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Recognizing Large Isolated 3-D Objects through
Next View Planning using Inner Camera Invariants

Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee

Abstract— Most model-based 3-D object recognition systems
use information from a single view of an object. However, a
single view may not contain sufficient features to recognize it
unambiguously. Further, two objects may have all views in com-
mon with respect to a given feature set, and may be distinguished
only through a sequence of views. A further complication arises
when in an image, we do not have a complete view of an object.
This paper presents a new on-line scheme for the recognition
and pose estimation of alarge isolated 3-D object, which may
not entirely fit in a camera’s field of view. We consider an
uncalibrated projective camera, and consider the case when
the internal parameters of the camera may be varied either
unintentionally, or on purpose. The scheme uses a probabilistic
reasoning framework for recognition and next view planning. We
show results of successful recognition and pose estimation even
in cases of a high degree of interpretation ambiguity associated
with the initial view.

Index Terms— Active 3-D Object Recognition, Next View
Planning, Pose Estimation, Inner Camera Invariants

I. I NTRODUCTION

I N this paper, we present a new next view planning-based
recognition and pose estimation scheme for an isolated

large 3-D object. Our approach can handle the situation when
a large 3-D object does not fit into a camera’s field of view.
Fig. 1(a) shows an image of a portion of a building obtained
using anactive camera(one whose parameters can be changed
purposivelye.g., as in Fig. 2). Such a view could have come
from any of the three models, in Fig. 1(b), (c) and (d),
respectively. Further, even if the identity of the object were
known, the same view could occur at more than one place in
the object – it is not possible to know the exact pose of the
camera with respect to the object from one view alone.

We present a new reactive object recognition scheme
which uses a hierarchical part-based knowledge representation
scheme, and a probabilistic framework for both recognition
and planning. The planning scheme is independent of the
particular nature of a 2-D/3-D part, and the method used to
detect it. A novel feature of our work is the use ofInner
Camera Invariants [1], [2], [3] for pose estimation – image-
computable functions which are independent of the internal
parameters of a camera.

Most model-based object recognition systems use informa-
tion from a single view of an object [4], [5], [6]. However,
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Fig. 1. (a) The given view of an object: only a portion of it is visible. This
could have come from any of the models: (b), (c) and (d)

Fig. 2. A robot with an attached camera, observing a building. The entire
object does not fit in the camera’s field of view. Not only is the identity of
the object unknown, the robot also does not know its pose with respect to the
object. This example shows 4 degrees of freedom (DOF) between the object
and the camera.
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a single view may not contain sufficient features to recognize
an object unambiguously. In fact, two objects may have all
views in common with respect to a feature set, and may be
distinguished only through a sequence of views [7]. Further,
in recognizing 3-D objects from a single view, recognition
systems often use complex feature sets [5], [6]. For object
recognition, one needs an effective representation of properties
(geometric, photometric, etc.) of objects from images which
are invariant to the view point, and should be computable
from image information. Invariants may be colour-based (e.g.,
[8]), photometric (e.g., [9]) or geometric (e.g., [6], [10],
[11], [12]). Although Burns, Weiss and Riseman prove a
theorem in [13] that invariants cannot be computed for a
set of 3-D points in general position, from a single image,
geometric invariants have been proposed for a constrained
set of 3-D points [6], [10], [11], [12]. Such approaches use
the inherent symmetry present in an object, or a particular
configuration of objects to compute invariants for recognition
(e.g., rotationally symmetric objects, translationally repeated
objects, canal surfaces, quadrics, etc.) However, we often need
to recognize 3-D objects which because of their inherent
asymmetry, cannot be completely characterized by an invariant
computed from a single view. Beis and Lowe [14] propose
a kd-tree-based alternate indexing strategy, as against using
invariants. Lowe’s early worke.g., [15] focuses on the use
of perceptual grouping for locating features ‘invariant’ over
a wide range of viewpoints. Most of the work is limited
to specific geometric information alone. However, the basic
premise in all the above methods is in using information from a
single image. In many cases, it may be possible to achieve the
same, incurring less error and smaller processing cost, using
a simpler feature set and suitably planned multiple observa-
tions [16], [17]. The purposive control over the parameters of
a sensor (both internal as well as external) characterizes an
Active Sensor. Papers on Active Vision and Sensor Planning
include the works of Aloimonoset al. [18], Bajcsy [19],
Ballard and Brown [20], Tarabanis, Allen and Tsai [21], and
the authors’ own work [22].

Grimson [23] proposes sensing strategies for disambiguat-
ing between multiple objects in known poses. Madsen and
Christensen [24] propose a method for viewpoint planning,
but for polyhedral objects alone. Further, the authors assume
a knowledge of camera internal parameters. Examples of
active object recognition systems include those of Maver
and Bajcsy [25], Hutchinson and Kak [26], Gremban and
Ikeuchi [7], Dickinsonet al. [27], Callari and Ferrie [28],
Borotschniget al. [29], Schiele and Crowley [30], and the
authors’ own earlier work [16], [17]. We compare different
active 3-D object recognition systems on the basis of the
following properties:

1) Features used for modeling and view recognition
While many approaches such as those of Hutchinson and
Kak [26] and Liu and Tsai [31] use geometric features,
appearance-based methods such as that of Borotschnig
et al. [29] use pixel information from an entire image.
Dickinson et al. [32], [27] use volumetric primitives,
which are associated with a high feature extraction cost.

The same is true for the super-ellipsoids of Callari and
Ferrie [28]. The scheme of Gremban and Ikeuchi [7]
and our earlier work [16], [17] can work with any set
of features.

