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Eliminating False Matches for the Projective
Registration of Free-Form Surfaces
With Small Translational Motions

Yonghuai Liu

Abstract—In this paper, we make a detailed study of two
rigid-motion constraints. The importance of these two constraints
is twofold: first, they reveal the inherent relationship between
the three-dimensional–two-dimensional (3-D–2-D) point corre-
spondences and the motion parameters of interest; second, they
can be used to measure the traditional ICP criterion established
point match qualities based on which different point matches can
be compared and relatively good point matches can be selected
for motion-parameter update in the projective registration of
free-form surfaces subject to small translational motions. The
experimental results based on both synthetic data and real images
have shown that the rigid motion constraints are powerful in
evaluating the possible 3-D–2-D point matches established by the
traditional ICP criterion, thus achieving encouraging projective
registration results.

Index Terms—Colinearity, focus of expansion, free-form sur-
face, ICP, projective registration, rigid motion constraint, rigid
pure translational motion, three-dimensional–two-dimensional
(3-D–2-D) point correspondence.

I. INTRODUCTION

PROJECTIVE registration of free-form surfaces described
as a three-dimensional (3-D) map and a two-dimensional

(2-D) projective image taken by a robot at a certain viewpoint is
a fundamental problem in the robot vision literature (3-D–2-D
registration), as it finds applications in many areas, such as robot
location, path planning, obstacle avoidance, object modeling
and recognition, and scene understanding [13], [15], [37] etc.
The goal of projective registration is twofold: one is to establish
3-D–2-D point correspondences between a 3-D model and its
projective image, the other is to estimate camera motion param-
eters that bring the transformed 3-D model and the projective
image into alignment. In practice, these two goals are often en-
twined, thus complicating projective registration.

A. Related Work

Many methods have been proposed to solve the registration
problem based on techniques, such as iterative closest point
(ICP) [1], [3], [44], intensity based similarity [32], correlation
ratio [33], difference decomposition [12], SSD operator [20],
marker matching based interactive method [16], shape matching
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[4], feature matching [14], [40], [42], stereo simplex [36], soft-
assign [5], [6], and many others. The intrinsic natural and prac-
tical idea of the ICP algorithm has attracted much attention from
the machine vision and image processing community since it
was proposed in 1992 independently by several researchers [1],
[3], [44]. Since inaccurate initialization of camera pose, occlu-
sion, appearance and disappearance of points, and noise pres-
ence in image data render the traditional ICP criterion (given
camera pose rotation matrix and translation vector , the cor-
respondent of a point in the first image is the closest point
in the second image to ) to inevitably introduce false
matches in almost every iteration of registration. As a result, a
large number of methods have been proposed either to increase
the accuracy of the ICP criterion established point correspon-
dences based on techniques, such as color information [19] and
invariant features [35], or to evaluate the ICP criterion estab-
lished point correspondences based on techniques, such as geo-
metric properties of correspondence vectors [30] and geometric
properties of reflected correspondence vectors [34]. These im-
proved methods are mainly used to register two sets of 3-D data
(3-D–3-D registration) with or without occlusion, appearance
and disappearance of points.

Recently, the traditional ICP algorithm has been extended
for use in projective registration. In [24], the edges are first
extracted from both reflectance and intensity images. The
3-D–2-D correspondences between the extracted edge points
are then established using the traditional ICP algorithm. The
camera pose parameters are finally estimated by an M-es-
timator, combating false matches for more accurate camera
pose estimation. In [9], the traditional ICP algorithm has been
extended for 3-D–2-D projective registration of free-form
curves and surfaces. But the distance is defined as the weighted
sum of distance between 2-D curve points and projected 3-D
curve points and that between normalized tangent vectors to
the 2-D curve and to the projected 3-D curve respectively or as
the weighted sum of distance between 2-D surface points and
projected 3-D surface points and that between normal vectors
to the 2-D surface and to the projected 3-D surface respectively.
In order to accelerate the search for closest points, a k-D tree
data structure is used. For the evaluation of the established cor-
respondences, the general test is then employed. Once the
3-D–2-D point correspondences have been established by the
traditional ICP algorithm, the extended Kalman filter is finally
used to estimate the camera pose. In [21], [22], a skeleton of a
3-D vessel from a 3-D model and the region of interest in an
X-ray image are first extracted and a territory-based method
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is then used to search for the 3-D–2-D point correspondences
[23]. The rotation parameters are estimated linearizing the
rotation matrix represented with a quaternion and separating
the rotation from the translation. In [25], given a good initial
estimate of camera pose parameters, the authors propose min-
imizing the signed distance between the recovered 3-D lines
from their projected contours and a closed 3-D surface to refine
the camera pose parameters, using the Levenberg-Marquardt
method. While the distance between the recovered 3-D lines
from their projected contours and the closed 3-D surface is
computed as the minimum distance between points on the lines
and the surface, its computation is accelerated by the octree
spline representation of the distance map. In [43], assuming
that all image points can find correspondents in the model,
the authors propose minimizing the distances between the
transformed 3-D point and the projection rays to establish the
3-D–2-D point correspondences, thus transforming 3-D–2-D
motion estimation to 3-D–3-D motion estimation. In order to
account for outliers, an M-estimator is used. In [27], the camera
pose is estimated by the Newton method through minimizing a
cost function of the distance between a point on the projected
3-D skeleton and the intersection point of the 2-D skeleton
with the line passing through that point and perpendicular
to the tangent of the projected 3-D skeleton. However, the
correspondences between 3-D and 2-D skeletons are associated
by the user.

All these methods often require human intervention, feature
extraction, special object structure, or impose constraints on the
image data acquisition. Thus, for automatic registration of free
form surfaces, a substantial improvement is still needed.

B. Our Work

Our research has shown that 3-D–2-D projective registration
is significantly more difficult than 3-D–3-D registration, since
it is more sensitive to the initialization of motion parameters
and the motion parameter estimation is more sensitive to both
false matches and noise distribution in image points data. To
facilitate 3-D–2-D projective registration, the rigid pure transla-
tional motion was chosen in this paper. Such camera configura-
tion was also adopted by other algorithms for accurate structural
estimation [20], accurate camera pose estimation [26], or accu-
rate camera calibration [17].

