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Active and Dynamic Information Fusion for Multisensor
Systems With Dynamic Bayesian Networks

Yongmian Zhang and Qiang Ji

Abstract—Many information fusion applications are often characterized
by a high degree of complexity because: 1) data are often acquired from
sensors of different modalities and with different degrees of uncertainty; 2)
decisions must be made efficiently; and 3) the world situation evolves over
time. To address these issues, we propose an information fusion framework
based on dynamic Bayesian networks to provide active, dynamic, purposive
and sufficing information fusion in order to arrive at a reliable conclusion
with reasonable time and limited resources. The proposed framework is
suited to applications where the decision must be made efficiently from dy-
namically available information of diverse and disparate sources.

Index Terms—Active sensing, Bayesian networks, information fusion.

I. INTRODUCTION

There has been a great deal of interest in the development of sys-
tems capable of using many different sources of sensory information
[1], [2]. Whatever the application may be, there is a need to systemati-
cally and efficiently interpret the large volume of information acquired
from sensors of different modalities and with different degrees of un-
certainty. Typically, many applications contain a large number of un-
certain events interrelated by causes and effects. The question is how to
systematically and efficiently represent and fuse uncertain information
at different levels of abstraction.

The world situation is often dynamic and uncertain in nature and un-
folds over time. To correctly assess and interpret the dynamic environ-
ment, a fusion system is needed that not only can systematically handle
uncertain sensory data of different modalities but, more importantly,
can reason over time. The inability of current sensor fusion systems to
correlate and reason about a vast amount of information over time is an
impediment to providing a coherent overview of the unfolding events.
The question is, therefore, how to account for the temporal changes in
sensory information.

Moreover, many applications are often constrained by limited
time and resources. The usage of more sensors incurs more cost
in acquiring information. It is important to avoid unnecessary or
unproductive sensor actions and computations. Thus, we must select a
subset of sensors that are the most decision-relevant. Now the question
is how to determine a set of most informative information sources for
the current goal with minimal cost at particular stage of information
gathering to achieve an efficient and timely decision.

To address above issues, a fusion system therefore requires the capa-
bility which can not only represent the temporal changes of uncertain
sensory information, but dynamically select the most relevant sensory
data for a given goal at a given time as well. To achieve this, we propose
to cast information fusion into a framework of dynamic Bayesian net-
works (DBNs) to account for the temporal aspect of decision making
and uncertainty of knowledge, and to integrate and infer dynamic sen-
sory information of different modalities. The fusion system is able to
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actively select a subset of sensors to produce the most decision-rele-
vant information with limited resources and in reasonable time. Addi-
tionally, DBNs enable sensor selection to dynamically adapt to varying
situations.

Research in information fusion is getting wider and deeper nowa-
days. There are a number of methods available for sensor fusion in-
cluding evidential reasoning [3], fuzzy theories [4]–[6], and neural net-
works [7], [8]. However, these methods lack the sufficient expressive
power to handle uncertainties, dependencies and dynamics exhibited
by sensory data in many applications. Bayesian networks (BNs), since
their inception, have shown great promise in performing multisensor
data fusion [1]. Recently, DBNs extend BNs for modeling dynamic
events [9]–[13]. In the existing works, BNs and DBNs are primarily
used for knowledge and uncertainty representation. DBNs were pro-
posed as a generalization of hidden Markov models (HMMs) [14], but
they allow much more general graph structures than an HMM does. It is
therefore natural to consider a DBN as a basis of the general spatio-tem-
poral sensor data analysis and interpretation.

Active sensing involves actively controlling sensors to optimize in-
formation gathering in a knowledge-based manner with an identifiable
selection criterion rather than randomly selecting sensor parameters. A
significant amount of research has been directed to the area of com-
puter vision and robotics [15]–[19]. More recently, Oliver et al. [20]
studied selective perception policies to purposively guide sensing and
visual information processing to circumvent the computational burden
associated with perceptual analysis. Pinz et al. [21] is the first to intro-
duce active fusion in remote sensing image understanding. Paletta and
Pinz proposed an active recognition system [22], where mutual infor-
mation is used to quantify the ambiguity and to determine which view
to select. Denzler and Brown [23] applied mutual information theory
in the state estimation process for active camera parameter selection.
Using HMMs and evidential reasoning to combine instantaneous and
temporal visual information is recently studied in [24]. The notion of
dynamically combining information provides useful hint to this work.
A central problem of active information fusion is the sensor selection
problem. There have been several attempts in sensor selection for target
localization [25]–[28]. In theses works, they assumed that the system
model is either a linear system or a standard stochastic model. Other
works of interest for sensor selection can be found in the control liter-
ature. The work presented in [29] considers an Hidden Markov model
with a number of sensors. The sensor sequence is determined via sto-
chastic dynamic programming. The problem of optimal sensor selec-
tion for discrete-event systems under partial observation was studied
in [30]. Since we use a DBN as an information fusion method, the
above approaches of sensor selection can not directly be applied to our
problem.

