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Recognizing Large Isolated 3-D Objects through
Next View Planning using Inner Camera Invariants

Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee

Abstract—Most model-based 3-D object recognition systems
use information from a single view of an object. However, a
single view may not contain sufficient features to recognize it
unambiguously. Further, two objects may have all views in com-
mon with respect to a given feature set, and may be distinguished
only through a sequence of views. A further complication arises
when in an image, we do not have a complete view of an object.
This paper presents a new on-line scheme for the recognition
and pose estimation of alarge isolated 3-D object, which may
not entirely fit in a camera’s field of view. We consider an
uncalibrated projective camera, and consider the case when
the internal parameters of the camera may be varied either
unintentionally, or on purpose. The scheme uses a probabilistic
reasoning framework for recognition and next view planning. We
show results of successful recognition and pose estimation even
in cases of a high degree of interpretation ambiguity associated
with the initial view.

Index Terms—Active 3-D Object Recognition, Next View
Planning, Pose Estimation, Inner Camera Invariants

I. INTRODUCTION

N this paper, we present a new next view planning-based |
recognition and pose estimation scheme for an isolated | i
large 3-D object. Our approach can handle the situation when (c) (d)
a large 3-D object does not fit into a camera’s field of view.
Fig. 1(a) shows an image of a portion of a building Obtainéag' 1. (a) The given view of an object: c.)nly a portion of it is visible. This
? . could have come from any of the models: (b), (c) and (d)
using anactive camergone whose parameters can be changed
purposivelye.g, as in Fig. 2). Such a view could have come
from any of the three models, in Fig. 1(b), (c) and (d),
respectively. Further, even if the identity of the object wer VAT TIE CAMERASEES
known, the same view could occur at more than one place
the object — it is not possible to know the exact pose of tr ] G
camera with respect to the object from one view alone.
We present a new reactive object recognition schen <
which uses a hierarchical part-based knowledge representat
scheme, and a probabilistic framework for both recognitio
and planning. The planning scheme is independent of tl
particular nature of a 2-D/3-D part, and the method used
detect it. A novel feature of our work is the use loiner
Camera Invariants [1], [2], [3] for pose estimation — image-
computable functions which are independent of the intern
parameters of a camera.
Most model-based object recognition systems use inform
tion from a single view of an object [4], [5], [6]. However, TURNING WHEEL
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a single view may not contain sufficient features to recognize = The same is true for the super-ellipsoids of Callari and
an object unambiguously. In fact, two objects may have all  Ferrie [28]. The scheme of Gremban and lkeuchi [7]
views in common with respect to a feature set, and may be and our earlier work [16], [17] can work with any set
distinguished only through a sequence of views [7]. Further, of features.

in recognizing 3-D objects from a single view, recognition 2) The system setup and viewing geometry

systems often use complex feature sets [5], [6]. For object Most multiple view-based approaches using geometric
recognition, one needs an effective representation of properties features, implicitly or otherwise, assume the camera
(geometric, photometric, etc.) of objects from images which  model to be orthographic. Most experimentation is with
are invariant to the view point, and should be computable a single (rotational) degree of freedom (DOF, hereafter)
from image information. Invariants may be colour-based (e.g., between the object and the camera.

[8]), photometric (e.g., [9]) or geometric (e.g., [6], [10], 3) Efficient representation of domain knowledge

[11], [12]). Although Burns, Weiss and Riseman prove a Dickinsonet al. [32], [27] use a hierarchical representa-
theorem in [13] that invariants cannot be computed for a  tion scheme based on volumetric primitives. Borotschnig
set of 3-D points in general position, from a single image, et al. [29] use a parametric eigenspace-based represen-
geometric invariants have been proposed for a constrained tation, which is associated with a high storage and pro-
set of 3-D points [6], [10], [11], [12]. Such approaches use  cessing cost. In our earlier work[16], [17], the hierarchy
the inherent symmetry present in an object, or a particular itself enforces different constraints to prune the set of
configuration of objects to compute invariants for recognition possible hypotheses. Due to the non-hierarchical nature
(e.g, rotationally symmetric objects, translationally repeated  of Hutchinson and Kak’s system [26], many redundant
objects, canal surfaces, quadrics, etc.) However, we often need hypotheses are proposed, which have to be later removed
to recognize 3-D objects which because of their inherent through consistency checks.

asymmetry, cannot be completely characterized by an invariantt) Speed and efficiency of algorithms for both hypothesis
computed from a single view. Beis and Lowe [14] propose  generation and next view planning

a kd-tree-based alternate indexing strategy, as against using In Hutchinson and Kak's system [26], the polynomial-

invariants. Lowe’s early worle.g., [15] focuses on the use time formulation overcomes the exponential time com-
of perceptual grouping for locating features ‘invariant’ over plexity associated with assigning beliefs to all possible
a wide range of viewpoints. Most of the work is limited hypotheses. However, their system still has the overhead

to specific geometric information alone. However, the basic  of intersection computation in creating common frames
premise in all the above methods is in using information froma  of discernment. Consistency checks have to be used to
single image. In many cases, it may be possible to achieve the remove the many redundant hypotheses produced earlier.
same, incurring less error and smaller processing cost, using Though Dickinsonet al. [32], [27] use Bayes nets for

a simpler feature set and suitably planned multiple observa- hypothesis generation, their system incurs the overhead
tions [16], [17]. The purposive control over the parameters of  of tracking the region of interest through successive
a sensor (both internal as well as external) characterizes an frames. Our earlier work [16], [17] uses a novel hierar-
Active SensorPapers on Active Vision and Sensor Planning chical knowledge representation scheme which not only

include the works of Aloimonost al. [18], Bajcsy [19], ensures a low-order polynomial-time complexity of the
Ballard and Brown [20], Tarabanis, Allen and Tsai [21], and hypothesis generation process, it also plays an important
the authors’ own work [22]. role in planning the next view.

