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Sampled-Data Fuzzy Controller for Time-Delay
Nonlinear Systems: Fuzzy-Model-Based

LMI Approach
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Abstract—This paper presents the stability analysis and per-
formance design for a sampled-data fuzzy control system with
time delay, which is formed by a nonlinear plant with time delay
and a sampled-data fuzzy controller connected in a closed loop.
As the sampled-data fuzzy controller can be implemented by a
microcontroller or a digital computer, the implementation time
and cost can be reduced. However, the sampling activity and
time delay, which are potential causes of system instability, will
complicate the system dynamics and make the stability analysis
much more difficult than that for a pure continuous-time fuzzy
control system. In this paper, a sampled-data fuzzy controller with
enhanced nonlinearity compensation ability is proposed. Based on
the fuzzy-model-based control approach, linear matrix inequality
(LMI)-based stability conditions are derived to guarantee the sys-
tem stability. By using a descriptor representation, the complexity
of the sampled-data fuzzy control system with time delay can be
reduced to ease the stability analysis, which effectively leads to a
smaller number of LMI-stability conditions. Information of the
membership functions of both the fuzzy plant model and fuzzy
controller are considered, which allows arbitrary matrices to be
introduced, to ease the satisfaction of the stability conditions. An
application example will be given to show the merits and design
procedure of the proposed approach. Furthermore, LMI-based
performance conditions are derived to aid the design of a well-
performed sampled-data fuzzy controller.

Index Terms—Fuzzy control, performance, sampled-data
control, stability, time delay.

I. INTRODUCTION

THE FUZZY control approach offers a systematic way to
deal with nonlinear systems. During the past two decades,

various fuzzy control approaches have been proposed and
fruitful results have been achieved, particularly in the issue of
system stability. To study the stability of fuzzy control systems,
the Takagi–Sugeno (T–S) fuzzy-model-based approach is most
commonly adopted. By employing a T–S fuzzy model [1], [2],
a nonlinear system can be represented as an averaged sum
of some weighted linear subsystems. The T–S fuzzy model
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effectively extracts the linear and nonlinear elements of the
nonlinear system. The semilinear characteristic of the T–S
fuzzy model allows some linear control approaches or theories
to be further developed to facilitate the stability analysis and
controller synthesis. In [3] and [4], basic stability conditions
were derived to guarantee the system stability. In [4], the par-
allel distribution compensation (PDC) technique was proposed
to design the feedback gains of the fuzzy controller. Based on
the PDC design, some relaxed stability results were obtained
[5]–[10]. In [5]–[10], linear matrix inequality (LMI)-based
controller design techniques were reported. The feedback gains
of the fuzzy controller are expressed as some decision vari-
ables of LMI-stability conditions [5]–[10] which can be solved
numerically and effectively using some convex programming
techniques [11].

In [3]–[10], LMI-based stability conditions for a continuous-
time fuzzy control system were reported. However, the time
delay, which appears in many real-life engineering processes,
was not considered. In other words, when a time delay is
present in the system, the theories reported in [3]–[10] cannot
be applied. More importantly, a time delay can be an element
to cause system instability. It is important to develop theories to
handle control problems with time delay and successfully put
the fuzzy controller into practice.

Recently, the stability of time-delay nonlinear systems has
been studied based on the fuzzy-model-based approach. A
modified T–S fuzzy model [12]–[19] was proposed to repre-
sent the nonlinear plant with time delay. To handle nonlinear
systems with time delay using the fuzzy control technique,
two approaches can be found in the literature, namely the
delay-independent [12]–[14] and delay-dependent approaches
[15]–[19]. Delay-independent stability conditions for time-
delay fuzzy control systems were derived in [12]–[14] based
on the Lyapunov–Krasovksii or Lyapunov–Razumikhin ap-
proaches. For the delay-independent approach, the stability
conditions are not related to the time-delay information. Once
the time-delay fuzzy control system is guaranteed to be stable,
it is stable for any value of time delay. As the information
of time delay is not considered during the stability analysis,
only conservative stability analysis results are usually obtained.
In [15]–[19], delay-dependent stability conditions were de-
rived based on the Lyapunov–Krasovksii approach. During the
stability analysis, the time-delay information is considered,
which leads to a complicated analysis procedure compared
with that of the delay-independent approach. However, less
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conservative stability conditions are produced. In the delay-
dependent stability conditions, the time-delay information is
one of the elements to determine the system stability.

