomes are similar in
erms of shape and siz&itness_Alike is a boolean function

genetic search. The control module, as a super structuepskeihat would check if the fitnesses of two chromosomes are
an eye on the search carried out by the genetic engineajike or not. With an increasing number of chromosomes, that
focuses on the global information of the chromosomes addes not preserve the mentioned regularity, it becomes more
performs meta-level learning at certain periods to deteemidifficult to obtain an efficient genetic search. On the other
what is good globally. Once the first learning process hslde, even for deceptive problems, some similar chromosome

. ould still demonstrate regularity in terms of their fitness
taken place, the control module starts sending feedbadieto ¥/values. However, the similgrity i% terms of shape and size

genetic engine about the consequences of possible crasseyeot sufficient condition for such regularity in the dedept
operations. domain. Hence, there should be other aspects to be congidere

A. General Framework

(CONTROIRMODULH



in order to achieve alike fitness values. The situation can be

described as follows Structually_Similar(Cv,C2) A SS_Similar(C:,Cy) =
Structually_Similar(C1,Cs) A p(Cy,Co) = @) Fitness_Alike(Cy, Ca).
Fitness_Alike(Cq, Cs). (6)

In this imolicat o O ts the function that By this implication, it is claimed that, for the deceptive
n this implication)(C1, C») represents the function tha roblems, if two chromosomes are similar in terms of their

denotes the missing aspects, which were not taken into C(g??tistical and spatial characteristics in addition tartekapes

su_jera'uon t_)y the standard proce_dure. The main proposal Nd sizes, than it is possible to expect an alikeness between
this study is that an approximation for these extra aspe?lags

be f lated by f , the alobal struct ‘1 eir fitness values too. We will experimentally prove this
can be formuiated by focusing on the global StUctUre of M., i, several testbeds. Note that the crossover operatio
chromosomes. The necessary information is extracted fr(?

the ch b . ¢ th t 1Lhif takes care ofStructually_Similar(Cy,Cy) (based on
€ chromosomes Dy a mapping process irom he Set Qi ;6 and shape of a chromosome). So, an extra testing
chromosomes to a set of feature vectors.

) . X mechanism is needed to clarify if th8S_Similarity is
In general, this mapping can be defined as destroyed or not during the genetic process. The mapping
process used to extract the statistical and spatial cleaistots
of the chromosomes is defined in the following paragraphs.

whereC is the set of chromosomes afid= X, @ Xy ®...0X,,. As the chromosome of GP is a structured tree which can
Here, X; € {Z,0,R,&}, where Z is the set of integersp e defined as a tuplg(V, £) whereV is a set of vertices and

is the set of rational number® is the set of real numbers¢ is & set of edges with some special constraints. We propose
and&; is an ordered set of features. the following choice forf and will call this choicef.

f:C—F, 3)

Then, by using a learning algorithm, the aim is to induce
a boolean functionp which would perform the following

mapping.

f:TV,6) - Qn. ©)

Note that the vector spack defined in Formula 3 has been
¢ : F > {True, False}. (4)  chosen as” for this study. The dimension of this space
denoted byn is set as

The learning algorithm would use a training set consisting
of elements inF and the induced functiop would divide
the space into two parts. Points having the vélueie would  where T'erminal_Set and Function_Set are the two sets
correspond to chromosomes with high fitness values and ttensisting of the terminal and non-terminal elements used f
ones with valueF'alse to low fitness elements. Hence we catthe GP search. Given a trégV, E), if
write

n =| Terminal_Set | + | Function_Set |, (8)

[TV, B))], == 9)

wherei = 1...n andxz; € Q, then there exists a terminal or
8 function element in tre@& which would have the frequency
and position information denoted hy;. The integer part of

x; specifies how many times this element is used in the tree,

B(Ch, Ca) 2 [o(F(C1)) = (£(C2)) 5)

where is the boolean function in Formula 2. The abov
formula denotes that if the points correspondingtoand Cs
are in the same region ¢f according to the induced function
amely the frequency of that element.

