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Abstract 
This paper proposes a unique map learning method 
for mobile robots based on the co-visibility infor­
mation of objects i.e., the information on whether 
two objects are visible at the same time or not 
from the current position. This method first esti­
mates empirical distances among the objects using 
a simple heuristics - "a pair of objects observed at 
the same time more frequently is likely to be lo­
cated more closely together". Then it computes all 
the coordinates of the objects by multidimensional 
scaling (MDS) technique. In the latter part of this 
paper, it is shown that the proposed method is able 
to learn qualitatively very accurate maps though it 
uses only such primitive information, and that it is 
robust against some kinds of object recognition er­
rors. 

1 Introduction 
Map learning problem of autonomous mobile robots has 
been a central issue in the field of artificial intelligence as 
well as robotics, because it contains several important as­
pects of intelligence such as recognition of environment and 
acquisition of internal representations. In fact, a variety 
of map building methods have been developed for a wide 
range of robots, tasks and environments so far. These meth­
ods are traditionally classified [Kortenkamp et a/., 1998; 
Murphy, 2000] in terms of the way of map representation 
into metric map building methods[Moravec and Elfes, 1985; 
Uhlmann et al, 1997], topological methods[Mataric, 1992; 
Zimmer, 1996; Shatkay and Kaelbling, 1997], and hybrids of 
them[Thrun et al., 1998]. 

On the other hand, when we turn our attention to a new 
trend of robot navigation called qualitative navigation[Levitt 
and Lawton, 1990; Schlieder, 1993], we can see there is an­
other way of qualitative map representation that is different 
from both the metric and topological representations. A most 
important point of the maps used in this qualitative navigation 
is that they are not required to be accurate in a metric sense as 
long as they correctly preserve the qualitative spatial relation­
ships (such as circular ordering) of the objects or landmarks 
in the actual environment. 

A challenging problem in this paradigm is to construct au­
tonomously such qualitative maps from qualitative observa­
tion information robots obtain. A representative approach to 
this qualitative map learning problem is [Sogo et al, 2001], 
in which qualitative information of "how object positions are 
classified to two sets with respect to arbitrary straight lines" 
is used to construct a map by propagating "three point" con­
straints. 

In this paper, we also propose a map learning method for 
mobile robots based on qualitative observation information. 
It uses the information of "co-visibility" or whether two ob­
jects are visible or not at the same time from robot's positions, 
which is much more primitive than the information used in 
[Sogo et al, 2001] and the ordering information[Schlieder, 
1993]. 

In this method, co-visibility of two objects is translated into 
an empirical distance based on a simple heuristics "closely lo­
cated objects are likely to be seen simultaneously more often 
than distant objects and vice versa" or "temporal and spatial 
proximities are approximately equivalent". Then, positions 
of all objects are calculated by well-known multidimensional 
scaling (MDS) technique. 

A noteworthy feature of this method from a practical view­
point is that it does not require robots localize their own po­
sitions while mapping. Moreover, it is shown that it can learn 
qualitatively accurate maps without higher level infonmation 
such as ordering, and is robust against observation errors. We 
also discuss the validity of the heuristics above from several 
viewpoints. 

2 Problem Definition 

2.1 Assumptions on Environment and Robot 

we consider a map building task by a mobile robot, in which 
the robot estimates the positions of objects in the environ­
ment by repeated explorations and observations (Figure 1). 
More specifically, we make the following assumptions about 
the environment and robot. 

Environment 
The environment is a closed area containing a finite number 
of objects. Each object is assigned a unique ID. In addition, 
it is assumed that all objects are about the same size. 
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Environment 

Figure 1: Assumed map building task of a mobile robot (ex­
ploration, observation and map estimation) 

Observation 
The robot obtains a panoramic camera image at each observa­
tion point, and extracts a list of recognized or visible objects 
by some image processing and recognition technique. These 
lists of visible objects are accumulated over time and used to 
build a map later. 

Exploration 
The robot explores the environment with some randomness, 
avoiding collisions with objects. 

2.2 Evaluat ion Cr i te r ion for Qual i tat ive Maps 

Though a constructed map is represented in the form of nu­
meric coordinates of the objects on 2-D plane as ordinary 
metric maps, its goodness is measured by the correctness of 
the qualitative spatial relationships rather than by the metric 
accuracy. 

To evaluate the qualitative correctness of the ob­
tained maps, we employ the notion of triangle 
orientation[Schlieder, 1993; Sogo et al., 2001] or counter-
clockwise order of three points. In short, triangle orientation 
of three points in 2-D plane is defined as + when 
the order yields a counter-clockwise turn, and — 
otherwise (Figure 2). 

