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Second-Order Training of Adaptive Critics
for Online Process Control

James J. Govindhasamy, Seán F. McLoone, and George W. Irwin

Abstract—This paper deals with reinforcement lear ning for process
modeling and control using a model-free, action- dependent adaptive
critic (ADAC). A new modified recursive Levenberg Marquardt (RLM)
training algorithm, called temporal difference RLM, is developed to
improve the ADAC performance. Novel application results for a simulated
continuously-stirred-tank-reactor process are included to show the superi-
ority of the new algorithm to conventional temporal-difference stochastic
backpropagation.

Index Terms—Action-dependent adaptive critic, intelligent control, mul-
tilayer perceptrons, neural networks, nonlinear process control, process op-
timization, reinforcement learning.

I. INTRODUCTION

The design of nonlinear optimal neurocontrollers based on the adap-
tive critic Ddesign (ACD) paradigm, introduced by Werbos [1], [2],
is currently attracting much renewed interest, particularly for complex
control applications.

However, closer examination of the current literature suggests that, a
number of assumptions have been introduced which run counter to the
original ADC concept. Thus, Wu [3], [4], Chan [5], Zeng et al. [6], and
Riedmiller [7] all assumed a priori knowledge of the plant in selecting
the control action. Ernst et al. [8], Park [9], [10], Venayagamoorty
et al. [11]–[13], Iyer and Wunsch [14], Radhakant and Balakrishan
[15], Sofge and White [16] trained their neurocontrollers offline using
a model of the plant. While Hoskin and Himmelblau [17] successfully
implemented an online model-free adaptive heuristic critic (AHC) [18],
[19] architecture, the control was constrained to be bang-bang.

The fundamental solution to sequential optimization problems uses
Bellman’s Principle of Optimality [20]. This principle is applied to
ACDs by devising a “primary” reinforcement function or reward r(k)
that incorporates a control objective for a particular scenario in one or
more measurable variables. A secondary utility is then formed, which
incorporates the desired control objective through time, the so-called
Bellman equation, expressed as

J(k) =

1

i=0



i
r(k + i) (1)

where 
 is a discount factor (0 < 
 < 1), which determines the
importance of the present reward relative to future rewards. The re-
inforcement r(k) takes a binary form with r(k) = 0 when the event
is successful (objective is met) and r(k) = �1 when it fails (when the
objective is not met). Hence, the purpose of dynamic programming is
to choose a sequence of control actions to maximize J(k), also called
the cost-to-go. Unfortunately, a direct solution to this optimization task
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is computationally infeasible due to the backward numerical solution
process involved and the associated “curse of dimensionality”. Thus,
there is a need for more tractable approximation methods based on a
recursive form of (1)

J(k) = r(k) + 
J(k + 1): (2)

Werbos proposed a variety of methods to estimate the function J(k) in
(2) using artificial neural networks as function approximators.

This paper investigates the use of a model-free, action-dependent
adaptive critic (ADAC) developed by Si and Wang [21] for online mod-
eling, control, and optimization of a nonlinear process. In [21], a “batch
style” online training method was used, whereby the input and output
data were stored during a successful run, and training of the networks
was performed only when a failure was encountered. This, however,
does not represent true online adaptive control. Their training algo-
rithm is extended here so that it can be implemented online, with adap-
tation occurring at each sample instant. This eliminates the need to
store the plant data and caters for immediate changes in the system dy-
namics. Further, Si and Wang’s algorithm relied on temporal-difference
[22] stochastic backpropagation (TD-SBP), which like its batch coun-
terpart, has poor convergence properties and is susceptible to param-
eter shadowing when used on-line. The latter occurs when the output
correctly tracks the desired output with the network parameters con-
tinuously adapting instead of converging [23]. An extended version
of the recursive Levenberg-Marquardt (RLM) algorithm [24], called
the temporal difference RLM (TD-RLM), is proposed to overcome
such problems. Identification and control results from a simulated con-
tinuous-stirred-tank-reactor process, the first reported application of
second order training methods to on-line reinforcement learning, con-
firm the advantages of our new approach.

