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Abstract: Fuzzy discrete event systems (DESs) were proposed recently by Lin and Ying

[19], which may better cope with the real-world problems with fuzziness, impreciseness,

and subjectivity such as those in biomedicine. As a continuation of [19], in this paper

we further develop fuzzy DESs by dealing with supervisory control of fuzzy DESs. More

specifically, (i) we reformulate the parallel composition of crisp DESs, and then define the

parallel composition of fuzzy DESs that is equivalent to that in [19]; max-product and

max-min automata for modeling fuzzy DESs are considered; (ii) we deal with a number of

fundamental problems regarding supervisory control of fuzzy DESs, particularly demon-

strate controllability theorem and nonblocking controllability theorem of fuzzy DESs, and

thus present the conditions for the existence of supervisors in fuzzy DESs; (iii) we an-

alyze the complexity for presenting a uniform criterion to test the fuzzy controllability

condition of fuzzy DESs modeled by max-product automata; in particular, we present in

detail a general computing method for checking whether or not the fuzzy controllability

condition holds, if max-min automata are used to model fuzzy DESs, and by means of

this method we can search for all possible fuzzy states reachable from initial fuzzy state

in max-min automata; also, we introduce the fuzzy n-controllability condition for some

practical problems; (iv) a number of examples serving to illustrate the applications of the

derived results and methods are described; some basic properties related to supervisory

control of fuzzy DESs are investigated. To conclude, some related issues are raised for

further consideration.

Index Terms: Discrete event systems, controllability, supervisory control, fuzzy systems,

fuzzy finite automata, computing with words.

I. Introduction

A Discrete Event System (DES) is a discrete-state, event-driven dynamical system in which

the state space is described by a discrete set, and states evolve in terms of asynchronous occur-

rence of discrete events over time [11,1,26,27]. Actually, DESs represent many technological

and engineering systems such as communication networks, computer networks, manufactur-

ing systems, and transportation systems. So far, many modeling approaches of DESs have

been proposed and developed, including the notably finite automata [26,11,1,31], Petri nets

[22,7,1], and their variations [1].
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In DESs, an important research direction is the supervisory control, which was launched

by Ramadge and Wonham [26,27] in the 1980’s. Since then, many researchers have also made

contributions to the developments and applications of DES theory (for example, [11,1,31]

and the references therein). In the study of supervisory control, a DES can be well modeled

by a formal language of finite strings of event symbols, and the set of all possible events is

partitioned into both controllable and uncontrollable events. In this framework, a supervisory

mechanism is established, in which the supervisor may enable or disable the controllable

events in order to satisfy a set of qualitative specifications on the admissible occurrences of

the events that can be executed by the system. Moreover, the supervisor may not be able to

observe all of the events generated by the system due to the existence of unobservable events

in the set of events.

In order to understand more intuitively supervisory control of crisp DESs under complete

observation (all events can be seen), let us further introduce it more formally. (For the details,

we refer to [1,11].) Here we assume that the given DES is modeled by a finite automaton

G. The behavior of the DES is characterized by the language L(G) generated by G, but

the behavior is not satisfactory, that is, L(G) contains strings that are not allowed. Thus,

our objective is to consider the sublanguages of L(G) that stand for the legal or admissible

behavior for the controlled system. For example, if K ⊆ L(G) is a legal sublanguage of L(G),

then we attempt to design a supervisor, denoted by S, such that S interacting G will result

in the behavior desired. In general, S has the capability of disabling some feasible events of

G, and the set of feasible events is termed as controllable events. If S exists, then K is called

to be controllable; otherwise, we hope to find the largest controllable sublanguage and the

smallest controllable superlanguage of K. Indeed, computing for finding these sublanguages

is related to classical formal language and automata theory [10,1,11].

Though most of the research on supervisory control of DESs has focused on systems that

are modeled as deterministic finite automata, there are also interesting studies concerning

nondeterministic DESs [8] and probabilistic DESs (see [16] and the references therein) for

dealing with some uncertainty problems and complex information and systems in practice.

However, in real-life situation, there are also a large number of problems with vagueness,

impreciseness, and subjectivity that can be reasonably described by the use of words instead

of numbers, where words mean the possibility distributions suggested by Zadeh [38], that

is, fuzzy subsets. For example, “young”, “old”, “small”, “large”, “excellent”, “good”, and

“poor”, etc. can be viewed as the words that are possibility distributions. Actually, comput-
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ing with words, as a methodology, was advocated by Zadeh [38,39] and has been significantly

developed by others [40], which may conform more to human’s perception when describing

the real-world problems. Therefore, recently, Lin and Ying [18,17] initiated significantly the

study of fuzzy DESs by combining fuzzy set theory with DESs, with a desire to solve those

problems not capable of being satisfactorily treated by conventional DESs.

Exactly, there are a large number of DESs to be treated better in a manner of computing

with words when describing their states. This is especially true in biomedical applications, as

stressed in [19]. For example, if we describe the health condition of a person with “excellent”

(E), “fair” (F), and “poor” (P), then each state has certain possibility, and we thus write the

condition with a word “health condition” (HC):

HC = a/E + b/F + c/P

where a, b, c ∈ [0, 1] represent the possibilities of E, F, and P, respectively. Equivalently, as in

[19], the above word can also be represented as a vector [a b c]. In reality, this representation

leads to the formulation of fuzzy finite automata and fuzzy DESs [19,18]. It is worth indicating

that fuzzy finite automata were discussed long ago by Wee [34], Santos [28,29], Lee and Zadeh

[20], as well as others [32,9,12,3,21,23,24,25] (the more references are referred to [21] therein).

In practice, fuzzy finite automata and fuzzy languages have been used to solve meaningful

problems such as intelligent interface design [5], clinical monitoring [30], neural networks

[33,4], and pattern recognition by DePalma and Yau (see [3,21] for the details). As well,

fuzzy finite automata can be viewed as a type of formal models for computing with words

[37,36] when the inputs are strings of words rather than symbols. However, as the author is

aware, fuzzy DESs modeled by fuzzy finite automata were not taken into account until the

work of Refs. [19,18] by Lin and Ying.

In [19] the authors formalized a fuzzy DES as a fuzzy finite automaton. More exactly,

by means of [19] a fuzzy state is represented as a form of vector that can be viewed as a

possibility distribution over the set of all considered states, that is, a word, and a fuzzy event

σ̃ is equivalently represented as a matrix in which each element, say aij, belongs to [0,1],

meaning the possibility for the current state qi changing to state qj when event σ occurs.

As well, the parallel composition of fuzzy finite automata was discussed in [19]. With the

appropriate formulation, Lin and Ying [19] dealt with observability and state estimation

of fuzzy DESs. Furthermore, they investigated some optimal control problems. Thus, a

framework of fuzzy DES theory has been primarily established in [19].
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In supervisory control theory, how to deal with the existence of supervisor in the presence

of uncontrollable events is a very fundamental issue, which was described in [1] with a number

of key theorems, including Controllability Theorem and Nonblocking Controllability Theo-

rem, and Controllability and Observability Theorem. However, these theorems in the setting

of fuzzy DESs still have not been discussed. As pointed out in [19, page 409, lines 6-10], a

comprehensive theory of fuzzy DESs still needs to be set up, including many fundamentally

important concepts, methods, and theorems in the traditional DESs, such as controllability,

observability, and optimal control. Hence, as a continuation of [19], the principal goal of this

paper is to deal with controllability theorems of fuzzy DESs and some related problems.

More specifically, our main aim in the present paper is to consider a number of funda-

mental issues concerning supervisory control of fuzzy DESs, and the related properties. The

rest of the paper is organized as follows. In Section II we review the formulation of fuzzy

DESs, and define fuzzy DESs modeled by max-product and max-min automata; as well, we

reformulate the parallel composition of crisp DESs, with which a parallel composition of

fuzzy DESs equivalent to that in [19] is defined; notably, the computing processes in the

newly defined operation may be more succinct and convenient. The focus of Section III is

to deal with a number of fundamental problems of supervisory control of fuzzy DESs; we

demonstrate controllability theorem and nonblocking controllability theorem of fuzzy DESs,

and thus present the conditions for the existence of supervisors in fuzzy DESs; we analyze the

complexity for presenting a uniform criterion to check the fuzzy controllability condition of

fuzzy DESs modeled by max-product automata; in particular, if fuzzy DESs are modeled by

max-min automata, then we present in detail a general method for checking whether or not

the fuzzy controllability condition holds, and by means of this method we can search for all

possible fuzzy states reachable from initial fuzzy state in max-min automata; furthermore,

the fuzzy n-controllability condition is introduced for some practical problems; a number

of examples are described to serve as illustrating the use of the given methods and results.

Section IV investigates the properties related to supervisory control of fuzzy DESs, includ-

ing the existence of supremal fuzzy controllable sublanguage and infimal prefix-closed fuzzy

controllable superlanguage of a given fuzzy noncontrollable sublanguage. Finally, in Section

V we summarize the main results obtained, and raise a number of related issues for further

consideration.

Concepts and notations used in this paper will be given and explained when they first

appear.
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II. Fuzzy Discrete Event Systems

A. Language and Automaton Models of DESs

In this subsection, we briefly review some basic concepts from formal languages and automata

theory [10]. Let Σ denote the set of events of a DES, and let Σ∗ denote the set of all finite

length strings of events from Σ, including empty string denoted by ǫ. Each sequence of

events is called a string of the system, and a collection of strings is called a language. A

language is regular if it is marked (or recognized) by a finite automaton, which is defined

by what follows. A nondeterministic finite automaton, denoted by G, is a system described

by G = (Q,Σ, δ, q0, Qm), where Q is the finite set of states; Σ is the finite set of events;

δ : Q × Σ → P(Q) is the transition function (In what follows, P(X) represents the power

set of set X); q0 ∈ Q is the initial state; and Qm ⊆ Q is called the set of marked states.

Indeed, transition function δ can be naturally extended to Q× Σ∗ in the following manner:

For any q ∈ Q, any s ∈ Σ∗ and σ ∈ Σ, δ(q, ǫ) = q, and δ(q, sσ) = δ(δ(q, s), σ), where notably

we define δ(A, σ) =
⋃

q∈A δ(q, σ) for any A ∈ P(Q). As in [17], we represent equivalently

states and events by the forms of vectors and matrices, respectively. More specifically, for

finite automaton G = (Q,Σ, δ, q0, Qm), where Q = {q1, q2, . . . , qn}, we represent qi by vector

s̄i = [0 · · · 1 · · · 0] where 1 is in the ith place and the dimension equals n; for σ ∈ Σ,

σ is represented as a 0-1 matrix [aij ]n×n where aij ∈ {0, 1}, and aij = 1 if and only if

qj ∈ δ(qi, σ). Analogously, vector [0 · · · 1 0 · · · 1 · · · 0] in which 1 is in the ith and jth

places, respectively, means that the current state may be qi or qj.

In order to define and better understand parallel composition of fuzzy finite automata, we

reformulate the parallel composition of crisp finite automata [1,10,11,19]. For finite automata

Gi = (Qi,Σi, δi, q0i, Qmi), i = 1, 2, we reformulate the parallel composition in terms of the

following fashion:

G1‖
′

G2 = (Q1 ⊗Q2,Σ1 ∪ Σ2, δ1‖
′

δ2, q10 ⊗ q20, Qm1 ⊗Qm2).

Here, Q1 ⊗Q2 = {q1 ⊗ q2 : q1 ∈ Q1, q2 ∈ Q2}, and symbol “⊗ ” denotes tensor product that

is different from the composition of fuzzy relation that means max-min operation [19]. For

event σ ∈ Σ1 ∪Σ2, we define the corresponding matrix of σ in G1‖
′
G2 as follows:

(i) If event σ ∈ Σ1 ∩ Σ2, then σ = σ1 ⊗ σ2 where σ1 and σ2 are the matrices of σ in G1

and G2, respectively.

(ii) If event σ ∈ Σ1\Σ2, then σ = σ1⊗ I2 where σ1 is the matrix of σ in G1, and I2 is unit
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matrix of order |Q2|. (In this paper, |X| denotes the number of all elements in set X.)

(iii) If event σ ∈ Σ2\Σ1, then σ = I1⊗σ2 where σ2 is the matrix of σ in G2 and I1 is unit

matrix of order |Q1|.