Intuitively, the 3-D–2-D point correspondences and the
camera pose parameters should be optimized simultaneously
for accurate registration results. However, such simultaneous
optimization is in practice either difficult to formulate or
difficult to implement. Thus, in this paper, we decompose
the registration process into three main steps as: (1) Use the
traditional ICP criterion to establish possible 3-D–2-D point
correspondences; (2) Use rigid motion constraints to evaluate
the possible 3-D–2-D point correspondences; and finally (3)
Use the Monte Carlo resampling technique to update the camera
pose parameters based on the refined 3-D–2-D correspondences
and repeat these steps until convergence. Doing so is justified
by the following three reasons: (1) the novel approach can be
interpreted in the framework of the EM algorithm [7]. In the E
(expectation) step, the camera pose is fixed and the 3-D–2-D
correspondences are established by Step 1 and Step 2 above. In

the M (maximization) step, the 3-D–2-D correspondences are
fixed and the camera pose is updated by Step 3 above; (2) the
novel approach has an advantage of easy implementation, since
it does not need to extract any structural features from images
[14], [21]–[23], [40], [42] or estimate the motion parameters of
interest [30], [34] from the possible point matches before they
are evaluated; and finally (3) the novel approach can produce
encouraging projective registration results, as demonstrated in
this paper.

While the existing registration algorithms [14], [40], [42]
mainly use feature matching to establish and/or evaluate the
possible point correspondences, the extraction of structural
features is often sensitive to noise, occlusion, and appearance
and disappearance of points. The rigid motion constraints based
registration algorithm, however, takes a different strategy for
registration. Instead of matching features, this strategy evolves
rigid motion constraints, involving both the possible point
matches and the camera pose parameters. While the existing
registration methods often take for granted that the finally
established correspondences are real, the novel approach can
guarantee that in the end, the 3-D–2-D correspondences estab-
lished by the traditional ICP criterion and evaluated by the rigid
motion constraints represent somewhat real correspondences.

The goal of this paper is twofold: one is to study the be-
havior of point match quality measures [29] for the evaluation
of 3-D–2-D point correspondences established by the traditional
ICP criterion; the other is to justify both theoretically and ex-
perimentally the refined point matches. Theoretically, for the
3-D–2-D point matches subject to a single rigid translational
motion and established by the traditional ICP criterion, once
more than two of them satisfy the rigid motion constraints ex-
actly, then all those of them that satisfy the rigid motion con-
straints exactly satisfy the motion equation and thus, must rep-
resent real correspondences without any ambiguity and the rigid
translational motion that brings the transformed 3-D model into
alignment with its projective image is then uniquely determined.
A large number of experiments based on both synthetic data and
real images reveal that in practice, the rigid motion constraints
often render the false matches to be successfully eliminated,
thus producing encouraging projective registration results.

The rest of this paper is structured as follows. The application
of rigid motion constraints for the elimination of false matches
is explained in Section II, a justification of the refined corre-
spondences is made in Section III and the experimental results
based on both synthetic data and real images are presented in
Section IV. Finally, we discuss a number of issues relative to
the proposed registration algorithm and draw some conclusions
in Section V.

II. SMALL PURE TRANSLATIONAL MOTION–PROJECTIVE

REGISTRATION ALGORITHM

Assuming that the camera undergoes a pure translational mo-
tion [17], [28], [29], then the relationship between a 3-D model
point and its corresponding 2-D projective image point can
be represented as

(1)
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where the classical pinhole camera model is adopted and
represents the depth of point in the camera centered coordi-
nate frame and represents the position of the camera in the
scene centered coordinate frame. For convenience of compu-
tation without loss of generality, we assume in this paper that
the focal length of the camera is equal to 1. Assuming that the
camera undergoes a small motion, the problem is thus, defined
as the projective registration of free form surfaces subject to
that small motion. The free form surfaces are represented as
two sets of sparse points where one set contains the 3-D model
data points
and another set contains the 2-D projective image data points

. Assuming that two
sets of points are overlapping in 3-D space, is not necessarily
equal to due to occlusion and appearance and disappearance
of points. The 3-D–2-D point pair with the same subscript does
not mean that they represent a 3-D–2-D point correspondence.

In the rest of this paper, the following notations are used: cap-
ital letters represent points, vectors or matrices, lower case let-
ters represent scalars, the capital letter denotes the identity ma-
trix, superscript denotes the transpose of a vector or a matrix,

denotes the absolute value of a scalar, and denotes the
Euclidean norm of a vector.

A. Quality Measurement of Possible 3-D–2-D
Correspondences

Once the camera position has been
initialized [29], the resulting set of 2-D projected image
points of 3-D model data points

on the image plane can be calculated by (1).
Using the traditional ICP criterion [1], [3], [44], for each point

in set its closest point can be found in
set

(2)

which minimizes the Euclidean distance between the trans-
formed point and in . The search space is determined
by the size of the projective image . As a consequence of
this operation, a set of possible 3-D–2-D point correspondences

is obtained.
Unfortunately, the criterion used by the ICP algorithm es-

sentially implies some ambiguities in determining 3-D–2-D
point correspondences , since the closest point in
the second frame to a transformed point in the first frame is
a necessary candidate of a correspondent, but not a sufficient
due to the following facts: on the one hand, a single distance
constraint cannot generally determine the exact position of a
2-D point on the image plane; on the other hand, some point
matches established by the traditional ICP criterion are not
feasible at all due to inaccurate initialization of camera pose,
occlusion, appearance and disappearance of points, and noise
presence in image data. As a result, additional techniques
must be developed to eliminate false matches so that correct
3-D–2-D point correspondences can be established, leading the
registration algorithm to converge more quickly and estimate
more accurately the camera pose that aligns the two sets of
data as well as possible. For this purpose, the quality of each

possible 3-D–2-D point correspondence is defined as
follows based on two rigid motion constraints (Fig. 1): one is
about colinearity, the other is about equidistance.