When there are N objects in the environment, the number 
of all possible triangles formed by them becomes So 
we define the orientation error of a constructed map 
as the percentage of triangles with wrong orientations, com-

We use this as an evaluation criterion of constructed 
maps in the later simulation study. 

2.3 Co-visibility and Distance Between Objects 
As previously mentioned, we use a heuristics "a pair of ob­
jects observed simultaneously more frequently is likely to be 
located more closely together" to estimate the distance be­
tween them. Though it is hard to prove the validity of this 
heuristics strictly in general cases, we consider it is approxi­
mately appropriate for the following reason. 

First, we assume that an object becomes difficult to identify 
as the distance from the robot increases, because the image 
size of the object becomes smaller and the chance of occlu­
sion increases. 

Given this assumption, the total area size of the region 
where the robot can observe two objects simultaneously de­
creases monotonically according to the distance between the 
objects. For example, consider the case the probability that 
an object can be observed from the robot at a distance of r is 

(Figure 3). If two object A and B are located 
at and respectively, the probability that both 
objects are visible from an arbitrary robot position X (x,y) 
becomes 

Then, the'expectcd size of area where both objects are visible 
simultaneously is 

In the simplest case that the robot is located at any place in 
the environment with equal probability, the probability that 
the two objects are co-visible is expected be proportional to 
Scovis{l), which is a monotonic decreasing function of/. 

In section 4, we will discuss this "co-visibility and dis­
tance" heuristics in a more general form: "temporal and spa­
tial proximities are approximately equivalent". 

3 Proposed Method 
3.1 Outline of CoviMap 
Based on the assumptions above, we propose CoviMap - a 
map learning method based on the co-visibility of objects. 
In this method, the mobile robot obtains approximate posi­
tions of objects based on the co-visibility frequencies of them, 
which are updated repeatedly by explorations and observa­
tions. The outline of CoviMap is described as below: 

1. The robot repeats the following behavior steps and up­
dates the number of observations of each object (n t), and 
the number of simultaneous observations of every pair of 
objects 

(a) The robot moves to the next observation position, 
avoiding collisions with the objects. 
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Figure 3: Relationship between co-visibi l i ty and distance of 
two objects in a simplif ied environment 

Figure 4: Relationship between squared distance and co-
visibi l i ty frequency f i j of objects in the simulation environ­
ment 

(b) It obtains a list of visible objects Lo from the 
panoramic image captured at the current position, 
and updates ni and nly) as bellow: 

2. After a specified number of steps, co-visibility frequen­
cies is computed for each pair of objects based on 

Then empirical distance of each 
pair is computed from 

3. The robot obtains the estimated positions of all objects 
by applying Multi-Dimensional Scaling 

(MDS) to the distance matrix D whose (i, j) element 
is 

In the remaining of this section, we explain the second and 
third parts in the above procedure. 

3.2 Computat ion of Co-visibi l i ty Frequency and 
Empi r ica l Distance 

Co-visibility frequency between two objects is defined as 
follows: 

fi,j stands for the conditional probability that two objects are 
visible at the same time, given that at least one of them is 
visible. It takes a value between 0 and 1. This definition of 

is also known as Jaccard's coefficient. 
With the definition of co-visibility frequency the 

heuristics introduced in 2.3 can be rewritten as "distance be­
tween two objects monotonically decreases as in­
creases". Figure 4 (scattered points) illustrates the actual rela­
tionship between the real (squared) distance and co-visibility 
frequency in the simulation environment in section 4. The 
result indicates that the heuristics is approximately valid. 

Therefore, we introduce a notion of empirical (squared) 
distance between an arbitrary pair of objects, which is 
defined by some monotonic decreasing non-negative function 

i.e., 

We also define an empirical distance matrix D whose (i, j) 
element equals to D is a symmetric matrix 

and its diagonal components equal to zero. 
A possible solution to the problem of deciding a suitable 

combination of function and parameter values for is to se­
lect the one which minimizes the stress value of the MDS re­
sults described later. Furthermore, if no appropriate empirical 
distance functions are provided, non-metric M D S (or ordinal 
MDS) can be used instead. 