The paper is organized as follows. Section II will give a brief de-
scription of the ADAC framework and its neural network implemen-
tation. The simulated process application is discussed in Section III,
along with the control and identification strategy and simulation re-
sults. Conclusions and future work appear in Section IV.

II. PRELIMINARIES

Si and Wang [21] formulated a modified version of (2), where instead
of approximating J(k), they proposed that the Critic Network be used
to approximate the future accumulated reward-to-go, defined as

R(k) = r(k + 1) + 
r(k + 2) + � � � (3)

where R(k) J(k + 1). This is illustrated in Fig. 1.
The Critic Network can be trained by using R̂(k � 1), the previous

estimate of the cost, and the current reward r(k) to provide a target
value for the current cost estimate R̂(k). Thus

[R(k)]target =
1



R̂(k� 1)� r(k) : (4)

The instantaneous error ec (k) = R̂ (k) � [R (k)]
target

is then a
function of two successive values of R̂

ec(k) = R̂(k)�
1



R̂(k� 1)� r(k) (5)

and is usually referred to as the temporal difference error.
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Fig. 1. Schematic of the ADAC scheme.

Fig. 2. Action and critic network with the process states, as well as the
additional input of the control action, u(t) from the action network to the critic
network.

A. Training Method

Training of the Critic Network on the basis of the temporal differ-
ence error is equivalent to minimizing the mean-squared error objective
function

Ec(k) =
1

2
e
2
c(k): (6)

The output of the Critic Network, shown in Fig. 2, is calculated in a
feedforward manner and is expressed as follows:

gj(k) =

N +1

i=1

w
NL
cij (k)xi(k); yj(k) =

1� e�g (k)

1 + e�g (k)
(7)

where xxx is the input vector, wwwNL
c is the input to hidden layer (or non-

linear) weights, g is the input to the hidden layer nodes, and y is the
output of the hidden layer nodes. Note the index Ni + 1 is to include
u(k) (i.e., xN +1 = u(k)), the output of the Action Network as shown
in Fig. 2 below. For this MLP network, the output R̂(k) is calculated as

R̂(k) =

N

i=1

w
L
cj(k)yj(k) (8)

where wwwL
c is the linear (or hidden to output layer) weight vector. The

Action Network update is based on the prediction error given as

ea(k) = R̂(k) (9)

where the objective function to be minimized is

Ea(k) =
1

2
e
2
a(k): (10)

The output of the Action Network shown in Fig. 2 is calculated in a
feedforward manner as follows:

hj(k) =

N

i=1

w
NL
aij (k)xi(k); zj(k) =

1� e�h (k)

1 + e�h (k)
(11)

u(k) =

N

j=1

w
L
aj(k)zj(k): (12)

Here, hj and zj are the input and output of the jth hidden layer neuron
activation functionwwwNL

a andwwwL
a are the hidden layer and output layer

weight vectors and xxx is the input vector.
The proposed weight-update rule for the Critic and Action Networks

is based on a modified version of the RLM formulation [24], with tem-
poral-difference (TD) learning [22] incorporated. The RLM formula-
tion is as follows:

S(k) =�k�(k) + 
T (k)P (k � 1)
(k) (13)

P (k) =
1

�k
P (k � 1)� P (k � 1)
(k)S�1(k)

� 
T (k)P (k � 1) with

P (k) =
1

trace[P (k)]
P (k) (14)

www(k + 1) =www(k) + P (k)(r [www(k)])e(k) (15)

r [www(k)] =
@

@www
f [www(k); xxx(k)] (16)


T =
r [www(k)]

0 . . . 1 . . . 0

*

position = k mod (Nw) + 1 (17)

and

�(k) =
1 0

0 �

�1

: (18)

Here, P (k), the inverse of the Gauss–Newton Hessian, can be inter-
preted as the covariance matrix of the weight estimatewww(k). The scalar
� in the 2� 2 regularization matrix �(k) controls the amount of regu-
larization, while
(k) is aNw�2 matrix that determines which weight
is regularised at a given iteration. Its first column is the gradient vector
r [www(k)] while its second column is a vector with one nonzero ele-
ment that changes position at each iteration as illustrated.