In terms of the above (i-iii) regarding the event σ ∈ Σ1 ∪Σ2, we can define δ1‖
′
δ2 as: For

q1 ⊗ q2 ∈ Q1 ⊗Q2, σ ∈ Σ1 ∪ Σ2,

(δ1‖
′

δ2)(q1 ⊗ q2, σ) =



















(q1 ⊗ q2)× (σ1 ⊗ σ2), if σ ∈ Σ1 ∩ Σ2,

(q1 ⊗ q2)× (σ1 ⊗ I2), if σ ∈ Σ1\Σ2,

(q1 ⊗ q2)× (I1 ⊗ σ2), if σ ∈ Σ2\Σ1,

where × is the usual product between matrices, and, as indicated above, symbol ⊗ denotes

tensor product of matrices, that is, form×nmatrix A = [aij ]m×n and k×l matrix B = [bij ]k×l,

we have

A⊗B =











a11B · · · a1nB
...

. . .
...

am1B · · · amnB











.

Remark 1. One can check that for any finite automata G1 and G2 with event sets Σ1 and

Σ2, respectively, the parallel composition defined above is equivalent to the usual one, that

is,

L(G1‖G2) = L(G1‖
′

G2) and Lm(G1‖G2) = Lm(G1‖
′

G2),

where G1‖G2 is the usual parallel composition. In particular, when Σ1 = Σ2 = Σ, the

parallel composition ‖
′
reformulated above degenerates to the product operation [1,10]. We

may see that defining parallel composition of finite automata by means of tensor product

is more suitable to describe the composition operation with fuzzy states of each which may

simultaneously belong to several crisp states with respective memberships, and with fuzzy

events of each which may result in a transition between any two states with certain degree.

B. Language and Automaton Models of Fuzzy DESs

In light of Subsection A, in the setting of fuzzy DESs, a fuzzy state is naturally represented as

a vector [a1 a2 · · · an] where ai ∈ [0, 1] represents the possibility of the current state being

qi, and n stands for the number of all possible crisp states. Similarly, a fuzzy event is denoted

by a matrices [aij ]n×n as well, but here elements aij ∈ [0, 1] rather than {0, 1}, and aij means

the possibility for the system to transit from the current state qi to state qj when event σ
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occurs. Hence, a fuzzy finite automaton is defined as a fuzzy system G̃ = (Q̃, Σ̃, δ̃, q̃0, Q̃m),

where Q̃ is a set of some possibility distributions (fuzzy states) over crisp state set Q; q̃0

is the initial fuzzy state; Q̃m is also a set of fuzzy states over Q, standing for the marking

states; Σ̃ is a set of fuzzy events (matrices); δ̃ : Q̃× Σ̃ → Q̃ is a transition function which is

defined by δ̃(q̃, σ̃) = q̃ ⊙ σ̃ or q̃ ◦ σ̃ for q̃ ∈ Q̃ and σ̃ ∈ Σ̃, where ⊙ and ◦ denote respectively

max-min and max-product operations in fuzzy set theory [13]: For n×m matrix A = [aij ] and

m× k matrix B = [bij ], then the elements in n× k matrixes A⊙B = C1 and A ◦B = C2 are

respectively as c
(1)
ij = maxml=1min{ail, blj} and c

(2)
ij = maxml=1 ail × blj . As a complete system,

we usually require that q̃0 ∈ Q̃ and Q̃m ⊆ Q̃. In the sequel, a fuzzy finite automaton defined

in terms of the max-min (resp. max-product) operation for its transition function is said to

be max-min (resp. max-product) automaton.

The fuzzy languages generated and marked by G̃, denoted by LG̃ and LG̃,m, respectively,

are defined as a function from Σ̃∗ (Σ̃∗ represents the set of all strings of fuzzy events from Σ̃)

to [0,1] as follows: For any σ̃1σ̃2 · · · σ̃k ∈ Σ̃∗ where σ̃i ∈ Σ̃, i = 1, 2, · · · , k,

LG̃(σ̃1σ̃2 · · · σ̃k) =
n

max
i=1

q̃0 ∗ σ̃1 ∗ σ̃2 ∗ · · · ∗ σ̃k ∗ s̄
T
i , (1)

LG̃,m(σ̃1σ̃2 · · · σ̃k) = sup
q̃∈Q̃m

q̃0 ∗ σ̃1 ∗ σ̃2 ∗ · · · ∗ σ̃k ∗ q̃
T , (2)

where ∗ is either max-min or max-product operation in terms of the type of G̃; s̄Ti is the

transpose of s̄i, and s̄i is as indicated above, i.e., s̄i = [0 · · · 1 · · · 0] where 1 is in the ith

place.

Intuitively, LG̃(σ̃1σ̃2 · · · σ̃k) represents the degree of the string of fuzzy events σ̃1σ̃2 · · · σ̃k

being physically possible, while LG̃,m(σ̃1σ̃2 · · · σ̃k) stands for the possibility for the same

string being marked (recognized) by the fuzzy automaton G̃. Clearly, from Eqs. (1) and (2)

it follows that for any s̃ ∈ Σ̃∗ and any σ̃ ∈ Σ̃,

LG̃,m(s̃σ̃) ≤ LG̃(s̃σ̃) ≤ LG̃(s̃) (3)

which means that the degree of a string of fuzzy events being physically possible is not

smaller than that of it being marked (the first inequality) and is not bigger than that of its

any substring being physically possible (the second inequality).

Remark 2. The max-product automata are equivalent to the fuzzy automata defined

by Lin and Ying [19], and in any max-product automaton with initial state q̃0 and input

alphabet Σ̃, the set of states {q̃0 ◦ s̃ : s̃ ∈ Σ̃∗} is likely infinite, and, as we will see in the
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sequel, it may result in complicated computation in realization. Therefore, we would like to

consider max-min automata usually in practical applications. In reality, max-min automata

are similar to the fuzzy automata defined in [30] for dealing with an application of clinical

monitoring. Notably, the set of fuzzy states {q̃0 ⊙ s̃ : s̃ ∈ Σ̃∗} in any max-min automaton is

clearly finite [30].

We introduce the parallel operation of fuzzy finite automata (max-product or max-min

automata). For fuzzy finite automata G̃i = (Q̃i, Σ̃i, δ̃i, q̃i0, Q̃mi), i = 1, 2, by means of the

crisp case formulated above we can naturally define the parallel composition of G̃1 and G̃2:

G̃1‖
′

G̃2 = (Q̃1 ⊗ Q̃2, Σ̃1 ∪ Σ̃2, δ̃1‖
′

δ̃2, q̃10 ⊗ q̃20, Q̃m1 ⊗ Q̃m2)

where Q̃1 ⊗ Q̃2 = {q̃1 ⊗ q̃2 : q̃i, i = 1, 2}, Σ̃1 ∪ Σ̃2 = {σ̃ : σ ∈ Σ1 ∪ Σ2} where σ̃ is defined as

follows:

(i) If σ ∈ Σ1 ∩ Σ2, then σ̃ = σ̃1 ⊗ σ̃2 where σ̃i is the matrix of event σ in G̃i, i = 1, 2.

(ii) If event σ ∈ Σ1\Σ2, then σ̃ = σ̃1 ⊗ I2 where σ̃1 is the matrix of event σ in G̃1 and I2

is unit matrix of order |Q2|.

(iii) If event σ ∈ Σ2\Σ1, then σ̃ = I1 ⊗ σ̃2 where I1 is unit matrix of order |Q1| and σ̃2 is

equal to the matrix of σ in G̃2.

For any q̃1 ⊗ q̃2 ∈ Q̃1 ⊗ Q̃2 and any σ̃ ∈ Σ̃1 ∪ Σ̃2,

(δ̃1‖
′

δ̃2)(q̃1 ⊗ q̃2, σ̃) = (q̃1 ⊗ q̃2) ◦ σ̃.

Remark 3. The parallel composition G̃1‖
′
G̃2 of max-product automata formulated above

is equivalent to that in [19]. In [19] the parallel composition of fuzzy automata G̃1 and G̃2

is denoted by G̃1‖G̃2 = (Q̃1 × Q̃2, Σ̃1 ∪ Σ̃2, δ̃1 × δ̃2, (q̃10, q̃20)) where every state in Q̃1 × Q̃2 is

represented as the form of Cartesian product (q̃1, q̃2) for q̃1 ∈ Q̃1and q̃2 ∈ Q̃2. And it should

be pointed out that the authors [19, page 411] also considered implicitly tensor product for the

computing process but it was not formulated to establish the parallel composition by means

of tensor product. To a certain extent, it may be more clear and convenient to describe the

computing processes in terms of the parallel composition defined in this paper. An example

in the following is provided to illustrate the computing.

Example 1. In fuzzy finite automata G̃1 and G̃2 defined above, if p̃ = [0.1 0.5 0.3] ∈ Q̃1,

q̃ = [0.2 0.6 0.1] ∈ Q̃2, α̃1 =











0.1 0.2 0

0.4 0 0.7

0.6 0.8 0











∈ Σ̃1 (here α1 ∈ Σ1\Σ2), then
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p̃⊗ q̃ = [0.02 0.06 0.01 0.1 0.3 0.05 0.06 0.18 0.03],

α̃1 ⊗ I2 = α̃1 ⊗











1 0 0

0 1 0

0 0 1











=

















































0.1 0 0 0.2 0 0 0 0 0

0 0.1 0 0 0.2 0 0 0 0

0 0 0.1 0 0 0.2 0 0 0

0.4 0 0 0 0 0 0.7 0 0

0 0.4 0 0 0 0 0 0.7 0

0 0 0.4 0 0 0 0 0 0.7

0.6 0 0 0.8 0 0 0 0 0

0 0.6 0 0 0.8 0 0 0 0

0 0 0.6 0 0 0.8 0 0 0

















































,

and therefore, if G̃1 and G̃2 are max-min automata, then

δ̃1‖
′

δ̃2(p̃ ⊗ q̃, α̃1) = (p̃ ⊗ q̃)⊙ (α̃1 ⊗ I2)

= [0.1 0.3 0.05 0.06 0.18 0.03 0.1 0.3 0.05];

if G̃1 and G̃2 are max-product automata, then

δ̃1‖
′

δ̃2(p̃⊗ q̃, α̃1) = (p̃⊗ q̃) ◦ (α̃1 ⊗ I2)

= [max{0.002, 0.004, 0.036} max{0.006, 0.12, 0.108} max{0.001, 0.02, 0.18}

max{0.004, 0.48} max{0.012, 0.144} max{0.002, 0.24} 0.07 0.21 0.35]

= [0.036 0.12 0.18 0.48 0.144 0.24 0.07 0.21 0.35]. ✷

III. Supervisory Controllability of Fuzzy DESs

A. Controllability Theorems for Fuzzy DESs

In supervisory control, a fundamental issue is how to design a controller (or supervisor)

whose task is to enable and disable the controllable events such that the resulting closed-loop

system obeys some pre-specified operating rules [1]. The purpose of this subsection is to

establish controllability theorem of fuzzy DESs. Again, let us recall the supervisory control

problems of crisp DESs under full observation. Suppose that a DES is modeled by a finite

automaton G = (Q,Σ, δ, q0, Qm) and the language L(G) generated by G may be interpreted

as physically possible behavior. However, L(G) is not satisfactory and must be modified by

feedback control; modifying the behavior is to be understood as restricting the behavior to

a subset of L(G) that represents the “legal” behavior for the controlled system. In order to
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alter the behavior of L(G), a supervisor denoted by S, is introduced. As a supervisor, S

has the capability of disabling some, but not necessarily all events of G. In this regard, Σ is

partitioned into two disjoint subsets Σ = Σc ∪ Σuc where Σc is the set of controllable events

that can be prevented from happening or disabled, by supervisor S, whereas Σuc is the set of

uncontrollable events which cannot be prevented from happening by S. Formally, supervisor

S is defined as a function:

S : L(G) → P(Σ).

It is interpreted that for each s ∈ L(G), S(s)∩ {σ : sσ ∈ L(G)} represents the set of enabled

events after the occurrence of s. Furthermore, it is required that for any s ∈ L(G),

Σuc ∩ {σ ∈ Σ : sσ ∈ L(G)} ⊆ S(s), (4)

which means that after the occurrence of any physically possible string of events, the phys-

ically possible uncontrollable events are not allowed to be disabled by S. The condition

described by Eq. (4) is called admissible for S [1].