, then we can conclude that the other condition needB . .
7 pn the other hand, the fractional part:gfholds the position

to achieve the fithness alikeness is satisfied. This is gene,ra%‘O i  the el his is defined h £ th
framework which can be used to increase the performance”& rmation of the element. This is defined as the sum of the

the genetic search especially in a deceptive domain. _?_re]pthdvames of a”t' occ_ur{encefs of tc?? telemfent t!n thle trlee.
The critical decision about the formalization is the cha€e IS depth summation IS transtormed into a fractional vaiue

the mapping functiorf. Different alternatives exist dependingby using a multiplicative constant.

on the structure of the chromosomes used or the feature set"'© prese_nteqf has a simple formalization about the
aimed to be extracted throughout the process. global organization of the tree and does not have a heavy

To define this mapping, we introduce a new Simil‘,ﬂgomputaﬂonal load. The following can be mentioned ahfut

ity measure on the chromosomes, namely (statisticalaipati * Each terminal and function element is mapped to a base
SS_Similarity. As the name implies, this new similarity vector.

measure is based on the statistical and spatial charaicien§ ~ * BY using a bottom up construction, it is possible to obtain
the chromosomes. These characteristics are defined to be the @ Single vector for the whole GP-tree.

collection of the frequency and positioning informationtio A leaf node is only mapped to its base vector while the
terminal-functional elements that appear in the chrom@sonvector for an internal node is obtained by adding the vectors
In this domain,SS_Similarity will serve as the the function of its children plus the base vector corresponding to it. 8y t

1 mentioned in implication 2 of this domain. For the GRrocedure, the frequency information of each element id hel
domain of interest, the claim of this study turns out to be in a different component of the formed vector, as of the form



of an integer. The depth information of the same element@n the other side, the second dimension denotes 'tHat
stored as the fractional value of that rational. operation is only used once as the root of the tree.

Mathematically speaking, |€2(Cy, Cs, ..., Cy) be a subpart ~ The constant value that is used to transform the depth value
of a chromosome, wher® is an internal node and; is a into a fractional one i9.01. However, if the sum of the depths
child node connected to this parent. The vector that wouskceedsl00, depth and frequency information will interfere
correspond taP can be obtained using the following formulawith each other. If this is possible, a smaller constant lbas t
be used. At least, it should be guaranteed that the number of
such ill formed vectors is kept small enough that the learnin
process is not affected.

Also note that different chromosomes can be mapped to the
where V¢, is the vector corresponding to child; andcy same vector. However, this does not contradict our assompti

is the constant used to transform the depth summation infyce different elements in the base structure could bdaimi

ghggggogféhv?rl]ﬁ. Here;y <« 1 and the constant has to beIn terms of the super structure.

k
Vp =Vp,,.[l+co-depth(P)] + > _ Ve, (10)
i=1

[MAX Z depth(node) -‘ <1, (11) B. Implementation of the idea

co -
IETF
Vnode>d Label(node)=l1

Genetic
Engine

whereT F' = Terminal_SetU Function_Set. The inequality
states that the multiplication af, with the maximum possi-
ble depth summation should stay well belawso that the
position information would not interfere with the frequgnc

information.
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As an example, consider the tree in figure 2. The function
and terminal sets ar& = {+,—,%,/} andT = {X}. The
base vectors would be:

V. =10,0,0,0,1

Crossover selected

3 Proposed crossover points

Standart Deviation

‘ V _ ] Average
« V_=[0,0,0,1,0]
« V,=1[0,0,1,0,0]
« V.=1[0,1,0,0,0].
« V., =11,0,0,0,0].

Posiive  Negative
Examples ~ Examples

N
©

Decision Tree

The dimension of the vectors, namélyis determined as the
total number of function and terminal element# | + | T |.