2) The system setup and viewing geometry
Most multiple view-based approaches using geometric
features, implicitly or otherwise, assume the camera
model to be orthographic. Most experimentation is with
a single (rotational) degree of freedom (DOF, hereafter)
between the object and the camera.

3) Efficient representation of domain knowledge
Dickinsonet al. [32], [27] use a hierarchical representa-
tion scheme based on volumetric primitives. Borotschnig
et al. [29] use a parametric eigenspace-based represen-
tation, which is associated with a high storage and pro-
cessing cost. In our earlier work[16], [17], the hierarchy
itself enforces different constraints to prune the set of
possible hypotheses. Due to the non-hierarchical nature
of Hutchinson and Kak’s system [26], many redundant
hypotheses are proposed, which have to be later removed
through consistency checks.

4) Speed and efficiency of algorithms for both hypothesis
generation and next view planning
In Hutchinson and Kak’s system [26], the polynomial-
time formulation overcomes the exponential time com-
plexity associated with assigning beliefs to all possible
hypotheses. However, their system still has the overhead
of intersection computation in creating common frames
of discernment. Consistency checks have to be used to
remove the many redundant hypotheses produced earlier.
Though Dickinsonet al. [32], [27] use Bayes nets for
hypothesis generation, their system incurs the overhead
of tracking the region of interest through successive
frames. Our earlier work [16], [17] uses a novel hierar-
chical knowledge representation scheme which not only
ensures a low-order polynomial-time complexity of the
hypothesis generation process, it also plays an important
role in planning the next view.

5) Nature of the next view planning strategy
The system should, preferably be on-line and reactive
– the past and present inputs should guide the planning
mechanism at each stage. While schemes such as [29],
[16], [17] are on-line, that of Gremban and Ikeuchi [7]
is not. An off-line approach may not always be feasible,
due to the combinatorial nature of the problem. An
on-line scheme may result in significant reduction of
the search space. An on-line scheme has the additional
capability to react to unplanned situations, such as
errors.

6) Uncertainty handling capability of the hypothesis gen-
eration mechanism
Approaches such as those of Goldberg and Mason [33],
Gremban and Ikeuchi [7], and Liu and Tsai [31] are
essentially deterministic. An uncertainty-handling mech-
anism makes the system more robust and resistant to
errors compared to a deterministic one. Dickinsonet
al. [32], [27], Borotschniget al. [29] and our earlier
system [16], [17] use Bayesian methods to handle
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uncertainty, while Hutchinson and Kak [26] use the
Dempster-Shafer theory. In the work of Callari and
Ferrie [28], the ambiguity in super ellipsoid-modeled
objects is a function of the parameters estimated, on the
basis of which the next move is determined. Schiele and
Crowley [30] use a transinformation-based mechanism
to propose the next move.

However, all the above systems do not consider the follow-
ing issues:

1) To the best of our knowledge, no existing object recog-
nition system handles the case when the complete object
does not fit into the camera’s field of view. This changes
the domain of the problem completely – necessitating a
completely new knowledge representation scheme, and
a next view planning strategy.

2) Further, no existing system handles the case when the
internal parameters of the camera are changed, either
unintentionally, or on purpose.

We propose a novel on-line active 3-D recognition scheme
using an uncalibrated camera. It uses a hierarchical part-
based representation scheme in conjunction with a probabilis-
tic framework for recognition and planning. Our active next
view planning-based scheme is suited for situations where the
camera sees only a portion of a large 3-D object. (This allows
the system to operate very close to an object of interest, for
example.) An important feature of our work is the use of Inner
Camera Invariants [1], [2] – this allows the recognition system
to work in spite of unintentional or purposive changes in the
internal parameters of an uncalibrated camera. We assume that
an object is represented by a set of identifiable parts. Our
system uses simple geometrical features in conjunction with
any other type of feature (geometrical, colour, photometric,
etc.) for characterizing parts. In contrast to our approach,
volumetric primitives used in [27] are associated with a high
feature extraction cost, while appearance-based methods [34],
[35] require the object of interest to be segmented out from
the background. The system setup and viewing geometry is
the most general – 6 degrees of freedom between the camera
and the object, and it is based on a commonly used projective
camera model. The paper [36] presents a preliminary version
of our system, while detailed explanations may be found in [3].

The authors’ earlier work on active 3-D object recogni-
tion [16], [17] looks at a different problem - the entire objects
lies in the camera’s field of view. These papers consider a
1-DOF uncalibrated camera, and propose an aspect graph-
based knowledge representation scheme and a probabilis-
tic active recognition strategy. This paper tackles a harder
problem, where the object may not fit into the camera’s
field of view. Moreover, this approach is independent of
intentional/accidental changes in camera internal parameters,
unlike the previous approach. The authors propose a novel
hierarchical part-based knowledge representation scheme, and
a new probabilistic active recognition scheme for this problem.
The rest of the paper is organized as follows. Section II
describes our method of pose estimation using Inner Camera
Invariants. We describe our hierarchical part-based knowledge
representation scheme in Section III. Section IV describes our

scheme of object recognition through next view planning. We
present results of experiments with our system, in Section V.

II. 3-D EUCLIDEAN POSEESTIMATION USING INNER

CAMERA INVARIANTS

We useInner Camera Invariantsto estimate the pose of
parts present in a view of an object. The system uses this
information to plan the next view, if the given view does not
correspond to a unique pose of a particular object.