Grimson [23] proposes sensing strategies for disambiguat>) Nature of the next view planning strategy _
ing between multiple objects in known poses. Madsen and ~ The system should, preferably be on-line and reactive
Christensen [24] propose a method for viewpoint planning, — the past and present inputs should guide the planning
but for polyhedral objects alone. Further, the authors assume Mechanism at each stage. While schemes such as [29],
a knowledge of camera internal parameters. Examples of [16], [17] are on-line, that of Gremban and Ikeuchi [7]
active object recognition systems include those of Maver IS not. An off-line approach may not always be feasible,
and Bajcsy [25], Hutchinson and Kak [26], Gremban and due_ to the combinatorial ngture_ o_f_the probler_n. An
lkeuchi [7], Dickinsonet al. [27], Callari and Ferrie [28], on-line scheme may resullt in significant reductlon_ of
Borotschniget al. [29], Schiele and Crowley [30], and the the se.a}rch space. An on-line schemg ha_s the additional
authors’ own earlier work [16], [17]. We compare different ~ Capability to react to unplanned situations, such as
active 3-D object recognition systems on the basis of the €fTOrs.

following properties: 6) Uncertainty handling capability of the hypothesis gen-
eration mechanism
1) Features used for modeling and view recognition Approaches such as those of Goldberg and Mason [33],

While many approaches such as those of Hutchinson and Gremban and Ikeuchi [7], and Liu and Tsai [31] are
Kak [26] and Liu and Tsai [31] use geometric features, essentially deterministic. An uncertainty-handling mech-
appearance-based methods such as that of Borotschnig anism makes the system more robust and resistant to
et al. [29] use pixel information from an entire image. errors compared to a deterministic one. Dickinssn
Dickinson et al. [32], [27] use volumetric primitives, al. [32], [27], Borotschniget al. [29] and our earlier
which are associated with a high feature extraction cost.  system [16], [17] use Bayesian methods to handle
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uncertainty, while Hutchinson and Kak [26] use thascheme of object recognition through next view planning. We
Dempster-Shafer theory. In the work of Callari angbresent results of experiments with our system, in Section V.
Ferrie [28], the ambiguity in super ellipsoid-modeled

objects is a function of the parameters estimated, on the||. 3-D EucLIDEAN POSE ESTIMATION USING INNER

basis of which the next move is determined. Schiele and CAMERA INVARIANTS

Crowley [30] use a transinformation-based mechanism

We uselnner Camera Invariantdo estimate the pose of
to propose the next move.

parts present in a view of an object. The system uses this
~ However, all the above systems do not consider the folloformation to plan the next view, if the given view does not
INg ISSues: correspond to a unigue pose of a particular object.
1) To the best of our knowledge, no existing object recog- A commonly used projective camera model is [37]:
nition system handles the case when the complete object
does not fit into the camera’s field of view. Thig chang]es Am=PM=A[R[t|M (1)
the domain of the problem completely — necessitatingigere, M = (X,Y, Z,W)T is a 3-D world point, andn =
completely new knowledge representation scheme, apg y, 1)7 is the corresponding image poifR (3 x 3) and
a next view planning strategy. t (3 x 1) are the rotation and translation aligning the world
2) Further, no existing system handles the case when #wordinate system with the camera coordinate system (the
internal parameters of the camera are changed, eitl&ternal camera parameters), add is the matrix of the
unintentionally, or on purpose. internal parameters of the camera (the focal lengths in the

We propose a novel on-line active 3-D recognition schemea@ndy directions f, and f,, the skew parameter, and the
using an uncalibrated camera. It uses a hierarchical patincipal point(uo,vo)):

based representation scheme in conjunction with a probabilis- fo s ug
tic framework for recognition and planning. Our active next A=|0 £ w )
view planning-based scheme is suited for situations where the 0 6’ 1 ’

camera sees only a portion of a large 3-D object. (This allows

the system to operate very close to an object of interest, fohe skew parameter may often be considered to be negli-
example.) An important feature of our work is the use of Innéfible [37], [38]. Suppose we know three 3-D poinle, =
Camera Invariants [1], [2] — this allows the recognition systefaXp: Y»: Z,1)" and their imagesm, = (u,,v,,1)", p €

to work in spite of unintentional or purposive changes in th&-J, k}. Eliminating the internals of the camera,

internal parameters of an uncalibrated camera. We assume that 1 M;  r1M;

. . . .pe i r3M; rz3M;

an object is represented by a set of identifiable parts. Our Jijk = = = M
system uses simple geometrical features in conjunction with LM (3)

1 1 i — V5 r3M; T r3M

any other type of _fe_ature (geometrical, colour, photometric, Kiji = zi_;’z = oMM

etc.) for characterizing parts. In contrast to our approach, F3M;  r3M,

volumetric primitives used in [27] are associated with a higiwhere J;;, and K ;;. areimage measurementbat are func-

feature extraction cost, while appearance-based methods [3#hs of [R | t] (= [r1 r2 r3]T) andM,, (» € {4, 4, k}), and