Given a DES modeled by finite automaton G and admissible supervisor S, the resulting

controlled system denoted by S/G that means S controlling G, is also a DES modeled by a

language L(S/G) defined recursively as follows: ǫ ∈ L(S/G) and

sσ ∈ L(S/G) ⇐⇒ s ∈ L(S/G) and sσ ∈ L(G) and σ ∈ S(s).

The language marked by S/G is defined as:

Lm(S/G) = L(S/G) ∩ Lm(G).

The DES modeled by L(S/G) is blocking if L(S/G) 6= pr(Lm(S/G)). As mentioned before, a

key result in supervisory control is the controllability theorem that characterizes the existence

for supervisors in the presence of uncontrollable events, and is described as follows: Suppose

that a DES is modeled by finite automaton G = (Q,Σ, δ, q0). (Here the marked set is

not considered and thus left out.) Let K ⊆ L(G). Then there is supervisor S such that

L(S/G) = pr(K) if and only if pr(K)Σuc ∩ L(G) ⊆ pr(K).

As stated before, imprecision and uncertainty play a crucial role in the field of biomedicine.

For example, in practice, a single disease may show several different symptoms with respec-

tive severity degrees at every therapeutic stage. With the progress of treatment, some bad

symptoms may fade away while some healthy conditions appear; also, some symptoms may

weaken and the other ones possibly strength. We formally denote by p1, p2, . . . , pn the pos-

sible main symptoms, containing healthy conditions and poor ones. If the current condition
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of a patient is with respective grades of membership di ∈ [0, 1] for pi, denoted by
∑

i d
(1)
i /pi,

then a therapy (say α̃) may result in another condition
∑

i d
(2)
i /pi. Therefore, we will try

to model such a process by means of fuzzy DESs. Furthermore, in view of human errors in

medicine occurring frequently in hospitalized patients [14], we focus on dealing with super-

visory control of fuzzy DESs to try to prevent medical errors such as those in diagnosis and

treatment. (Fig. 1 and Fig. 2 manifest respectively the rough processes of treat without

supervisor and under supervisor.)

✛

✲

Patient

Physician

Feedback Treat

Fig. 1. Treat without supervisor.

✛

✲

✲
❄

Patient

Physician

Feedback Supervised Treat Method

Fig. 2. Treat under supervisor.

Supervisor

Treat Method

Before giving controllability theorem in fuzzy DESs, we need further to define several

related concepts in the setting of fuzzy DESs. Each event σ̃ ∈ Σ̃ is associated with a degree

of controllability, so, the uncontrollable set Σ̃uc and controllable set Σ̃c are two fuzzy subsets

of Σ̃, i.e., Σ̃uc, Σ̃c ∈ F(Σ̃) (in this paper, F(X) denotes the family of all fuzzy subsets of X),

and satisfy: For any σ̃ ∈ Σ̃,

Σ̃uc(σ̃) + Σ̃c(σ̃) = 1. (5)

Notably, the condition described by Eq. (5) is similar to that for defining fuzzy observability

by Lin and Ying [19]. For instance, in the face of deciding to treat a patient having cancer via

either operation or drug therapy, either method (viewed as an fuzzy event) has certain degree

to be controlled. A sublanguage of LG̃ is represented as K̃ ∈ F(Σ̃∗) satisfying K̃ ⊆ LG̃. In

this paper, Ã ⊆ B̃ stands for Ã(σ̃) ≤ B̃(σ̃) for any element σ̃ of domain. In the procedure

of curing a severe patient, a single physician-in-charge will be confronted with some great

challenges when making some crucial decisions, in which some mistakes also possibly happen

by accident. In this regard, a supervisor (it may consist of a group of specialists) likewise

plays an important role. A supervisor S̃ of fuzzy DES G̃ is defined as a function:

S̃ : Σ̃∗ → F(Σ̃),
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where for each s̃ ∈ Σ̃∗ and each σ̃ ∈ Σ̃, S̃(s̃)(σ̃) represents the possibility of fuzzy event

σ̃ being enabled after the occurrence of fuzzy event string s̃, and min{S̃(s̃)(σ̃),LG̃(s̃σ̃)} is

interpreted to be the degree to which string s̃σ̃ is physically possible and fuzzy event σ̃ is

enabled after the occurrence of fuzzy event string s̃. Similar to the admissibility condition

Eq. (4) indicated above for crisp supervisors, S̃ is usually required to satisfy that for any

s̃ ∈ Σ̃∗ and σ̃ ∈ Σ̃,

min
{

Σ̃uc(σ̃),LG̃(s̃σ̃)
}

≤ S̃(s̃)(σ̃). (6)

We may call this condition characterized by Eq. (6) as the fuzzy admissibility condition for

supervisor S̃ of fuzzy DES G̃. To a great extent, this condition conforms to real-life control

problems. For example, in a therapeutic regime for a patient having cancer, after a sequence

of supervised treatments, say s̃, a physician and a supervisor may face the choice between

operation σ̃1 and drug therapy σ̃2. In a way, the possibilities of σ̃1 and σ̃2 being controlled are

small if there does not have any another therapy to be chosen at present. Likely, σ̃1 or σ̃2 will

be adopted following s̃, which means that for the moment the degrees to which supervisor

s̃ (group of specialists) can control operation σ̃1 and drug therapy σ̃2 are small, that is to

say, S̃(s̃)(σ̃i) (i = 1, 2) that represent the possibilities of σ̃1 and σ̃2 being controlled for the

present are not smaller than the possibility of s̃σ̃i being implemented and σ̃i uncontrollable.

In particular, if it is only required that Eq. (6) holds true for any string s̃ with |s̃| ≤ n (in

this paper, |s̃| denotes the length of string s̃), then we call it fuzzy n-admissibility condition.

Intuitively, the fuzzy admissibility condition Eq. (6) for supervisor S̃ of fuzzy DES G̃ means

that the degree to which any fuzzy event σ̃ ∈ Σ̃ following any string of fuzzy events s̃ ∈

Σ̃∗ is possible together with the fuzzy event σ̃ being uncontrollable is not bigger than the

possibility for σ̃ being enabled after s̃ occurring; as such, the fuzzy n-admissibility condition

for supervisor S̃ can be interpreted via restricting the length of string of fuzzy events s̃ ∈ Σ̃∗

with |s̃| ≤ n.

The fuzzy controlled system by S̃, denoted by S̃/G̃, is also a fuzzy DES and the languages

LS̃/G̃ and LS̃/G̃,m generated and marked by S̃/G̃ respectively are defined as follows: For any

s̃ ∈ Σ̃∗ and each σ̃ ∈ Σ̃,

LS̃/G̃(ǫ) = 1, LS̃/G̃(s̃σ̃) = min
{

LS̃/G̃(s̃),LG̃(s̃σ̃), S̃(s̃)(σ̃)
}

;

LS̃/G̃,m = LS̃/G̃∩̃LG̃,m,

where symbol ∩̃ is Zadeh fuzzy AND operator, i.e., (Ã∩̃B̃)(x) = min{Ã(x), B̃(x)}. We give

13



a notation concerning prefix-closed property in the sense of fuzzy DESs. For any s̃ ∈ Σ̃∗,

pr(s̃) = {t̃ ∈ Σ̃∗ : ∃r̃ ∈ Σ̃∗, t̃r̃ = s̃}. (7)

For any fuzzy language L over Σ̃∗, its prefix-closure pr(L) : Σ̃∗ → [0, 1] is defined as:

pr(L)(s̃) = sup
s̃∈pr(t̃)

L(t̃). (8)

So pr(L)(s̃) denotes the possibility of string s̃ belonging to the prefix-closure of L. By means

of the formulation of the above concepts, now we can present the controllability theorem

concerning fuzzy DESs.

Theorem 1. Let a fuzzy DES be modeled by fuzzy finite automaton (max-product or

max-min automaton) G̃ = (Q̃, Σ̃, δ̃, q̃0). Suppose fuzzy uncontrollable subset Σ̃uc ∈ F(Σ̃),

and fuzzy legal subset K̃ ∈ F(Σ̃∗) that satisfies: K̃ ⊆ LG̃, and K̃(ǫ) = 1. Then there exists

supervisor S̃ : Σ̃∗ → F(Σ̃), such that S̃ satisfies the fuzzy admissibility condition Eq. (6) and

LS̃/G̃ = pr(K̃) if and only if for any s̃ ∈ Σ̃∗ and any σ̃ ∈ Σ̃,

min
{

pr(K̃)(s̃), Σ̃uc(σ̃),LG̃(s̃σ̃)
}

≤ pr(K̃)(s̃σ̃), (9)

where Eq. (9) is called fuzzy controllability condition of K̃ with respect to G̃ and Σ̃uc.

Intuitively, Eq. (9) means that the degree to which string s̃ belongs to the prefix-closure

of K̃ and fuzzy event σ̃ following the string s̃ is physically possible together with σ̃ being

uncontrollable is not bigger than the possibility of the string s̃σ̃ pertaining to the prefix-

closure of K̃.

Proof of Theorem 1: First we note that K̃ ⊆ LG̃ implies pr(K̃) ⊆ LG̃. Indeed, for any

s̃ ∈ Σ̃∗, with Eq. (3) we have

pr(K̃)(s̃) = sup
t̃∈Σ̃∗

K̃(s̃t̃) ≤ sup
t̃∈Σ̃∗

LG̃(s̃t̃) = LG̃(s̃),

which verifies this result. We begin to show that if the fuzzy controllability condition Eq.

(9) holds, then there exists fuzzy supervisor S̃ satisfying the required conditions. We define

S̃ : Σ̃∗ → F(Σ̃) as: For any s̃ ∈ Σ̃∗ and any σ̃ ∈ Σ̃,

S̃(s̃)(σ̃) =







min
{

Σ̃uc(σ̃),LG̃(s̃σ̃)
}

, if Σ̃uc(σ̃) ≥ pr(K̃)(s̃σ̃),

pr(K̃)(s̃σ̃), otherwise.
(10)

Clearly, S̃ satisfies the fuzzy admissibility condition. Next our purpose is to show that for

any s̃ ∈ Σ̃∗,

LS̃/G̃(s̃) = pr(K̃)(s̃). (11)
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Proceed by induction for the length of s̃. If |s̃| = 0, i.e., s̃ = ǫ, then LS̃/G̃(ǫ) = 1 = pr(K̃)(ǫ).

Suppose that Eq. (11) holds true for any s̃ ∈ Σ̃∗ with |s̃| ≤ k − 1. Then our aim is to prove

that Eq. (11) holds for any t̃ ∈ Σ̃∗ with |t̃| = k. Let t̃ = s̃σ̃ where |s̃| = k− 1. Then with the

assumption of induction, and the definition of LS̃/G̃, we have

LS̃/G̃(s̃σ̃) = min
{

LS̃/G̃(s̃),LG̃(s̃σ̃), S̃(s̃)(σ̃)
}

= min
{

pr(K̃)(s̃),LG̃(s̃σ̃), S̃(s̃)(σ̃)
}

.

By means of the definition S̃(s̃)(σ̃), if Σ̃uc(σ̃) ≥ pr(K̃)(s̃σ̃), then

LS̃/G̃(s̃σ̃) = min
{

pr(K̃)(s̃),LG̃(s̃σ̃), Σ̃uc(σ̃)
}

≤ pr(K̃)(s̃σ̃);

if Σ̃uc(σ̃) < pr(K̃)(s̃σ̃), then

LS̃/G̃(s̃σ̃) = min
{

pr(K̃)(s̃),LG̃(s̃σ̃), pr(K̃)(s̃σ̃)
}

≤ pr(K̃)(s̃σ̃).