From the focus of expansion (FOE) theory [18], it is known
that if a point pair represents a real 3-D–2-D correspon-
dence and the camera position has been accurately initialized

or estimated, then the image point and the projec-

tions and of camera position and
point on the image plane must be colinear (Fig. 1), and, thus,
the following equality must hold:

(3)

However, in practice, due to inaccurate initial registration pa-
rameters, occlusion, appearance and disappearance of points,
and noise distribution in image data, the point match
generally cannot satisfy this equation exactly. Thus, the relative
difference between the two sides of this equation can then be
used to measure the quality of the point match based on
which different 3-D–2-D point matches can be compared. The
larger the difference between the slopes of line segments con-
necting and , the worse the point match .
Thus based on the current registration parameter camera posi-
tion , the quality of point match can be defined as

(4)

From (1), it is also known that

(5)

where and the depth is estimated from
the possible 3-D–2-D correspondence

and the current camera position
as: . Equation (5) can be rewritten as:

which shows that the reflection of
point in 3-D space and the recovered 3-D point from the
projective image point must be equidistant to the middle
point of camera position (Fig. 1). Again, in practice, due to in-
accurate initial registration parameters, occlusion, appearance
and disappearance of points, and noise distribution in image
data, the point match generally cannot satisfy this equa-
tion exactly. Thus, based on the current registration parameter
camera position , the quality of point match based on
this constraint can be similarly defined as

(6)

B. False Match Elimination

Due to inaccurate initial registration parameters, occlusion,
appearance and disappearance of points, and noise distribution
in image data, the point matches established by the
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Fig. 1. Rigid motion constraints used. Image point ~P and the projections ~p
and ~t of the 3-D model point p and the camera position t on the image plane
are theoretically colinear. The recovered 3-D point ~p from the image point ~P
and the reflection �p of the 3-D model point p are theoretically equidistant
to the middle point 0:5t of the camera position t.

traditional ICP criterion represent just pseudo correspondences
since, in the strict sense, at the beginning of registration, none
of them can represent real correspondences. However, based on
the point match quality measures defined above, relatively good
point matches can be selected and used for camera
position re-estimation. Eventually, accurate camera position
that brings the transformed 3-D model points and its projective
image points into alignment can be recovered. To this end, a
statistical model to evaluate possible 3-D–2-D point correspon-
dences is developed [29], [30], [34] as follows:

First the mean and standard deviation of the point match
qualities and are computed as

Then the following rule is used to judge whether or not a spe-
cific 3-D–2-D correspondence is a false one: If either

or , then it is regarded
as a false one. Otherwise, it is regarded as a feasible one. All
feasible correspondences
among are called the refined corre-
spondences.

The parameter is user defined and controls how far from
the mean a given relative difference must be for a point pair to
be considered as a false match. It reflects not only the quantity
of overlapping between a 3-D model and its projective image
in 3-D space, but also the distribution of points. The rationale
behind this rule is that the quality measures for different point
matches can be considered as stochastic variables

The more distant either or is from the mean or ,
the more likely the corresponding point match repre-
sents a false match. As a result, as long as the parameter is
properly defined, a set of refined correspondences

that are more likely to represent real cor-
respondences is obtained based on which the camera position
can be more accurately updated [29].

C. Pure Translational Motion- Projective Registration
Algorithm

A novel algorithm for the projective registration of a free form
surface subject to a pure translational motion is proposed as fol-
lows.

1. Initialize the pure translational motion [29], set itera-
tion number .

2. Use the traditional ICP criterion (2) to establish a set
of possible 3-D–2-D correspondences

between a 3-D model and its projective
image.

3. Use (4) and (6) to compute the quality of possible
3-D–2-D correspondences .

4. Use the statistical model described in Section II-B to
eliminate false matches from the possible 3-D–2-D
point correspondences , leading to a set of re-
fined correspondences

.
5. Use the procedure described in [29] to update the

camera position based on the refined correspon-
dences .

6. Apply the newly estimated camera position to each
3-D model point , yielding its projected image point

on the image plane.
7. When the variation of the camera position at two suc-

cessive iterations is larger than the desired registration
error or when the iteration number is larger than
the maximum , the algorithm terminates. Otherwise,

, go to step 2.

Parameters , and play a crucial role in characterizing al-
gorithm performance. If is set too large, then a number of
false matches will be introduced. If is set too small, then a
number of good matches will be rejected. All these cases will
bias the algorithm for the estimation of camera pose [9]. If
is set too large or is set too small, then the algorithm can
easily terminate pre-maturely. If is set too small or is set too
large, then the algorithm requires intensive computation without
a significant improvement to the existing projective registration
results. Our experience has shown that when ,

, and , good registration re-
sults can be obtained. In the experiments described below, we let

, , and . The proposed algorithm
is called the iterative closest point with the focus of expansion
(ICPF) algorithm.

While different do not necessarily yield more accurate pro-
jective registration results, the normalized relative quality mea-
sures and have nothing to do with the specific metric
used to represent the quality measures and . Since we have
no reason to prefer one quality measure over the other, we use
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the same for these independent quality measures as defined
in this paper. As discussed and demonstrated in Sections III and
IV, these two independent constraints used here are capable of
accurately evaluating the possible 3-D–2-D correspondences es-
tablished by the traditional ICP criterion.

III. THEORETICAL JUSTIFICATION OF THE

REFINED CORRESPONDENCES

Since the refined correspondences are a subset of
the ICP criterion established possible 3-D–2-D point matches

, for the sake of brevity without introducing additional
notations, we will use and interchangeably in
the rest of this section without causing any confusion in under-
standing the resulting contents.

A. Correspondence Definition

Before we justify the refined correspondences , it
is necessary to clarify what a 3-D–2-D correspondence here
means. A real 3-D–2-D correspondence has two definitions: one
is that given the camera pose parameters rigid rotation matrix

and translation vector , a pair of a 3-D point and a 2-D
point satisfy the motion equation: , the
other is that a pair of a 3-D and a 2-D point subject to a rigid
motion represent the same physical point in 3-D space.
While feature matching based registration algorithms [14], [16],
[32], [33], [40] often follow the second definition of a correspon-
dence, applying invariant geometric or optical features from dif-
ferent images to represent the same physical points, our pro-
posed method follows the first, evolving the rigid motion con-
straints and in the end, leading to that given the camera position
, the refined correspondences satisfy the motion (1)

with .