[35] require the object of interest to be segmented out frogte independent of camera internals.

the background. The system setup and viewing geometry is

the most general — 6 degrees of freedom between the camera { Jigh = fin(R, t, My, M, M) (4)

and the object, and it is based on a commonly used projective Kiji = gije (R, t, Mi, My, My)

camera model. The paper [36] presents a preliminary versigy),, and K;;, are Inner Camera Invariants— image-

of our system, while detailed explanations may be found in [Jomputable invariants of the homograplly We describe
The authors’ earlier work on active 3-D object recognitnner Camera Invariants in detail, in earlier works [1], [2],

tion [16], [17] looks at a different problem - the entire objectf3]. We show that Inner Camera Invariants can be used for

lies in the camera’s field of view. These papers considernaany diverse visions applications — without going through an

1-DOF uncalibrated camera, and propose an aspect grapften cumbersome process of camera calibration, or explicitly

based knowledge representation scheme and a probabgistimating camera internal parameters (self-calibration). Two

tic active recognition strategy. This paper tackles a harderominent areas are 3-D Euclidean pose estimation from

problem, where the object may not fit into the cameralgowledge about landmarks, and 3-D Euclidean reconstruction

field of view. Moreover, this approach is independent dfom known ego-motions. Such techniques are important for

intentional/accidental changes in camera internal parametenstonomous robot navigation, for example. In [1], [2], [3], we

unlike the previous approach. The authors propose a nowelditionally show uses of Inner Camera Invariants in related

hierarchical part-based knowledge representation scheme, apglications — interpolation of camera motion, interpolation

a new probabilistic active recognition scheme for this probleraf image measurements, and obtaining both the motion and

The rest of the paper is organized as follows. Section structure in special cases.

describes our method of pose estimation using Inner CamerdVe emphasize that Inner Camera Invariants are a new

Invariants. We describe our hierarchical part-based knowledglass of invariants, not to be confused with Projective In-

representation scheme in Section Ill. Section IV describes awariants [13], [6], etc. Our method relies directly on 3-D
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Fig. 3. The knowledge representation scheme: an example

pose estimates (obtained through Inner Camera Invariants)
to check consistency relations between a group of parts. In
this paper, we use Inner Camera Invariants for estimating the
pose of a partR andt). Suppose we know the Euclidean (b)
Foordmates(Xi’ Yi.’ Z;,1)" of 5_p_0|nts (in general position) Fig. 4. (a) An example of an objec®; with 4 parts. (b) A pair of parts
in the world coordinate systerSixindependent Inner Camerais related by a rigid-body transformatid® and' — three rotation and three
Invariant measurements give us six equations (of the typetimslation parameters (details in text).
(3)) in 6 unknowns: 3 rotations and translations each. We
solve these equations to get the pose, using a suitable non-
linear optimization routinedonstr/fmincon in MATLAB. butis not partitioned into a collection of parts. Fig. 4(a) shows
In [1], [2], [3], we also show two special cases where @n example of an obje?; (of Fig. 3), with partsp; 1, p1 2,
is possible to obtain closed-form linear solutions for pose s andp; 4. Let us consider vertices as the only features —
estimation. These, however impose a special structure on ke is composed of the above 4 parts, and other ‘featureless’
landmarks used for pose estimation. For a 4-DOF systgagions.
(e.g, a setup with one rotational and all three translational , O represents the set of all objed®;}. An object node
DOF) as in Fig. 2, we adopt the same procedure vigthr O; stores its probabilityP(O;)
independent (inner camera) invariant measurements from foug An objectO; is composed ofV; parts. Thus, a par; ;
equations. We discuss issues related to the robustness and (1 < j < N;) has aPART-OFrelationship with its parent
stability of Inner Camera Invariants in a separate work [2]. For  objectO;. A part node stores the 3-D Euclidean structure
example, we show that to reduce the effect of pixel noise on  of its » constituent vertice$X;,Y;, Z;)7, 1 < i < n.
the computation of/;;, and K, the triplet of points must be (e.g, n > 5 for a 6-DOF case ana > 4 for a 4-DOF
appropriately chosen — the numerator and denominator should case: Section Il). Each part has a local coordinate system
be of comparable order, and neither is too small. We also associated with it, with respect to which the coordinates
consider the effect of varying pixel noise (of the order of 1 and  are stored (Fig. 4(b)).
2.5 pixels) on computations involving Inner Camera Invariants., A part node hasR and t links with its nodes corre-
We show that such pixel errors do not result in unbounded sponding to its neighbouring parts. Fig. 4 (b) shows two
errors in the constraint equations for the optimization process. of these parts, with thR andt relations between them —
represented by the three rotation paramefigess, ¢1 2.3

1. THE KNOWLEDGE REPRESENTATIONSCHEME and1; 2.3, and the three translation parameters, .3,
ty1,2:3 andt_zy o:3.
We define aPart-Class as a set of parts, equivalent with
respect to a feature set. The set of parts is partitioned
into different equivalence classes with respect to a given
feature set: these equivalence classes are part-classes.