A commonly used projective camera model is [37]:

λm = PM = A [R | t]M (1)

Here, M = (X,Y, Z,W )T is a 3-D world point, andm =
(x, y, 1)T is the corresponding image point.R (3 × 3) and
t (3 × 1) are the rotation and translation aligning the world
coordinate system with the camera coordinate system (the
external camera parameters), andA is the matrix of the
internal parameters of the camera (the focal lengths in the
x andy directionsfx andfy, the skew parameters, and the
principal point(u0, v0)):

A =

 fx s u0

0 fy v0
0 0 1

 , (2)

The skew parameters may often be considered to be negli-
gible [37], [38]. Suppose we know three 3-D points,Mp =
(Xp, Yp, Zp, 1)T and their imagesmp = (up, vp, 1)T , p ∈
{i, j, k}. Eliminating the internals of the camera,

Jijk = ui−uj

ui−uk
=

r1Mi
r3Mi

−
r1Mj
r3Mj

r1Mi
r3Mi

− r1Mk
r3Mk

Kijk = vi−vj

vi−vk
=

r2Mi
r3Mi

−
r2Mj
r3Mj

r2Mi
r3Mi

− r2Mk
r3Mk

, (3)

whereJijk andKijk are image measurementsthat are func-
tions of [R | t] (= [r1 r2 r3]T ) andMp (p ∈ {i, j, k}), and
are independent of camera internals.{

Jijk = fijk(R, t,Mi,Mj ,Mk)
Kijk = gijk(R, t,Mi,Mj ,Mk) (4)

Jijk and Kijk are Inner Camera Invariants– image-
computable invariants of the homographyA. We describe
Inner Camera Invariants in detail, in earlier works [1], [2],
[3]. We show that Inner Camera Invariants can be used for
many diverse visions applications – without going through an
often cumbersome process of camera calibration, or explicitly
estimating camera internal parameters (self-calibration). Two
prominent areas are 3-D Euclidean pose estimation from
knowledge about landmarks, and 3-D Euclidean reconstruction
from known ego-motions. Such techniques are important for
autonomous robot navigation, for example. In [1], [2], [3], we
additionally show uses of Inner Camera Invariants in related
applications – interpolation of camera motion, interpolation
of image measurements, and obtaining both the motion and
structure in special cases.

We emphasize that Inner Camera Invariants are a new
class of invariants, not to be confused with Projective In-
variants [13], [6], etc. Our method relies directly on 3-D
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Fig. 3. The knowledge representation scheme: an example

pose estimates (obtained through Inner Camera Invariants)
to check consistency relations between a group of parts. In
this paper, we use Inner Camera Invariants for estimating the
pose of a part (R and t). Suppose we know the Euclidean
coordinates(Xi, Yi, Zi, 1)T of 5 points (in general position)
in the world coordinate system.Six independent Inner Camera
Invariant measurements give us six equations (of the type in
(3)) in 6 unknowns: 3 rotations and translations each. We
solve these equations to get the pose, using a suitable non-
linear optimization routine (constr/fmincon in MATLAB).
In [1], [2], [3], we also show two special cases where it
is possible to obtain closed-form linear solutions for pose
estimation. These, however impose a special structure on the
landmarks used for pose estimation. For a 4-DOF system
(e.g., a setup with one rotational and all three translational
DOF) as in Fig. 2, we adopt the same procedure withfour
independent (inner camera) invariant measurements from four
equations. We discuss issues related to the robustness and
stability of Inner Camera Invariants in a separate work [2]. For
example, we show that to reduce the effect of pixel noise on
the computation ofJijk andKijk, the triplet of points must be
appropriately chosen – the numerator and denominator should
be of comparable order, and neither is too small. We also
consider the effect of varying pixel noise (of the order of 1 and
2.5 pixels) on computations involving Inner Camera Invariants.
We show that such pixel errors do not result in unbounded
errors in the constraint equations for the optimization process.

III. T HE KNOWLEDGE REPRESENTATIONSCHEME

Two major components of an active recognition scheme are
– a planning algorithm (to plan the ‘best’ next view), and
a suitable organization and representation of the objects in
the model base (to facilitate planning and recognition). We
propose a part-based hierarchical knowledge representation
scheme that encodes domain knowledge about the objects in
the model base. Fig. 3 illustrates an example of our knowledge
representation scheme. We use the knowledge representation
scheme for probability calculations, as well as planning the
next view.

We consider a view of an object to contain 2-D or 3-Dparts
(which are detectable using 2-D or 3-D projective invariants,
for example), and other ‘blank’ or ‘featureless’ regions (which
the given set of feature detectors cannot identify). Thus,
according to our formulation, an object is composed of parts,

(a)

(b)

Fig. 4. (a) An example of an objectO1 with 4 parts. (b) A pair of parts
is related by a rigid-body transformationR andt – three rotation and three
translation parameters (details in text).

but is not partitioned into a collection of parts. Fig. 4(a) shows
an example of an objectO1 (of Fig. 3), with partsρ1,1, ρ1,2,
ρ1,3 andρ1,4. Let us consider vertices as the only features –
O1 is composed of the above 4 parts, and other ‘featureless’
regions.

• O represents the set of all objects{Oi}. An object node
Oi stores its probability,P (Oi)

• An objectOi is composed ofNi parts. Thus, a partρi,j

(1 ≤ j ≤ Ni) has aPART-OFrelationship with its parent
objectOi. A part node stores the 3-D Euclidean structure
of its n constituent vertices(Xi, Yi, Zi)T , 1 ≤ i ≤ n.
(e.g., n ≥ 5 for a 6-DOF case andn ≥ 4 for a 4-DOF
case: Section II). Each part has a local coordinate system
associated with it, with respect to which the coordinates
are stored (Fig. 4(b)).