Therefore, we have shown LS̃/G̃(s̃σ̃) ≤ pr(K̃)(s̃σ̃). On the other hand, due to pr(K̃)(s̃σ̃) ≤

pr(K̃)(s̃) and pr(K̃)(s̃σ̃) ≤ LG̃(s̃σ̃), we have

pr(K̃)(s̃σ̃) ≤ min
{

pr(K̃)(s̃),LG̃(s̃σ̃)
}

= min
{

LS̃/G̃(s̃),LG̃(s̃σ̃)
}

. (12)

Furthermore, if Σ̃uc(σ̃) ≥ pr(K̃)(s̃σ̃), then by combining the definition of S̃(s̃) with Eq. (12),

we have

pr(K̃)(s̃σ̃) ≤ min
{

LS̃/G̃(s̃),LG̃(s̃σ̃), Σ̃uc(σ̃)
}

= min
{

LS̃/G̃(s̃),LG̃(s̃σ̃), S̃(s̃)(σ̃)
}

= LS̃/G̃(s̃σ̃);

if Σ̃uc(σ̃) < pr(K̃)(s̃σ̃), then with the definition of S̃(s̃) we have S̃(s̃)(σ̃) = pr(K̃)(s̃σ̃), and

by Eq. (12) we obtain that

pr(K̃)(s̃σ̃) ≤ min
{

LS̃/G̃(s̃),LG̃(s̃σ̃), S̃(s̃)(σ̃)
}

= LS̃/G̃(s̃σ̃).

Therefore we have verified that pr(K̃)(s̃σ̃) = LS̃/G̃(s̃σ̃) holds for any s̃ ∈ Σ̃∗ and σ̃ ∈ Σ̃ with

|s̃| = k − 1, and the proof of sufficiency is completed.
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The remainder is to consider the proof of necessity. If LS̃/G̃ = pr(K̃) holds, then for any

s̃ ∈ Σ̃∗ and σ̃ ∈ Σ̃, with the fuzzy admissibility condition Eq. (6) of S̃ we have

min
{

pr(K̃)(s̃), Σ̃uc(σ̃),LG̃(s̃σ̃)
}

≤ min
{

LS̃/G̃(s̃), S̃(s̃)(σ̃),LG̃(s̃σ̃)
}

= LS̃/G̃(s̃σ̃)

= pr(K̃)(s̃σ̃).

This completes the proof of necessity and the theorem has therefore been proved. ✷

Remark 4. Theorem 1 together with its proof presents a method for designing a supervisor

of a fuzzy DES such that the deriving fuzzy system obeys the pre-specified “legal” behavior

for the fuzzy controlled system, which may apply to fuzzy DESs such as modeling a patient’s

health condition and traffic systems. In particular, from the above proof we see that in

Theorem 1 the fuzzy finite automaton can be of max-product or max-min. We will see that

when fuzzy DES is modeled by max-product automaton, it is difficult to check the fuzzy

controllability condition Eq. (9) with a general criterion, whereas if max-min automata are

used to model fuzzy DESs, then we can present a general computing process in detail for

testing the fuzzy controllability condition Eq. (9).

As an aspect of application, we can utilize Theorem 1 to cope with some realistic control

problems with finite length specifications. In this regard, from Theorem 1 it follows readily

the following Corollary 1. Before giving this corollary, we introduce two notations: For

any two fuzzy languages Ã and B̃ over set Σ̃ of fuzzy events, Ã ⊆n B̃ and Ã =n B̃ mean

respectively that for any string s̃ ∈ Σ̃∗ with |s̃| ≤ n, Ã(s̃) ≤ B̃(s̃) and Ã(s̃) = B̃(s̃).

Corollary 1. Let a fuzzy DES be modeled by fuzzy finite automaton (max-product or max-

min) G̃ = (Q̃, Σ̃, δ̃, q̃0). Let n be any given positive integer. Suppose fuzzy uncontrollable

subset Σ̃uc ∈ F(Σ̃), and fuzzy legal subset K̃ ∈ F(Σ̃∗) that satisfies: K̃ ⊆n LG̃, and K̃(ǫ) = 1.

Then there exists supervisor S̃ : Σ̃∗ → F(Σ̃), such that S̃ satisfies the fuzzy n-admissibility

condition Eq. (6) and LS̃/G̃ =n pr(K̃) if and only if for any s̃ ∈ Σ̃∗ with |s̃| ≤ n and any

σ̃ ∈ Σ̃,

min
{

pr(K̃)(s̃), Σ̃uc(σ̃),LG̃(s̃σ̃)
}

≤ pr(K̃)(s̃σ̃), (13)

where Eq. (13) is called fuzzy n-controllability condition of K̃ with respect to G̃ and Σ̃uc.

Proof: Exactly similar to Theorem 1 by restricting the length of s̃ with |s̃| ≤ n. ✷

Remark 5. If for every fuzzy event σ̃ ∈ Σ̃ and every string s̃ ∈ Σ̃∗, we view the total
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computation for Eq. (13) as a step, then with Eq. (13) it is possible to check whether

or not fuzzy n-controllability condition holds with most number of computing steps (1 +

|Σ̃|+ 2|Σ̃| + · · ·+ n|Σ̃|)|Σ̃|, where |Σ̃| is the number of fuzzy events. Therefore the worst-case

computational complexity for this test is exponential, and it should be worth considering to

reduce the computation procedure.

B. Realization of Supervisors for Fuzzy DESs and Some Examples

From Theorem 1 it is seen that the existence of supervisor S̃ is closely related to the fuzzy

controllability condition of K̃ defined by Eq. (9), so it is very important to consider how

to test such a condition. Nevertheless, in fuzzy DESs modeled by max-product automata,

the set of fuzzy states {q̃0 ◦ s̃ : s̃ ∈ Σ̃∗} is likely infinite. Along with the further analysis

in the following (Case 1), it is quite complicated to present a uniform method to check the

fuzzy controllability condition for this case. But when the fuzzy DESs modeled by max-min

automata, we can give a general computing flow for testing the condition (Case 2). The two

cases are dealt with as follows, and we focus on the second case.

Case 1. Fuzzy DESs modeled by max-product automata.

In fuzzy DES modeled by max-product automaton G̃ = (Q̃, Σ̃, δ̃, q̃0), in which the di-

mensionality of Q̃ is n (i.e., Q has n crisp states), for a given fuzzy subset K̃ ⊆ LG̃ of

control specifications, by means of Theorem 1 we should decide the existence of supervisor

S̃. As in crisp DESs [1], we may assume pr(K̃) to be a fuzzy language generated by a max-

product automaton H̃ = (R̃, Σ̃, γ̃, p̃0) with dimensionality m of R̃. Then we have that for

any s̃ = σ̃1σ̃2 · · · σ̃k ∈ Σ̃∗ where σ̃i ∈ Σ̃, i = 1, 2, · · · , k,

pr(K̃)(s̃) = LH̃(s̃) =
m

max
i=1

p̃0 ◦ σ̃1 ◦ σ̃2 ◦ · · · ◦ σ̃k ◦ s̄
T
i , (14)

pr(K̃)(s̃σ̃) = LH̃(s̃σ̃) =
m

max
i=1

p̃0 ◦ σ̃1 ◦ σ̃2 ◦ · · · ◦ σ̃k ◦ σ̃ ◦ s̄Ti , (15)

LG̃(s̃σ̃) =
m

max
i=1

q̃0 ◦ σ̃1 ◦ σ̃2 ◦ · · · ◦ σ̃k ◦ σ̃ ◦ s̄Ti , (16)

where s̄Ti (i = 1, 2, . . . ,m) and s̄Tj (j = 1, 2, . . . ,m), as indicated above, are respectively the

crisp states of H̃ and G̃. If the sets of fuzzy states {p̃0 ◦ s̃ : s̃ ∈ Σ̃∗} and {q̃0 ◦ s̃ : s̃ ∈ Σ̃∗}

were finite, then by virtue of Eqs. (14-16) we can check the fuzzy controllability condition

described above by Eq. (9) within finite steps. But unfortunately it is perhaps not so. From

Eqs. (14) and (15) it follows that pr(K̃)(s̃) and pr(K̃)(s̃σ̃) may be arbitrarily small in case of

the length of s̃ big enough, since those elements in fuzzy events (matrices) are usually smaller
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than 1. On the other hand, pr(K̃)(s̃σ̃) ≤ LG̃(s̃σ̃) is prerequisite, and pr(K̃)(s̃σ̃) ≤ pr(K̃)(s̃)

always holds, that is, we always have

min{pr(K̃)(s̃σ̃), Σ̃uc(σ̃)} ≤ min
{

pr(K̃)(s̃), Σ̃uc(σ̃),LG̃(s̃σ̃)
}

; (17)

however, Σ̃uc(σ̃) is certain for each fuzzy event σ̃, and, as just indicated, pr(K̃)(s̃) and

pr(K̃)(s̃σ̃) tend likely to zero when |s̃| is big enough, and it thus follows from Eq. (17) that

pr(K̃)(s̃σ̃) ≤ min
{

pr(K̃)(s̃), Σ̃uc(σ̃),LG̃(s̃σ̃)
}

,

which implies that to guarantee the fuzzy controllability condition Eq. (9), it is required that

as the length of string s̃ becomes big enough,

pr(K̃)(s̃σ̃) = min
{

pr(K̃)(s̃),LG̃(s̃σ̃)
}

. (18)

Clearly, Eq. (18) is a strict condition on K̃, and, therefore, to ensure the fuzzy controllability

condition Eq. (9), some restrictions imposed upon K̃ are necessary. For example,

K̃(s̃σ̃) ≥ min{Σ̃uc(σ̃),LG̃(s̃σ̃)}

is a sufficient condition to result in Eq. (9); or when the support set of K̃ is finite, we can

check whether or not Eq. (9) holds.

Case 2. Fuzzy DESs modeled by max-min automata.

Let fuzzy DES be modeled by max-min automaton G̃ = (Q̃, Σ̃, δ̃, q̃0), in which the di-

mensionality of Q̃ is n. We first give a computing tree for deriving the set of all fuzzy states

reachable from the initial state q̃0, and the sets of strings respectively corresponding to each

accessible fuzzy state are also obtained. Assume that Σ̃ = {α̃1, α̃2, . . . , α̃n}. A basic idea is

based on that (i) q̃0 ⊙ s̃ = q̃0 ⊙ s̃ ⊙ (s̃1)
n for any n ≥ 0 if q̃0 ⊙ s̃ = q̃0 ⊙ s̃ ⊙ s̃1 for s̃1 ∈ Σ̃∗,

where (s̃1)
n denotes the ⊙ product of n’s s̃1, and (ii) the set of fuzzy states {q̃0 ⊙ s̃ : s̃ ∈ Σ̃∗}

is always finite since Σ̃ is finite. For the sake of simplicity, we present the computing tree for

Σ̃ = {α̃1, α̃2} of two fuzzy events via Fig. 3, and the case of more than two fuzzy events is

analogous.
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Begin

❄
q̃0

❄ ❄
q̃0 ⊙ α̃1 q̃0 ⊙ α̃2

❄❄ ❄ ❄
q̃0 ⊙ α̃1 ⊙ α̃1 q̃0 ⊙ α̃1 ⊙ α̃2 q̃0 ⊙ α̃2 ⊙ α̃1 q̃0 ⊙ α̃2 ⊙ α̃2

❄❄ ❄❄ ❄ ❄ ❄ ❄
q̃0 ⊙ α̃3

1
q̃0 ⊙ α̃2

1
⊙ α̃2 q̃0 ⊙ α̃1 ⊙ α̃2 ⊙ α̃1 q̃0 ⊙ α̃1 ⊙ α̃2

2
q̃0 ⊙ α̃2 ⊙ α̃2

1
q̃0 ⊙ α̃2 ⊙ α̃1 ⊙ α̃2 q̃0 ⊙ α̃2

2
⊙ α̃1 q̃0 ⊙ α̃3

2

...
...

...
...

...
...

...
...

α̃1 α̃2

α̃1 α̃2 α̃1 α̃2

α̃2α̃1 α̃1 α̃2α̃1 α̃2 α̃1 α̃2

Fig. 3. A computing tree for deciding the all different fuzzy states reachable from q̃0.

In this computing tree, the initial fuzzy state q̃0 is its root; each vertex, say q̃0 ⊙ s̃, may

produce n’s sons q̃0 ⊙ s̃⊙ s̃1, q̃0 ⊙ s̃⊙ s̃2, . . ., q̃0 ⊙ s̃⊙ s̃1. However, if q̃0 ⊙ s̃ equals some its

father, then q̃0 ⊙ s̃ is a leaf, that is marked by a underline. The computing ends with a leaf

at the end of each branch.