TR, 500155 Wi

t: t—X1,223 > t_y1'3;3 A t—Z1,2:3

Two major components of an active recognition scheme are
— a planning algorithm (to plan the ‘best’ next view), and
a suitable organization and representation of the objects in
the model base (to facilitate planning and recognition). We
T e o Moot S s A [EDESET e ot of al s Co Gy for
. ) 9 ) all parts belonging to the objects in the model base.
the model base. Fig. 3 illustrates an example of our knowledge :
: "« We assume a functioRPART.CLASSto map the set of
representation scheme. We use the knowledge representation .
" ) ; parts to the set of part-classes.,
scheme for probability calculations, as well as planning the
Next view. . _ . PARTCLASS {p; ;} — C
We consider a view of an object to contain 2-D or 3éxts
(which are detectable using 2-D or 3-D projective invariants, There is anlS-A relationship between a part, and its
for example), and other ‘blank’ or ‘featureless’ regions (which  associated part-class. Thus, a part npge has exactly
the given set of feature detectors cannot identify). Thus, one link with its corresponding part-class nodg and
according to our formulation, an object is composed of parts, the node for the objed®;, to which it belongs. In the
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ALGORITHM identify _object.and_pose

best move from the current viewpoint, which will disambiguate
between the competing hypotheses. Section IV-C describes the

¢ FIRST PHASE ---—-- ) _ u

1. initialize _object _probs(); (* TN %) search process and the second phase of the object recognition
2. img:=get _image(); i i i
3. part _class _info:=identify _part _classes(img); algorithm, in detail.

IF NO part _class observed THEN

make random movement; GOTO step 2; A. Hypothesis Generation

4. search _tree _root:= . . . .

const search tree node(part class _info, [I|0]); Let the given view of an object contaim parts —p; ;, ,
5. compute fhy(r*Jotf:EeSISG fgrobS(Search -tree _root); Pijsr --- Pij.n- This view could correspond to any of the
6. IF the prob of some hypothesis > a n objects in the model base. Furthgr, this conf|'gurat|o'n 'of

pre-determined thresh THEN exit:success; parts could have come from many different positions within
7. exn&rfxiéf\%/aéﬁg)ﬂ(ge fgodel(\sleércfl) -tree _root, the same objecD;. From the image information, we can

; ec IV- ; ;

— SECOND PHASE —— 5 only identify the part-classeCy,, C,, ... Cy,, (whereC,
previous=search ___iree _root; andCy, are not necessarily different) corresponding to each
expected:=get  _best _leaf(search  _tree _root); observed part, respectivelPART.CLASSp; ;,) = Cy,). The

8. {[Rft]}:=find _movement(expected,previous); part-classes may be identified by using 2-D or 3-D projective
make_movement( {[R[t]}); img:=get _image(); . . g . . g -
9. part _class _info:=identify _part _classes(img); invariants, possibly in conjunction with some other non-
IF NO part _class observed THEN geometric features such as grey level or colour information,
undo _movement( {[R|t]}); (* backtrack %) reflectance ratio values, etc. One can also use to advantage

expected:=get  _next _best _leaf(previous); , . .

GOTO step 8; Lowe’s work on perceptual grouping.g., [15] — The basic

10. IF obs view # expected THEN aim is to derive groupings or structures in an image that
neWinOd;;tcogﬁﬁtssisfri‘LCh it{liﬁt]}r;pdgésE are likely to be invariant over wide ranges of viewpoints. A
modify _search _tree _node with _observation( more recent public_atiqn [14] de.scribes an approach to indexing

expected,part  _class _info); without using (projective) invariants — this can also be used to
new.node:=expected , advantage in identifying a part-class. We emphasize however,

11. compute _hypothesis _probs(new _node); A . .

12. IF the prob of some hypothesis > a that our scheme is independent of the particular technique to

pre-determined thresh THEN exit:success; identify a part-class.

13. expzzge&se?%het’"eebe’;oﬂZg;(eg;'e(,?gl?;’.MAx’LEVELS); The system generates different part configuration hypothe-
previous:=new  _node; ' ses corresponding to the given view: We compute the estimated

14, GOTO step 8 pose of each part (Section Il), and check if the relative poses

of each part in the configuration are consistent with Be
Fig. 5. The Object Recognition and Pose Identification Algorithm

andt values in the knowledge base, within error limits (for
our experiments with the architectural models for example,
we use+ 5° and + 20mm, respectively).Thus, the part
pose estimation phase itself helps in a first-level pruning of
the list of competing view interpretation hypothesé#is
also offers a simple method to offset small inaccuracies in
IV. THE OBJECTRECOGNITION SCHEME the part pose estimation process (SectionThus, one does

The system starts with an arbitrary view of an object in odot need to use joint projective invariants between observed
model base. Our aim is to identify the given object, and tH&rts — our method relies directly on 3-D pose estimates to

viewer pose with respect to it. There are two main componer@3eck consistency relations between a group of parte
of our recognition scheme: next section describes the process of computing probabilities

1) Hypothesis generation, and associated with each part configuration hypothesis.