• A part node hasR and t links with its nodes corre-
sponding to its neighbouring parts. Fig. 4 (b) shows two
of these parts, with theR andt relations between them –
represented by the three rotation parametersθ1,2:3, φ1,2:3

andψ1,2:3, and the three translation parameterst x1,2:3,
t y1,2:3 and t z1,2:3.

• We define aPart-Class as a set of parts, equivalent with
respect to a feature set. The set of parts is partitioned
into different equivalence classes with respect to a given
feature set: these equivalence classes are part-classes.C
represents the set of all part-classes{C1, C2, . . . Ck} for
all parts belonging to the objects in the model base.

• We assume a functionPARTCLASSto map the set of
parts to the set of part-classesi.e.,

PARTCLASS: {ρi,j} −→ C

There is anIS-A relationship between a part, and its
associated part-class. Thus, a part nodeρi,j has exactly
one link with its corresponding part-class nodeCk, and
the node for the objectOi, to which it belongs. In the
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ALGORITHM identify object and pose

(* ------ FIRST PHASE ------ *)
1. initialize object probs(); (* 1/N *)
2. img:=get image();
3. part class info:=identify part classes(img);

IF NO part class observed THEN
make random movement; GOTO step 2;

4. search tree root:=
const search tree node(part class info, [I|0]);

5. compute hypothesis probs(search tree root);
(* Eq. 6 *)

6. IF the prob of some hypothesis ≥ a
pre-determined thresh THEN exit:success;

7. expand search tree node(search tree root,
MAXLEVELS); (* Sec IV-C *)

(* ------ SECOND PHASE ------ *)
previous:=search tree root;
expected:=get best leaf(search tree root);

8. {[R|t]}:=find movement(expected,previous);
make movement( {[R|t]}); img:=get image();

9. part class info:=identify part classes(img);
IF NO part class observed THEN

undo movement( {[R|t]}); (* backtrack *)
expected:=get next best leaf(previous);
GOTO step 8;

10. IF obs view 6≡ expected THEN
new node:=const search tree node(

part class info, {[R|t]}); ELSE
modify search tree node with observation(

expected,part class info);
new node:=expected;

11. compute hypothesis probs(new node);
12. IF the prob of some hypothesis ≥ a

pre-determined thresh THEN exit:success;
13. expand search tree node(new node,MAX LEVELS);

expected:=get best leaf(previous);
previous:=new node;

14. GOTO step 8

Fig. 5. The Object Recognition and Pose Identification Algorithm

example of Fig.s 3 and 4, partsρ1,1 and ρ1,3 belong to
part-classC1.

IV. T HE OBJECTRECOGNITION SCHEME

The system starts with an arbitrary view of an object in our
model base. Our aim is to identify the given object, and the
viewer pose with respect to it. There are two main components
of our recognition scheme:

1) Hypothesis generation, and
2) Next view planning

Our scheme is independent of the particular technique to
identify a part-class. The only requirement is that it should
contain at leastn points of interest for pose computation,
n = 5 for the 6-DOF case, andn = 4 for the 4-DOF
case (Section II).Fig. 5 describes the main steps in our
algorithm. The first phase begins with initialization of all
object probabilities. The system then takes an image of the
given view, and identifies the part-classes corresponding to
the parts present in the image. The next step is the formation
of hypotheses about the identity of the observed parts. We
describe our probabilistic hypothesis generation scheme in
detail in Section IV-A. If the probability of some hypothesis
is above a pre-determined threshold, then we exit and declare
success. Otherwise, we invoke our search process to decide the

best move from the current viewpoint, which will disambiguate
between the competing hypotheses. Section IV-C describes the
search process and the second phase of the object recognition
algorithm, in detail.

A. Hypothesis Generation

Let the given view of an object containm parts –ρi,j1 ,
ρi,j2 , . . . ρi,jm . This view could correspond to any of the
n objects in the model base. Further, this configuration of
parts could have come from many different positions within
the same objectOi. From the image information, we can
only identify the part-classesCk1 , Ck2 , . . . Ckm

(whereCkp

and Ckq are not necessarily different) corresponding to each
observed part, respectively (PARTCLASS(ρi,jp

) = Ckp
). The

part-classes may be identified by using 2-D or 3-D projective
invariants, possibly in conjunction with some other non-
geometric features such as grey level or colour information,
reflectance ratio values, etc. One can also use to advantage
Lowe’s work on perceptual groupinge.g., [15] – The basic
aim is to derive groupings or structures in an image that
are likely to be invariant over wide ranges of viewpoints. A
more recent publication [14] describes an approach to indexing
without using (projective) invariants – this can also be used to
advantage in identifying a part-class. We emphasize however,
that our scheme is independent of the particular technique to
identify a part-class.

The system generates different part configuration hypothe-
ses corresponding to the given view: We compute the estimated
pose of each part (Section II), and check if the relative poses
of each part in the configuration are consistent with theR
and t values in the knowledge base, within error limits (for
our experiments with the architectural models for example,
we use± 5◦ and ± 20mm, respectively).Thus, the part
pose estimation phase itself helps in a first-level pruning of
the list of competing view interpretation hypotheses.This
also offers a simple method to offset small inaccuracies in
the part pose estimation process (Section II).Thus, one does
not need to use joint projective invariants between observed
parts – our method relies directly on 3-D pose estimates to
check consistency relations between a group of parts.The
next section describes the process of computing probabilities
associated with each part configuration hypothesis.