Example 2. In max-min automaton G̃ = (Q̃, Σ̃, δ̃, q̃0), where Σ̃ = {α̃1, α̃2}, q̃0 = [0.9, 0.1],

and α̃1 =





0.4 0.8

0.2 0.2



, α̃2 =





0.4 0.2

0.8 0.5



. Then we have the following computing tree, in

which each leaf is underlined.
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Begin

❄
q̃0=[0.9 0.1]

❄ ❄
[0.4 0.8] [0.4 0.2]

❄❄ ❄ ❄
[0.4 0.4] [0.8 0.5] [0.4 0.4] [0.4 0.2]

❄❄ ❄❄ ❄ ❄
[0.4 0.4] [0.4 0.4] [0.4 0.8] [0.5 0.5] [0.4 0.4] [0.4 0.4]

α̃1 α̃2

α̃1 α̃2 α̃1 α̃2

α̃1 α̃2 α̃1 α̃2α̃1 α̃2

❄❄
α̃1 α̃2

❄❄
[0.4 0.4] [0.5 0.5]

❄❄
[0.4 0.4] [0.5 0.5]

α̃1 α̃2

Fig. 4. A computing tree for deciding the all different fuzzy states reachable from q̃0=[0.9 0.1].

From this computing tree (Fig. 4) it follows that in G̃ there are only six different fuzzy states

reachable from q̃0=[0.9 0.1], which are listed in TABLE I as follows.

TABLE I
Six different fuzzy states reachable from q̃0.

s̃ q̃0 ⊙ s̃ s̃ q̃0 ⊙ s̃

ǫ̃ [0.9 0.1] α̃1α̃1 [0.4 0.4]

α̃1 [0.4 0.8] α̃1α̃2 [0.8 0.5]

α̃2 [0.4 0.2] α̃1α̃2α̃2 [0.5 0.5]

Also, the corresponding sets of strings to each fuzzy states can be obtained respectively as

follows: C(q̃0) = {ǫ}; C(q̃0 ⊙ α̃1) = {α̃1(α̃2α̃1)
n : n ≥ 0}; C(q̃0 ⊙ α̃2) = {α̃n

2 : n ≥ 1};

C(q̃0 ⊙ α̃2
1) = {α̃2

1α̃
n
1 : n ≥ 0} ∪ {α̃2

1α̃
n
2 : n ≥ 0}

∪{α̃1α̃2α̃2α̃
n
1 : n ≥ 1} ∪ {α̃1α̃2α̃2α̃1α̃

n
2 : n ≥ 0}

∪{α̃2α̃
n
1 : n ≥ 1} ∪ {α̃2α̃1α̃

n
2 : n ≥ 0};

C(q̃0 ⊙ α̃1 ⊙ α̃2) = {(α̃1α̃2)
n : n ≥ 1}; and C(q̃0 ⊙ α̃1 ⊙ α̃2

2) = {α̃1α̃2α̃
n
2 : n ≥ 1}. Here, C(q̃)

denotes the set {s̃ ∈ Σ̃∗ : δ̃(q̃0, s̃) = q̃0 ⊙ s̃ = q̃}.

For two max-min automata G̃i = (Q̃i, Σ̃i, δ̃i, q̃i0) (i = 1, 2) with the same set of fuzzy

events Σ̃1 = Σ̃2 = Σ̃ = {σ̃1, σ̃2, . . . , σ̃n}, our purpose is to search for the all different pairs of

fuzzy states reachable from the initial fuzzy state pair (q̃10, q̃20), that is, {(q̃10 ⊙ s̃, q̃20 ⊙ s̃) :

s̃ ∈ Σ̃∗}. The method is similar to the case of single max-min automaton presented above,
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that is carried out by a computing tree. In the computing tree, the root is labeled with

pair (q̃10, q̃20), and each vertex, say (q̃10 ⊙ s̃, q̃20 ⊙ s̃) for s̃ ∈ Σ̃∗, may produce n’s sons, i.e.,

(q̃10 ⊙ s̃⊙ σ̃i, q̃20 ⊙ s̃⊙ σ̃i), i = 1, 2, . . . , n. But if a pair (q̃10 ⊙ s̃⊙ σ̃i, q̃20 ⊙ s̃⊙ σ̃i) is the same

as one of its father, then this pair will be treated as a leaf, that is marked with a underline.

Such a computing tree is depicted by Fig. 5 as follows. Since the set of all pairs of fuzzy

states is finite due to the finiteness of Σ̃, the computing tree ends with a leaf at the end of

each branch.
Begin

❄
(q̃10 q̃20)

❄ ❄
(q̃10 ⊙ σ̃1 q̃20 ⊙ σ̃1) (q̃10 ⊙ σ̃2 q̃20 ⊙ σ̃2)

❄❄ ❄ ❄
(q̃10 ⊙ σ̃2

1
q̃20 ⊙ σ̃2

1
) (q̃10 ⊙ σ̃1 ⊙ σ̃2 q̃20 ⊙ σ̃1 ⊙ σ̃2) (q̃10 ⊙ σ̃2 ⊙ σ̃1 q̃20 ⊙ σ̃2 ⊙ σ̃1) (q̃10 ⊙ σ̃2

2
q̃20 ⊙ σ̃2

2
)

σ̃1 σ̃2

σ̃1 σ̃2 σ̃1 σ̃2

...
...

...
...

Fig. 5. The computing tree deciding the all different pairs of fuzzy states reachable from the initial
fuzzy state pair (q̃10, q̃20).

Example 3. For max-min automata G̃ = (Q̃, Σ̃, δ̃, q̃0) as Example 2, and H̃ = (Q̃1, Σ̃, γ̃, p̃0),

where p̃0 = [0.8 0.2], Σ̃ = {α̃1, α̃2} with α̃1 =





0.2 0.8

0.2 0.2



, α̃2 =





0.2 0.2

0.8 0.5



, then from

the above computing tree Fig. 5 we can derive the computing tree Fig. 6 for deciding the set

of all different fuzzy state pairs reachable from (q̃0, p̃0) as follows:
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Begin

❄
(q̃0,p̃0)=([0.9 0.1],[0.8 0.2])

❄ ❄
([0.4 0.8],[0.2 0.8]) ([0.4 0.2],[0.2 0.2])

❄❄ ❄ ❄
([0.4 0.4],[0.2 0.2]) ([0.8 0.5],[0.8 0.5]) ([0.4 0.4],[0.2 0.2]) ([0.4 0.2], [0.2 0.2])

❄ ❄
([0.4 0.8], [0.2 0.8]) ([0.5 0.5],[0.5 0.5])

❄❄ ❄ ❄
([0.4 0.4], [0.2 0.2]) ([0.4 0.4], [0.2 0.2]) ([0.4 0.4], [0.2 0.2]) ([0.4 0.4], [0.2 0.2])

❄ ❄
([0.4 0.4],[0.2 0.5]) ([0.5 0.5], [0.5 0.5])

❄ ❄
([0.4 0.4],[0.2 0.2]) ([0.4 0.4],[0.5 0.5])

❄ ❄
([0.4 0.4], [0.2 0.2]) ([0.4 0.4], [0.2 0.2])

❄ ❄
([0.4 0.4],[0.2 0.1]) ([0.4 0.4], [0.5 0.5])

❄ ❄
([0.4 0.4], [0.2 0.2]) ([0.4 0.4], [0.2 0.2])

α̃1 α̃2

α̃1 α̃2 α̃1 α̃2

α̃1 α̃2 α̃1 α̃2

α̃1 α̃2

α̃1 α̃2

α̃1 α̃2

α̃1 α̃2 α̃1 α̃2

α̃1 α̃2

Fig. 6. The computing tree deciding the all different pairs of fuzzy states reachable from the initial fuzzy
state pair (q̃0,p̃0)=([0.9 0.1],[0.8 0.2]).

On the basis of the above discussion, if pr(K̃) is generated by a max-min automaton H̃ =

(Q̃1, Σ̃, γ̃, p̃0), we can test the fuzzy controllability condition Eq. (9) within finite steps by

means of TABLE II, where

L(G̃, H̃, s̃, σ̃) = min
{

pr(K̃)(s̃), Σ̃uc(σ̃),LG̃(s̃σ̃)
}

,

pr(K̃)(s̃) = LH̃(s̃) = [p̃0 ⊙ s̃],

LG̃(s̃σ̃) = [q̃0 ⊙ s̃⊙ σ̃].

Here the set of all different fuzzy state pairs is assumed to be

{(q̃0 ⊙ s̃, p̃0 ⊙ s̃) : s̃1, s̃2, . . . , s̃m ∈ Σ̃∗}.

In TABLE II, L(G̃, H̃, s̃, σ̃) ≤ [p̃0 ⊙ s̃ ⊙ σ̃] is exactly the fuzzy controllability condition Eq.

(9); if all elements in the rightmost column are “T”, then the fuzzy controllability condition

Eq. (9) holds true; otherwise, it does not hold.
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TABLE II. Testing the fuzzy controllability condition Eq. (9) in terms of whether or not the all elements in

the rightmost column are “T (True) ”.

s̃ σ̃ [p̃0 ⊙ s̃] [q̃0 ⊙ s̃ ⊙ σ̃] Σ̃uc(σ̃) L(G̃, H̃, s̃, σ̃) [p̃0 ⊙ s̃ ⊙ σ̃] L(G̃, H̃, s̃, σ̃)≤[p̃0 ⊙ s̃ ⊙ σ̃]

s̃1 σ̃1 T (True) or F (False)

.

.

. T (True) or F (False)

σ̃n T (True) or F (False)

s̃2 σ̃1 T (True) or F (False)

.

.

. T (True) or F (False)

σ̃n T (True) or F (False)

.

.

.

.

.

. T (True) or F (False)

s̃m σ̃1 T (True) or F (False)

.

.

. T (True) or F (False)

σ̃n T (True) or F (False)

Example 4. Let fuzzy DES be modeled by max-min automaton G̃ in Example 2, and

pr(K̃) is generated by H̃ in Example 3. By virtue of Fig. 6 we know that the all different

pairs of fuzzy states reachable from (q̃0, p̃0) are listed in TABLE III.

TABLE III. The computing tree visualized in Fig. 6 shows the all different pairs of fuzzy states
reachable from (q̃0, p̃0).

s̃ (q̃0 ⊙ s̃, p̃0 ⊙ s̃) s̃ (q̃0 ⊙ s̃, p̃0 ⊙ s̃)

ǫ̃ ([0.9 0.1], [0.8 0.2]) α̃1α̃2 ([0.8 0.5], [0.8 0.5])

α̃1 ([0.4 0.8], [0.2 0.8]) α̃1α̃2α̃2 ([0.5 0.5], [0.5 0.5])

α̃2 ([0.4 0.2], [0.2 0.2]) α̃1α̃2α̃2α̃1 ([0.4 0.4], [0.5 0.5])

α̃1α̃1 ([0.4 0.4], [0.2 0.2]) α̃1α̃2α̃2α̃1α̃2 ([0.4 0.4], [0.5 0.5])

According to TABLE II, we can check the fuzzy controllability condition Eq. (9) of fuzzy

DES in Example 4 via TABLE IV as follows (we only write the cases of s̃ = ǫ and α̃1, since

an “F” has been found up to now).

TABLE IV. Testing whether or not the fuzzy controllability condition Eq. (9) of fuzzy DES in Example 4 holds.

s̃ σ̃ [p̃0 ⊙ s̃] [q̃0 ⊙ s̃⊙ σ̃] Σ̃uc(σ̃) L(G̃, H̃, s̃, σ̃) [p̃0 ⊙ s̃⊙ σ̃] L(G̃, H̃, s̃, σ̃)≤[p̃0 ⊙ s̃⊙ σ̃]

ǫ̃ α̃1 0.8 0.8 0.7 0.7 0.8 T

α̃2 0.8 0.4 0.2 0.2 0.2 T

α̃1 α̃1 0.8 0.4 0.7 0.4 0.2 F

α̃2 0.8 0.8 0.2 0.2 0.8 T

Therefore by means of TABLE IV we see that Eq. (9) does not hold for s̃ = α̃1 and σ̃ = α̃1.

C. A Primary Application to Medicine: A Formal Example

We further state some applicable background of fuzzy DESs. Fuzzy control and fuzzy systems

in biomedical engineering have been significantly studied (for example, see [6]), in which fuzzy
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drug delivery system for real-time control of mean arterial pressure (MAP), cardiac output

(CO), and mean pulmonary arterial pressure (MPAP) in patients is one of the main concerns.