This paper aims to formalize a framework based on DBNs for ac-
tive and dynamic information fusion, which is particularly suited to
the applications where the decision must be made efficiently from dy-
namically available information of diverse and disparate sources. The
remainder of this paper is organized as follows. We start with infor-
mation fusion using DBNs in the next section. An active and dynamic
information fusion framework is proposed in Section III. Section IV
presents an example for a proof-of-concept. The final section is the
conclusion.

II. INFORMATION FUSION WITH BAYESIAN NETWORKS

Information fusion is a process dealing with the association, correla-
tion, and combination of information collected from various disparate
sources into one coherent structure that can be used by a computer
system to make a better decision than from single source only. In order
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Fig. 1. Overview of a dynamic information fusion process in sequential
decision-making for situation understanding. The figure shows that, if the
certainty about the world situation is not sufficiently high, the additional
information is requested by selecting a set of information sources. When
knowing enough about the world situation, the decision-maker may make a
decision about which course of action corresponding to that type of situation
needs to be taken.

to accomplish this task, a fusion function F must be used to combine
these multiple sensor readings to a single output. Regardless of the fu-
sion structure, the fusion process can be generally expressed as

� = F (S1; S2; � � � ; Sn) (1)

where Si denotes an individual sensor that gives a measurement; � is
the output on which the decision-making is based. The choice of the
fusion function F depends on the chosen fusion methods. A review
of information combination methods can be found in [31]. The fusion
method in this effort is a dynamic probabilistic network; while the prob-
abilistic inference is analogous to the fusion function F . The output �
is the posterior probability of hypotheses that we want to infer. Fig. 1
outlines an active fusion process in sequential decision-making for sit-
uation understanding.

In terms of probabilistic networks, chain graphs have been explored
to incorporate probabilistic reasoning for data analysis tools [32]–[34].
A chain graph is a probabilistic network model that mixes undirected
and directed graphs to give a probabilistic representation. However, in
order to represent the causality between random variables as well as
time-series data, it is natural to use directed graphical models, which
can capture the fact that one causes another as well as time flows for-
ward. BNs or DBNs are ideal for representing directed graphs.

A Bayesian network is a graphical model representing probabilistic
relationships among a set of variables to reflect an expert’s under-
standing of the domain. A rigorous definition of Bayesian networks
can be found in [35]. Here we develop the concept with just enough
rigor and detail that will enable us to apply them to information
fusion problems. A general definition of a BN, as shown in Fig. 2(a),
is given as follows. Let (E ; P ) be a joint probability space with
E = E1 � � � � � En, and joint probability P . Given a directed acyclic
graph (DAG) of G = (X;E) with X = fX1; � � � ; Xng and arcs E,
where Xi is the projection onto Ei. Let �(Xi) be the parents of Xi and
A(Xi) be the nondescendant of �(Xi). Then (G; P ) is a Bayesian
network if, for all Xi 2 X , Xi and A(Xi) are independent given
�(Xi). The resulting joint probability over the random variables in the
network can be expressed as

P (X) =

n

i=1

P (Xij�(Xi)) : (2)

Bayesian networks are valuable for several reasons. First, they en-
able to model the dependencies and uncertainties of the events and to
handle incomplete data sets without difficulty because they discover de-
pendencies among all variables. Second, domain knowledge can be de-
scribed in a hierarchical graphical structure to represent different levels

Fig. 2. (a) Static Bayesian network (a directed acyclic graph), whereX �X

are random variables. (b) A DBN is defined by “unrolling” the two-slice BN.
Assume that the model is first-order Markov. The figure shows that X , X
and X at current time t are connected to their corresponding variables which
determine the system at previous moment of time t � 1.

of abstraction. Third, they provide a mathematically rigorous founda-
tion for consistent, coherent and efficient reasoning.