Another problem is that cannot be computed properly 
for the pairs whose co-visibi l i ty frequencies are zero, because 

becomes some constant value. In this case, CoviMap ut i ­
lizes the triangular inequality constraint (TIC) to correct the 
value of as fol lows: 

3.3 Map Construction Based on 
Multi-Dimensional Scaling (MDS) 

Multi-dimensional scaling (MDS)[Young and Householder, 
1938] is a multivariate data analysis technique used to visu­
alize a potentially high-dimensional data structure by map­
ping it into a relatively low dimensional space[Cox and Cox, 
2001]. The purpose of M D S is to find an optimal configura­
tion of objects in a low-dimensional space, when dissimilari­
ties or distances among them are given. 

Whi le there are several kinds of M D S methods[Cox and 
Cox, 2001], CoviMap employs classical scaling[Young and 
Householder, 1938] method that is a kind of metric MDS to 
reproduce a map of objects in 2-D plane from the set of empir­
ical distances. In brief, it obtains a set of 2-D coordinates of 
N objects xt (i = 1, • • ■, N) by applying Young-Householder 
transformation and spectral decomposition to the empirical 
distance matrix D. 

A non-trivial problem of using MDS in CoviMap is that 
there is a fifty percent chance of obtaining the mirror image 
of the expected map. However, if any correct triangle orien­
tation of three objects is given, CoviMap can detect the mirror 
map and get the right map by turning it over. 
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Figure 5: Empirical distance functions used in the 
simulation 

4 A Simulation Study 
We conducted a simulation study to examine the effective­
ness of our method with Cyberbotics1 

(ver.2.0). 
WEBOTS simulator 

4.1 Settings 
Environment and Objects 
The environment is a square field of 1.5[m] x 1.5[mJ con­
taining 5 - 30 objects. Each object is cylinder-shaped (height: 
160[mm], diameter: 48[mm]), and is given a unique ID num­
ber like obO,obJ, 

Observation and Object Recognition 
The robot has a camera with a resolution of 160 x 120 pix­
els, and obtains a panoramic image by rotating and capturing 
several images at each observation position. We make a sim­
plified assumption that the robot can recognize an object if its 
image is wider than 10 pixels. 

Exploration Strategy 
At each observation position, the robot chooses its next mov­
ing direction randomly within the range of 
and proceeds in the direction. In addition, 
the robot has 8 proximity sensors to detect nearby obstacles 
(objects and walls) around it, and avoids collisions with them. 

Empirical Distance Function 
We chose a logarithmic function as the empirical distance 
function as below: 

where, are parameters which take positive values. In 
this simulation, we set them as: 
because the stress values of MDS were relatively small with 
this combination compared with others. Figure 5 shows 
the shape of this empirical distance function. In addition, 
triangular inequality constraint (TIC) mentioned in 3.2 was 
used to correct the empirical distances for the object pairs 
whose co-visibility frequencies were zero. 

4.2 Experiment 1 : Vary ing Number of Objects 
First, we examined the basic map building capabilities of 
CoviMap with varying number of objects in the environment 

Numbers of Steps 

Figure 6: (Experiment 1) Change of average map errors 
comparison among various numbers of objects 

Table 1: Change of average map errors [%] with 6 different 
numbers of objects 

from 5 to 30. In each case, the robot repeated the observa­
tion and exploration steps for 1000 times, and built a map 
eachtime the number of steps reached one of specified num­
bers (20,50,100,...,1000). For each case, we prepared 5 lay-
outs of objects which arc randomly generated and averaged 
the orientation errors. 

Figure 6 and Table 1 show how the average orientation er­
ror changes according to the number of steps for each 
number of objects. As can be seen from this, con­
verges to a narrow range (approximately between 2.5[%] and 
3.0[%]) after several hundreds of steps, when the number of 
objects varies from 10 to 30. This means that CoviMap is not 
affected drastically by the increase in the number of objects. 

Figure 7 illustrates an example of real configuration which 
contains 30 objects, while Figure 8 illustrates a map con­
structed by CoviMap after 500 steps. In this case, out of total 
4060 triangles, the number of triangles whose orientations are 
inconsistent between the real map and the constructed map is 
98 Interestingly, if we consider only the 
triangles whose largest angles are smaller than 170[deg] in 
the real map (the number of such triangles is 3835), the num­
ber of inconsistent triangles falls to 27 
This means our method is able to acquire very accurate qual­
itative layouts of the objects, unless the objects are almost on 
a line. Dotted lines in the figures represent Delaunay graphs 
of the configurations. A comparison of them also tells that 
the constructed map is qualitatively very accurate. 
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Figure 7: (Experiment 1) An example of object configuration 
with 30 objects, dotted lines are edges of Delaunay graph 

Figure 8: (Experiment 1) Constructed map after 500 steps 
for all triangles) 

4.3 Exper iment 2 : Robustness Against Object 
Recognition Er rors 

In the previous experiment, it was assumed that there are no 
errors in the object recognition process. In the real environ­
ment, however, it is almost inevitable to fail in recognizing 
objects occasionally, due to various uncertainties. Therefore, 
we examined how the recognition errors affect the quality of 
maps constructed by CoviMap. 