Owing to the rapid growth of the digital circuit technologies,
powerful microcontrollers and digital computers can be made
available at low cost. Hence, controllers for some domestic or
industrial applications are implemented using microcontrollers
or digital computers to reduce the implementation cost and
time. However, in such a case, the overall control system
becomes a sampled-data system of which the control signals
are kept constant during the sampling period and are allowed
to change only at the sampling instant. As a result, the control
signals are stepwise, which introduce discontinuities and make
the system dynamics more complicated. Although the sampling
period can be regarded as a time-varying delay [20], as a
result of the discontinuous control signals, the stability analysis
methods used in [12]–[19] cannot be applied to sampled-data
nonlinear systems. In [20], a linear sampled-data system was
investigated. However, the analysis will become very compli-
cated when a nonlinear system is considered. In [21]–[24], the
fuzzy-model-based control approach was employed to study
the stability of sampled-data nonlinear systems. An equivalent
jump system was proposed to represent the dynamics of the
sampled-data fuzzy control systems at the sampling instant.
The closed-loop system is guaranteed to be stable if both
the sampled-data fuzzy control system governing the system
dynamics during the sampling period and the jump system
governing the system dynamics at the sampling instant are
both stable subject to a common time-varying solution to a
number of Lyapunov inequalities. In [25], the linear analysis
approach in [20] was employed and extended to analyze the
stability of nonlinear sampled-data control systems. However,
the information of the system nonlinearity was not utilized to
produce less conservative stability conditions. In [26]–[28], an
intelligent digital redesign approach was proposed. The idea
is to approximate the nonlinear plant by a discrete-time fuzzy
model. Based on the discrete-time fuzzy model, a discrete-time
fuzzy controller is then proposed to close the feedback loop.
However, the discretization error due to the discrete-time fuzzy
model may become a source to cause the system instability.

In this paper, the system stability of a time-delay nonlinear
system with a sampled-data fuzzy controller is investigated.
It can be seen from [12]–[19] that the system dynamics are
complicated by the existence of time delay, making the stability
analysis more difficult [5]–[10]. The sampled-data controller
will cause the problem to be even more challenging. To fa-
cilitate the stability analysis, the T–S fuzzy model with time
delay is employed to represent the nonlinear plant with time
delay. The proposed sampled-data fuzzy controller exhibits
an enhanced nonlinearity, as compared with that of the fuzzy
controllers obtained by applying the PDC design technique,
to compensate the unstable elements of the nonlinear system
with time delay. The nonlinearity of the proposed sampled-
data fuzzy controller is enriched by employing extra fuzzy
rules, which will cause the number of stability conditions to
increase. To alleviate this problem, a descriptor representation
is employed to reduce the number of stability conditions. Under
the sampled-data case, the advantage of simplifying the stability

analysis brought by sharing the same premise membership
functions [5]–[10], [12]–[19] between the fuzzy plant model
and fuzzy controller vanishes. To produce a less conservative
stability analysis result, the information of the membership
functions of both the fuzzy plant model and the fuzzy controller
are considered. Some free arbitrary matrices are introduced
to ease the satisfaction of the LMI stability conditions. Fur-
thermore, LMI performance conditions are derived subject to
a scalar performance function, which quantitatively measures
the system performance, to aid the design of stable and well-
performed sampled-data fuzzy-model-based control systems
with time delay.

This paper is organized as follows. In Section II, the
fuzzy plant model and the fuzzy controller are presented.
In Section III, LMI-based stability and performance conditions
are derived for the sampled-data fuzzy-model-based control
systems with time delay. In Section IV, an application example
is given to illustrate the merits and design procedure of the
proposed sampled-data approach. A conclusion is drawn in
Section V.

II. FUZZY PLANT MODEL AND SAMPLED-DATA

FUZZY CONTROLLER

A sampled-data time-delay fuzzy-model-based control sys-
tem is formed by a fuzzy plant model with time delay and a
sampled-data fuzzy controller connected in closed loop.