The heart patient’s status may be represented via the degrees of the three hemodynamic

variables, i.e., MAP, CO, and MPAP, and they may be low, high, or normal. These drugs such

as dopamine (DPM), sodium nitroprusside (SNP), nitroglycerin (NTG), and phenylephrine

(PNP) are appropriately used to regulate the degrees of MAP, CO, and MPAP. It may be

logically modeled via fuzzy DESs with supervisory control, in which the uses of the dosages

of DPM, SNP, NTG, and PNP may be thought of as some fuzzy events. But here we consider

the patient’s condition roughly to be three cases, i.e., “poor”, “fair”, and “excellent”, and, as

a first step, apply the above results regarding supervised control of fuzzy DESs to control the

three states. To this end, we further describe the following examples, which may be viewed

as an applicable background of supervisory control of fuzzy DESs.

♠

♠ ♠

❙
❙

❙
❙

❙
❙❙♦❙

❙
❙
❙
❙
❙❙✇ ✓

✓
✓
✓
✓
✓✓✼✓
✓

✓
✓

✓
✓✓✴

✲✛

p2

p1 p3
α3

β3

α1
β2

α2
β1

Fig. 7. Finite automaton modelling patient’s heart condition.

♠

♠ ♠

❥

❥
❙
❙
❙
❙
❙
❙❙✇ ✓

✓
✓
✓
✓
✓✓✼
✲

p2

p1 p3
α3

α1 α2

Fig. 8. Finite automaton modelling the given specifications.

Example 5. Let us use automaton G = (Q,Σ, δ, p1) to model a patient’s heart condition,

where Q = {p1, p2, p3}, Σ = {α1, α2, α3, β1, β2, β3}, and δ is visualized by Fig. 7. Here

p1 = P , p2 = F , and p3 = E represent “poor”, “fair”, and “excellent”, respectively. A

patient’s initial condition may be “poor” and should become “fair” and even “excellent”

after certain treatment. When patient’s health gets “fair”, we naturally hope it to be better

and better, say “excellent”, instead of deteriorating, i.e., recurring to “poor”. Analogously,

if the patient’s condition has been “excellent”, it is desired to keep the good health and thus

a supervisor is necessary to disable the events β1, β2, and β3 in case they are controllable.

Let us assume Σuc = {α1, α2, α3}, Σc = {β1, β2, β3}, and the given set of specifications

K = {α1, α1α2, α3} as desired. Actually, K is marked by automaton H = (Q,Σuc, δ1, p1, Qm)

depicted by Fig. 8, where Qm = {p2, p3}. Clearly, pr(K) = {ǫ, α1, α1α2, α3} is generated

by H. In terms of the method described above for checking the controllability condition

Eq. (9), it is readily seen that K is controllable with respect to L(G) and Σuc, that is,

pr(K)Σuc ∩ L(G) ⊆ pr(K) holds, so by virtue of crisp controllable theorem indicated above,

there is a supervisor S : Σ∗ → P(Σ) such that L(S/G) = pr(K), where S is defined as: For
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any s ∈ pr(K), S(s) = ΓH(δ1(p1, s)). Here symbol ΓH(q) denotes the set of active events in

the current state q. More explicitly, S(ǫ) = {α1, α3}, S(α1) = {α2}, S(α1α2) = ∅, S(α3) = ∅.

In real-life situation, a patient’s condition can simultaneously belong to “excellent”, “fair”,

and even “poor” with respective memberships; also, an event occurring (i.e., a treatment)

may lead a state to multi-states with respective degrees. Therefore, a patient’s conditions

and their changes after certain treatments should be modeled by a max-min automaton

G̃ = (Q̃, Σ̃, δ̃, q̃0), and the fuzzy events α̃i, β̃i (i = 1, 2) may be evaluated as follows by means

of some diagnosis together with medical theory and experience (for example, by virtue of an

intelligent system designed for automating drug delivery in [6, page 323], which is described

by Fig. 9, and to a certain extent, similar to the process of supervisory control of fuzzy

DESs).

Fuzzy Decision-Making

Module (FDMM)

✲ Fuzzy Control

Module (FCM)

✲Therapeutic Assessment

Module (TAM)

❄

Plant

(Patient)

✛

❄

Fig. 9. An intelligent system may be used to evaluate fuzzy events, where FDMM may be utilized to evaluate
the status of the patient, FCM may be devised to decide the fuzzy events to be carried out, and TAM
is used to evaluate the feasibility of implemented fuzzy events.

α̃1 =











0.4 0.9 0.4

0 0.4 0.4

0 0 0.4











, α̃2 =











0.4 0.4 0.4

0 0.4 0.9

0 0 0.4











, α̃3 =











0.4 0.4 0.9

0 0.4 0.4

0 0 0.4











,

β̃1 =











0.4 0 0

0.4 0.4 0

0.4 0.9 0.4











, β̃2 =











0.4 0 0

0.9 0.4 0

0.4 0.4 0.4











, β̃3 =











0.4 0 0

0.4 0.4 0

0.9 0.4 0.4











;

δ̃ is defined as before; q̃0 = [0.9 0.1 0]. As analyzed above, we hope the patient’s condition to

be better and better. To this end, we specify a fuzzy set of control specifications K̃ ∈ F(Σ̃∗)

that are desired, and show whether there exists a supervisor that can disable some fuzzy

events with respective degrees such that the restricted behavior of the supervised fuzzy system

satisfies those given specifications.

As usual, let pr(K̃) be generated by a max-min automaton H̃ = (Q̃, Σ̃, δ̃1, q̃0), that is

assumed to be derived from an intelligent system mentioned above, where q̃0 = [0.9 0.1 0];
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Σ̃ = {α̃1, α̃2, α̃3, β̃1, β̃2, β̃3} where α̃1, α̃2, α̃3 are the same as those in G̃, but β̃1, β̃2, β̃3 are

changed as follows:

β̃1 =











0.2 0 0

0.2 0.2 0

0.2 0.9 0.2











, β̃2 =











0.2 0 0

0.9 0.2 0

0.2 0.2 0.2











, β̃3 =











0.2 0 0

0.2 0.2 0

0.9 0.2 0.2











;

δ̃1 is naturally defined in terms of these given fuzzy events. Clearly, pr(K̃) = LH̃ ⊆ LG̃ since

each element in every fuzzy event of H̃ is not bigger than the corresponding element in the

same fuzzy event of G̃. By means of the computing tree described by Fig. 6, we can obtain

that there are only twelve different pairs of fuzzy states reachable from (q̃0, q̃0), that are listed

in TABLE V.

TABLE V. The all different pairs of fuzzy states reachable from (q̃0, q̃0).

s̃ (q̃0 ⊙ s̃, q̃0 ⊙ s̃) s̃ (q̃0 ⊙ s̃, q̃0 ⊙ s̃)

ǫ̃ ([0.9 0.1 0], [0.9 0.1 0]) α̃1β̃2 ([0.9 0.4 0.4], [0.9 0.2 0.2])

α̃1 ([0.4 0.9 0.4], [0.4 0.9 0.4]) α̃2β̃2 ([0.4 0.4 0.4], [0.4 0.2 0.2])

α̃2 ([0.4 0.4 0.4], [0.4 0.4 0.4]) α̃3β̃1 ([0.4 0.9 0.4], [0.2 0.9 0.2])

α̃3 ([0.4 0.4 0.9], [0.4 0.4 0.9]) α̃3β̃1α̃1 ([0.4 0.4 0.4], [0.2 0.4 0.4])

β̃1 ([0.4 0.1 0], [0.2 0.1 0]) α̃3β̃1α̃2 ([0.4 0.4 0.9], [0.2 0.4 0.9])

α̃1β̃1 ([0.4 0.4 0.4], [0.2 0.2 0.2]) α̃3β̃1α̃1β̃1 ([0.4 0.4 0.4], [0.2 0.4 0.2])

Suppose that the fuzzy set of uncontrollable events Σ̃uc is also evaluated in terms of

medical theory and experience as: Σ̃uc(α̃1) = 0.8; Σ̃uc(α̃2) = 0.75; Σ̃uc(α̃3) = 0.7; Σ̃uc(β̃1) =

0.2; Σ̃uc(β̃2) = 0.25; Σ̃uc(β̃3) = 0.3; and Σ̃c is naturally decided due to Σ̃uc(σ̃)+Σ̃c(σ̃) = 1 for

any fuzzy event σ̃ ∈ {α̃1, α̃2, α̃3, β̃1, β̃2, β̃3}. Then by virtue of TABLE I we can test that the

fuzzy controllability condition Eq. (9) does not hold for s̃ = ǫ, σ̃ = β̃2 or β̃3. If Σ̃uc ≤ 0.2 for

any σ̃ ∈ Σ̃, then it can be checked by using TABLE I that Eq. (9) holds true, and in terms

of Theorem 1 we know that the supervisor S̃ yielding pr(K̃) therefore exists. In practice, the

degree of each fuzzy event being controlled by the supervisor is specified according to Eq.

(10), and the therapeutic process is then implemented under the control of the supervisor,

which results in the desired specification pr(K̃).

C. Nonblocking Controllability Theorem for Fuzzy DESs

In supervisory control of crisp DESs, nonblockingness is usually required and it means that the

production sequence is completed without deadlock, which has been applied to manufacturing

to avoid deadlock. In reality, analogous restriction is sometimes imposed on fuzzy DESs. More
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exactly, the specifications on that controlled system are given as a sublanguage of LG̃,m, and

the supervisor S̃ is nonblocking, that is,

pr(LS̃/G̃,m) = LS̃/G̃;

otherwise, S̃ is blocking. Intuitively, S̃ being nonblocking means that for any string of fuzzy

events s̃, the degree to which s̃ belongs to the fuzzy language generated by the supervised

fuzzy system S̃/G̃ equals the membership degree of s̃ belonging to the prefix-closure of the

fuzzy language marked by the supervised fuzzy system S̃/G̃. In Example 5, if the state

“excellent” is indicated as a marked state, then the nonblockingness renders that any partial

therapeutic process (say α̃1) being implemented under the supervisor S̃ has the possibility

not more than that of the whole expected therapeutic strategy (say α̃1α̃2) supervised by

S̃ being realized, which also conforms to the crisp situation. We provide another numeric

example to serve as further illustration.

Example 6. Let set of fuzzy events Σ̃ = {ã, b̃, c̃}. Assume that the fuzzy language LG̃

and LG̃,m generated and marked by a fuzzy finite automaton (max-min or max-product) G̃

are respectively as follows: LG̃(ǫ) = 1, LG̃(ã) = LG̃(ãb̃) = LG̃(ãb̃c̃) = 0.8, and LG̃(s̃) = 0

for the other s ∈ Σ̃∗; LG̃,m(ǫ) = 1, LG̃,m(ãb̃) = 0.8, and LG̃,m(s̃) = 0 for the other s ∈ Σ̃∗.

If Σ̃uc(ã) = Σ̃uc(b̃) = 0.8 and Σ̃uc(c̃) = 0, we define a supervisor S̃ : Σ̃∗ → F(Σ̃) as follows:

S̃(ǫ)(ã) = 1, S̃(ã)(b̃) = 0.8, S̃(ãb̃)(c̃) = 0, and also 0 for the other cases. Then it is easy to

check that S̃ satisfies the fuzzy admissibility condition described by Eq. (6), and

LS̃/G̃(ã) = pr(LS̃/G̃,m)(ã) = 0.8,

LS̃/G̃(ãb̃) = pr(LS̃/G̃,m)(ãb̃) = 0.8,

and LS̃/G̃(s̃) = pr(LS̃/G̃,m)(s̃) = 0 for the other s̃ ∈ Σ̃∗. Therefore, in this case, S̃ is

nonblocking. However, if Σ̃uc(c̃) > 0, and still Σ̃uc(ã) = Σ̃uc(b̃) = 0.8, then from the fuzzy

admissibility condition it follows that

S̃(ãb̃)(c̃) ≥ min{Σ̃uc(c̃),LG̃(ãb̃c̃)} = min{Σ̃uc(c̃), 0.8} > 0.

and thus LS̃/G̃(ãb̃c̃) = min{Σuc(c̃), 0.8}, but pr(LS̃/G̃,m)(ãb̃c̃) = 0. Therefore in this case

pr(LS̃/G̃,m) 6= LS̃/G̃, which shows that the supervisor S̃ is blocking. ✷

In this regard, we have the nonblocking controllability theorem of fuzzy DESs.