The prediction error is defined as (5) for the Critic Network and (9)
for the Action Network. The gradient vectors for both the networks are
as follows:

r w
L
cj(k) =

@Ec(k)

@Ĵ(k)

@Ĵ(k)

@wL
cj(k)

r w
NL
cj (k) =

@Ec(k)

@Ĵ(k)

@Ĵ(k)

@yj(k)

�
@yj(k)

@gj(k)

@gj(k)

@wNL
cij (k)

r w
L
aj(k) =

@Ea(k)

@Ĵ(k)

@Ĵ(k)

@u(k)

@u(k)

@wL
aj(k)

r w
NL
aij (k) =

@Ec(k)

@Ĵ(k)

@Ĵ(k)

@u(k)

@u(k)

@zj(k)

�
@zj(k)

@hj(k)

@hj(k)

@wNL
aij (k)

: (19)
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TABLE I
CSTR PROCESS PARAMETERS[25], [26]

III. CASE STUDY

ADAC modeling and control of the highly nonlinear, continuous
stirred tank reactor (CSTR) process ([25], [26]) is used to compare
the performance of the new TD-RLM algorithm with the conventional
TD- SBP training algorithm. The CSTR consists of an irreversible,
exothermic reaction, in a constant volume reactor cooled by a single
coolant stream. This inherently nonlinear process requires adaptive
controllers to cope with its time-varying plant dynamics. The CSTR
has been used as a benchmark for numerous nonlinear control strate-
gies for process control over the past 30 years. The plant considered
here is single- input-single-output (SISO), where the output is the
product concentration C , the input being the coolant flow rate qc.
The chemical reaction which produces the compound takes place
inside the insulated tank. This is an exothermic process, which raises
the temperature inside the tank, and reduces the reaction rate. The
objective is to control the measured concentration of the product C by
manipulating the coolant flow rate qc.

The physical equations of the simulated process are as follows:

dT

dt
=
qif
V

(Tif � T ) +K1C � e(�E=R�T )

+K2qc � 1� e(�K =q ) � (Tcf � T ) (20)

dC

dt
=
qif
V

(Cif � C)�KaC � e(�E=R�T ): (21)

The plant constants, which include the heat of reaction, specific heats,
liquid densities, and heat transfer terms in simplified forms are sum-
marized in Table I.

This model was simulated at a nominal operating point of qc =
100 l=min, T = 441:22 K, and C = 0:0882 mol=l. The simulated
input and output are the deviations from these nominal values.

A. Modeling the CSTR

The identified CSTR model was based on a second-order NARX
representation using a (4,10,1) MLP network with the output defined
as

Ĉ(k) = ffC(k� 1); C(k� 2); qc(k � 1); qc(k � 2)g: (22)

Training data in the form of sampled input and output was generated by
using a sequence of random steps with superimposed Gaussian white
noise. The ADAC scheme is trained to identify the dynamics of the
CSTR process as depicted in Fig. 3.

Fig. 3. Schematic of ADAC modeling strategy of the CSTR.

Fig. 4. Training error comparison between TD-SBP and TD-RLM.

The external reinforcement signal for the ADAC model was chosen
as

r(k) =
�1; jPrediction Errorj � 1� 10�3

0; otherwise.
(23)

The training mode was terminated once the model was able to main-
tain this performance for at least 100 sample instances (i.e., to reach
the goal after 5 min of a 10-min step time interval). The weights were
then stored for the remainder of the training data sequence. Fig. 4 com-
pares the mean squared error (mse) learning curves of the TD-RLM
and TD-SBP training algorithms and clearly demonstrates the superi-
ority of the former.

The accuracy of the predicted product concentration was measured
in terms of the percentage normalized mean prediction error (MPE),
defined as

MPE =
1

n

n

i=1

jCi � Ĉij

�C
� 100% (24)

where �C is the standard deviation of target output, C , and n is the
number of data samples. The TD-RLM model achieved an MPE of
8.3% after the training was stopped at the 495th sample instant com-
pared to the TD-SBP of 13.4%, as shown in Figs. 5 and 6. However, the
computation time for the TD-RLM was twice that needed for TD-SBP.