A. Fuzzy Plant Model

In some engineering process, a time delay is an inevitable
source causing system instability. For example, time delays
usually appear in some mechanical systems [13], chemical
systems [14], and long transmission systems. Let p be the
number of fuzzy rules describing the nonlinear plant with time
delay. The ith rule is of the following format [12]–[19]:

Rule i : IF f1 (x(t)) is M i
1 AND . . .AND fΨ (x(t)) is M i

Ψ

THEN ẋ(t) = Aix(t) + Adix(t− τd) + Biu(t)

(1)

where M i
α is a fuzzy term of rule i corresponding to the

scalar function fα(x(t)), α = 1, 2, . . . ,Ψ; i = 1, 2, . . . , p; Ψ is
a positive integer; Ai ∈ �n×n and Adi ∈ �n×n are known con-
stant system matrices; Bi ∈ �n×m is a constant input matrix;
x(t) ∈ �n×1 is the system state vector and u(t) ∈ �m×1 is the
input vector; hd ≥ τd ≥ 0 denotes a constant time delay, hd is
a nonzero positive scalar which denotes the upper bound of the
time delay the system can persist subject to the consideration of
system stability. The overall system dynamics are described by

ẋ(t) =
p∑

i=1

wi (x(t)) (Aix(t) + Adix(t− τd) + Biu(t))

(2)
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where

p∑
i=1

wi (x(t)) = 1, wi (x(t)) ∈ [0 1] for all i (3)

wi (x(t))

=
µMi

1
(f1(x(t)))×µMi

2
(f2(x(t)))×· · ·×µMi

Ψ
(fΨ (x(t)))

p∑
k=1

(
µMk

1
(f1(x(t)))× µMk

2
(f2(x(t)))×· · · × µMk

Ψ
(fΨ(x(t)))

)

(4)

is a scalar nonlinear function of x(t) and µMi
α
(fα(x(t))),

α = 1, 2, . . . ,Ψ, are the grades of membership correspond-
ing to the fuzzy term M i

α. The symbol “×” denotes the
multiplication operation. It is assumed that x(t) = ϕ(t) for
t ∈ [−max(hd, hs) 0], where ϕ(t) denotes the initial system
state condition of x(t) and hs denotes the constant sampling
period.

B. Sampled-Data Fuzzy Controller

A sampled-data fuzzy controller with p2 fuzzy rules is de-
signed based on the fuzzy model of the nonlinear plant. The
jth rule of the sampled-data fuzzy controller is of the following
format [3]–[10]:

Rule j : IF g1 (x(tγ)) is N
j
1 AND . . .AND gΩ (x(tγ)) is N

j
Ω

THEN uj(t) = Gjx(tγ), tγ < t ≤ tγ+1 (5)

where N
j
β is a fuzzy term of rule j corresponding to the

scalar function gβ(x(t)), β = 1, 2, . . . ,Ω; j = 1, 2, . . . , p2; Ω
is a positive integer; Gj ∈ �m×n is the feedback gain of rule
j to be designed; tγ = γhs, γ = 0, 1, 2, . . . ,= ∞, denotes the
sampling instant; hs = tγ+1 − tγ denotes the constant sam-

pling period; uj(t) ∈ �m×1 is the input vector of rule j. The
inferred output of the sampled-data fuzzy controller is given by

u(t) =
p2∑

j=1

mj (x(tγ))Gjx(tγ), tγ < t ≤ tγ+1 (6)

where mj of (8), shown at the bottom of the page, is a scalar
nonlinear function of x(tγ) and µ

N
j
β
(gβ(x(tγ))) is the known

grade of membership corresponding to the fuzzy term N
j
β . It

can be seen from (6) that u(t) = u(tγ), which holds constant
value for tγ < t ≤ tγ+1. The sampled-data fuzzy controller of
(6) can be represented as

u(t) =
p∑

j=1

p∑
k=1

mj (x(tγ))mk (x(tγ))Gjkx(tγ)

=
p∑

j=1

p∑
k=1

mj (x(tγ))mk (x(tγ))Gjkx (t− τs(t)) (9)

where τs(t) = t− tγ ≤ hs for tγ < t ≤ tγ+1. Let mj(x(tγ))
be given by (10), shown at the bottom of the page,
where