2) Next view planning

Our scheme is independent of the particular technique Po' ] . o -
identify a part-class. The only requirement is that it should FOr IV objects in the model base, tiepriori probability
contain at leastn points of interest for pose computation®f €ach object before taking the first observation,1jsV.
n = 5 for the 6-DOF case, andv = 4 for the 4-DOF We need estimates of the priori probabilities of different
case (Section Il).Fig. 5 describes the main steps in oufonfigurations of parts that may occur (Step 1 in Fig. 5)
algorithm. The first phase begins with initialization of all P(pijs Pies --
object probabilities. The system then takes an image of the PO - Plp; T 05) 5)
given view, and identifies the part-classes corresponding to ¢ bivs Pijzs - ¢

the parts present in the image. The next step is the formatidfe may form estimates oP(p; j,, pijs> --- Pijm | Oi)

of hypotheses about the identity of the observed parts. Wem a very large number of views of the given object from
describe our probabilistic hypothesis generation scheme different positions, and different values of the internals of the
detail in Section IV-A. If the probability of some hypothesisamera (the focal length, for example on which the field of
is above a pre-determined threshold, then we exit and declaiew of the camera depends) — this is dooiéline, before
success. Otherwise, we invoke our search process to decidetétking the first observation.

example of Fig.s 3 and 4, partg ; and p; 3 belong to
part-clas<’;.

a priori Probability Calculations

: piajwt) =

- Piim
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However, a satisfactory estimation afpriori probabilities of part pairs which cannot appear together in a given view
using this method, may not be easy. If we make sonftor example, parts which lie on opposite faces of an object).
assumptions about the nature of the 3-D object models, Whis reduces the computation time to only a small fraction
can formulate an approximate method to estimateatipeiori  of (fﬂ) which would otherwise have been required. The
conditional part-configuration probabilities. Let us consider thmrresponding search tree node stores the probability of each
domain of objects with planar parts. For such a case, one m@art configuration. Hence, Equation 7 needs constant space
approximate thea priori probability of a part configuration complexity.
by its relative area in the 3-D model, not on any image-based
features. The rationale behind this approximation is as foIIovvé._ Next View Planning

Ideally one would need a very large number of observations - ) )
If the probability of no hypothesis (6) is above a prede-

to get satisfactorya priori probability estimates. The camera ) ;
pose would need to be sampled from the space of interﬁ%‘m'ned threshold, we have to take the next view to try to

and external camera parameter values. For external parame‘?é?@mb'guate between the competing hypotheses_. One. needs
for example, one would have as many observations with iR plan the best move out of the current st.ate to disambiguate
camera looking at the object from the right side, as would (¢tween the competing hypotheses, subject to memory and
from the left. Hence, one may have a good estimate ofathe?f0C€SSINg limitations, if any. = ,
priori probability by looking at the part configuration head- We des_crlbe the state of the recognition system in terms of
on. The camera field of view depends on its focal length, dhe following parameters:
internal parameter. Intuitively, a larger part is more likely to 1) The competing view interpretation hypotheses, and
be visible in a larger number of observations, as compared to?2) The set ofR andt movements made thus far.
a smaller one. Thus, one may consider &hariori probability We use a search tree node to represent the system state. Search
of observing the part proportional to its area in the 3-D moddtee expansion proceeds according to Bhandt relations in

We emphasize that the probabilistic analysis in this paptte knowledge representation scheme. Each search tree move
(Section IV-B) does not dependn the specific method usedis to get to the centre/centroid of the expected pHnus, the
to computea priori probabilities - any method would do.expected part is more likely to be in the camera’s field of view
Our implementation of a prototype system uses the aboseen in the event of a zoom-in/zoom-out. Additionally, this
approximation (Section V). provides robustness to small movement errdise planning

1) a posterioriProbability Computations\We use the Bayes process aims to get to a leaf node of the corresponding search
rule to compute the posterioriprobability of each hypothe- tree — one corresponding to a unique part-configuration. One
sized configuration (Step 5 in Fig. 5) may also employ a limited memory search tree expansion
(MAX _LEVELS in Fig. 5) Search tree node expansion is

P(pijis Pigss -+ Pigm | Cois Chay v C) = always finite because the number of parts in any object is
P(pijis Pijas -+ Pijjm) - finite. Further, there are no cycles in the search tree. No part
P(Chys Chyy -+ Crl Pisjrs Pijas -+ Pign) / is repeated along any path in the search tree. Thus, there can
Z [ Plpis, pis Cp) - be no search tree expansion indefinitely oscillating between a
J Pz Jm set of parts.
PCris Chys - Chl Prjss PLjss - Pljm) ] (6)  We use three stages of filtering to get the best leaf node

(Step 7 in Fig. 5) There is a search tree node corresponding to

configurations of parts within the object. Because of t&e the currené obhselrva;non d- we expand ;h's node using the ablo ve
A relation between a part and a part-class in our knowplrategy. Each leaf node corresponds to a unique part-class

edge representation scheme (Section IIl), each of the terfiphfiguration. The first level of filtering considers the most
P(Cy,, Cr Co | iy P pii. ) is 1 for all parts probable view interpretation in the observed node’s hypothesis
17 PR m sJ10 3J20 s$Jm

: ! g : list, and takes the consequent leaf nodes. The algorithm assigns
belonging to a particular part gla_ss aﬁdqthermse. .. a weights'*v¢! to each search tree node, whereepresents
We now compute tha posterioriprobability of each object . . "
in the model base: the number of hypothesized view, ahdel is the search tree
level (depth) the node lies on. Each leaf node has a path weight
P(O)) = P(piirs Pijss -+ Plin| Crys Choyy «-- Ch, corresponding to the sum of all node weights along the path
sJ1 3J2 sIm 1 2 m
(7) from the observed node. The second level of filtering considers
The summation is for all configurations of partshose leaf nodes with the minimum path weight. We resolve

The summation above is for all objeat, and all possible

PiljrsPljss--- Plj, belonging to objectO;, which could remaining ties in favour of one of with the least total rotational
have given rise to the given view containing part-class@sovement. In what follows, we discuss various aspects of our
Cky+Cry, ... Cg,,. Each object node in the knowledgerecognition strategy in relation to existing methods.