B. Derivation

From the description of the algorithm in the last section, it
is known that at the beginning of registration, since the motion
parameters are not accurate, the relative differences between the
two sides of the rigid motion constraints are large. As the reg-
istration progresses, even though the relative differences do not
necessarily evolve monotonically, the overall trend is that they
become smaller and smaller (this may occur in the last few iter-
ations). Eventually, the differences relative to all real correspon-
dences will be close to zero due to noise. This phenomenon has
been demonstrated in Figs. 2 and 4.

Assuming that there are more than two 3-D–2-D point pairs
(where one 3-D point cannot occlude the other) whose

quality measures as defined by (4) and (6) are zero at the end
of registration, then we have:

and
. Since in general the denominators of the frac-

tions in these two equations are not zero, the numerators of the

Fig. 2. Evolution of the two smallest relative differences g1 , g1 , g2 , and
g2 for point match quality measures g1 and g2, respectively, based on real
images as described in Section IV. Top: Castle. Middle: Wall and tower. Bottom:
Planar texture.
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fractions must be zero. After some algebraic operations, these
two equations can be rewritten as

(7)

(8)

Equation (7) is equivalent to
which can be split

into two equations as:
and where is a pa-
rameter to be determined below. From these two equations,
and can be solved as:
and . Rearranging these
two equations leads to:
and which can be rewritten
compactly in matrix form as

(9)

This shows that the image point is a weighted sum of the
projections and of points and on

the image plane. Equation (9) can be augmented as

. This equation is equivalent

to

(10)
Expanding (8) results in

(11)

Substituting (10) into (11) leads to

(12)

Fig. 3. Two-dimensional illustration of multiple solutions from the calibration
process. Solution 1 implies that the object is properly positioned in the scene
centred coordinate frame. Solution 2 implies that the object is reflectively
positioned in the scene centred coordinate frame.

Since this equation is satisfied by more than two 3-D–2-D point
pairs , the coefficients of different items on the two sides
of this equation must be equal

(13)

(14)

(15)

Within these three equations, only two unknowns and exist.
Thus this is an overdetermined equation group. From (13) and
(15), we have two solutions:

(16)

(17)

The same situation arises where the calibration process intro-
duces high order equation group, leading to multiple solutions
[8], [10]. The existing method described in [8] applies some in-
tuitive rules to disambiguate these multiple solutions, we use
the constraint (14) derived by the calibration process itself for
the same purpose. Within these two solutions (Fig. 3), the first
solution represents such a case that the object is properly posi-
tioned in the scene centred coordinate frame, while the second
solution represents such a case that the object is reflectively po-
sitioned with respect to the plane in the scene centred co-
ordinate frame. Only the first solution (16) satisfies (14). Thus,
a unique solution to this overdetermined equation group does
exist and has been found. From this solution, it can be seen that
parameter is not a constant and is a function of a specific point

as well as the camera position .
Substituting (16) into (10) results in

(18)
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Fig. 4. Evolution of the two smallest relative differences g1 , g1 , g2 , and g2 for point match quality measures g1 and g2 respectively based on synthetic
data as described in the next section. Top: n = 100. Bfottom: n = 50.

which is equivalent to

(19)

This shows that given camera position , for the point pairs
established by the ICP criterion, as long as at least

two of them satisfy the rigid motion constraints exactly, then
all those of them that satisfy the rigid motion constraints ex-
actly satisfy the motion (1) and thus from the first definition of
a correspondence above, it is known that they must represent
real correspondences without any ambiguity. In this case, for
any 3-D model point , once the camera position is given,
then the image point selected by the ICP criterion that satis-
fies the rigid motion constraints exactly is uniquely determined
and must be the real correspondent of .

Note that we made a strong assumption here that more than
two 3-D–2-D point pairs satisfy the two rigid motion constraints
exactly. As demonstrated in Fig. 4, in practice, due to noise pres-
ence in real data, these two rigid motion constraints are often
violated. The extent of violation depends on the distribution of
points and noise level corrupting data points. However, this does
not affect deepening our understanding of the conditions under
which accurate 3-D–2-D point correspondences can be estab-
lished.

The above analysis shows that evolving the rigid motion
constraints is very attractive for the projective registration of
a 3-D model and its projective image. The possible 3-D–2-D

point matches established by the ICP criterion and evaluated by
the rigid motion constraints will all approximately satisfy the
motion (1), due to noise and some poor point matches and thus,
it is guaranteed that from the first definition of a correspon-
dence above, they represent somewhat real correspondences,
achieving encouraging projective registration results. The
experiments based on both synthetic data and real images
described in the next section verify our claim here.

IV. EXPERIMENTAL RESULTS

After we theoretically justified the refined 3-D–2-D point cor-
respondences in the last section, in this section, we validate them
experimentally based on both synthetic data and real images,
simulating or representing various imaging scenarios in the real
world. The ICPF algorithm was designed to be applicable to
sparse points. In practice, sparse points can be selected either
manually or automatically [2], [11], [45]. For a feeling of noise
level corrupting the image data and for a comparative study of
performance, we also implemented the focus of expansion and
least squares (FLS) algorithm [29] based on all the given corre-
spondences.

In contrast with the assumption that all image points can find
correspondents on the 3-D model [28], [43], we considered in
this paper a general scenario that the 3-D models and their pro-
jective images include disappearing and appearing points re-
spectively. This implies that in practice, no constraints are im-
posed on the 3-D model construction or on the projective image
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Fig. 5. Relationship between (left) the relative calibration error of estimated camera position and (right) the number of iterations in a trial and the number of
points on a free form surface.

acquisition. Consequently, the ICPF algorithm facilitates further
development and can easily be modified for real applications.

For the simulation of appearance and disappearance of points
in the real world data, we varied the percentages from 0% to
20%, corresponding to small motions, of disappearing and ap-
pearing points in the 3-D models and their projective images re-
spectively. A significant difference between the FLS and ICPF
algorithms lies in that while the former requires the knowledge
of 3-D–2-D point correspondences, the latter does not and it
only requires that the two sets of points are overlapping in 3-D
space and the overlapping is relatively large (70%, for example).

