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Abstract

We present a face detection method using spectral histograms and support vector

machines. Each image window is represented by its spectral histogram, a feature vec-

tor consisting of histograms of filtered images. Using statistical sampling, we show

systematically the representation groups face images together; in comparison, com-

monly used representations often do not exhibit this necessary and desirable property.

By using a support vector machine trained on a set of 4500 face and 8000 non-face

images, we obtain a robust classifying function for face and non-face patterns. With

an effective illumination correction algorithm, our system reliably discriminates face

and non-face patterns in images under different kinds of conditions. Our method on

two commonly used data sets give the best performance among recent face detection

ones. We attribute the high performance to the desirable properties of the spectral

histogram representation and good generalization of support vector machines. Several

further improvements in computation time and in performance are discussed.
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1 Introduction

Face detection has gained increased interest in recent years. As computers become faster

and more affordable, many applications that use face detection / localization are becoming

an integral part of our life. For example, face recognition systems are being tested and

installed at airports to provide a new level of security; human-computer interfaces based on

facial expressions and body gestures are being exploited as ways to replace the traditional

interfaces such as the mouse and the keyboard. These and other related applications all

require as an initial step some form of face detection / localization, which can be simply

defined as [32]: Given an image I, find all occurrences of faces and the extent of each face

in I. This definition implies that some form of discrimination must be made between faces

and all other objects. However, there are many difficulties and challenges associated with

face detection. Variations in lighting conditions can make face images appear substantially

different. Additives such as beards, mustaches, and glasses can augment the global structure

of the face such as the jaw line and mask local features such as corners of the mouth. In

addition, the large amount of intra-class variation1 amongst all faces makes reliable face

detection intrinsically difficult.

At the core, face detection requires an effective discrimination function between face

and non-face patterns. Accordingly, existing face detection approaches fall into one of four

categories (see [32] for a recent survey): knowledge-based methods, template-based meth-

ods, feature invariant methods, or appearance-based methods. Knowledge-based methods

1While all faces posses to a certain degree a similar structure, location, alignment, size, and shape of
facial features can vary greatly from person to person.
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(e.g. [9]) attempt to describe all the face patterns using rules based on human knowledge

such as that all faces have two eyes and a mouth. However, they are difficult to use to detect

faces in real images as the translation of human knowledge into well formed rules is nontriv-

ial. If the rules are too restrictive, many faces will be ruled out, resulting in false negatives;

on the other hand, if the rules are too general, non-face patterns will be included in the face

class, resulting in false positives. Template-based methods (e.g. [35]) represent the face class

by (a set of) templates with allowable deformations which rely on the alignment of feature

points. However, feature points can become corrupted by lighting variations, pose, additives,

or facial expression changes, making the alignment of feature nodes on the template to fea-

tures on the input difficult. In addition, if the amount of deformations for templates are too

constrained, faces may be missed during detection; in contrast, if the amount of deformations

are too flexible, false detections will be introduced. Feature invariant methods (e.g. [34]) are

hard to use in detecting faces in real images as it is difficult to find features that are truly

invariant with respect to all faces and large perturbations in lighting, pose, and expressions.

To overcome some of the difficulties, appearance-based methods (e.g. [21, 33, 27, 8, 28])

provide several key advantages and are widely used in face detection. Specifically, as they

allow one to learn the models from training data, the large amount of intra-class variation,

expression, and pose can be accounted for in training by using a large training set. However,

as the training set is limited in practice and one is interested in detecting faces in images

that have not seen, generalization becomes the key issue among appearance-based methods,

which is largely determined by the underlying representation and the classifying function.

In this paper, we present an appearance-based method using spectral histograms [17]
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as representation and support vector machines [26] as classifier. Unlike some commonly

used representations, the spectral histogram, shown through statistical sampling, gives good

generalization by grouping only perceptually similar images together. With a support vector

machine, this gives rise to a decision function that discriminates face and non-face patterns

reliably in images under different kinds of conditions and results in best performance on two

commonly used face datasets.

The rest of the paper is organized as follows. Section 2 introduces the spectral his-

togram representation and and shows its sufficiency for representing faces through sampling.