representation scheme uses Equation 7 to update itd) The Search Process: A DiscussioBrimson [39] can-
probability. In our hierarchical knowledge representatioonizes different philosophies behind object recognition. While
scheme, each part is linked to its neighbouring parts throughr technique has some similarities with the Hypothesize-
R andt links. In the most general case, one may considand-Test and Interpretation Tree paradigms, it differs on may
every part as the neighbour of every other part. For a giveounts. Our stepwise refinement method is much more general
model base, we often observe that there are a large numthem the unary and binary constraints in [39]. Moreover, for
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the 3-D constraints in [39], the extraction of 3-D features frorthe next best leaf node, and proceed (Step 9). If the probability
images is not an easy task. Our method relies on the leafho hypothesis is above the threshold, this node is expanded
constrained of all geometric features - points, and also caterduaher (Step 14).
other non-geometric features. Lastly, the basic premise behind'his illustrates the reactive nature of our strategy. The
a verification stage is to solve for a global interpretation, givearobabilistic hypothesis generation scheme (Section IV-A)
only local interpretations. In our case, we have complete Bicorporates all previous observations. If the observed view
D pose (through the Inner Camera Invariants-based methothrresponds to the most probable view interpretation hypothe-
and global consistency, with respect to all information that wsis at a particular stage, our search process uniquely identifies
have at any stage. the object and its pose, in the following step (assuming no
At any stage, the recognition algorithm has to determirieature detection error for the expected part). Even if the
whether it might be better to take a next viewdAcision the- observed view does not correspond to the most probable
oretic agent[40] selects the action with the highest expectedew interpretation hypothesis, our algorithm refines the list
utility — the Maximum Expected Utility (MEU) principle. The of hypotheses at each stage.
computations involved are often prohibitive [40]. Rimey and It is possible to compute an estimateIgf,,(n): the average
Brown [41] use decision theory for scene interpretation. Theywmber of moves required for unique object and pose identi-
state that the next action to execute requires sequencediadtion, givenn competing part-configurations corresponding
future actions to be considered, and that it is not feasible tm the first view. Let us assume the entire space around the
enumerate all sequences of actions. object to be divided intaVy viewing positions. Each of the
Our search process is consistent with a decision theorelig: possible moves from the starting position partitions the
approach. We have a synergistic combination of reactive hgart configuration hypothesis list, into equivalence classes.
haviour as well as planning. Intuitively, our utility is in gettingln general, any change in camera parameters (both external
a move with a maximum discriminatory ability — throughas well as internal) from a position could lead us to more
the three levels of filtering to get to the best leaf node. Wban one part configuration. To serve as a benchmark, we
emphasize here that our algorithm finds the next action usingan computel,,,(n) for a simple case of exactly one part-
mechanism of look-ahead into possibilities, and not a sequercafiguration being reachable from a point, and no errors
of actions. This is because our planning mechanism obtainsfeature detection, or movement. We choose a move that
the best distinguishing move at any patrticular stage, subjectp@rtitions the initial set of part-configuration hypotheses into
memory and processing limitations. An interesting extensionore than one equivalence class. (Section V-A lists a relevant
of our method may consider not just one best distinguishigise when such a move may not exist.) If the size of the part-
move, but a set of such possibilities — whose ‘cost’ is belowanfiguration hypothesis list in one such equivalence class is
particular threshold. Our strategy however, recovers from cageshe expected additional number of observationgis, (5),
of incomplete planning because of its reactive nature — thdherel < j < n. Let us assume that can take on any of
re-planning after every observation. The decision on whetHée valuesl to » — 1 with equal probability, We havé,,,(n)
to take a new view or not depends on the probability of th§1 + Z;:f Tavg(5)

interpretation hypotheses at any stage. ; ANd Ty, (1) = 1. By induction, we can

show thatT,,,(n) = O(logen).

D. The Second Phase of the Object Recognition Algorithm V. EXPERIMENTAL RESULTS& DISCUSSION

The previous section considers moves in the search spacéur experimental setup has a camera system has 4 degrees
in order to obtain the best distinguishing move. This sectiaf freedom - translations along th€-, Y- and Z- axes, and
deals with the camera’s actual movement (in accordance wititation about thé/ - axis (as in Fig. 2). We have experimented
the best distinguishing move). with two model bases - architectural models (Fig. 1), and 8

The system makes the required movements buildings in the I.I.T. Bombay academic area. We have chosen
{{ Ry, Ry, R, s, ty,t,)}, and takes an image at this positioras (2-D) parts the doors and windows of different shapes
(Step 8). Similar to the process in Section IV-A, we generatnd sizes in the models. The first step in processing a given
different interpretation hypotheses corresponding to this viewew of the object involves a segmentation of the image using
The non-detection of some parts in the vicinity of the expectagquential labeling [42]. Then we detect corners as intersection
part (we do not predict a view) does not affect the system af lines on the boundaries of ‘dark’ regions. We use 2-D
any way. This imparts robustness to the presence of clutt@rojective invariants using the canonical frame construction
in an image.If the current observation corresponds to thenethod [43] for recognizing all part-classes (except the 4-
expected search tree node, we compute the probabilitiescofnered ones -PW4 and OPEN for which, we use the
each view interpretation hypothesis. If the probability of somgrey level information at a region near its centroid). We em-
hypothesis is above a the predetermined threshold, we declainasize however, theur recognition strategy is independent
success, and exit (Step 12). If the current observation dadsthe types of the parts and part-classes, or the method to
not correspond to the expected search tree node, the systiatect themModel LH (Fig. 1(a)) has 167 parts, model DS
constructs a new node. This corresponds to the observed péfig. 1(b)) has 170, while model GH (Fig. 1(c)) has 122. Thus,
class information and the movement made thus far (Step 10)eifen though there are three models in our model base, we have
no part-class is observed, we undo the current movements, geisen the models and the associated features such that there
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Fig. 6. The 7 part-classes which the 459 parts belong to, for our model base o1
architectural modelsbW4, DW6L, DW6R, OPEN, DWS8HANDLE,