The reason why the FLS algorithm is chosen is that most of
the existing registration algorithms [9], [24] are iterative, in-
volving a number of parameters to be set by the user or require
human intervention [27] or feature extraction [14], [21]–[23],
[40], [42]. If the parameters are set properly or the structural
features are accurately extracted, then the algorithms are accu-
rate. Otherwise, they can degenerate catastrophically. Thus, a
comparative study between these algorithms and the proposed
one is more or less difficult. The FLS algorithm, however, has
a closed form solution without requiring any human interven-
tion and, thus, can provide an objective reference for the per-
formance assessment of the ICPF algorithm. The parameters of
interest in this paper are: the two smallest relative differences

, , , and for each point match quality measure
at different iterations and the relative calibration error of es-
timated camera position . In Figs. 2 and 4, solid lines corre-
spond to the point match quality measure , dash lines corre-
spond to the point match quality measure , lines without any
signs correspond to the smallest relative difference, lines with
plus signs correspond to the second smallest relative difference.
For a better visualization of projective registration results, the
two sets of transformed 3-D model and 2-D projective image
points at iteration 1, in the middle of registration process and
after registration are also presented in Figs. 6, 9, 10, and 12.
In these figures, circles represent projective image points, plus
signs represent the transformed 3-D model points.

TABLE I
AVERAGE � AND STANDARD DEVIATION � OF THE RELATIVE CALIBRATION

ERROR e IN PERCENTAGE OF THE ESTIMATED CAMERA POSITION ^t FOR THE

FLS AND ICPF ALGORITHMS AND THE ITERATION NUMBERS k IN

DIFFERENT TRIALS FOR THE ICPF ALGORITHM USING SYNTHETIC DATA

CORRUPTED BY DIFFERENT LEVELS OF NOISE

A. Synthetic Points Data

In this section, we present the experimental results based on
synthetic points data which can provide an objective evaluation
of the proposed algorithm. A set of points were first ran-
domly generated with uniform distribution within

which were then subject to a trans-
lational motion randomly generated with uniform distribu-
tion within . Finally we pro-
jected these transformed points onto the image plane yielding
their corresponding image points (care has to be taken to
ensure that all transformed points are in front of the camera).
Thus, we have precise knowledge about the 3-D–2-D correspon-
dences and the camera position which serve as refer-
ence for the performance assessment of different algorithms. In
order to simulate the noise corrupted real world data, zero-mean
Gaussian random noise with standard deviation was
added to the coordinates of each 3-D model and 2-D projective
image point respectively in one series of experiments,
in another. While the FLS algorithm was applied to all corre-
spondence data, the ICPF algorithm was applied to the data,
unless otherwise stated, with the last 10% 3-D model points

and the beginning 20% projective image points
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removed respectively for the simulation of appear-
ance and disappearance of points.

1) Different Point Sets With the Same Percentage of Ap-
pearing and Disappearing Points: In this section, we test our
algorithm based on different synthetic points data with fixed
percentages of appearing and disappearing points. This in
practice simulates such a scenario that the camera has a fixed
field of view at the same position. The experimental results
are presented in Figs. 4, 5, and 6 and Table I. In Fig. 5, the
calibration error was caped at 1% for better visualization.

From Fig. 5 and Table I, it can be seen that both the ICPF
and FLS algorithms produce fluctuating results. This shows that
the projective registration and motion estimation is sensitive to
the configuration of points and the noise contaminating the data
points. The ICPF algorithm is more accurate than the FLS algo-
rithm. For example, while the FLS algorithm calibrated the av-
erage of the relative errors of camera position to be 0.21% with
the synthetic data corrupted by heavier noise , the ICPF algo-
rithm calibrated the same parameter to be 0.13% with the syn-
thetic data including 30% appearing and disappearing points.
This is because while the FLS algorithm equally treated dif-
ferent 3-D–2-D correspondences despite the fact that they were
corrupted by different levels of noise, the rigid motion con-
straints rejected not only false matches due to appearance and
disappearance of points, but the noise highly corrupted 3-D–2-D
correspondences as well. As a result, the ICPF algorithm esti-
mated the camera pose using high quality 3-D–2-D correspon-
dences, thus, achieving more accurate projective registration re-
sults. However, from Fig. 4, it can be seen that the rigid motion
constraints were often violated since even the smallest two rel-
ative differences are not equal to zero. This shows that the rigid
motion constraints provide sufficient, but not necessary, condi-
tions in practice for a pair of a 3-D and a 2-D point to represent
a real correspondence. The extent of violation depends on the
distribution of points and noise level corrupting data points.

From Fig. 5 and Table I, it can also be seen that when the data
are corrupted by higher level of noise, the ICPF algorithm pro-
duces worse results. This is expected since when the data points
are corrupted by higher level of noise, the points are more unreli-
able. Even so, the ICPF algorithm still successfully established
correct 3-D–2-D point matches, leading to accurate projective
registration results.

From Fig. 6, it can be seen that at the beginning of projective
registration, the two sets of projective image and transformed
3-D model points are significantly different on the image plane.
With the registration progressing, the camera position becomes
more and more accurate, leading the transformed 3-D model
points to approach the projective image points as illustrated in
the middle row of Fig. 6. Eventually, the two sets of transformed
3-D model and projective image points are perfectly superim-
posed in the image plane and appearing and disappearing points
have been correctly identified. In this case, the ICPF algorithm
successfully eliminated 30% false matches due to appearance
and disappearance of points. This visualization clearly delivers
the quality of the proposed ICPF algorithm.

2) Same Point Sets With Different Percentages of Appearing
and Disappearing Points: In this section, we test our algorithm
in dealing with different percentages of appearing and disap-

pearing points. This in practice simulates such a scenario that
the camera has various fields of view at the same position. The
3-D model and its projective image initially included
points respectively. All the points were corrupted by lower level

of Gaussian noise described above. The percentages of ap-
pearing and disappearing points were then varied respectively
from 0% to 20%, corresponding to small motions. The experi-
mental results are presented in Table II.