Section 3 describes briefly support vector machines [26]. Section 4 discusses the proposed

algorithm in detail, including the preprocessing stage, the training stage, the detection stage,

and the post-processing stage. Section 5 shows our experimental results. Section 6 discusses

possible further improvements in computation and performance. Section 7 concludes the

paper.

2 The Spectral Histogram Representation

2.1 Definition and Properties

Given an input image I and a set of filters {F (α), α = 1, . . . , K}, a sub-band image I(α) is

computed through linear convolution given by I(α)(v) = F (α) ∗ I(α)(v) =
∑

u F (u)I(v − u).

The histogram of each sub-band image I(α) is given by H
I

(α)(z) = 1

|I|

∑

v δ(z− I(α)(v)). The
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(a) (b)

Figure 1: Spectral histogram of four images. (a) Input images. (b) The corresponding
spectral histogram using the 33 chosen filters.

spectral histogram representation [17] of I with respect to the chosen filters is defined as

the concatenation of H
I

(α) , given by HI = (HI
(1) , . . . ,H

I
(K)). In other words, each image

is represented by the histograms of filtered images. Figure 1 shows the spectral histogram

representation of several images using the 33 filters used throughout this paper (see below).

These examples show that the spectral histograms of face images are similar while they are

different for images from different classes.

In the spectral histogram representation, local features of an image are captured through

filtering as the responses of individual filters depend on local structures and the global struc-

tures are implicitly captured by the constraints imposed by the histograms of different filtered

images. The representation is non-parametric in nature and is effective to characterize dif-
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ferent kinds of patterns. One distinctive advantage of the spectral histogram representation

is that two images do not need to be aligned in order to be compared (see Fig. 2 for exam-

ples) due to that the spectral histogram representation is not sensitive to perturbations of

local image features. This reduces the number of required training images for both face and

non-face classes.

To specify a spectral histogram representation, one needs to choose a set of filters.

Following [37, 17], three different types of filters are used in this paper, including gradi-

ent filters, Laplacian of Gaussian filters, and Gabor filters. Gradient filters used include

Dx = [0.0 − 1.0 1.0], Dxx = [−1.0 2.0 − 1.0], Dy = [0.0 − 1.0 1.0]T , and

Dyy = [−1.0 2.0 − 1.0]T . Gabor Filters are defined as

G(x, y|T, θ) = e−
1

2∗T2 (4(x sin θ+y cos θ)2+(−x cos θ+y sin θ)2)e−i 2π
T
(x cos θ+y sin θ),

where T is the scale and θ the orientation. Laplacian of Gaussian Filters are given by

LoG(x, y, T ) = (x2 + y2 − T 2)e−
x2+y2

T2 , where T =
√
2σ determines the filter’s spatial scale,

and σ corresponds to the variance of the Gaussian distribution. The 33 filters used in this

paper are:

• 4 Gradient filters Dx, Dy, Dxx, Dyy.

• 5 LoG filters with T =
√
2/2, 1, 2,

√
32/3 (expanded from T = 1) and

√
32/3 (expanded

from T = 2).

• 24 Gabor filters are used with T = 2, 5, 12, 16 and Θ = 0o, 30o, 60o, 90o, 120o, 150o.
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To characterize face patterns more effectively, we have included large kernels to impose a

more rigid global structure. By expanding smaller kernels to approximate the larger ones2,

this is achieved without increasing computation. This set of filters captures the structures

that are important to face patterns and is found to be effective for face detection in images

under different kinds of conditions. Note, however, there is no optimality associated with the

set. With a recent optimization technique proposed by Liu and Srivastava [15], an optimal

set of filters for face detection can be learned by maximizing the performance on the training

set, which needs to be further explored.

2.2 Face Synthesis Through Sampling

As discussed in the previous section, the underlying representation plays a critical role in

generalization performance of any appearance-based face detection system. By analyzing

generalization performance, Liu et al. [16] showed that a necessary condition for a good

representation is that it should group only images from the same class together. For face

detection, as we are concerned with the set of face patterns and the set of all other im-

ages, a good representation should group face patterns together and keep all other pattern

groups away from the face ones. If the chosen representation groups patterns from different

classes together, the detection performance from any classifier will be limited. If the chosen

representation groups non-face patterns into the face class, there would be inherently false

positive detections; likewise if the representation groups face patterns into the non-face class,

2This is implemented by I
(α)(v) =

∑

u F (u)I(v− ku); we have used k = 2, k = 3, and k = 4.
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there will be inherently false negatives.