For the tree in Figure 2, the vector construction mechanism
will be as follows. The base vectors are as specified above.
The three different occurrences of the terminal elemérdre
labeled ag(I), (II) and (I11). SinceX(I) and X (II) have
the same depth value, their vectors will be the same. This
vector would be[1.02,0,0,0,0]. The vector correspondingFig. 3. Interaction between the Control Module and the Gersstarch.
to X(III) will be [1.01,0,0,0,0] due to the depth value
of 1. According to Equation 10, the vector &f' will be The interaction between the genetic engine and the control
[2.04,0,0,0,1.01]. Finally, the vector corresponding t&' module is as follows. For each chromosome in the population,
which would be the vector of the whole tree, can be obtainélge corresponding vector is formed and sent to the control
by using the vectors of+’' and X (I11I) this time. Hence, module together with its fithess value. The control module
V. = [3.05,1,0,0,1.01]. Note that, each dimension of thiscollects the vectors and fitness values for a certain period
vector provides information about the usage of a termina orof generations, which we call thearning period Then the
function element. For instance the first dimension is resgrvaverage and the standard deviations of the fithess values are
for the terminal elementX. The value in this dimension calculated.
denotes that the terminal element occurs three times and th&he control module forms the training set using those
sum of the depths of these three different occurrences is fiséements whose fitness values deviate from the average more




than the standard deviation. Those with positive deviatioV') and prepositior{ P). Considering the restriction specified
are marked as positive examples and the others as negatmve each element of the function set can have one or two
The“C4.5, Decision Tree Generator[20] is used to generate arguments.

the abstraction over the training set. Then, for each ck@so The mapping process described in section Il is used to form
operation to be performed, the genetic engine sends to the vectors for the control module. Since the total number of
control module three different alternative crossover {wilfhe elements in the function and the terminal set4sthe vectors
control module predicts if the alternative offsprings vii# in ~ will be formed inR'*.

the positive or the negative class by using the decision treeFor the first trial the learning period has been set@sThe
generated byC4.5 The best alternative is chosen by the ged€netic parameters used for the trials are as follows:

netic engine and the learning process is repeated peritydica * E?(E’S‘JS"’;UZ? :ﬁ‘ﬁ:lclt?(?n noint fractio 0.1

The best case would_t_)e finding out crossover _pomts which_ Crossover at any point fractios 0.7

can produce two positive-class offsprings. If this cannet b , Rreproduction fraction= 0.1

achieved, certainly the best alternative would turn outddhe Mutation fraction= 0.1

operation which produces one positive-class offspringtlya Number of Generations- 5000

if no positive class offspring could be achieved by all of the * Selection Method: Fitness Proportional.

alternatives, crossover points are determined randombo, A
note that the use of three alternatives is an empirical ehoic

IV. TESTBED, : CONTEXT FREE GRAMMAR
INDUCTION

Natural language sentences have been used in order to form
the training set for the CFG-induction problem. The tragnin
set consists oR1 positive examples and7 negative exam-
ples. The sentences formalize a subset of English including
sentences consisting of structures like”, V P and PP. The 110
Noun phras¢N P) is quite simple and consists of a determiner
(D) followed by a noun(/N) or compound noun. On the
other hand, the verb phra&E P) can be intransitive, transitive =0
or ditransitive and the prepositional phraSBP) could be . S
attached to & P or to anN P. The aim is to induce a CFG that T e i e
can parse the pOSItlye examples "fmd .reject the_ negative Orll?gs. 4. Comparison of controlled search and basic GP for the CFG-
Each chromosome in the population is a candidate gramnfuction problem. The broken line denotes the performanfctne
and the details of this representation can be found in [11]. controlled search. The learning period 280. Number of Sample

The problem can be considered as a highly deceptive one™2S 'S8
is possible to divide a grammar into subparts like NP, VP gr PP
however these subparts do not have clear borders. Ovangppi 170
exists due to the fact that NP can be a part of VP and PP.