DWST, and DW'12, respectively in row-major order. Fig. 7. Experiment 1: The sequence of moves required to identify the object

and its pose. The failure to detect a part does not affect the system (details
in text).

is a very high degree of interpretation ambiguity associated
with a particular view of a few parts of the given objdety. 6
shows the 7 different part-classes these 459 parts (of differen
sizes) correspond to. The 7 part-classes, with the numbe
of parts corresponding to each, at8V4(374), DW6L(24),
DWG6R(24), OPEN(21), DWS8HANDLE(6), DWS8T(6),
and DW12(4), respectively. For our experiments with the [.I.T.
Bombay buildings, we have chosen all windows of the type
DW4 above. In this case, the uncertainty associated Witheg g, Experiment 2: The sequence of moves required to identify the object
part-class is even larger - there are 1979 such parts in then8 its pose. The failure to detect a part does not affect the system (details
buildings considered. in text).

We now briefly describe some representative experiments

with the architectural models model base (Fig.s 7 - 11gystem stops only after the second view, which corresponds

ZQSe:ir;ge:{:.sT.aSgpr)?gagtrs:l:I::C::?e%?orgl:f:?r.;ré;r;mlti)rhli:ncgtigx{g exactly one part configuration hypothesis. The pose of
' }_be camera with respect to the identified paH_L_14 is

we stop when there is exactly one hypothesis possible for the
P y yp P © 4.6°, —2.54mm, 15.02mm, 139.98mm ).
observed node. These experiments illustrate different featute . ) ; .
e xperiment 3: For Experiment 3 and other succeeding

of our proposed recognition system namely, robustness to " Lo T . o

. : experiments, the initial view has a high degree of ambiguity
certain feature detection errors, the fact that parts could COME sciated with it. The parts visible in a view need not come
spond to any 3-D configuration, invariance to zoom operatio 3 ' parts Vist . .
. . . rom the same plane. The initial view for Experiment 3 (Fig. 9)
(invariance to internal camera parameter changes), and CorEeocr%tains o parts Iving on two faces at right anales to each
recognition even in the presence of clutter. We also discus P ying 9 ges
N other. There could be 374 hypotheses corresponding to a
limitations of our proposed approach.

Experiments 1 and 2Experiments 1 and 2 have a smaIYV'nd(.)\.N corresponding to a part-clags .4' From the initial
(iondltlon when each of the three objects could be present

dggre_e of ampiguity corrgsponding to the first view. The initig ith equal probability, this state gets the probabilities of the
view in Experiment 1 (Fig. 7), shows the two detected parfz "1 els | H, DS and GH as 0.162, 0.299 and 0.539
with part-classesDWST' and DIV'4. The first view itself spectively. Part pose estimation results in a pruning of the

results the probabilities of the three models LH, DS and G othesis list corresponding to these two parts. to a hypoth-
to be 1.000, 0.000 and 0.000, respectively. This is becausSe’" ; P 9 parts, yp

. . esis list of size 87. The system plans a move to disambiguate
the view could have come from only the first model. We d

getween the different hypotheses. This corresponding move
the probability of a particular part configuration hypothesis‘?l kes us tp a view '(the second 'mage n Fig. 9). whose.wew
) interpretation is unique. The probability of the three objects

equals or exceeds a pre-determined threshold. For our expel- .
: : : o : , DS and GH are 0.000, 0.000 and 1.000, respectively.
imentation, we have kept this at 1.000. This is the strlcte? ; . . -

) T i : is experiment illustrates thahe visible parts could have
possible limit, since the algorithm will stop only when there : : .
; i : X .~ tome from any 3-D configuration this does not affect the
is exactly one part configuration hypothesis corresponding B
the given view. Of the 6 possible hypotheses, our part pose
estimation procedure (Section IV-A) prunes out 4 of them. The
system plans a disambiguating move: the second view contai
the expected part (bottom row, centre). This move results i
correct recognition and pose estimation, in spitehaf failure
to detect a neighbouring paftop row, centre).

Experiment 2 (Fig. 8) shows another such example: the twg
windows on the left (corresponding to part-clasgd# 8T and
DW4, respectively) are not detected in the second plannea
view. In this case also, the first view uniquely determingsg. 9. Experiment 3: The sequence of moves required to identify the object
the model present to be LH, with probability 1.000. Thend its pose. The parts in the initial view do not lie in the same plane.
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SR E— o

i

(@) — (b) — (©)
The camera progressively zooms out Fig. 11. Experiment 5: The sequence of moves (in row major order) required
to identify the object and its pose. The first, third and fourth views are cluttered
Fig. 10. Experiment 4: For the same first two views, we progressively zooty the presence of a tree. The image at the bottom shows an overall view. The
out the camera in three stages. (a), (b) and (c) depict the three views whietes are in the foreground. The corresponding window is highlighted with a
the camera sees, for the third view. This does not affect the recognition systelack square.
in any way (details in text).

recognition system in any way.