One way to analyze the intrinsic generalization of a given representation is to generate

random samples from the set consisting of images with identical representations [16]. Tech-

nically, given a representation G and an image Iobs from a known class, we want to sample

from {I|G(I) = G(Iobs)}. Because of the high dimensionality of I (in this paper the dimension

of I (a 21× 21 window) is 441), enumeration is computationally infeasible. A common way

to overcome this problem is to use statistical sampling techniques [30] and here we use a

Gibber sampler with simulated annealing [36] on the induced Gibbs distribution given by

q(I) =
1

ZΘ
exp

{

−ξ(I)
Θ

}

. (1)

In (1), Θ denotes the temperature and ξ(I) is called the energy, given by

ξ(I) = D(G(I),G(Iobs)), (2)

where D is a distance measure between the representations. Intuitively, this is achieved

by updating pixels according to the conditional probability computed from (1). For an

algorithmic description of the sampling process, see Zhu et al. [36].

To demonstrate the sufficiency of the spectral histogram representation, we use it as G

in (2), and use the following distance measure between two images,

KL(HI1
,HI2

) =
K
∑

α=1

∑

z

(H
I

(α)

1

(z)−H
I

(α)

2

(z)) log
H

I
(α)

1

(z)

H
I

(α)

2

(z)
. (3)
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(a)

(b)

Figure 2: Two face images along with synthesized images through sampling using the spectral
histogram representation. In each subfigure, the left most image is the original image and
the rest are typical samples of the set with similar spectral histogram representation of the
given one.

Figure 2 shows two examples of synthesized face images. In both cases, the spectral his-

togram representation captures the perceptual characteristics of the original images. These

examples show that the spectral representation is able to capture important local features,

e.g. the eyes, nose, and mouth. The global structure has also been captured as these fea-

tures roughly lie in the locations where we would expect to see them in a face. Note that

the variations amongst the synthesized face images are desirable as they show the spectral

histogram representation groups perceptually similar patterns together.

In comparison, we have also analyzed the intrinsic generalization of linear representa-

tions [2, 12, 19, 31]. We use the same Gibbs sampler except that the energy function is

defined as the Euclidean distance between the projections of I and Iobs along given linear

basis. Figure 3 shows the results for the two images used in Fig. 2. In each subfigure,

the bottom row shows the corresponding reconstructed image for the one given at the top.

As expected, in each group, all the reconstructed images are identical as they all have the
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same linear representation. However, these images perceptually differ greatly and belong

to different classes; this is because linear representations model pixels independently and

thus allow some to change freely as long as their changes are cancelled by others. As these

images have the identical representation, the use of a classifier cannot alleviate this prob-

lem. If a classifier classifies correctly the leftmost face images in Fig. 3, all other images

must also be classified as face patterns, resulting in false positives. On the other hand, if

a classifier classifies correctly the non-face images, the face images must be classified also

as non-face patterns, resulting in false negatives. Because of this, methods based on linear

representations are intrinsically sensitive to different patterns in the background.

It should be noted that reconstruction and sampling are very different. Sampling is

concerned with the drawing of random samples from a set sharing the same representation

while reconstruction is a deterministic procedure of recovering the original image from its low

dimensional representation. To emphasize this point, Fig. 4 shows an illustration using a one-

dimensional linear representation. For the given image ‘x’, the corresponding reconstructed

image is the point ‘+’ shown in Fig. 4(a) while the sampling can give any point along

the solid line shown in Fig. 4(b). This shows an important point that the sufficiency of

a representation cannot be solely justified based on the reconstruction accuracy; statistical

sampling techniques must be used in order to analyze its generalization properties.
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(a)

(b)

Figure 3: Synthesized images of faces using linear representations. Here the basis is gener-
ated using PCA (principal component analysis). In each subfigure, the top row shows the
original image (the leftmost one) and five typical samples from the set with the same linear
representation; the bottom row shows the corresponding reconstructed image to show the
fact that all of the images indeed have the same linear representation. Note that in the four
synthesized images on the right, the center object is used as the boundary condition during
sampling in that they are not updated.