BNs were initially not suited to modeling dynamic events. To cir-
cumvent this limitation, a new statistical approach from the perspective
of BNs was proposed as a generalization of Kalman filtering models
(KFMs) [36] and HMMs [37], namely, DBNs [14]. A DBN model is
made up of interconnected two time slices of a static BN, and the tran-
sition of BN between the two consecutive time t and t+1 satisfies the
Markov process. Conventionally, it is assumed that a DBN is first-order
Markov, and that temporal nodes1 at the current time t are connected
only to the corresponding nodes at the next time slice t+1. DBNs, how-
ever, can be extended by connecting a node at t to any nodes at t + 1
it may affect. However, such connections not only greatly complicate
the network topology but also have limited utility since the impact of a
node at t on any nodes other than itself at t + 1 are usually accounted
for through the propagation of its influence on the corresponding node
to the other nodes. Therefore, DBNs can be implemented by keeping
in memory two slices at any one time, representing previous time slice
and current time slice, respectively. The nodes in the first time slice
do not have any parameters associated with them and they only de-
termine the system at the previous moment of time; while each node
from the second time slice has an associated conditional probability
distribution. The two slices are such rotated that old slices are dropped
and new slices are used as time progresses. The arcs between slices are
from left to right, reflecting the temporal causality and they are param-
eterized by transitional probabilities. We only consider discrete-time
stochastic processes, so we increase the index t by one every time a
new observation arrives. Fig. 2(b) shows an example of DBNs as given
by the definition above. The joint distribution from the initial moment
of time (t = 1) until the time boundary (t = T ) is then given by

P (X1:T ) =

T

t=1

n

i=1

P X
t

i j� X
t

i (3)

where Xt

i is the i0th node at time t; �(Xt

i ) stands for the parents of a
nodeXi at time t, and they can either be in the same time slice or in the
previous time slice. The difference between a DBN and an HMM is that
a DBN represents the hidden state in terms of a set of random variables.
By contrast, in an HMM, the state space consists of a single random
variable. The difference between a DBN and a KFM is that a KFM
requires all the conditional probability densities (CPDs) to be linear-
Gaussian, whereas a DBN allows general hybrid, nonlinear CPDs. In
addition, HMMs and KFMs have a restricted topology, whereas a DBN
allows much more general graph structures. Therefore, it is natural to
consider a DBN as a basis of the general spatio-temporal sensor data

1Temporal nodes represent variables that evolve over time.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on November 22, 2009 at 09:37 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 2, APRIL 2006 469

Fig. 3. Sensors are viewed as random variables and incorporated into
a Bayesian network to form a coherent information fusion structure. For
representing sensor uncertainties, a layer of information variables fI ; � � � ; I g
is added into dynamic Bayesian networks to interface sensors and intermediate
variables.

analysis and interpretation. A thorough work on DBN representation,
inference and learning can be found in [13].

With the hypothesis and sensors, we can construct a coherent fusion
structure with a Bayesian network as shown in Fig. 3. The root node of
such a network would contain the hypothesis variable whose states cor-
responds to multiple hypotheses. The sensors occupy the lowest level
nodes without any children. Sensors are the only observable variables
in the model and evidences are gathered through sensors. In general
a network will have a number of intermediate nodes that are interre-
lated by cause and effect. The hypothesis node is causally linked to
the sensor nodes through these intermediate variables. The nodes and
the links should reflect the causal structure and context independencies
pertaining to the problem we are modeling.