The fitness function used is the standard one. For grammar
G, if S is the set of sentences consisting of the positive
examples tha&@ cannot parse and the negative examples that
G parses, then the fitness 6fis defined as:

Best Fitness Value

100

F(G)= Y SENTENCELENGTH(S)) (12)
S;€S

Best Fitness Value

So the aim is to minimize the fithess function. For the test
data used, the worst fithess for a grammar coul@48which
is the sum of the length of all sentences both in the positink a
the negative set. And the best fitness is, of course, zerohwhic
can be achieved when a grammar parses all of the examples ~ °° o 5o5 3055 1500 2000 2500 5000 3500 a000 2500 5000
in the positive set and rejects all of the negative set.

The grammar evolved is subject to only one restrictiofrig. 5. Comparison of controlled search and basic GP for the CFG-
The number of right hand side elements in a grammar oBfficier prolem. The broker e derctes e performatabe
be at most two. The terminal and function sets dte= runs is80
{D,N,V,P} and F = {Fy,F>,...,Fio}, where F; can be
used as a variable in an evolved grammar and the terminaBoth the controlled search and the straightforward applica
elements denote the syntactic categories of the words usied of GP were run using different random seeds. Certainly,
in the training set, namely determinéb), noun (N), verb the random seeds are kept same for each method. Surprisingly




it was observed that the controlled search performed worse
than the straightforward application. It seems that therinf
mation sent by the control module to the genetic engine was
misleading and directed the search to a local minima, riegult

a performance worse than random crossover. An increase in
the performance was obtained with simpler data and with a
smaller number of function elements. The details of thisahi
attempt can be found in [11]. The main difference with this
initial attempt is the total number of function and terminal
elements used. This total numberlié. It is thought that the
learning period of30 might be too low for making reasonable
abstractions over vectors with this dimension. On the other
hand, it was observed that the decision trees induced fsr thi
case were simple and contained less information. Therdtfore 7 7 2000 4000 6000 5000 1000012000 13000 16000 18000 20000

was decided to increase the learning period.

i i i i ig. 7. Comparison of controlled search and basic GP for the NyParit
Figure 4 presents the comparison with basic GP Whépﬁ’)blem. The broken line denotes the performance of theraited

the learning period is increased @0. Again the results gearch, The learning period 590. Number of Sample runs i
denote an average & runs with different random seeds.

The performance of the controlled search clearly increased

compared to the trial with a learning period 8. However, to induce a function which takes a binary sequence of length

it was still not the case that the controlled search outperéal and returns true if the number of ones in the sequence is odd,

the straightforward application. and is false otherwise. The function would consist of indérn
The increase in the performance parallel to the increasgeratorsAND,OR, NAND and NOR, [12].

in the learning period was however, encouraging. ThereforeThe problem is relevant to our purposes as it is highly

another trial was carried out, this time with a learning pef deceptive. [3] states that the problem quickly becomes more

500 generations. Figure 5 presents the best fitness averagesditficult with increasing order. He also notes that flippinyya

tained in the new trial, together with the confidence intirva bit in the sequence inverts the outcome of the parity functio

This time the average &f0 different runs were used in orderand states this as a fact to denote the hardness of the problem

to increase the reliability of the result. As can be seen & th The 5-parity problem was chosen for the test cases since

figure, the desired performance increase was obtained. Fri8denotes that GP is unable to provide a solution to it.

this experiment, it can be concluded that the learning perio The  function and the terminal sets are

is a critical parameter of the proposed system; and settitog i 7 = {AND,OR,NAND,NOR} and T =

a small value may even worsen the performance compared(to,, X,, X3, X4, X5}. T represents the binary input

ordinary GP. Significance in performance increase staris wsequence of length five. The number of possible input binary

Best Fitness Value

8 R

a learning period 0600 generations. sequences i82 for the 5-parity problem. The fithess function
' simply adds a penalty of one if the induced function returns
V. TESTBED; : N-PARITY PROBLEM the wrong answer for an input sequence. Hence, the fitness

value ranges betwedhand 32.
The genetic parameters used for the trials were as follows:

Population size= 100

Crossover at function point fractios 0.1
Crossover at any point fractiog 0.7
Reproduction fraction= 0.1

Mutation fraction= 0.1

Number of Generations= 20000
Selection Method: Fitness Proportional.