3 Support Vector Machines

In this paper we choose the support vector machine [26, 20] as the classifying function.

One distinctive advantage this type of classifiers has over traditional neural networks is that

support vector machines achieve better generalization performance. While neural networks

such as multiple layer perceptrons (MLPs) can produce low error rate on training data,

there is no guarantee that this will translate into good performance on test data. Multiple

layer perceptrons minimize the mean squared error over the training data (empirical risk
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(a) (b)

Figure 4: Illustration of the difference between sampling and reconstruction. Here the dashed
line represents a one-dimensional subspace in a two-dimensional space. For a given (face)
image (marked as ‘x’), the sampling is to draw a random point along the solid line in (b)
while the reconstructed image is a single point given by ‘+’ in (a).

minimization) where support vector machines use an additional principal called structural

risk minimization [26]. The purpose of structural risk minimization is to give an upper

bound on the expected generalization error.

To illustrate the difference, Fig. 5 shows a toy example with two classes. While there

are numerous such decision planes that can give zero error on the training set (three are

shown in Fig. 5(a)), the performance of these decision boundaries will vary when applied to

unseen data. Fig. 5(b) shows the decision boundary given by the support vector machine,

constructed as the one that separates two classes with the maximum distance between their

margins. As shown by Vapnik [26], this maximal margin decision boundary can achieve opti-

mal worst case generalization performance. Note that support vector machines are originally

designed to solve problems where data can be separated by a linear decision boundary. By

using kernel functions (see Osuna et al. [20] for details), SVMs can be used effectively to

deal with problems that are not linearly separable in the original space. Some of the com-

monly used kernels include Gaussian RBF (Radial Basis Functions), polynomial functions,

and sigmoid polynomials. In this paper we choose the Gaussian RBF kernel function on
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(a) (b)

Figure 5: A toy example that shows a small set of possible decision boundaries for an MLP
and the decision boundary for an SVM. (a) A set of possible decision boundaries that could
be derived by an MLP. Each line depicts a possible decision boundary. (b) The decision
boundary given by an SVM. The thick line is the decision boundary and the two dotted lines
are the margins for the decision boundary.

the spectral histogram representation of the input3. As the spectral histogram is naturally

normalized, it simplifies the choice of parameters for the kernel function and the SVM. Our

implementation of SVMs is based on the SVM-light package by Thorsten Joachims4.

4 Face Detection

This section discusses in detail each stage of the proposed method including preprocessing,

training, detection, and post-processing.

3In a previous study [28], we used an MLP as the classifier and obtained slightly worse results; within
SVMs, one can use different kernel functions and we expect the results would be similar.

4Obtained from http://svmlight.joachims.org.
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4.1 Preprocessing

As nonuniform illumination can alter the appearance of features in images, it is imperative to

correct this effect. We use a modified version of a method proposed by Sung and Poggio [25].

For each 7 × 7 block, the minimum value is computed, which generates a 3 × 3 minimal

brightness plane on a 21 × 21 window. The brightness plane is then resized by bilinear

interpolation to a 21×21 minimal brightness plane. The resulting minimal brightness planes

for the images shown in Fig. 6(a) are given correspondingly in Fig. 6(b). The minimal

brightness plane is then subtracted from the original image. As shown in Fig. 6(c), the

procedure corrects for the effect of non-uniform illumination on the original images. Finally,

the illumination corrected images are further normalized by applying histogram equalization

and the preprocessed images are shown in Fig. 6(d). These preprocessing steps are applied to

all the face and non-face training images and each window in each test image. Compared to

Sung and Poggio’s original iterative gradient method [25], our algorithm is computationally

simpler and seems sufficient for detection using the spectral histogram representation.

4.2 Training

The training face images5 were generated from real images (separate from the images used in

test) by fitting a 21×21 image window around each face using an affine transform based on eye

positions as described in [25]. The original set consists of 1500 images and here we increased

5These training images, along with the test ones were provided by Henry Schneiderman from Carnegie
Mellon University and were used in [21, 25, 22].
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(a)

(b)

(c)

(d)

Figure 6: Steps in the preprocessing stage. (a) Ten 21 × 21 images from the training set.
(b) The corresponding minimal brightness plane for each face image. (c) Illumination cor-
rected images by subtracting the minimal brightness plane from the original image. (d)
Preprocessed images.

it to 4500 by rotating each image randomly by r and -r where r ranges from 0◦ < r ≤ 15◦.