From Table II, it can be seen that the ICPF algorithm pro-
duced stable results despite the fact that the data points include
different percentages of appearing and disappearing points. In
this case, the ICPF algorithm successfully eliminated up to 40%
false matches. The larger the percentages of appearing and dis-
appearing points, the worse the projective registration results.
This is expected since more appearing and disappearing points
present in the 3-D model and projective image render it difficult
for the ICPF algorithm to distinguish feasible 3-D–2-D point
matches from false ones.

From Table II, it is interesting to note that a smaller per-
centage of appearance and disappearance of points does not
always imply that the ICPF algorithm will produce better re-
sults. For example, while the ICPF algorithm calibrated the rel-
ative error of camera position to be 6.25% with the synthetic
data including 5% disappearing 3-D model points and 15% ap-
pearing projective image points, it calibrated the same param-
eter to be 0.03% with the synthetic data including 20% disap-
pearing 3-D model and appearing projective image points re-
spectively. This is because the final motion estimation is de-
termined by the refined 3-D–2-D point matches. The higher
the quality of the refined 3-D–2-D point matches, the better
the final motion estimation results. The images with a smaller
percentage of appearance and disappearance of points do not
always imply that the finally established 3-D–2-D correspon-
dences are of higher quality, leading to better projective registra-
tion results. The quality of the refined 3-D–2-D correspondences
is mainly determined by , the distribution of points and the ini-
tialization of camera position and also effected by the Monte
Carlo resampling technique, employed in the process of camera
position update.

3) Different Initializations: In the above sections we fixed
the initialization of the coordinate of the camera position.
In this section, we test whether the proposed ICPF algorithm
is sensitive to this initialization. For this purpose, we ran the
program 100 times and each time, the coordinate was set as:

where is the true value of the camera
position and is randomly generated with uniform distribution
in the interval [ 1, 1]. This in practice simulates such a sce-
nario that the initialization of the coordinate of the camera
position can have as large as an error of 40%. The final error
of the camera position calibration is measured as the median of
100 relative calibration errors of the estimated camera posi-
tion obtained for each trial [39]. The experimental results are
presented in Fig. 7 and Table III. In Fig. 7, the calibration error

was caped again at 1% for better visualization.
From Fig. 7 and Table III, it can be seen that the ICPF algo-

rithm produces stable results for the projective registration of a
3-D model and its projective image. This shows that the ICPF
algorithm has a large region for convergence. Comparing Fig. 7
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Fig. 6. Projective registration results based on synthetic points data. Top row: Result at iteration 1. Middle row: Result at the middle of registration. Bottom row:
Result after registration. Left column: n = 100. Right column: n = 50.

TABLE II
RELATIVE CALIBRATION ERROR e IN PERCENTAGE OF THE CAMERA

POSITION t̂ FOR THE ICPF ALGORITHM USING SYNTHETIC POINTS DATA

WITH DIFFERENT PERCENTAGES OF APPEARING AND DISAPPEARING

POINTS. COLUMN CORRESPONDS TO THE PERCENTAGE OF DISAPPEARING

3-D MODEL POINTS. ROW CORRESPONDS TO THE PERCENTAGE OF

APPEARING PROJECTIVE IMAGE POINTS

with Fig. 5 and Table III with Table I, it can be seen that the al-
gorithm performance improvement due to varied initializations
is not significant. This is because the final registration results
are a function of not just initialization, but a number of factors,
including initialization, percentages of appearance and disap-
pearance of points, , distribution of points, and noise level cor-
rupting data points. In addition, while the camera position cal-
ibration error obtained by the ICPF algorithm with a fixed ini-
tialization for the case was reduced from 8.68% to
0.02% by the ICPF algorithm with varied initializations ,
the latter increased the camera position calibration error from
0.06% to 6.21% for the case . Thus, it can be observed
that while the algorithm with various initializations solves one
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Fig. 7. Relationship between the relative calibration error of camera position and the number of points for the ICPF algorithm based on different initializations.

TABLE III
AVERAGE � AND STANDARD DEVIATION � OF THE RELATIVE CALIBRATION

ERROR e IN PERCENTAGE OF THE ESTIMATED CAMERA POSITION ^t FOR THE

ICPF ALGORITHMS USING SYNTHETIC DATA CORRUPTED BY DIFFERENT

LEVELS OF NOISES AND DIFFERENT INITIALIZATIONS

problem, it introduces another. This shows that varying initial-
izations for the ICPF algorithm to improve performance is not
always reliable despite the fact that it took 100 times the time
the ICPF algorithm with a fixed initialization used for pro-
jective registration. This phenomenon is usually also true for
other registration algorithms [41]. Therefore, the algorithm it-
self should be accurate for good projective registration results.

Note that we use the same for all the experiments presented
in this paper. We believe that if is set through considering the
distribution of points, better results can be obtained. This is our
research topic in the future.

B. Real Images

In this section, we test our algorithm based on real images. All
the real images used in this paper were downloaded from the
image database of Calibrated Imaging Laboratory at Carnegie
Mellon University. Again, while the FLS algorithm was applied
to all correspondence data, the ICPF algorithm was applied to
the data, unless otherwise stated, with the last 10% 3-D model
points and the beginning 20% projective image
points removed respectively for both the castle
and wall and tower images and with 10% of the last 3-D model
points as well as the beginning projective image points

removed respectively for the planar texture image.

1) Different Objects With Different Camera Positions: In
this section, we test our algorithm based on real images of dif-
ferent objects with different camera positions. This in practice
simulates such a scenario that the camera has a fixed field of
view at different positions. This series of experiments assesses
the performance of the ICPF algorithm in dealing with various
kinds of objects undergoing different small translational mo-
tions. The real images chosen are the castle, wall and tower, and
planar texture images as depicted in Fig. 8. The experimental
results are presented in Figs. 2, 9, and 10 and Table IV.

From Figs. 9 and 10, it can again be seen that at the begin-
ning of registration, the two sets of transformed 3-D model and
projective image points are significantly different on the image
plane. In the middle of registration process, the two sets of points
are already perfectly overlapping. Within the second half of reg-
istration time, the algorithm just refines the registration results,
leading to a slight improvement to the registration results ob-
tained in the first half of registration time. This visualization
clearly shows that the proposed algorithm is accurate for the
registration of a 3-D model and its projective image despite the
fact that the actual coordinate of the camera position is far
away from its initialization of 120 [29]. In these cases, the al-
gorithm successfully eliminated up to 30% false matches. From
Fig. 2, however, it can be seen that there are no two pairs of
3-D–2-D point matches satisfying the rigid motion constraints
exactly. But this does not materially affect the encouraging pro-
jective registration of real images used in this paper as confirmed
by Table IV.