Experiment 4:The use of Inner Camera Invariants for pose
estimation allows us teonsider situations where the internal
parameters of the camera may be varied on purpose, ﬁ[y 12. Experiment 6 (I.I.T. Bombay Buildings): Backtracking on reaching
unintentionally.The first view in Fig. 10 could have come froma view without any part (details in text), and successful final recognition.
257 configurations of two adjacent parts with part-clBs& 4.

Two moves from this position were sufficient to recognize the

object, the third view containing the expected part (the largeportant tool in the planning algorithm.

4-cornered windowGH_W_15). For the same first two views, Experiment 5: In Experiment 5, the presence of a tree
we performed two zoom-out operations at the the third camgeh unmodeled object) accounts for clutter in the first, third
position. The recognition results are the same in each of thed fourth view of Fig. 11. For Experiment 5, initially the
cases — Fig. 10 (a), (b) and (c). Further, the camera pose wiiiee objects had a probability of 0.333 each. Following the
respect to parGH_W_15 in these three cases are first observation, the probabilities of LH, DS and GH were
(9.425°, —22.000mm, —9.999mm, 150.000mm ), 0.172, 0.291 and 0.537, respectively. It is only with the final
(9.888°, —22.000mm, —9.999mm, 150.000mm ), and view that the probabilities change to 0.000, 0.000 and 1.000,
( 9.896°, —22.000mm, —9.999mm, 150.000mm ), re- respectively. The system plans the next move on the basis of a
spectively. Thus, accidental or purposive changes in interrgirt: it does not predict an entire view. In these experiments,
camera parameters does not affect our system in any way.recognition performance is not affected by the presence of

It is interesting to compare this with Lowe’s work on objectinmodeled objects (clutter the non-detection of parts in
recognition from local scale-invariant features [44]. Evethe vicinity of the expected part. 5 views are needed for
though we have not considered any specific scale-invariamtambiguous recognition and pose estimation. The size of the
features, the same feature detector gives accurate results dwygothesis list corresponding to the first view is 304.

a reasonably wide range of zoom-out operations. Experiments 6 — 9: Buildings in I.I.T. Bombaffor Exper-

We emphasize that the zoom-out operation were not pénents 6 — 9, we have chosen an extremely difficult operating
formed in a graduated or pre-calculated manner — they wemavironment — there are numerous trees and other unmodeled
arbitrary. It is important to additionally note that the systembjects. In addition to these, occlusions and lighting conditions
did not plan these zoom-out operations — these were arbitra@lgo affect the performance of the system, as shown in the
effected to test the system'’s resilience to variations (intentiorfallowing experiments. In Experiment 6 (Fig. 12), the tree
/ unintentional) in camera internal parameters. An interestingcludes the rightmost window, and the second and third
extension of this work would be to incorporate purposiveindows from the left receive a wron§ — pose estimate due
changes in camera internal parameters as well — since amyocclusion from the pipe and the jutting wall, respectively.
feature extraction routine has practical limits within whiciFhe planning on the basis of the available information from
it works optimally. These purposive changes would be awo windows leads to a region with no identifiable part (the
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x above computation time) takes up to about 13 minutes on a
700MHz PIII machine running Linux. While the system is
3 quite robust to small movement errors, experiments with real
buildings indicate that the system may also fail in the presence
of a very large number of unmodeled objects, and failure to

Fig. 13. Experiment 7 (I.I.T. Bombay buildings): Catastrophic failure - theletect features. (The latter can caasg approach to fail).
effect of an occlusion (left), and reflection on the window panes and tree
(centre) (details in text.)

VI. CONCLUSIONS

We present a new on-line scheme to identify large 3-D
objects which do not fit into a camera’s field of view (which
allows the system to operate very close to the 3-D object),
and finds the pose of the (uncalibrated) camera with respect
to the object. The system does not assume any knowledge
of the internal parameters of the camera, or their constancy
(permitting a zoom-in/zoom-out operation, for example). The
, s part-based knowledge representation scheme is used both for
i : - probabilistic hypothesis generation, as well as in planning the
next view. We show results of successful recognition and pose
&timation even in cases of a high degree of interpretation
ambiguity associated with the initial view. The significance
of using Inner Camera Invariants is the robustness of the
middle image). The system backtracks (Step 9 in the alggystem to internal camera parameters changes — accidental,
rithm: Fig. 5), and takes the next move. This experiment shows purposive. An interesting extension of this work is to use
the opportunistic nature of our system. The planning wasirposive internal camera parameter changes for planning the
with respect to the second most probable hypothesis, whiaext view — one can zoom in to get further details, or zoom
does not correspond to the observed third view. Howevent, to get a wider field of view. The automatic learning
the observed part-class configuration is unique for this set aff equivalent part classes in this context is another separate
moves, leading to successful recognition and pose estimatiorieresting extension.

Experiment 7 (Fig. 13) shows a case of catastrophic failure

on two counts. We have chosen a difficult angle of imaging VIl. ACKNOWLEDGMENTS

to start with — the jutting wall occludes part of the window,
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part is observed). While the wrong pose estimate does ot
have an adverse effect on the second view owing to the camera
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