More specifically, we considered two kinds of recognition 
errors - non-recognition and mis-recognition. These errors 
were artificially generated as follows: 

Non-recognition : Randomly chosen elements in Lo are re­
moved 

Mis-recognition : Randomly chosen elements in L0 are re­
placed with other object IDs. 

In this experiment, we fixed the number of objects to 15 
and conducted 5 trials for each of 5 different object configu­
rations. 

Result with Non-recognition Error 
Figure 9 shows the average orientation errors of the con­
structed maps when the percentage of non-recognition er­
ror is set to 0.0 (no errors), 3.0, 10, 20[%] respectively. In 
an early stage of learning, i.e, with fewer steps, the map 
error becomes larger according to the magnitude of 
the non-recognition error. However, the difference becomes 

Figure 9: (Experiment 2) Change of average map errors 
comparison among various non-recognition rates 

Figure 10: (Experiment 2) Change of average map errors 
comparison of various mis-recognition rates 

smaller and almost negligible as the number of steps in­
creases. 

Result with Mis-recognition Error 
Next, Figure 10 shows the results when mis-recognition er­
ror is set to 0.0, 0.5, 2, 10[%] respectively. Not surprisingly, 
the influence of this kind of error on the map error Erro r i is 
relatively larger than the non-recognition error. 

In both cases, however, we can conclude CoviMap is robust 
against those recognition errors, in that the map error steadily 
decreases according to the increase of the number of steps. 

5 Related Works 
As mentioned before, the central idea of our map building 
method is a simple heuristics - "a pair of objects observed 
simultaneously more frequently is likely to be located more 
closely", which is used to estimate the distances and quali­
tative configuration of objects from the co-visibility informa­
tion of them. In this section, we discuss the meaning of this 
heuristics from other viewpoints, especially, considering sev­
eral related works in other fields. 
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First, as co-visibility of objects can be regarded as co­
occurrence of events that objects are visible, a lot of stud­
ies on learning of behavior and models based on the co­
occurrence information have been made. The most basic 
principle related to this issue is Hebb's rule which postu­
lates that if two events co-occur often, the connection of 
them should be strengthened. Many recently developed rein­
forcement learning methods such as Q-learning[Watkins and 
Dayan, 1992] are also considered to be based on the co­
occurrence or temporal proximity between behavior and re­
ward events. Interestingly, there is another similarity between 
reinforcement learning and our CoviMap. That is to say, the 
former learns a complicated behavior system from discrete 
events of rewards, while the latter learns a qualitatively accu­
rate map from discrete events of co-visibility among objects. 

The heuristics above can also be regarded as a special 
case of more general one - "temporal and spatial proxim­
ities are approximately equivalent in many environments". 
In the research of human spatial memory, it has been re­
ported that humans often rely on the temporal proximity 
rather than the spatial proximity to memorize spatial struc­
tures of environments[Curiel and Radvansky, 1998]. This 
might suggest that the principles and results of CoviMap pre­
sented in this paper are helpful to understand some aspects 
of human spatial memory and cognitive mapping process, al­
though we doubt that an MDS-like algorithm exists in human 
brain. 

6 Conclusion 
In this paper, we proposed a unique map building method 
for mobile robots named CoviMap which is based on the co-
visibility information of objects in the environment. It can 
learn qualitatively accurate maps from such primitive infor­
mation using a simple heuristics "temporal and spatial prox­
imities are approximately equivalent" and multidimensional 
scaling (MDS) technique. It was also shown by the simula­
tion results that CoviMap is applicable to large environments 
containing dozens of objects, and robust against observation 
errors such as non-recognition and mis-recognition. 

A most important theoretical issue to be studied is to vali­
date and generalize the heuristics on the equivalence of tem­
poral and spatial proximities. Especially, we need to investi­
gate how our method will be affected if the camera image is 
not panoramic but more restricted, or the object recognition 
rate is not isotropic but dependent on the direction. On the 
other hand, future works from a practical point of view will 
include experiment with real robots, integration of CoviMap 
with qualitative navigation[Levitt and Lawton, 1990], and ex­
tension or replaccment [Faloutsos and Lin, 1995] of MDS. 
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