In the real world, however, a fusion system may receive incorrect
information from sensors for various reasons such as sensor noise, im-
precise acquisition devices, and limitations of numerical reconstruction
algorithms. If information is expert knowledge, experts also differ in
their level of expertise. Therefore, sensor readings include uncertain-
ties, which may diminish the reliability of a fusion system. There are
a number of ways to represent uncertainty in sensory data [38]. Nev-
ertheless, a probabilistic metric provides us with some consistency for
information throughout the probabilistic graphical model. The uncer-
tainty of sensor readings measures the degree of belief that the infor-
mation provided by a sensor reflects the actual value. To be able to
handle the uncertainty of sensor readings in the fusion structure with
a probabilistic network, we may add an additional layer of variables
which connects sensors to intermediate variables, namely information
variables, as shown in Fig. 3. Conditional probabilities between infor-
mation variables and sensors quantify the uncertainty of sensor mea-
surements. Consequently, the uncertainty of sensor readings is incorpo-
rated into the fusion system to update the probability distribution over
the hypothesis variable. Evidences regarding information variables are
gathered through sensors and are fused through DBN inference. Tem-
poral link between two consecutive time slices reflects the temporal
causality. The time t increases by one every time new sensor informa-
tion arrives.

III. ACTIVE AND DYNAMIC INFORMATION FUSION

The objective of active information fusion is to selectively choose
the most decision-relevant information while minimizing the cost as-
sociated with using the sensors for acquiring information. Overall ef-
ficiency can be achieved by aggregating only a subset of the most rel-
evant sensor data to address the current goal. In other words, active
fusion focuses on what is optimal rather than what is available.

Fig. 4. Functional view of active information fusion, in which the fusion
structure is a Bayesian network consisting of hypotheses �, intermediate
variables X , information variables I , and sensors S. The closed arrows
represent the causality relations and the open arrows represent sensor activation
control.

The problem of active fusion can be stated mathematically as fol-
lows. Assume that there are m sensors Si, i = 1; � � � ;m available that
can be used to give measurements of the environment. Let � be a set
of hypothesis �k , k = 1; � � � ; K . Let the sensors S = fS1; � � � ; Sng
be a subset of sensors selected at time t, where n 2 f1; . . . ;mg. The
measurement of a sensor Si at time t is denoted as ot(Si), and ot(Si)
of the i0th sensor belongs to a known finite set of states e(i)1 ; . . . ; e

(i)
L

.
That is, the i0th sensor can yield one of L possible measurements at a
given time instant t. Let Ot = fot(S1); . . . ; ot(Sn)g represent the in-
formation available at current time t upon which the sensor selection is
based at time t + 1. The active information fusion generally proceeds
in four stages at each time instant.

(1) Sensor Selection: based on the system state after receiving Ot,
select an optimal subset of sensors S� to be activated at the next
time step t + 1.

(2) Observation: get observation ot+1(Si), i = 1; � � � ; n, to obtain
new sensory information Ot+1, where Si 2 S

�.
(3) State Estimation: compute the posterior probability

p(�t+1jOt+1) by using DBN inference algorithms.
(4) Decision-making: make a decision if the certainty in the current

solution is sufficiently high. Otherwise, start over and select sen-
sors for further observations.

To determine a set of sensors to activate, it can only consider the
probable outcomes of sensors. The actual outcomes of sensors can only
be determined once the sensors are instantiated. Fig. 4 provides an ar-
chitectural concept for the framework of active and dynamic informa-
tion fusion. On the basis of this figure, the active control is to select a
subset of sensors to be activated for the next time instant by only consid-
ering the probable outcomes of sensors (not physically invoked). The
selected sensors have the greatest expected contribution to the uncer-
tainty reduction (compared to their costs). The observed system is to
physically invoke the selected sensors at time t, and generates sensory
information Ot, the set of actual outcomes of selected sensors.

Acquiring information incurs cost such as operational cost, compu-
tational cost, etc. In a military context, the cost also includes the risk
involved in information gathering. It is apparent that any quantitative
analysis of information gain must account for the conflicting objective
of sensor activation. Therefore, optimal sensor selection is to maximize
a utility. In general, the utility function consists of two components: in-
formation gain u1 and the cost C(S) to activate sensors S. We use
u2 = 1�C(S) to convert the cost to the cost saving, which makes u1
and u2 in qualitative equivalence (both represents the benefit). Since
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u1 and u2 are mutually utility independent [39], we can design a mul-
tilinear utility function as

U(u1; u2) = (k1u1 + 1)(k2u2 + 1) (4)

where k1 and k2 are the preference parameters and k1 + k2 = 1. u1
and u2 need to be normalized in quantitative equivalence.