B. a priori Probability Calculations

For N objects in the model base, thea priori probability
of each object before taking the first observation, is1/N .
We need estimates of thea priori probabilities of different
configurations of parts that may occur (Step 1 in Fig. 5)

P (ρi,j1 , ρi,j2 , . . . ρi,jm) =
P (Oi) · P (ρi,j1 , ρi,j2 , . . . ρi,jm | Oi) (5)

We may form estimates ofP (ρi,j1 , ρi,j2 , . . . ρi,jm
| Oi)

from a very large number of views of the given object from
different positions, and different values of the internals of the
camera (the focal length, for example on which the field of
view of the camera depends) — this is doneoff-line, before
taking the first observation.
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However, a satisfactory estimation ofa priori probabilities
using this method, may not be easy. If we make some
assumptions about the nature of the 3-D object models, we
can formulate an approximate method to estimate thea priori
conditional part-configuration probabilities. Let us consider the
domain of objects with planar parts. For such a case, one may
approximate thea priori probability of a part configuration
by its relative area in the 3-D model, not on any image-based
features. The rationale behind this approximation is as follows.
Ideally one would need a very large number of observations
to get satisfactorya priori probability estimates. The camera
pose would need to be sampled from the space of internal
and external camera parameter values. For external parameters
for example, one would have as many observations with the
camera looking at the object from the right side, as would be
from the left. Hence, one may have a good estimate of thea
priori probability by looking at the part configuration head-
on. The camera field of view depends on its focal length, an
internal parameter. Intuitively, a larger part is more likely to
be visible in a larger number of observations, as compared to
a smaller one. Thus, one may consider thea priori probability
of observing the part proportional to its area in the 3-D model.

We emphasize that the probabilistic analysis in this paper
(Section IV-B) does not dependon the specific method used
to computea priori probabilities - any method would do.
Our implementation of a prototype system uses the above
approximation (Section V).

1) a posterioriProbability Computations:We use the Bayes
rule to compute thea posterioriprobability of each hypothe-
sized configuration (Step 5 in Fig. 5)

P (ρi,j1 , ρi,j2 , . . . ρi,jm | Ck1 , Ck2 , . . . Ckm) =
P (ρi,j1 , ρi,j2 , . . . ρi,jm) ·

P (Ck1 , Ck2 , . . . Ckm | ρi,j1 , ρi,j2 , . . . ρi,jm) /∑
[ P (ρl,j1 , ρl,j2 , . . . ρl,jm) ·

P (Ck1 , Ck2 , . . . Ckm
| ρl,j1 , ρl,j2 , . . . ρl,jm

) ] (6)

The summation above is for all objectsOl, and all possible
configurations of parts within the object. Because of theIS-
A relation between a part and a part-class in our knowl-
edge representation scheme (Section III), each of the terms
P (Ck1 , Ck2 , . . . Ckm | ρl,j1 , ρl,j2 , . . . ρl,jm) is 1 for all parts
belonging to a particular part-class and0, otherwise.

We now compute thea posterioriprobability of each object
in the model base:

P (Ol) =
∑

P (ρl,j1 , ρl,j2 , . . . ρl,jm | Ck1 , Ck2 , . . . Ckm)
(7)

The summation is for all configurations of parts
ρl,j1 , ρl,j2 , . . . ρl,jm

belonging to objectOl, which could
have given rise to the given view containing part-classes
Ck1 , Ck2 , . . . Ckm

. Each object node in the knowledge
representation scheme uses Equation 7 to update its
probability. In our hierarchical knowledge representation
scheme, each part is linked to its neighbouring parts through
R and t links. In the most general case, one may consider
every part as the neighbour of every other part. For a given
model base, we often observe that there are a large number

of part pairs which cannot appear together in a given view
(for example, parts which lie on opposite faces of an object).
This reduces the computation time to only a small fraction
of

(
Ni

m

)
which would otherwise have been required. The

corresponding search tree node stores the probability of each
part configuration. Hence, Equation 7 needs constant space
complexity.

C. Next View Planning

If the probability of no hypothesis (6) is above a prede-
termined threshold, we have to take the next view to try to
disambiguate between the competing hypotheses. One needs
to plan the best move out of the current state to disambiguate
between the competing hypotheses, subject to memory and
processing limitations, if any.

We describe the state of the recognition system in terms of
the following parameters:

1) The competing view interpretation hypotheses, and
2) The set ofR andt movements made thus far.

We use a search tree node to represent the system state. Search
tree expansion proceeds according to theR andt relations in
the knowledge representation scheme. Each search tree move
is to get to the centre/centroid of the expected part.Thus, the
expected part is more likely to be in the camera’s field of view
even in the event of a zoom-in/zoom-out. Additionally, this
provides robustness to small movement errors. The planning
process aims to get to a leaf node of the corresponding search
tree – one corresponding to a unique part-configuration. One
may also employ a limited memory search tree expansion
(MAX LEVELS in Fig. 5) Search tree node expansion is
always finite because the number of parts in any object is
finite. Further, there are no cycles in the search tree. No part
is repeated along any path in the search tree. Thus, there can
be no search tree expansion indefinitely oscillating between a
set of parts.

We use three stages of filtering to get the best leaf node
(Step 7 in Fig. 5) There is a search tree node corresponding to
the current observation - we expand this node using the above
strategy. Each leaf node corresponds to a unique part-class
configuration. The first level of filtering considers the most
probable view interpretation in the observed node’s hypothesis
list, and takes the consequent leaf nodes. The algorithm assigns
a weightslevel to each search tree node, wheres represents
the number of hypothesized view, andlevel is the search tree
level (depth) the node lies on. Each leaf node has a path weight
corresponding to the sum of all node weights along the path
from the observed node. The second level of filtering considers
those leaf nodes with the minimum path weight. We resolve
remaining ties in favour of one of with the least total rotational
movement. In what follows, we discuss various aspects of our
recognition strategy in relation to existing methods.