∑p
j=1 mj(x(tγ)) = 1, mj(x(tγ)) ∈ [0 1], j = 1,

2, . . . , p; gβ(x(tγ)) is a scalar function and µNj
β
(gβ(x(tγ))),

j = 1, 2, . . . , p, are the grades of membership. The sampled-
data fuzzy controller in the form of (10) can make the analysis
simpler and reduce the number of stability conditions. The
sampling period and time delay of a system are illustrated in
Fig. 1 of which the signal of system state x1(t) is shown. The
sampling period is a fixed time period denoted by hs. At time
instant tγ , γ = 1, 2, . . . ,∞, x1(t) is sampled and denoted by
x1(tγ). The system state x1(t) retarded by time delay τd at
time t is denoted by x1(t− τd).

Remark 1: The sampled-data fuzzy controllers of (6) and
(9) are equivalent if the membership functions of the sampled-
data fuzzy controller of (6), i.e., mj(x(tγ)), are designed
properly. An example is given as follows to show the de-
sign of the memberships of the sampled data fuzzy con-
troller such that (6) and (9) are equivalent. In this example,

p2∑
j=1

mj (x(tγ)) = 1, mj (x(tγ)) ∈ [0 1] for all j (7)

mj (x(tγ)) =
µ

N
j
1
(g1 (x(tγ)))× µ

N
j
2
(g2 (x(tγ)))× · · · × µ

N
j
Ω
(gΩ (x(tγ)))

p2∑
k=1

(
µ

N
k
1
(g1 (x(tγ)))× µ

N
k
2
(g2 (x(tγ)))× · · · × µ

N
k
Ω
(gΩ (x(tγ)))

) (8)

mj (x(tγ)) =
µNj

1
(g1 (x(tγ)))× µNj

2
(g2 (x(tγ)))× · · · × µNj

Ω
(gΩ (x(tγ)))

p∑
k=1

(
µNk

1
(g1 (x(tγ)))× µNk

2
(g2 (x(tγ)))× · · · × µNk

Ω
(gΩ (x(tγ)))

) (10)
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Fig. 1. Sampling period and time delay.

Fig. 2. Block diagram of a sampled-data time-delay fuzzy-model-based con-
trol system.

µ
N

l
β
(gβ(x(tγ))) and µNj

β
(gβ(x(tγ))) are written as µ

N
l
β

and

µNj
β

, respectively, for simplicity. Considering p = Ω = 2, from

(8), we have ml(x(tγ)) = (µ
N

1
1
µ

N
1
2
)/(µ

N
1
1
µ

N
1
2
+ µ

N
2
1
µ

N
2
2
+

µ
N

3
1
µ

N
3
2
+ µ

N
4
1
µ

N
4
2
), l = 1, 2, 3, 4, for the sampled-data fuzzy

controller of (6). Similarly, from (10), we have the expres-
sion for mj(x(tγ))mk(x(tγ)), shown at the bottom of the
page, for the sampled-data fuzzy controller of (9). It can
be seen in this case that (6) is equivalent to (9) when
ml(x(tγ)) = mj(x(tγ))mk(x(tγ)) for l = 2(j − 1) + k. By
comparing their denominators, we design the membership
functions of the sampled-data fuzzy controller of (6) as
µ

N
1
i
= µ2

N1
i

, µ
N

2
i
= µ

N
3
i
= µN1

i
µN2

i
, µ

N
4
i
= µ2

N2
i

, i = 1, 2,

and the feedback gains as G1 = G11, G2 = G12, G3 = G21,
and G4 = G22. Under such a design, the sampled-data fuzzy
controller of (6) with p = Ω = 2 can be written in
the form of (9), i.e., u(t) =

∑4
j=1 mj(x(tγ))Gjx(tγ) =∑2

j=1

∑2
k=1 mj(x(tγ))mk(x(tγ))Gjkx(tγ).

C. Sampled-Data Time-Delay Fuzzy-Model-Based
Control System

The sampled-data time-delay fuzzy-model-based control
system is formed by the time-delay nonlinear plant repre-
sented by the fuzzy model of (2) and the sampled-data fuzzy
controller of (9) connected in closed loop as shown in Fig. 2.