From the viewpoint of information theory, mutual information in-
deed measures the gain of an average amount of information before
and after instantiating the selected sensors. Follow the notations in
Fig. 4 and consider the process at certain time instant t. Notice that
t is dropped for notational clarity in the following equations. To ob-
tain the mutual information, we shall start with the expected entropy
of information. The expected entropy of hypothesis � with respect to
all possible outcomes of a sensor Si measures how much uncertainty
exists in � given Si, is

H(�jSi) = �
S �

P (�; si) logP (�jsi) (5)

where si denotes the value taken by sensor Si. If subtracting H(�jSi)
from the original uncertainty in� prior to instantiatingSi,H(�), yield
the amount of information about � that Si is capable of providing

I(�;Si) =H(�)�H(�jSi)

= �
�

P (�) logP (�)

+
S

P (si)
�

P (�jsi) logP (�jsi)

=
� S

P (�; si) log
P (�jsi)

P (�)
(6)

where I(�;Si) also quantifies the total uncertainty-reducing potential
of Si regarding �. Then mutual information I(�;S) for a sensor set
S = fS1; � � � ; Sng may be written as

I(�;S)

=H(�)�H(�jS)

=
� S ���S

P (�; s1; � � � ; sn)log
P (�js1; � � � ; sn)

P (�)
(7)

where P (�; s1; � � � ; sn) and P (�js1; � � � ; sn) at time t can be directly
obtained through DBN inference algorithms by considering the state
of temporal variables at time t � 1 and current sensor observations at
time t.

Equation (7) provides a selection criterion in identifying the uncer-
tainty reduction capability given a sensor set S. Unfortunately, it is im-
practical to simply implement this criterion due to two difficulties when
n is large: 1) it requires time exponential in the number of summations
to compute mutual information exactly and 2) it is infeasible to iden-
tify an optimal subset from a large number of information sources. This
computational problem is beyond the scope of this present work as we
focus on the principle and issues of active and dynamic information fu-
sion. Now let S be entire space of sensor subsets and S� be an optimal
sensor subset. We then summarize a sequential decision process with
the proposed framework as follows.

SEQUENTIAL-DECISION-PROCESS
1
2

3 while
4 Activate for each and get

Fig. 5. DBN model for a conceptual IFF system to assist in the identification
of aircraft. The transition between two neighboring time slices is modeled by
first-order HMM. Assume that only the hypothesis nodes between two time
slices are connected.

5 Perform DBN inference and obtain

6 if confidence is sufficiently high
7 make decision
8 else

9

A strategy of sensor selection needs to be implemented for lines 2
and 8 in the above procedure. Using the brute-force approach or greedy
approach for sensor selection, we need to evaluate (7) when informa-
tion theoretic criterion is used; this is feasible only for the problems
with a small number of sensors and with a limited number of sensors
being instantiated. To avoid the intractability of exact information com-
putations, myopic is often used under the assumption that the decision
maker will act after observing only one sensor. To correctly identify
the cost-effective sensors, we should take into account the fact that the
decision maker may instantiate more than one sensor before acting.
One often used method for selecting multiple sensors at a time is the
greedy approach, which greedily selects an ensemble of sensors itera-
tively until either the combined utility of the selected sensors peaks or
when the maximum number of sensors is reached. While efficient, the
greedy approach can not guarantee the optimality of the solution. A the-
oretic approach to the optimal and efficient sensor selection behind this
framework is the focus of our current research. Our initial solution to
efficiently compute (7) can be seen in [40]. Below, we use a brute-force
approach to compute I(�;S) and U(�) with a limited number of sen-
sors being instantiated at each time.

IV. EXAMPLE

To clarify the basic notions, we first experiment with a very simple
example for a proof-of-concept. Suppose that a system of identification
friend or foe (IFF) employs sensors including imaging sensors (e.g.,
FLIR, SAR), acoustic sensor, and radar sensor, etc., to identify char-
acteristics of all known aircrafts. Fig. 5 presents a BN model for such
a system. The most important identification features that best charac-
terize a particular aircraft include length, span, wing and tail shape,
speed, and engine sound, and they are provided by diverse sensors. For
examples, to obtain the aircraft shape, we may activate the imaging sen-
sors to determine the shape parameters of the aircraft; while we may
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Fig. 6. (a) Comparison of entropy reduction between passive fusion and active
fusion. Relative entropy = (H �H )=H , where H and H represent the
entropy by active fusion and passive fusion, respectively. The error bar shows
the lower and upper error ranges. (b) Comparison of utility between passive
fusion and active fusion. The preference parameters k and k take 0.5 in (4).
Relative utility = (U � U )=U , where U and U represent the utility by
active fusion and passive fusion, respectively. The error bar shows the lower and
upper error ranges.