1) The Search Process: A Discussion:Grimson [39] can-
onizes different philosophies behind object recognition. While
our technique has some similarities with the Hypothesize-
and-Test and Interpretation Tree paradigms, it differs on may
counts. Our stepwise refinement method is much more general
than the unary and binary constraints in [39]. Moreover, for
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the 3-D constraints in [39], the extraction of 3-D features from
images is not an easy task. Our method relies on the least
constrained of all geometric features - points, and also caters to
other non-geometric features. Lastly, the basic premise behind
a verification stage is to solve for a global interpretation, given
only local interpretations. In our case, we have complete 3-
D pose (through the Inner Camera Invariants-based method),
and global consistency, with respect to all information that we
have at any stage.

At any stage, the recognition algorithm has to determine
whether it might be better to take a next view. Adecision the-
oretic agent[40] selects the action with the highest expected
utility – the Maximum Expected Utility (MEU) principle. The
computations involved are often prohibitive [40]. Rimey and
Brown [41] use decision theory for scene interpretation. They
state that the next action to execute requires sequences of
future actions to be considered, and that it is not feasible to
enumerate all sequences of actions.

Our search process is consistent with a decision theoretic
approach. We have a synergistic combination of reactive be-
haviour as well as planning. Intuitively, our utility is in getting
a move with a maximum discriminatory ability – through
the three levels of filtering to get to the best leaf node. We
emphasize here that our algorithm finds the next action using a
mechanism of look-ahead into possibilities, and not a sequence
of actions. This is because our planning mechanism obtains
the best distinguishing move at any particular stage, subject to
memory and processing limitations. An interesting extension
of our method may consider not just one best distinguishing
move, but a set of such possibilities – whose ‘cost’ is below a
particular threshold. Our strategy however, recovers from cases
of incomplete planning because of its reactive nature – the
re-planning after every observation. The decision on whether
to take a new view or not depends on the probability of the
interpretation hypotheses at any stage.

D. The Second Phase of the Object Recognition Algorithm

The previous section considers moves in the search space,
in order to obtain the best distinguishing move. This section
deals with the camera’s actual movement (in accordance with
the best distinguishing move).

The system makes the required movements
{〈 Rx, Ry, Rz, tx, ty, tz〉}, and takes an image at this position
(Step 8). Similar to the process in Section IV-A, we generate
different interpretation hypotheses corresponding to this view.
The non-detection of some parts in the vicinity of the expected
part (we do not predict a view) does not affect the system in
any way. This imparts robustness to the presence of clutter
in an image. If the current observation corresponds to the
expected search tree node, we compute the probabilities of
each view interpretation hypothesis. If the probability of some
hypothesis is above a the predetermined threshold, we declare
success, and exit (Step 12). If the current observation does
not correspond to the expected search tree node, the system
constructs a new node. This corresponds to the observed part-
class information and the movement made thus far (Step 10). If
no part-class is observed, we undo the current movements, get

the next best leaf node, and proceed (Step 9). If the probability
of no hypothesis is above the threshold, this node is expanded
further (Step 14).

This illustrates the reactive nature of our strategy. The
probabilistic hypothesis generation scheme (Section IV-A)
incorporates all previous observations. If the observed view
corresponds to the most probable view interpretation hypothe-
sis at a particular stage, our search process uniquely identifies
the object and its pose, in the following step (assuming no
feature detection error for the expected part). Even if the
observed view does not correspond to the most probable
view interpretation hypothesis, our algorithm refines the list
of hypotheses at each stage.

It is possible to compute an estimate ofTavg(n): the average
number of moves required for unique object and pose identi-
fication, givenn competing part-configurations corresponding
to the first view. Let us assume the entire space around the
object to be divided intoNV viewing positions. Each of the
NV possible moves from the starting position partitions the
part configuration hypothesis list, into equivalence classes.
In general, any change in camera parameters (both external
as well as internal) from a position could lead us to more
than one part configuration. To serve as a benchmark, we
can computeTavg(n) for a simple case of exactly one part-
configuration being reachable from a point, and no errors
in feature detection, or movement. We choose a move that
partitions the initial set of part-configuration hypotheses into
more than one equivalence class. (Section V-A lists a relevant
case when such a move may not exist.) If the size of the part-
configuration hypothesis list in one such equivalence class is
j, the expected additional number of observations isTavg(j),
where1 ≤ j < n. Let us assume thatj can take on any of
the values1 to n−1 with equal probability, We haveTavg(n)

= 1 +

∑n−1

j=1
Tavg(j)

n−1 , andTavg(1) = 1. By induction, we can
show thatTavg(n) = O(logen).

V. EXPERIMENTAL RESULTS& D ISCUSSION

Our experimental setup has a camera system has 4 degrees
of freedom - translations along theX-, Y- andZ- axes, and
rotation about theY- axis (as in Fig. 2). We have experimented
with two model bases - architectural models (Fig. 1), and 8
buildings in the I.I.T. Bombay academic area. We have chosen
as (2-D) parts the doors and windows of different shapes
and sizes in the models. The first step in processing a given
view of the object involves a segmentation of the image using
sequential labeling [42]. Then we detect corners as intersection
of lines on the boundaries of ‘dark’ regions. We use 2-D
projective invariants using the canonical frame construction
method [43] for recognizing all part-classes (except the 4-
cornered ones –DW4 and OPEN for which, we use the
grey level information at a region near its centroid). We em-
phasize however, theour recognition strategy is independent
of the types of the parts and part-classes, or the method to
detect them.Model LH (Fig. 1(a)) has 167 parts, model DS
(Fig. 1(b)) has 170, while model GH (Fig. 1(c)) has 122. Thus,
even though there are three models in our model base, we have
chosen the models and the associated features such that there
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Fig. 6. The 7 part-classes which the 459 parts belong to, for our model base of
architectural models:DW4, DW6L, DW6R, OPEN , DW8HANDLE,
DW8T , andDW12, respectively in row-major order.