From Table IV, it can be seen that even though data used
for experiments were optimized in the least squares sense [38],
the FLS algorithm still calibrated the relative error of camera
position to be 2.85% for the registration of the castle images
and 1.08% for the registration of the planar texture images.
This shows that the real image data are very noisy. Even so,



IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 3, JUNE 2005

Fig. 8. Real images used. Left column: 3-D model. Right column: Projective image. Tow row: Castle1. Middle row: Wall and tower. Bottom row: Planar texture.

the ICPF algorithm still successfully registered the castle im-
ages with the relative calibration error of camera position being
3.05%, the wall and tower images with the relative calibration
error of camera position being 0.24%, and the planar texture im-
ages with the relative calibration error of camera position being
1.28%. The reason why the ICPF algorithm yields a slightly
worse registration results than the FLS algorithm is that the
former had to deal with up to 30% false matches and applied
only at most 70% feasible point correspondences in the overlap-
ping area for camera position estimation. The feasible 3-D–2-D
correspondences established by the ICPF algorithm were not
necessarily optimal in the least squares sense, thus, producing
slightly worse results. Recalling that the ICPF algorithm did
not possess any knowledge about appearance and disappearance
of points, the distribution of points, and noise corrupting data
points and uniformly set the crucial parameter , it can be fairly
concluded that the rigid motion constraints are powerful in eval-
uating the possible 3-D–2-D point correspondences established
by the traditional ICP criterion.

2) Same Object With Different Camera Positions: In this
section, we test our algorithm based on real images of the same
object with different camera positions. This means that the 3-D
model is the same, but the projective images were captured
at different positions. This series of experiments provides a
more objective evaluation of the robustness of the proposed
algorithm as the experiments were based on the same object
structure. The images chosen were the real castle images as
depicted in Fig. 11. The experimental results are presented in
Fig. 12 and Table V.

From Fig. 12 it can be seen that the ICPF algorithm exhibits
a robust behavior in registering a 3-D model and its projective
images captured at different positions. Even though the images
were captured at different positions, the ICPF algorithm in this
case always perfectly registered the two sets of 3-D model and
projective image points and all appearing and disappearing
points have been always correctly identified. Fig. 9 and Table V
show that while the ICPF algorithm successfully eliminated
30% false matches, it produced accurate registration results
with the relative calibration errors of camera positions around
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Fig. 9. Projective registration results based on real castle images. Top: Result
at iteration 1. Middle: Result at the middle of registration. Bottom: Result after
registration.

2.50%, which is comparable to those obtained by the FLS
algorithm with given 3-D–2-D correspondences optimized in
the least squares sense.

3) Same Object With Different Percentages of Appearing
and Disappearing Points: In this section, we test our algo-
rithm based on real images with different percentages from

0% to 20% of appearing and disappearing points. The images
chosen are the castle and castle1 and wall and tower as depicted
in Figs. 8 and 11. The experimental results are presented in
Tables VI and VII.

From Tables VI and VII, it can again be seen that even though
the ICPF algorithm did not possess any knowledge about ap-
pearance and disappearance of points, the distribution of points,
and noise level corrupting image data and uniformly set the
crucial parameter , it successfully handled up to 40% false
matches established by the traditional ICP criterion due to ap-
pearance and disappearance of points, yielding very good reg-
istration results with relative calibration errors of camera posi-
tions around 3.00% for the registration of the castle images and
0.70% for the registration of the wall and tower images. This
confirms that the ICPF algorithm is powerful for the projective
registration of a 3-D model and its projective image with var-
ious percentages of appearance and disappearance of points.

4) Different Initializations: In this section, we test the pro-
posed ICPF algorithm based on real images using various ini-
tializations. The initialization setup was the same as that de-
scribed in Section IV-A-3. Then we ran the program 200 times
and the final error of the camera position calibration is mea-
sured as the median of 200 relative calibration errors of the
estimated camera position obtained for each trial [39]. The ex-
perimental results are presented in Table VIII.

From Table VIII, it can be seen that the ICPF algorithm al-
ways correctly converged to the right solution, leading to very
accurate projective registration results. This again shows that the
ICPF algorithm has a large region for convergence. Comparing
Table VIII with Tables V and IV, it can be seen that even though
200 experiments with different initializations were carried out
respectively, the final results are just slightly better despite the
fact that the ICPF algorithm with varied initializations took
200 times the time the ICPF algorithm with a fixed initialization

used for projective registration. This phenomenon again
stresses that the algorithm itself should be accurate and robust.
The performance improvement due to repeating the experiments
with various configurations of relative parameters is either small
or time intensive.

All the experiments presented in this paper were implemented
on a Pentium III, 256 MB RAM computer. The proposed algo-
rithm converged within 3 seconds for any experiment described
in this paper without optimizing the program code.

V. DISCUSSION AND CONCLUSIONS

A. Discussion

Through the experiments based on both synthetic data and
real images, the following observations have been made.

1. Even though the assumption made in this paper that
the camera underwent a pure translational motion is
restrictive, the work reported is still significant in at
least two aspects: firstly, we have gained a deep un-
derstanding of the conditions under which accurate
3-D–2-D correspondences can be established. These
conditions can be applied to validate 3-D–2-D point
correspondences established either by the traditional
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Fig. 10. Projective registration results based on real images. Top row: Result at iteration 1. Middle row: Result at the middle of registration. Bottom row: Result
after registration. Left column: Wall and tower. Right column: Planar texture.

ICP criterion as demonstrated in this paper or by fea-
ture matching [31]; secondly, the theory and algorithm
proposed provide a good starting point to develop al-
gorithms for real applications with cameras subject
to general motions, including both translational and
rotational components. In this case, the camera mo-
tion is represented as: . If we de-
note , then this equation can be rewritten as:

. This shows that both the theory and
algorithm proposed in this paper can then be used to
register a rotated 3-D model and its projective image.