The first test case was repeated using a learning period of
30. Similarly, 8 different runs were carried out with various
random seeds both for basic and controlled GP. The results
obtained were consistent with the CFG-induction problem.
Again the controlled search exhibited a worse performance.
e Considering the total number of terminal and function set
OB D O o naration Numby 000 #6000 18008 20000 elements, which i$), obtaining such a performance was not

surprising. Therefore, for the second test case a period of

Fig. 6. Comparison of controlled search and basic GP for the NyPar . .
problem. The broken line denotes the performance of theratetd %00 generations was used. The results of this test case are

search. The learning period 290.Number of Sample runs i§ presented in figure 6. Again the results are consistent \wéh t
results obtained for CFG-induction. The controlled seaaih

The N-parity problem was selected as the second to analyzenpete with the straightforward application but still nan
our approach. As is well known, in this test problem, the &m butperform it. A test with a learning period 600 generations

14

Best Fitness Value




was carried out and the results are presented in figure 7nAgds. A New Benchmark Problem

the number of sample runs is increased for this successfubonsidering the drawbacks mentioned in the previous sec-
case and the average @5 different runs are presented fortion, it was decided to simplify and reorganize the defimitio

this learning period, together with the confidence intesvalys 5 perfect tree. The aim is to obtain a tunable benchmark
This period is sufficient for the 5-parity problem too and thgroplem where epistasis can easily be controlled. The new

performance increase is outstanding. perfect tree is defined as a full binary tree of some depth.
The function set consists of functions with arity two(F =
VI. DETERMINING THE LIMITS OF OUR APPROACH {F\, F,,..F,}). The terminal set consists of a single terminal

In the previous sections the method was tested on two reigment, (I' = {t}). The raw fitness of a tree is again defined
world problems. Obviously obtaining performance increag$ the score of its root. The fitness of a terminal node is gimpl
in only two domains is not sufficient to claim a generaflefined asl. The fitness of an internal node is defined as the
improvement for all deceptive problems. In order to get mogim of the fitnesses of its two children. The two constraints
insight into the contribution of the control module, it wad/sed to create epistasis for the problem are the following.
decided to use a tunable benchmark problem. It was hopgemlenqs,the children of an internal node are not terminal
that applying the method to different instances of the probl :

. L . g) The index of the parent function should be smaller thaa th
would confirm that the significance of the method increases’ i, qex of its children.

as the problem is made more deceptive. (i) The index of the right-hand child should be larger thaa index
of the left-hand child.
A. Choosing a Benchmark Problem Based on these constraints, the fitness function for an

Not so many benchmark problems have been proposedlrllﬁemaI node is defined as:

the area of GP. The benchmark problem proposed in [19] is f(C1) + f(C2) (4)
notable since their formalization shares some charatiteyis f(py = Cevis  [(CO) +£(C) (i) (13)
with the Royal Road ProblemThis is a commonly used ' é((’w_l).';(%lp)i: é(c?). F(O) 8:}’))