Theorem 2. Let a fuzzy DES be modeled by fuzzy finite automaton (max-min or max-

product) G̃ = (Q̃, Σ̃, δ̃, q̃0, Q̃m), and let Σ̃uc ∈ F(Σ̃) be the fuzzy uncontrollable subset of Σ̃.
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Suppose fuzzy language K̃ ⊆ LG̃,m satisfying K̃(ǫ) = 1 and pr(K̃) ⊆ LG̃,m. Then there exists

a nonblocking supervisor S̃ for G̃ such that S̃ satisfies the fuzzy admissibility condition Eq.

(6), and

LS̃/G̃,m = K̃ and LS̃/G̃ = pr(K̃)

if and only if K̃ = pr(K̃)∩̃LG̃,m and the fuzzy controllability condition of K̃ with respect to

G̃ and Σ̃uc holds, i.e., Eq. (9) holds.

Proof: The proof of sufficiency is similar to that of Theorem 1. Set S̃ : Σ̃∗ → F(Σ̃) as

Eq. (10): For any s̃ ∈ Σ̃∗ and any σ̃ ∈ Σ̃,

S̃(s̃)(σ̃) =







min
{

Σ̃uc(σ̃),LG̃(s̃σ̃)
}

, if Σ̃uc(σ̃) ≥ pr(K̃)(s̃σ̃),

pr(K̃)(s̃σ̃), otherwise.

Then with the same process as Theorem 1 we can prove that LS̃/G̃ = pr(K̃). Furthermore,

since K̃ = pr(K̃)∩̃LG̃,m, we also have that

LS̃/G̃,m = LS̃/G̃∩̃LG̃,m = pr(K̃)∩̃LG̃,m = K̃,

by which and LS̃/G̃ = pr(K̃) we obtain pr(LS̃/G̃,m) = LS̃/G̃, i.e., S̃ is nonblocking.

On the other hand, given that there exists an nonblocking supervisory S̃ such that

LS̃/G̃,m = K̃ and LS̃/G̃ = pr(K̃),

then with the definition of LS̃/G̃,m we have that

K̃ = LS̃/G̃,m = LS̃/G̃∩̃LG̃,m = pr(K̃)∩̃LG̃,m.

As well, the proof of fuzzy controllability condition is really analogous to that of Theorem 1.

Therefore, we complete the proof of this theorem. ✷

Remark 6. In Theorem 2, condition pr(K̃) ⊆ LG̃,m is necessary since K̃ ⊆ LG̃,m does not

always result in pr(K̃) ⊆ LG̃,m. (In Theorem 1 pr(K̃) ⊆ LG̃ is not prerequisite, because it

was shown that K̃ ⊆ LG̃ deduces pr(K̃) ⊆ LG̃.)

Example 7. Let a fuzzy DES be modeled by a fuzzy finite automaton G̃ = (Q̃, Σ̃, δ̃, q̃0, Q̃m)

where Σ̃ = {ã, b̃, c̃}. The fuzzy languages LG̃ and LG̃,m over Σ̃ generated and marked by

the fuzzy finite automaton G̃ are the same as those in Example 6, that is, LG̃(ǫ) = 1,

LG̃(ã) = LG̃(ãb̃) = LG̃(ãb̃c̃) = 0.8, and LG̃(s̃) = 0 for the other s ∈ Σ̃∗; LG̃,m(ǫ) = 1,

LG̃,m(ãb̃) = 0.8, and LG̃,m(s̃) = 0 for the other s ∈ Σ̃∗. Assume that a fuzzy set of control
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specifications K̃ is defined as: K̃(ǫ) = 1, K̃(ãb̃) = 0.8, and K̃(s̃) = 0 for the other s̃ ∈ Σ̃∗.

Clearly, pr(K̃) ⊆ LG̃,m and K̃ = pr(K̃)∩̃LG̃,m. Also, it is readily checked that the fuzzy

controllability condition of K̃ with respect to G̃ and Σ̃uc holds. Therefore, by means of

Theorem 2 there is a supervisor S̃ such that the supervised fuzzy control system LS̃/G̃ satisfies

LS̃/G̃,m = K̃ and LS̃/G̃ = pr(K̃).

From the proof of Theorem 2 we know that supervisor S̃ : Σ̃∗ → F(Σ̃) is defined as Eq. (10).

More concretely, in terms of Eq. (10) we have that S̃(ǫ)(ã) = S̃(ã)(b̃) = 0.8, and 0 for the

other cases. It is seen that the deduced S̃ coincides exactly with that in Example 6. ✷

Similarly to Corollary 1, with Theorem 2 we have:

Corollary 2. Let a fuzzy DES be modeled by fuzzy finite automaton (max-min or max-

product) G̃ = (Q̃, Σ̃, δ̃, q̃0, Q̃m). Let n be any given positive integer. Suppose fuzzy uncon-

trollable subset Σ̃uc ∈ F(Σ̃), and fuzzy legal subset K̃ ∈ F(Σ̃∗) that satisfies: K̃ ⊆n LG̃,

pr(K̃) ⊆n LG̃,m, and K̃(ǫ) = 1. Then there exists a nonblocking supervisor S̃ for G̃ such that

S̃ satisfies the fuzzy n-admissibility condition Eq. (6) and

LS̃/G̃,m =n K̃ and LS̃/G̃ =n pr(K̃)

if and only if K̃ =n pr(K̃)∩̃LG̃,m and the fuzzy n-controllability condition of K̃ with respect

to G̃ and Σ̃uc holds, i.e., Eq. (13) holds.

Proof: It is the same process as Theorem 2 by restricting the length of s̃ with |s̃| ≤ n.

✷

IV. Properties of Controllability of Fuzzy DESs

In this section, we deal with a number of basic properties concerning supervisory controlla-

bility in fuzzy DESs.

Definition 1. Let K̃ and M̃ be fuzzy languages over set Σ̃ of fuzzy events, and pr(M̃) = M̃ .

Suppose that Σ̃uc ∈ F(Σ̃) denotes a fuzzy subset of uncontrollable events. Then K̃ is said to

be controllable with respect to M̃ and Σ̃uc if for any s̃ ∈ Σ̃∗ and any σ̃ ∈ Σ̃,

min
{

pr(K̃)(s̃), Σ̃uc(σ̃), M̃ (s̃σ̃)
}

≤ pr(K̃)(s̃σ̃). (19)

Intuitively, Eq. (19) means that the degree to which string s̃ belongs to the prefix-closure

of fuzzy language K̃ and fuzzy event string σ̃s̃ also belongs to fuzzy language M̃ together
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with σ̃ being uncontrollable is not bigger than the possibility of the string s̃σ̃ pertaining to

the prefix-closure of K̃. For convenience, we denote by C(M̃, Σ̃uc) the set of all those being

controllable respect to M̃ and Σ̃uc, that is,

C(M̃, Σ̃uc) = {L̃ ∈ F(Σ̃∗) : L̃ is controllable with respect to M̃ and Σ̃uc}.

Clearly, when M̃ is generated by some fuzzy finite automaton G̃, i.e., M̃ = LG̃, then Eq. (19)

is the same as the fuzzy controllable condition described by Eq. (9) in Theorem 1. Also, it

is easy to see that K̃ ∈ C(M̃, Σ̃uc) implies pr(K̃) ∈ C(M̃, Σ̃uc).

Proposition 1. Let M̃ ∈ F(Σ̃∗) and Σ̃uc ∈ F(Σ̃) be the same as those in Definition 1.

Suppose that K̃1, K̃2 are fuzzy languages over set Σ̃ of fuzzy events. Then:

(i) If K̃1, K̃2 ∈ C(M̃, Σ̃uc), then so is K̃1∪̃K̃2, where ∪̃ is Zadeh fuzzy OR operator, that

is, (Ã∪̃B̃)(x) = max{Ã(x), B̃(x)}.

(ii) If pr(K̃1)∩̃pr(K̃2) = pr(K̃1∩̃K̃2), and K̃1 and K̃2 ∈ C(M̃, Σ̃uc), then K̃1∩̃K̃2 ∈

C(M̃, Σ̃uc), too.

(iii) If pr(K̃i) = K̃i, i = 1, 2, and both K̃1 and K̃2 ∈ C(M̃, Σ̃uc), then pr(K̃1∩̃K̃2) =

K̃1∩̃K̃2 and K̃1∩̃K̃2 ∈ C(M̃, Σ̃uc).

Proof: (i) For any s̃ ∈ Σ̃∗ and any σ̃ ∈ Σ̃, we have

min
{

pr(K̃1∪̃K̃2)(s̃), Σ̃uc(σ̃), M̃ (s̃σ̃)
}

= min
{

max
{

pr(K̃1)(s̃), pr(K̃2)(s̃)
}

, Σ̃uc(σ̃), M̃ (s̃σ̃)
}

= max
{

min
{

pr(K̃1)(s̃), Σ̃uc(σ̃), M̃ (s̃σ̃)
}

,min
{

pr(K̃1)(s̃), Σ̃uc(σ̃), M̃(s̃σ̃)
}}

≤ max
{

pr(K̃1)(s̃σ̃), pr(K̃2)(s̃σ̃)
}

= pr(K̃1∪̃K̃2)(s̃σ̃).

(ii) For any s̃ ∈ Σ̃∗ and any σ̃ ∈ Σ̃, we obtain that

min
{

pr(K̃1∩̃K̃2)(s̃), Σ̃uc(σ̃), M̃(s̃σ̃)
}

≤ min
{

min
{

pr(K̃1)(s̃), pr(K̃2)(s̃)
}

, Σ̃uc(σ̃), M̃ (s̃σ̃)
}

= min
{

min
{

pr(K̃1)(s̃), Σ̃uc(σ̃), M̃ (s̃σ̃)
}

,min
{

pr(K̃1)(s̃), Σ̃uc(σ̃), M̃ (s̃σ̃)
}}

≤ min
{

pr(K̃1)(s̃σ̃), pr(K̃2)(s̃σ̃)
}

= pr(K̃1∩̃K̃2)(s̃σ̃).
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(iii) For any s̃ ∈ Σ̃∗ and any σ̃ ∈ Σ̃, we have that

pr(K̃1∩̃K̃2)(s̃) = sup
s̃∈pr(t̃)

(K̃1∩̃K̃2)(t̃)

= sup
s̃∈pr(t̃)

min{K̃1(t̃), K̃2(t̃)}

≤ min

{

sup
s̃∈pr(t̃)

K̃1(t̃), sup
s̃∈pr(t̃)

K̃2(t̃)

}

= min
{

pr(K̃1)(s̃), pr(K̃2)(s̃)
}

= min
{

K̃1(s̃), K̃2(s̃)
}

= (K̃1∩̃K̃2)(s̃)

≤ pr(K̃1∩̃K̃2)(s̃).

The rest of the proof is similar to (ii). ✷

Given a fuzzy language K̃ over set of fuzzy events Σ̃, we hope to find the largest fuzzy

sublanguage and the smallest prefix-closed fuzzy controllable superlanguage of K̃, such that

these languages are controllable with respect to M̃ and Σ̃uc. To this end, we denote

K(K̃)< = {L̃ ⊆ K̃ : L̃ ∈ C(M̃, Σ̃uc)},

K(K̃)> = {L̃ ∈ F(Σ̃∗) : K̃ ⊆ L̃ ⊆ M̃ and pr(L̃) = L̃ and L̃ ∈ C(M̃, Σ̃uc)},

K̃< = ˜⋃
K̃∈K(K̃)<L̃, and K̃> = ˜⋂

K̃∈K(K̃)>L̃.

Lemma 1. Let M̃ ∈ F(Σ̃∗) and Σ̃uc ∈ F(Σ̃) be the same as those in Definition 1. Suppose

K̃ ∈ F(Σ̃∗). Then:

(i) K̃< ∈ K(K̃)<.

(ii) K̃> ∈ K(K̃)>.