is a very high degree of interpretation ambiguity associated
with a particular view of a few parts of the given object.Fig. 6
shows the 7 different part-classes these 459 parts (of different
sizes) correspond to. The 7 part-classes, with the number
of parts corresponding to each, areDW4(374),DW6L(24),
DW6R(24), OPEN (21), DW8HANDLE(6), DW8T (6),
andDW12(4), respectively. For our experiments with the I.I.T.
Bombay buildings, we have chosen all windows of the type
DW4 above. In this case, the uncertainty associated with a
part-class is even larger - there are 1979 such parts in the 8
buildings considered.

We now briefly describe some representative experiments
with the architectural models model base (Fig.s 7 – 11),
and the I.I.T. Bombay buildings (Fig.s 12 – 14). For our
experiments, adopt a strict criterion for program termination –
we stop when there is exactly one hypothesis possible for the
observed node. These experiments illustrate different features
of our proposed recognition system namely, robustness to
certain feature detection errors, the fact that parts could corre-
spond to any 3-D configuration, invariance to zoom operations
(invariance to internal camera parameter changes), and correct
recognition even in the presence of clutter. We also discuss
limitations of our proposed approach.

Experiments 1 and 2:Experiments 1 and 2 have a small
degree of ambiguity corresponding to the first view. The initial
view in Experiment 1 (Fig. 7), shows the two detected parts
with part-classesDW8T and DW4. The first view itself
results the probabilities of the three models LH, DS and GH
to be 1.000, 0.000 and 0.000, respectively. This is because
the view could have come from only the first model. We do
not stop here, however. Our algorithm will stop only when
the probability of a particular part configuration hypothesis
equals or exceeds a pre-determined threshold. For our exper-
imentation, we have kept this at 1.000. This is the strictest
possible limit, since the algorithm will stop only when there
is exactly one part configuration hypothesis corresponding to
the given view. Of the 6 possible hypotheses, our part pose
estimation procedure (Section IV-A) prunes out 4 of them. The
system plans a disambiguating move: the second view contains
the expected part (bottom row, centre). This move results in
correct recognition and pose estimation, in spite ofthe failure
to detect a neighbouring part(top row, centre).

Experiment 2 (Fig. 8) shows another such example: the two
windows on the left (corresponding to part-classesDW8T and
DW4, respectively) are not detected in the second planned
view. In this case also, the first view uniquely determines
the model present to be LH, with probability 1.000. The

Fig. 7. Experiment 1: The sequence of moves required to identify the object
and its pose. The failure to detect a part does not affect the system (details
in text).

Fig. 8. Experiment 2: The sequence of moves required to identify the object
and its pose. The failure to detect a part does not affect the system (details
in text).

system stops only after the second view, which corresponds
to exactly one part configuration hypothesis. The pose of
the camera with respect to the identified partLH L 14 is
〈 −4.6◦,−2.54mm, 15.02mm, 139.98mm 〉.

Experiment 3: For Experiment 3 and other succeeding
experiments, the initial view has a high degree of ambiguity
associated with it. The parts visible in a view need not come
from the same plane. The initial view for Experiment 3 (Fig. 9)
contains two parts lying on two faces at right angles to each
other. There could be 374 hypotheses corresponding to a
window corresponding to a part-classDW4. From the initial
condition when each of the three objects could be present
with equal probability, this state gets the probabilities of the
three models LH, DS and GH as 0.162, 0.299 and 0.539,
respectively. Part pose estimation results in a pruning of the
hypothesis list corresponding to these two parts, to a hypoth-
esis list of size 87. The system plans a move to disambiguate
between the different hypotheses. This corresponding move
takes us to a view (the second image in Fig. 9), whose view
interpretation is unique. The probability of the three objects
LH, DS and GH are 0.000, 0.000 and 1.000, respectively.
This experiment illustrates thatthe visible parts could have
come from any 3-D configuration– this does not affect the

Fig. 9. Experiment 3: The sequence of moves required to identify the object
and its pose. The parts in the initial view do not lie in the same plane.
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↓

↙ ↓ ↘

(a) −→ (b) −→ (c)
The camera progressively zooms out

Fig. 10. Experiment 4: For the same first two views, we progressively zoom-
out the camera in three stages. (a), (b) and (c) depict the three views which
the camera sees, for the third view. This does not affect the recognition system
in any way (details in text).

recognition system in any way.
Experiment 4:The use of Inner Camera Invariants for pose

estimation allows us toconsider situations where the internal
parameters of the camera may be varied on purpose, or
unintentionally.The first view in Fig. 10 could have come from
257 configurations of two adjacent parts with part-classDW4.
Two moves from this position were sufficient to recognize the
object, the third view containing the expected part (the large
4-cornered window,GH W 15). For the same first two views,
we performed two zoom-out operations at the the third camera
position. The recognition results are the same in each of the
cases — Fig. 10 (a), (b) and (c). Further, the camera pose with
respect to partGH W 15 in these three cases are
〈 9.425◦, −22.000mm, −9.999mm, 150.000mm 〉,
〈 9.888◦, −22.000mm, −9.999mm, 150.000mm 〉, and
〈 9.896◦, −22.000mm, −9.999mm, 150.000mm 〉, re-
spectively. Thus, accidental or purposive changes in internal
camera parameters does not affect our system in any way.