This increases the rotation invariance of the proposed method. A problem particular to face

detection is how to select effective non-face training images. As non-face images include

all kinds of images, a prohibitively large set is needed in order to be representative, which

would also require infeasible amount of computation in training. To alleviate this problem,

a bootstrapping method, proposed by Sung and Poggio [25], is used to incrementally build

the non-face images in the training set. Starting with 1500 random non-face images, we

generated in total 8000 non-face images using the bootstrapping method.

All the training images, 4500 face and 8000 non-face ones, are first preprocessed according
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: An example that illustrates the difference between no thresholding and adaptive
thresholding. Images in (a)-(c) were created with no thresholding used on the region growing
results and (d) shows the final result. Images in (e)-(g) were created using an adaptive
threshold of 2/3 and (h) shows the final result.

to the preprocessing stage discussed previously. The spectral histogram of the illumination

corrected face and non-face images in the training set is then calculated using the 33 filters.

The resulting spectral histograms are used as input to train a support vector machine with

a RBF kernel function. The trained SVM is then used to classify image windows in test

images.

4.3 Detection and Post-processing

As the discrimination function is designed on a 21× 21 image window, it implicitly requires

that all faces lie roughly within a 21 × 21 window. Here a three level Gaussian pyramid

is built by successively down sampling the test image by a factor of 1.1. Each level of the

pyramid is processed independently at the detection stage. This achieves some degree of

scale invariance. For the image at each level, a 21×21 image window is moved pixel by pixel

canvassing the entire image. Each test window is normalized using the method outlined in

Sec. 4.1. The spectral histogram is then computed using the 33 chosen filters and stored.
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Once all the histograms have been computed, the histogram matrix is fed to the trained

SVM for classification. If a local window is classified as a face, its center is saved. A region

growing algorithm is used to coalesce nearby positive outputs (given by the SVM) in small

regions and thresholding on the number of positive outputs is then applied to each region.

An important question is how to choose a proper threshold to achieve good performance

on different kinds of images. For instance, if an arbitrary threshold is set, the generalized

performance may not be good. One can test a set of images and find some average thresh-

old [21]. However the number of positive outputs at a face region can vary from image

to image. Therefore, a threshold that changes with images is desirable. Using a set of 20

images ranging from single face images to images with multiple faces, we found empirically

that in all the images face regions possess the highest number of positive outputs per re-

gion. The number of positive outputs per region for each face αfacei was found to fall within

αmax

2
< αfacei ≤ αmax, where αmax denotes the maximum positive outputs per region for

an image. Instead of using a fixed value, the threshold of positive outputs per region is

given by δ × αmax; as αmax can vary from image to imagei, thus the threshold. We call this

adaptive thresholding. Three different values, with respect to αmax, δ =
1
2
, 2
3
, and 3

4
, were

tested. δ = 2
3
was found to give the best overall performance. With δ = 1

2
the majority of

faces were detected, but there were many false detections. Increasing δ from 1
2
to 2

3
only

slightly decreased the number of face detections, but sharply curbed the number of false

detections. When δ was increased from 2
3
to 3

4
, the number of faces detected and false de-

tections dropped substantially. Figure 7 shows the difference between no thresholding and

adaptive thresholding. Notice that when no threshold is applied as in Fig. 7(d), there are
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(a) 15 / 15 / 0 (b) 8 / 8 / 1

Figure 8: Some typical results on test set 1. In each panel, the first number is the total
number of faces in the image (the given ground truth), the second one the number of faces
detected by the proposed algorithm, and the third one the number of false detections given
by the proposed algorithm.

two final detections over the face. In contrast when adaptive thresholding is utilized, there

is only one final detection as shown in Fig. 7(h).