TABLE I
EXAMPLES OF SENSOR ACTION SEQUENCE WHERE SENSOR(S)

ARE ACTIVELY SELECTED AT EACH TIME INSTANT

utilize Sonar to obtain the aircraft speed. We assume that there are ex-
ternal modules which receive sensor data and make the data available
as input evidence to the network. We shall select the most decision-rel-
evant sensors in order to make a timely engagement decision.

We now specify the cost of individual sensors as
[0.1667,0.2667,0.2000,0.1333,0.2333] for FLIR, SAR, Sonar,
Radar, and Acoustic sensor, respectively. Fig. 6(b) shows the
comparison result regarding the expected utility between active and
passive fusion. For the convenience of comparison, we give the same
sensors and sensor outcomes at the fist time slice for both active
fusion and passive fusion. Fig. 6(b) is the average relative utility of
20 sensor action sequences. As we initially expect, it shows that, on
average, the sensors by active selection achieve greater utility than
the sensors by passive selection.

Table I gives examples of different courses of sensor actions. In fact,
we can see from Table I that the change of situation (here different
sensor outcomes) results in different sensor action sequences. At each
time instant, the number of sensors and which subset of sensors to be
integrated are determined according to the state at that time as well as
the evidence at previous time instant. Note that the certainty in Tables I
and II is the information gain I(�;S). The larger the information gain,
the more certainty there is.

The uncertainty of sensor readings also directly influences the sensor
selection. To clarify this matter, we now change the uncertainty of
sensor readings (probability distributions between information vari-
ables and sensors). Although, at the first time instant, the same sensor
and sensor outcome in Table I are given, Table II shows that the course
of sensor actions differs with that in Table I due to the change of the
uncertainty of sensor readings.

TABLE II
THE SENSOR ACTION SEQUENCE CHANGES DUE TO THE

CHANGE OF SENSOR UNCERTAINTY

In a dynamic environment, a decision is required across a fairly
narrow space of time, and tasks are dependent on an ongoing, up-to-
date analysis of the environment. If the same evidence is acquired se-
quentially, the evidence acquired at current time can reinforce the hy-
pothesis made by the same information received at previous time. Al-
though a static BN model can integrate all evidences available so far
by sequentially propagating the impact of each evidence, the impact
of previous evidence on subsequent integration can not be adjusted,
and previous evidence can not be integrated into the same evidence
currently received. DBNs, on the other hand, enable to correlate and
associate the continual arriving evidences through temporal dependen-
cies to perform reasoning over time. The information from previous
time serves as prior information for current evidences, and they are
combined with Bayesian statistics. Dempster-Shafer evidence theory
[3] can also represent the uncertainty of information, but it lacks the
ability to handle prior knowledge and temporal dependency.

V. CONCLUSIONS

There are three important issues for a fusion system: 1) modeling un-
certainties of sensory data; 2) modeling temporal change; and 3) active
control and management of the fusion process. In this paper, we pro-
posed a framework to simultaneously address the above three issues.
Toward the first and the second issue, we adopt a dynamic Bayesian
network as a fusion structure to provide a coherent and fully unified hi-
erarchical probabilistic framework for representation, integration, and
inference of uncertain sensory information of different modalities at
different levels of abstraction, and to account for the temporal aspect
of decision making. Toward the last issue, we need an efficient sensor
selection method that allows a fusion system to actively select and in-
voke a subset of sensors that is the most decision-relevant.

It is impractical to simply implement information-theoretic criterion
in (7) to identify an optimal sensor subset because (7) generally requires
time exponential in the number of summations to compute mutual in-
formation exactly. In this paper, we mainly focus on the architectural
concept and issues for active and dynamic information fusion rather
than the efficient sensor selection methodology behind this framework.
In many fusion applications, the relationships among the events are
mostly unknown and they may vary as the world situation evolves.
Therefore, a fusion system needs to incorporate a situation oriented
learning mechanism. This is another issue that we will focus on in our
future work.
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