Proof: (i) With the proof of Proposition 1 (i) it suffices to show that pr(∪̃i∈I L̃i) =

∪̃i∈Ipr(L̃i), where I denotes an index set (perhaps infinite). For any s̃ ∈ Σ̃∗, we have

pr(∪̃i∈I L̃i)(s̃) = sup
s̃∈pr(t̃)

(∪̃i∈I L̃i)(t̃)

= sup
s̃∈pr(t̃)

sup
i∈I

L̃i(t̃)

= sup
i∈I

sup
s̃∈pr(t̃)

L̃i(t̃)

= sup
i∈I

pr(L̃i)(s̃)

= (∪̃i∈Ipr(L̃i))(s̃).
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(ii) Since pr(L̃i) = L̃i for each L̃i ∈ K̃(K̃)>, we have that for any s̃ ∈ Σ̃∗,

pr(K̃>)(s̃) = pr(∩̃L̃i∈K(K̃)>L̃i)(s̃)

= sup
s̃∈pr(t̃)

(∩̃L̃i∈K(K̃)>L̃i)(t̃)

= sup
s̃∈pr(t̃)

inf
L̃i∈K(K̃)>

L̃i(t̃)

≤ inf
L̃i∈K(K̃)>

sup
s̃∈pr(t̃)

L̃i(t̃)

= inf
L̃i∈K(K̃)>

pr(L̃i)(s̃)

= inf
L̃i∈K(K̃)>

L̃i(s̃)

= (∩̃L̃i∈K(K̃)>L̃i)(s̃)

= K̃>(s̃)

≤ pr(K̃>)(s̃),

and therefore pr(K̃>) = K̃>. The proof of K̃> ∈ C(M̃, Σ̃uc) is similar to Proposition 1 (ii).

✷

Clearly, when K̃ ∈ C(M̃, Σ̃uc), we have K̃< = K̃. Concerning K̃< and K̃>, we further

have the following properties.

Proposition 2. Let M̃ ∈ F(Σ̃∗) and Σ̃uc ∈ F(Σ̃) be the same as those in Definition 1.

Suppose that K̃1, K̃2 are fuzzy languages over set Σ̃ of fuzzy events. Then:

(i) If K̃ satisfies pr(K̃) = K̃, then so is K̃<, i.e., pr(K̃<) = K̃<.

(ii) If K̃1 ⊆ K̃2, then K̃<
1 ⊆ K̃<

2 .

(iii) (K̃1∩̃K̃2)
< ⊆ K̃<

1 ∩̃K̃<
2 .

(iv) (K̃1∩̃K̃2)
< = (K̃<

1 ∩̃K̃<
2 )<.

(v) If pr(K̃<
1 ∩̃K̃

<
2 ) = pr(K̃<

1 )∩̃pr(K̃<
2 ), then (K̃1∩̃K̃2)

< = K̃<
1 ∩̃K̃<

2 .

(vi) K̃<
1 ∪̃K̃<

2 ⊆ (K̃1∪̃K̃2)
<.

Proof: (i) With Lemma 1 (i) we know that K̃< ∈ K̃(K̃)<, and thus

pr(K̃<) ⊆ pr(K̃) = K̃ ⊆ pr(K̃),

which results in pr(K̃<) = K̃<.

(ii) Straightforward.
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(iii) It follows clearly from the definition of K̃<.

(iv) Since K̃<
1 ∩̃K̃

<
2 ⊆ K̃1∩̃K̃2 from Lemma 1 (i), with (ii) we obtain that (K̃<

1 ∩̃K̃<
2 )

< ⊆

(K̃1∩̃K̃2)
<. On the other hand, for any L̃ ∈ K(K̃1∩̃K̃2)

<, then L̃ ∈ C(M̃, Σ̃uc) and L̃ ⊆

K̃1∩̃K̃2. Thus L̃ ⊆ K̃1 and L̃ ⊆ K̃2. Since K̃<
1 ⊆ K̃1 and K̃<

2 ⊆ K̃2 by means of Lemma 1

(i), with the definition of K̃< we obtain that L̃ ⊆ K̃<
1 and L̃ ⊆ K̃<

2 , and thus L̃ ⊆ K̃<
1 ∩̃K̃<

2 .

Therefore, for any s̃ ∈ Σ̃∗,

(K̃1∩̃K̃2)
<(s̃) = sup{L̃(s̃) : L̃ ∈ K(K̃1∩̃K̃2)

<}

≤ sup{L̃(s̃) : L̃ ⊆ K̃<
1 ∩̃K̃<

2 , L̃ ∈ C(M̃, Σ̃uc)}

= (K̃<
1 ∩̃K̃<

2 )
<(s̃).

As a result, (K̃1∩̃K̃2)
< ⊆ (K̃<

1 ∩̃K̃<
2 )<, and (iv) is thus proved.

(v) From Proposition 1 (ii) and Lemma 1 (i) it follows that K̃<
1 ∩̃K̃

<
2 ∈ C(M̃, Σ̃uc). Thus,

with (iv) just verified we have that

K̃<
1 ∩̃K̃<

2 = (K̃<
1 ∩̃K̃<

2 )< = (K̃1∩̃K̃2)
<.

(vi) For any s̃ ∈ Σ̃∗, in light of the definition of K(K̃)<, we have that

(K̃<
1 ∪̃K̃<

2 )(s̃) = max{K̃<
1 (s̃), K̃<

2 (s̃)}

= max







sup
L̃1∈K(K̃1)<

L̃1(s̃), sup
L̃2∈K(K̃2)<

L̃2(s̃)







≤ sup
L̃∈K(K̃1∪̃K̃2)<

L̃(s̃). ✷

Proposition 3. Let M̃ ∈ F(Σ̃∗) and Σ̃uc ∈ F(Σ̃) be the same as those in Definition 1.

Suppose that K̃1, K̃2 are fuzzy languages over set Σ̃ of fuzzy events. Then:

(i) If K̃ ∈ C(M̃, Σ̃uc), then K̃> = pr(K̃).

(ii) If K̃1 ⊆ K̃2, then K̃>
1 ⊆ K̃>

2 .

(iii) (K̃1∩̃K̃2)
> ⊆ (K̃>

1 ∩̃K̃>
2 )>.

(iv) (K̃1∪̃K̃2)
> = K̃>

1 ∪̃K̃>
2 .

Proof: (i) If K̃ ∈ C(M̃, Σ̃uc), then also pr(K̃) ∈ C(M̃, Σ̃uc). Together with K̃ ⊆ pr(K̃)

and pr(pr(K̃)) = pr(K̃) we obtain that pr(K̃) ∈ K(K̃)> since M̃ = pr(M̃). Thus, K̃> ⊆

pr(K̃). Contrarily, for any L̃ ∈ K(K̃)>, then pr(L̃) = L̃ and we thus have

pr(K̃) ⊆ pr(L̃) = L̃.
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Therefore pr(K̃) ⊆ ˜⋂
L̃∈K(K̃)>L̃ = K̃>.

The demonstrations of (ii) and (iii) are clear, so, we here omit the details.

(iv) Due to K̃1 ⊆ K̃1∪̃K̃2 and K̃2 ⊆ K̃1∪̃K̃2, we have

K(K̃1∪̃K̃2)
> ⊆ K(K̃1)

>∪̃K(K̃2)
>.

Thus,

K̃>
1 ∪̃K̃

>
2 ⊆ (K̃1∪̃K̃2)

>.

On the other hand, for any s̃ ∈ Σ̃∗, suppose that

(K̃1∪̃K̃2)
>(s̃) = inf

L̃∈K(K̃1∪̃K̃2)>
L̃(s̃) > t (20)

for t ∈ [0, 1). Then we claim that

(K̃>
1 ∪̃K̃>

2 )(s̃) > t; (21)

otherwise, K̃>
1 (s̃) ≤ t and K̃>

2 (s̃) ≤ t, from which together with the definition of (K̃>
1 ∪̃K̃>

2 )(s̃),

i.e.,

(K̃>
1 ∪̃K̃>

2 )(s̃) = max

{

inf
L̃1∈K(K̃1)>

L̃1(s̃), inf
L̃2∈K(K̃2)>

L̃2(s̃)

}

,

it follows that for any ε > 0, there exist L̃1 ∈ K(K̃1)
> and L̃2 ∈ K(K̃2)

> such that L̃1(s̃) < t+ε

and L̃2(s̃) < t+ ε. Due to pr(L̃1∪̃L̃2) = pr(L̃1)∪̃pr(L̃2) and Proposition 1 (i), it follows that

L̃1∪̃L̃2 ∈ K(L̃1∪̃L̃2)
>. Consequently,

(L̃1∪̃L̃2)
>(s̃) ≤ (L̃1∪̃L̃2)(s̃)

= max{L̃1(s̃), L̃2(s̃)}

< t+ ε.

Since ε is arbitrary, we have (L̃1∪̃L̃2)
>(s̃) ≤ t, which contradicts the assumption of Eq. (20).

Therefore, Eq. (21), i.e., (L̃1∪̃L̃2)
>(s̃) > t holds true. As a consequence, (K̃1∪̃K̃2)

>(s̃) ≤

(K̃>
1 ∪̃K̃>

2 )(s̃), and therefore (K̃1∪̃K̃2)
> ⊆ K̃>

1 ∪̃K̃>
2 is proved. ✷

V. Concluding Remarks

Fuzzy DESs initiated by Lin and Ying [19,18] may conform more to human’s perception

when coping with some real-world problems, especially in biomedical applications and likely
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in traffic systems (the changes of traffic light are controlled in terms of the length of queues

of vehicles, in which length is a fuzzy concept). With a desire to provide certain foundation

for the applications of fuzzy DESs, in this paper we further developed fuzzy DESs by deal-

ing with supervisory control issue of fuzzy DESs. The technical contributions are mainly as

follows: (i) we reformulated the parallel composition of crisp DESs, and defined the paral-

lel composition of fuzzy DESs that is equivalent to that in [19]; max-min and max-product

automata for modeling DESs are considered; (ii) we dealt with a number of basic problems

in supervisory control of fuzzy DESs, and demonstrated controllability theorem and non-

blocking controllability theorem of fuzzy DESs, and thus obtained the conditions for the

existence of supervisors in fuzzy DESs; (iii) after analyzing the complexity for presenting a

uniform criterion for testing the fuzzy controllability condition of fuzzy DESs modeled by

max-product automata, we particularly presented in detail a computing flow for checking the

fuzzy controllability condition of fuzzy DESs modeled by max-min automata, and by means

of this method we can search for all possible fuzzy states reachable from initial fuzzy state

in max-min automata; as well, the fuzzy n-controllability condition was introduced for some

realistic control problems; (iv) a number of examples serving to illustrate the applications

of the obtained methods and theorems were described; (v) some basic properties related to

supervisory control of fuzzy DESs were discussed, which include the existence of supremal

fuzzy controllable sublanguage and infimal prefix-closed fuzzy controllable superlanguage of

a given fuzzy noncontrollable sublanguage.

As was known [1], in classical DESs, under certain condition we can check within finite

number of steps whether the controllability condition holds by utilizing the finiteness of states

in crisp finite automata, but the infiniteness of fuzzy states in fuzzy DESs modeled by max-

product automata gives rise to considerable complexity for formulating a uniform fashion to

check the fuzzy controllability conditions. However, when fuzzy DESs are modeled by max-

min automata, we have derived a uniform criterion (computing flow) to check this condition.

This is a very important result in supervisory control of fuzzy DESs. Notably, our methods

also apply to testing supervisory control condition of crisp DESs. Therefore, it has been

seen that there are some essential differences between fuzzy DESs and crisp DESs, and the

computing processes in fuzzy DESs are also more complicated. A significant issue is to give

some efficient algorithms in fuzzy DESs such as constructing efficient algorithms to check the

fuzzy controllability conditions presented in Theorems 1 and 2, on the basis of the computing

flow described in this paper.
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With the results obtained in Ref. [19] and this paper, a further issue also worthy of con-

sideration is to deal with supervisory control of fuzzy DESs modeled via max-min automata

under partial observation, which includes how to establish controllability and observability

theorem of fuzzy DESs, and how to deal with decentralized supervisory control of fuzzy DESs.

Another important modeling approach to fuzzy DESs, that is, fuzzy DESs modeled by fuzzy

Petri nets [15], has not been investigated, and we deem it a significant research direction.

Finally, it is worth indicating that computing with words, as a methodology, advocated by

Zadeh and others [38,39,40,37,36], may play a useful role in the further exploration of fuzzy

DESs. These problems will be considered in subsequent work.
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