Instituting adaptive threshold δ = 2
3
, any region with fewer positive outputs from SVM

than δ × αmax is discounted as a non-face. After region growing and thresholding, regions

that are less than three pixels apart are coalesced. The centroid for each new region is

computed and saved. Once the entire image pyramid has been processed, detections at each

layer are examined. A detection is marked as final if and only if it is found in at least two

concurrent levels of the image pyramid. A similar hierarchal approach was used by Rowley

et al. [21] and Juell et al. [8]. A detection is registered as correct if it contains half or more

of a face. Otherwise it is labeled a false detection.
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5 Experimental Results

The proposed face detection algorithm was applied to two commonly used data sets that

are separate from the training images. Test set 1 consists of 125 images containing 483

faces and test set 2 consists of 23 images containing 136 faces. Test set 1 was originally

used by Rowley et al. [21] and has become one of the standard test sets for face detection

algorithms. Test set 2 was initially used by Sung and Poggio [25]. Figures 8 - 11 show some

of the typical results on test set 1 from the proposed algorithm. As is evident from these

results our algorithm demonstrates exceptional performance on images that range from high

quality to low quality. Figure 8 shows two examples with relative simple background and

the proposed algorithm detects all the faces accurately even when some of them are rotated

(Fig. 8 (b)). Figure 9 shows three examples with perfect performance. In Fig. 9(c), the man’s

face is detected correctly despite that his eyes are occluded by the visor that he wears and

the complex background. In Fig. 10 we detect all instances of faces with one false detection

located on the womans hands on the top level. In Fig. 11 we are able to detect all 57 faces

with no false detections. Note that this image contains many different patterns and faces

are close to one another, making detection in this type of images difficult. Our algorithm

not only detects all the instances of faces, but also marks the detections accurately.

Figures 12-14 show typical results from the proposed algorithm on test set 2. In Fig. 12,

all the faces are detected correctly and accurately. Figures 13 and 14 depict two low quality

images. In Fig. 13 there is a variety of expressions on the faces and each face is posed

differently. In Fig. 14, notice the three larger faces in the bottom right corner. These faces
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(a) 8 / 8 / 0 (b) 8 / 8 / 0

(c) 1 / 1 / 0

Figure 9: Some more typical results on test set 1. See Fig. 8 for the legend.

were too large to fit entirely in the 21 × 21 image window, but we are still able to detect

them. As a result, our algorithm detects all the faces despite the low quality of images in

Fig. 13 and 14.

While there are still false detections given by the proposed algorithm, unlike many other

methods, the false detections in our results are localized in very specific areas and thus could

be handled effectively. The majority of false detections are localized around the hands such

as in Fig. 8(b) and Fig. 12(c). This can be attributed to the relaxed topological ordering

imposed by the spectral histogram representation. One can overcome this problem by either

including images of hands in certain positions as negative training examples, or imposing

a stricter topological structure. The latter can be accomplished by computing the spectral
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9 / 9 / 1

Figure 10: Some typical results on test set 1. See Fig. 8 for the legend.

histograms for specified subsections of an image window [13]. This would enforce a more

rigid alignment of feature points as there would be less variation within each sub-region of

the window compared to the total variation within the entire window.

Table 1 shows a summary of our results along with that from other recent methods on

the same test sets. The results from other methods are taken from Yang et al. [32]. As is

evident from these results, our algorithm gives the best overall performance.
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57 / 57 / 0

Figure 11: Some more typical results on test set 1. See Fig. 8 for the legend.

6 Discussion

We have presented a face detection method based on spectral histogram representations and

support vector machines and have demonstrated its performance on two commonly used data

sets. The comparison shows that our method achieves the best performance with respect to

both false detections and detection rate. The performance of our system can be attributed to

the desirable properties of spectral histogram representations and the generalization property

of support vector machines. One may further improve the performance by integrating the

spectral representation with other representations with more rigid topological ordering such

as edge maps [5], Gabor jets [10], or templates [35] and thus reducing further the number of

false positives.

22



(a) 3 / 3 / 0 (b) 5 / 5 / 0

(c) 15 / 15 / 1

Figure 12: Some more typical results on Test set 2. See Fig. 8 for legend.