eprs " EpLs

benchmark problem for tuning the genetic parameters in the
field of GA [8]. The formalization in [19] is based on the |, equation 13, parf1) is chosen if both of the children
definition of a“perfect tree” of some depth. For instance agre terminal elements or none of the constraints are viblate
level-a tree is perfect when its root is the functierwith a | the first constraint is violated by any child, the fitness of
single child. Similarly a perfect level-b tree’s root shblle that child is multiplied with a constant smaller than oneisTh
functiond having two perfect level-a trees as children, a perfegpnstant is called thepistasis constaniC.,;,). Parts(2) and
level-c tree will have three perfect level-b trees connddte (3) in equation 13 reflect this situation. Lastly, pat} is used
rootc, and so on. The terminal set consists of a single elem&@ken both of the children violate the first constraint or when
x. Note that the series of functionsb, c, d... are defined with e second constraint cannot be achieved.
increasing arity. The raw fitness of such a tree is defined asrpese two constraints create interdependency among the
the score of its root. On the other side the score of eaglipparts of a chromosome. When the epistasis constant is
function is calculated by adding the weighted scores of iffecreased the interdependency increases. Hence it becomes
children. The weight is a constant larger than one (bonus) ifmpossible for a subpart of the chromosome to contribute
child is a perfect tree of the appropriate level. When thédchity the global fitness independent of other parts. A well-fit
is not a perfect tree, the weight turns out to be a constafromosome can easily be ruined when a node that violates
smaller or equal to one (Penalty or Partial Bonus) dependiggconstraint appears after a recombination operation. élenc
on the child’s configuration. It is suggested that perfeeesr fitnesses of similar chromosomes might differ remarkably an
of different depths can be used as benchmark problems fgg search space becomes discontinuous. In addition tp this
GP. when the function set is kept small, it becomes more probable
The proposed definition in [19] has certain drawbacks. Og; the search to get stuck in a local minima. Since the
main focus is to be able to control the degree of deceptigiyex of the functions should increase as you go down in a

in the problem. Deception usually appears as an outcomecfomosome, a wrong choice close to the root might make it
Epistasis That is the interdependency among the subparts jg{possible to form a perfect tree at all.

the chromosome should have an influence on the global fithess

of the chromosome. However, the formalization provided by 7 s BED, : The Benchmark Problem
[19] enables each child to contribute to the global fitnedgin

pendent of other children. What is more, since the functio
are defined with increasing arity, the search space incsea
rapidly for high levels. The problem becomes too difficul
after leveld ande. On the other hand, levels, b andc are

too simple. It is possible for the solution to appear in tht%at would include the eighth function too.

initial random population in these levels. Lastly, morentha™ Thq gifferent epistasis constants used for the testinggssc
one constant is used in [19] and this makes the definitigiere0.5,0.35, 0.2, 0.05, 0.002. The genetic parameters were
unnecessarily complicated. set as follows:

For the testing phase the function set is fixed As=
271,F2,...,F8} and the terminal set i§" = {t}. Also the
épth of the perfect tree to be searched is determinedl as
n figure 8 a possible solution is given for depthHere the

function Fg has not been used, however other solutions exist
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Fig. 8. A possible solution of depth four.
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Fig. 10. (Highly-deceptive Case)Comparison of controlled search
and basic GP. The broken line denotes the performance of the
controlled search. The learning period5i#). The epistasis constant

is 0.002. Number of sample runs i500.
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Fig. 9. (Non-deceptive CaselComparison of controlled search and
basic GP. The broken line denotes the performance of theataut
search. The learning period 0. The epistasis constant 5.
Number of sample runs is00. 1At 4
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Mutation fraction= 0.1 Fig. 11. Best fitness averages obtained at the end06f runs.
Number of Generations= 3000

Selection Method: Fitness Proportional.

As seen in figure 9, it is not possible to obtain an im- VII. TESTING THERELIABILITY OF THE RESULTS
provement when the epistasis constant.is However, as the OBTAINED
problem is made more deceptive by decreasing the epistasi¥he results presented in the previous sections are the best
constant, the performance increase becomes more sighificfithess averages obtained by a certain number of sample
In figure 10, the comparison between basic GP and the ceons. This is a common comparison method used in the GP
trolled search is presented for the smallest epistasist@oins community. Usually20 — 30 runs are considered sufficient
0.002. The controlled search clearly outperforms basic Gfdr a satisfactory comparison between two methods. However
when such a low epistasis constant is used. this is questionable in terms of statistics. Statisticgnii