In order to further enhance the accuracy of the model prediction,
error feedback can be used to compensate for the low frequency offset
in the ADAC model prediction.This “predict-correct” technique uses
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Fig. 5. Modeling prediction comparison between TD-SBP and TD-RLM.

Fig. 6. Zoomed view of the modeling prediction performance between
TD-SBP and TD-RLM.

Fig. 7. Predict correct scheme.

past plant outputs and the corresponding model predictions to gen-
erate a correction to the current estimate Ĉ(k)�. Successful applica-
tions have been reported in Rovlak and Corlis [27] and Irwin et al.
[28]. The scheme is usually implemented as follows:

Ĉ(k)� = Ĉ(k) +
1

N

N

j=1

C(k� j)� Ĉ(k� j) : (25)

A first-order predict-correct was incorporated into the ADAC pre-
dictor, as shown in Fig. 7. The performance of the ADAC model with
predict correct is illustrated in Fig. 8. A clear improvement is observed
with the MPE now reduced to 4.2%.

B. CSTR Control

It has been shown that an optimized PI controller of the form

qc(k) = Kpe(k) +KiTs

k

i=1

e(i) (26)

Fig. 8. Prediction performance of the TD-RLM based on the predict correct.

Fig. 9. Block diagram of the ADAC neurocontrol of the CSTR process.

is able to control the CSTR for certain operating regions [25]. Here, Ts
is the sampling time, Kp and Ki are the controller gains, and e(i) is the
tracking error at the ith sample instant. To provide a direct comparison
with the reinforcement learning methodology a nonlinear PI controller
was developed based on the ADAC design. The inputs to the Action
and Critic networks were chosen to be e(k) and �e(k), yielding the
nonlinear PI controller

qc(k) = f e(k);

n

i=1

e(k) : (27)

The overall ADAC PI controller structure is thus as depicted in Fig. 9.
In this investigation, the plant was fed with random step changes in the
concentration set-point at 5-min intervals to simulate different concen-
tration settings. The simulation studies were based on 50 runs, each
consisting of 50 min, during which the Action Network had to con-
trol the concentration within the operating region using a (2,8,1) MLP
network. For each run, the weights of the networks were initialized ran-
domly. The external reinforcement signal for the ADAC controller was
chosen as

r(k) =
�1; je(k)j � 5� 10�4

0; otherwise.
(28)

Training was performed continuously to allow adaptation across the
different operating regions of the process. The performance of both
training algorithms was measured in terms of the percentage of runs
that were successful. The TD-RLM trained controller achieved a 100%
success rate while the TD-SBP controller only managed 6%. As ex-
pected, the computation time for TD-RLM was 30% more than needed
by TD-SBP. Fig. 10 shows a typical successful run, where the TD-RLM
ADAC controller performs almost as well as the optimized conven-
tional PI controller and significantly better than the TD-SBP trained
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Fig. 10. TD-RLM and TD-SBP controllers tracking comparison with the
conventional PI controller.

controller. A useful qualitative performance measure for the control
effort is the sum of the square of the control actions u(k)

I =

k

i=1

[qc(i)]
2
: (29)

For the portion of the tracking response shown in Fig. 10, the TD-RLM
trained ADAC controller yielded a control effort of 11.49 compared to
13.76 for the TD-SBP trained controller and 12.10 for the optimized PI
controller.

IV. CONCLUSIONS

This paper extended the model-free ADAC design of Si and Wang
to produce a fully online neurocontroller which avoids the necessity to
store plant data during a successful run. In particular, the potential lim-
itations of their stochastic backpropagation training, in terms of poor
convergence and parameter shadowing were avoided by introducing an
extension to the RLM algorithm called the TD-RLM.

The improved performance of the new ADAC scheme, for both iden-
tification and control, was confirmed using results from a simulated
continuous-stirred-tank-reactor process. The goal of tracking the refer-
ence input to within an acceptable region was also realized. The adap-
tive critic was shown to be capable of tuning a nonlinear PI controller
without any manual intervention, thereby producing comparable per-
formance to an optimized PI controller. This constitutes the first re-
ported application of second order training methods to on-line rein-
forcement learning and is a significant step forward in moving rein-
forcement learning toward industrial applications.
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