In addition to the performance, this type of representations offers further benefits. For

example, our approach is generic in nature and is applicable to other forms of object detection

and recognition, not solely face detection. As shown by Liu et al. [16, 15, 14], the spectral

representation can be used to enhance the performance on such tasks as face and object

recognition. This could lead to the possibility of integrating the two systems as one. While

several other methods (e.g. [22, 27]) are applicable to detection of different objects, none

of them has shown to be effective for recognition and classification of faces, objects, and

textures. Due to the filters used, the proposed system exhibits a large degree of rotation
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16 / 16 / 1

Figure 13: Some more typical results on Test set 2. See Fig. 8

invariance, which is demonstrated in Fig. 15. Results in Fig. 15 (a) and (b) are both generated

with no modification to the current system as they are tested using the same procedure for all

images in the test sets. Note the faces with large rotation are detected correctly. By combing

the results in (a) and (b), all the faces are detected correctly with no false detections as shown

in Fig. 15 (c). This example demonstrates that our system can handle rotation up to 45◦.

As the spectral histogram representation has been applied to recognition in different

modalities such as infrared images [23, 14], it may also provide an effective representation

to detect faces in infrared and other kinds of images. As shown by Srivastava and Liu [23],

infrared imaging is not sensitive to illumination conditions and thus face detection based

on infrared images may operate during day and night times. A context-sensitive face de-

tection method may also be possible through the use of spectral histograms based on their
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14 / 14 / 0

Figure 14: Some more typical results on Test set 2. See Fig. 8

effectiveness in clutter modeling [7, 24].

Compared to some recent methods (e.g. [27, 11]), our method is significantly slower. It

takes several minutes to process a typical test image. While spectral histograms of local

windows can be calculated efficiently using integral histogram images [13], it takes time for

the SVM to classify these large number of local windows. There are a few possible ways to

reduce the computation time. One possibility is to use Adaboost-like algorithms [27, 11] to

learn much more efficient classifiers. As these computations are intrinsically parallel, another

way is to implement them on parallel machines or special-purpose chips such as FPGAs [29].

There are some other possible ways to decrease the running time. The image window could

be moved every two or three pixels instead of every pixel. This would certainly lead to faster

run times, however the performance may suffer as the number of detections per region for
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Table 1: Results from our method along with that from others.

Test set 1 Test set 2

Detection False Detection False
Method

Rate Detections Rate Detections
Waring & Liu 96.7 % 67 95.6 % 6
Yang, Ahuja, & Kriegman [31] 93.6 % 74 91.5 % 1
Yang, Ahuja, & Kriegman [31] 92.3 % 82 89.4 % 3
Yang, Roth, & Ahuja [33] 94.2 % 84 93.6 % 3
Yang, Roth & Ahuja [33] 94.8 % 78 94.1 % 3
Rowley, Baluja, & Kanade [21] 92.5 % 862 90.3 % 42
Schneiderman [22] 93.0 % 88 91.2 % 12
Colmenarez & Huang [3] 98.0 % 12758 N.A. N.A
Sung & Poggio [25] N.A. N.A. 81.9 % 13

faces may decrease. This can be further improved by moving the windows adaptively. In

regions with low scores from the trained SVM, we can move more pixels; in regions with high

scores we can move detection windows pixel by pixel. This would reduce dramatically the

computation and yet not reduce the number of detections in face regions. Another way is

to have several face detectors that are organized hierarchically based on their computation

complexity as in [1, 5]. A possible way to implement such a hierarchy for face detection is to

use spectral histograms with different number of filters. With fewer filters, one can obtain

candidate regions faster and then apply more accurate spectral histogram models only on

those candidate regions. This needs to be further explored.

7 Conclusion

In this paper we have shown that the spectral histogram representation is a good choice for

face detection and yields results that are better than other recent methods both with respect
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(a) 5 / 3 / 0 (b) 5 / 3 / 0 (c) 5 / 5 / 0

Figure 15: An example that demonstrates large rotation invariance of the proposed method.
(a) and (b) Results generated with the current system without modification. Note that the
image in (b) is obtained by rotating that in (a) for 90◦ . (c) Results by combining the results
from (a) and (b). See Fig. 8 for the legend.

to false detections and detection rate. In addition, without any modification our system is

able to achieve a respectable degree of rotation invariance. While most representations

used in face detection are justified only based on empirical results, the sufficiency of the

spectral histogram representation is shown systematically through statistical sampling. As

our representation is generic in nature, it can be easily adapted to other forms of object

detection and other tasks such as face recognition [16], object recognition [16], and texture

classification [18]. With these results, we expect the spectral histogram representation may

provide a unified representation for effective object detection and recognition.
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