The behavior of basic GP and the controlled search can biesince between two means depends on two parameters, the
be seen in figure 11. In this figure the comparison of the bgmbpulation size(number of sample runs for our case) and
fithess averages obtained at the end3060 generations is the variancein the population. Therefore it is not possible to
presented for each epistasis constant. As seen in the figset, a general lower limit for the number of sample runs that
the controlled search is misleading for the epistasis emnstcan be satisfactory for all problems. This lower limit chasg
0.5. Basic GP can achieve a better average at the end of tlepending on the standard deviation that appears throtighou
search. However, as the epistasis constant is decreaspdrthethe runs. Statistical tests are needed to determine if thebeu
formance of basic GP rapidly goes down. On the other haraf,runs used are enough for a satisfactory comparison batwee
the controlled search can compensate the deception, and rtrethods.
performance decrease is not dramatic as deception instdase Although this approach is not common in evolutionary
can be claimed that the results obtained are consistenbwith computation community, some researchers have started to
proposal and the significance of the controlled search besorhighlight the importance of the subject. In [16], for instanit
more apparent with high deception. is noted that performance comparison is an important stibjec




in GP research, since much published research includes th&he test was first applied to the instances of the benchmark

comparison of one technique with another. problem except the instance with epistasis condiemtNote
T-testis offered as a statistical method that can be used fihvat no improvement had been obtained for that case. The

comparing small samples. The formulation for calculating t number of sample runs used for this problem W#a8. This

t value is given in [6]. Thet-valueobtained by the equationcan be considered as quite a big population for the test and,

corresponds to a risk level depending on the initial hypsithe as expected, all four instances of the problem were able to

Our task is to determine if the best fitness averages obtaingbs the test. It was possible to obtain risk levels smaller

during the controlled search are really smaller than thesoriftan 0.01 towards the end of the search. This denotes that

obtained by basic GP. Therefore we useddhe-tailedversion the performance increase obtained is statistically sicanifi

of the test, [16]. The risk level denotes the probability oivith a probability larger thai.99.

obtaining the difference between the two means by chance. InThe test was also applied to the two real world domains.

statistics a risk level smaller than05 is usually considered In figures 5 and 7, the output of the t-test is presented for the

to be statistically significant. two problems. As seen in the figures, the difference between
In order to apply the test to our method, the t-value for tHé€ means turns out to be statistically significant afteruabo

difference between the two means were calculated for eaff0 generations and the risk level stays far below the critical

generation. Then, using an automated tool correspondsig rvalue0.05 throughout the search.

levels were obtained. There is no difference between the two

means until the end of the first learning period. Therefoee th VIII. CONCLUSION AND FUTURE WORK

risk level was0.5 before the controlled search started. After o initial question was, whether it could be possible

the first learning period, the risk level was expected to@@se 1 extract information during genetic evolution and uses thi

below 0.05 in a certain amount of generations. information to increase the performance of GP by contrgllin
recombination operations afterwards. Our focus has been on
T highly deceptive problems, therefore we have tried to extra
oas | 1 information about the global structure of chromosomes. The
onl | results obtained in different domains exhibit strong enigke
of the success of our approach.
The performance increase obtained in only two domains is
1 not sufficient to claim a general improvement for GP in the
i deceptive domain. However, the experiments carried outen t
benchmark problem provides an insight into the contrilsutio
of the approach. The different instances of the problem has
‘ made it possible to carry out a controlled experiment toetrac
oa | 4 the behavior of the new method. The results obtained clearly
show that the performance decrease that occurs due to high
s epistasis can be blocked by the control module. Interesting
o 500 1000 1500 2000 2500 5000 5500 4000 4500 5000 the contribution of the module becomes significant wherrinte

T dependency among the subparts of chromosomes is increased.
Fig. 12. T-test for the CFG induction problem. The learning Period
is 500 and number of sample runs &§.
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