It is interesting to compare this with Lowe’s work on object
recognition from local scale-invariant features [44]. Even
though we have not considered any specific scale-invariant
features, the same feature detector gives accurate results over
a reasonably wide range of zoom-out operations.

We emphasize that the zoom-out operation were not per-
formed in a graduated or pre-calculated manner – they were
arbitrary. It is important to additionally note that the system
did not plan these zoom-out operations – these were arbitrarily
effected to test the system’s resilience to variations (intentional
/ unintentional) in camera internal parameters. An interesting
extension of this work would be to incorporate purposive
changes in camera internal parameters as well – since any
feature extraction routine has practical limits within which
it works optimally. These purposive changes would be an

Fig. 11. Experiment 5: The sequence of moves (in row major order) required
to identify the object and its pose. The first, third and fourth views are cluttered
by the presence of a tree. The image at the bottom shows an overall view. The
trees are in the foreground. The corresponding window is highlighted with a
black square.

Fig. 12. Experiment 6 (I.I.T. Bombay Buildings): Backtracking on reaching
a view without any part (details in text), and successful final recognition.

important tool in the planning algorithm.
Experiment 5: In Experiment 5, the presence of a tree

(an unmodeled object) accounts for clutter in the first, third
and fourth view of Fig. 11. For Experiment 5, initially the
three objects had a probability of 0.333 each. Following the
first observation, the probabilities of LH, DS and GH were
0.172, 0.291 and 0.537, respectively. It is only with the final
view that the probabilities change to 0.000, 0.000 and 1.000,
respectively. The system plans the next move on the basis of a
part: it does not predict an entire view. In these experiments,
recognition performance is not affected by the presence of
unmodeled objects (clutter)or the non-detection of parts in
the vicinity of the expected part. 5 views are needed for
unambiguous recognition and pose estimation. The size of the
hypothesis list corresponding to the first view is 304.

Experiments 6 – 9: Buildings in I.I.T. Bombay:For Exper-
iments 6 – 9, we have chosen an extremely difficult operating
environment – there are numerous trees and other unmodeled
objects. In addition to these, occlusions and lighting conditions
also affect the performance of the system, as shown in the
following experiments. In Experiment 6 (Fig. 12), the tree
occludes the rightmost window, and the second and third
windows from the left receive a wrongX− pose estimate due
to occlusion from the pipe and the jutting wall, respectively.
The planning on the basis of the available information from
two windows leads to a region with no identifiable part (the
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Fig. 13. Experiment 7 (I.I.T. Bombay buildings): Catastrophic failure - the
effect of an occlusion (left), and reflection on the window panes and tree
(centre) (details in text.)

Fig. 14. Experiment 9: The sequence of moves (in row major order) required
to identify the object and its pose (details in text.)

middle image). The system backtracks (Step 9 in the algo-
rithm: Fig. 5), and takes the next move. This experiment shows
the opportunistic nature of our system. The planning was
with respect to the second most probable hypothesis, which
does not correspond to the observed third view. However,
the observed part-class configuration is unique for this set of
moves, leading to successful recognition and pose estimation.
Experiment 7 (Fig. 13) shows a case of catastrophic failure
on two counts. We have chosen a difficult angle of imaging
to start with – the jutting wall occludes part of the window,
leading to a wrongX− pose estimate. The uncertainty list
corresponding to the first view has all 1979 entries (since one
part is observed). While the wrong pose estimate does not
have an adverse effect on the second view owing to the camera
being kept in a large field of view mode, the system fails to
recognise any part (owing to reflections on the window panes,
and the presence of the tree). The next planned view leads to
the image on the right. For this model base, this sequence of
moves cannot lead to this part configuration, and the system
fails. For Experiment 9 (Fig. 14), the system needed 6 moves
to recognise the part configuration and pose correctly. Starting
from an uncertainty list of 1979 corresponding to the first view,
the next two moves narrow it down to 32. On getting to a
view without any part (the fourth figure), and a subsequent a
backtrack, the uncertainty list has 2 entires for the fifth view. In
this case, the system correctly identifies the object, but there
were two competing part configurations. The final move of
raising the camera up by155cm resolves this ambiguity.

A. Limitations of the Proposed Approach

Our approach is not guaranteed to succeed for objects which
have a similar layout of parts, with the corresponding parts in
the objects corresponding to the same part-class. A primary
limitation of our approach is the computation time involved:
computation of Inner Camera Invariants (Section II) involves
iterative nonlinear optimisation. A planning step (including the

above computation time) takes up to about 13 minutes on a
700MHz PIII machine running Linux. While the system is
quite robust to small movement errors, experiments with real
buildings indicate that the system may also fail in the presence
of a very large number of unmodeled objects, and failure to
detect features. (The latter can causeany approach to fail).

VI. CONCLUSIONS

We present a new on-line scheme to identify large 3-D
objects which do not fit into a camera’s field of view (which
allows the system to operate very close to the 3-D object),
and finds the pose of the (uncalibrated) camera with respect
to the object. The system does not assume any knowledge
of the internal parameters of the camera, or their constancy
(permitting a zoom-in/zoom-out operation, for example). The
part-based knowledge representation scheme is used both for
probabilistic hypothesis generation, as well as in planning the
next view. We show results of successful recognition and pose
estimation even in cases of a high degree of interpretation
ambiguity associated with the initial view. The significance
of using Inner Camera Invariants is the robustness of the
system to internal camera parameters changes – accidental,
or purposive. An interesting extension of this work is to use
purposive internal camera parameter changes for planning the
next view – one can zoom in to get further details, or zoom
out, to get a wider field of view. The automatic learning
of equivalent part classes in this context is another separate
interesting extension.
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