Thus, the extension of the proposed ICPF algorithm to
accommodate the general motion is feasible.

2. Currently, we uniformly set without taking into ac-
count the distribution of points or concrete applica-
tions. We believe that better projective registration re-
sults can be achieved through dynamically setting ,
considering the distribution of points and concrete ap-
plications. Our experience has shown that under typical
imaging conditions with overlapping relatively large
(e.g., 70%) without any knowledge about occlusion,
or appearance and disappearance of points, when
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Fig. 11. Series of real castle images. The first one is the 3-D model. The others are the projective castle1–castle6 images captured at different positions.

is properly defined within the interval [1.0, 2.0], good
registration results can be obtained.

3. Free form surfaces are represented as sets of sparse
points. All other geometric representations of free form
surfaces such as triangular meshes, planar patches, or
implicit or explicit representations can all be trans-
formed to sets of points [1]. The sizes of the number of
points depend on the representation accuracy required
to approximate the free form surfaces. In practice, a
limited number of salient points [11], [45] can be se-
lected and used for efficient registration, as is the case
for the experiments reported in this paper.

4. Let and represent the number of points in the
3-D model and in the projective image respectively.
For the sake of conciseness, the ICPF algorithm em-
ployed the brute force method for the closest point
search. Therefore, it retains the computational com-
plexity, , of the traditional ICP algorithm [1].
When and are large, the algorithm is dominated
in the sense of computation by the search of closest
points.

B. Conclusions

In this paper, we have made three contributions. First, we have
applied the rigid motion constraints to define the qualities of
the traditional ICP criterion established possible point matches

TABLE IV
ACTUALLY CALIBRATED CAMERA POSITION ^t AND THE RELATIVE

CALIBRATION ERROR e IN PERCENTAGE OF THE CAMERA POSITION ^t

FOR THE FLS AND ICPF ALGORITHMS USING REAL IMAGES

based on which different point matches can be compared and
relatively good point matches are selected for motion param-
eter re-estimation in the projective registration of a 3-D model
and its projective image; secondly, we have theoretically proved
that for the 3-D–2-D point matches established by the traditional
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Fig. 12. Projective registration results based on real castle images. Left column: Result at iteration 1. Right column: Result after registration. From top row to
bottom row: castle1–castle6.
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TABLE V
ACTUALLY CALIBRATED CAMERA POSITION ^t AND THE RELATIVE

CALIBRATION ERROR e IN PERCENTAGE OF THE CAMERA POSITION ^t

FOR THE FLS AND ICPF ALGORITHMS USING REAL IMAGES

TABLE VI
RELATIVE CALIBRATION ERROR e IN PERCENTAGE OF THE CAMERA

POSITION ^t FOR THE ICPF ALGORITHM USING THE REAL CASTLE AND

CASTLE1 IMAGES WITH DIFFERENT PERCENTAGES OF APPEARING AND

DISAPPEARING POINTS. COLUMN CORRESPONDS TO THE PERCENTAGE

OF DISAPPEARING 3-D MODEL POINTS. ROW CORRESPONDS TO

THE PERCENTAGE OF APPEARING PROJECTIVE IMAGE POINTS

ICP criterion, as long as at least two of them satisfy the rigid mo-
tion constraints exactly, then any one of them that satisfies the
rigid motion constraints exactly represents a real 3-D–2-D cor-
respondence. This is in contrast with the feature matching based
methods [14], [40], [42] that often take for granted that the fi-
nally established correspondences are real. Our study has ex-
plicitly revealed the conditions under which accurate 3-D–2-D

TABLE VII
RELATIVE CALIBRATION ERROR e IN PERCENTAGE OF THE CAMERA

POSITION ^t FOR THE ICPF ALGORITHM USING THE REAL WALL AND TOWER

IMAGES WITH DIFFERENT PERCENTAGES OF APPEARING AND DISAPPEARING

POINTS. COLUMN CORRESPONDS TO THE PERCENTAGE OF DISAPPEARING

3-D MODEL POINTS. ROW CORRESPONDS TO THE PERCENTAGE

OF APPEARING PROJECTIVE IMAGE POINTS

correspondences can be established; and thirdly, we have ex-
perimentally validated based on both synthetic points data and
real images that rigid motion constraints often render the false
matches to be successfully eliminated, thus, achieving encour-
aging projective registration results.

However, in practice, the rigid motion constraints are often vi-
olated. The extent of violation often depends on the distribution
of points and noise level corrupting data points. Even so, correct
point matches can still be determined. Inappropriate setting of
the parameter in the proposed algorithm sometimes does lead
our algorithm to get stuck at a local minimum, yielding inaccu-
rate projective registration results. However, the rigid motion
constraints, the ICP criterion and the statistical model in our
proposed algorithm ensure that our proposed algorithm rarely
degenerates catastrophically and is capable of providing a good
initialization for other even more accurate projective registra-
tion algorithms.

Since the proposed algorithm just applies the information
provided by the ICP criterion for possible point match evalua-
tion without any feature extraction from images [14], [21]–[23],
[40], [42] or motion estimation from the possible point matches
[30], [34] before they are evaluated, it has an advantage of
easy implementation. What is more important is that evolving
rigid motion constraints can ensure that the finally established
3-D–2-D point matches at least approximately satisfy the
motion (1) and, thus, it is guaranteed that the point matches
established by the ICP criterion and evaluated by the rigid
motion constraints represent somewhat real correspondences.
For these reasons, our method may open a novel avenue for the
projective registration of free form surfaces, represented as sets
of sparse 3-D and 2-D points. Further research is being carried
out in characterizing the distribution of points for dynamically
setting , addressing nonpure translational motion registration
and improving the computational efficiency of the algorithm
based on techniques such as k-D tree [9], [44] and results will
be reported in the future.
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TABLE VIII
RELATIVE CALIBRATION ERROR e IN PERCENTAGE OF THE CAMERA POSITION ^t FOR THE ICPF
ALGORITHM USING DIFFERENT INITIALIZATIONS OF THE z COORDINATE OF THE CAMERA POSITION
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