In the following analysis, wi(x(t)) and mj(x(tγ)) are de-
noted as wi and mj , respectively, for simplicity. From (2)
to (9), and with the property that

∑p
i=1 wi =

∑p
j=1 mj =∑p

i=1

∑p
j=1

∑p
k=1 wimjmk = 1, we have

ẋ(t) =
p∑

i=1

wi

(
Aix(t) + Adix(t− τd)

+ Bi

(
p∑

j=1

p∑
k=1

mjmkGjkx(tγ)

))

=
p∑

i=1

p∑
j=1

p∑
k=1

wimjmk (Aix(t) + Adix(t− τd)

+ BiGjkx (t− τs(t))) . (11)

III. STABILITY ANALYSIS AND PERFORMANCE DESIGN

The system stability and performance of the sampled-data
time-delay fuzzy-model-based control system in the form of
(11) is investigated in this section. Based on the Lyapunov
method, LMI-based stability conditions will be derived to
guarantee the system stability. Furthermore, LMI-based per-
formance conditions will also be derived subject to a scalar
performance index [30] to guarantee the system performance.
The LMI-based stability and performance conditions are then
used to design stable and well-performed sampled-data fuzzy-
mode-based control systems with time delay. In [25], the sys-
tem stability of the sampled-data neural-network-based control
systems was investigated. Its analysis approach is extended
in this paper to investigate the stability of fuzzy-model-based
control systems subject to time delay, which makes the sys-
tem dynamics to be even more complicated. The information
of the membership functions of both the fuzzy plant model
and fuzzy controller is employed to reduce the conservative-
ness of the stability analysis results. The LMI-based stability
and performance conditions are summarized in the following
theorem.

Theorem 1: The sampled-data time-delay fuzzy-model-
based control system in the form of (11) is asymptotically stable
if the membership functions are designed such that wi(x(t))−
ρmi(x(tγ)) > 0, i = 1, 2, . . . , p, for all x(t) and x(tγ), and
there exist nonzero positive scalars, hd, hs, ρ, ζ and η, and
matrices X1 = XT

1 ∈ �n×n, X2 ∈ �m×n, X3 ∈ �m×n, X4 ∈
�m×m, X5 ∈ �n×n, X6 ∈ �n×n, X7 ∈ �n×m, X8 ∈ �n×n,
J1 = JT

1 ∈ �n×n > 0, J2 = JT
2 ∈ �n×n > 0 and J3 = JT

3 ∈
�m×m > 0, Ki ∈ �m×n, Λi = ΛT

i ∈ �(4n+m)×(4n+m),
Mi = MT

i ∈ �(3n+m)×(3n+m), Ni ∈ �n×n, Ti = TT
i ∈

�(3n+m)×(3n+m), i = 1, 2, . . . , p such that the following
LMI-based stability and performance conditions are satisfied.

mj (x(tγ))mk (x(tγ))

=

(
µNj

1
µNj

2

)(
µNk

1
µNk

2

)
(
µN1

1
µN1

2

)(
µN1

1
µN1

2

)
+
(
µN1

1
µN1

2

)(
µN2

1
µN2

2

)
+
(
µN2

1
µN2

2

)(
µN1

1
µN1

2

)
+
(
µN2

1
µN2

2

)(
µN2

1
µN2

2

) , j, k,= 1, 2
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A. Stability Conditions

X1 > 0; Qii −
(1− ρ)

ρ
Λi < 0, i = 1, 2, . . . , p

Qij + Λj < 0, i, j = 1, 2, . . . , p[
Mi ∗

X1YT
i X 2ζX1 − ζ2M

]
≥ 0, i = 1, 2, . . . , p[

Ti ∗
X1ŶT

i X 2ζX1 − ζ2M

]
≥ 0, i = 1, 2, . . . , p

where the expressions for Qij and X, are given as shown at
the bottom of the page and the feedback gains are designed
as Gjk = FjGk, Fj = KjX−1

1 , and Gk = NkX−1
1 , j, k =

1, 2, . . . , p.

B. Performance Conditions

[
W(11) ∗
W(21)

i W(22)

]
< 0, i = 1, 2, . . . , p

where

W(11) =


−ηI 0 0

0 −ηI 0
0 0 −ηI




W(21)
i =


X1 0 0

0 Ni 0
0 0 Ki


 , i = 1, 2, . . . , p

and

W(22) =


−J−1

1 0 0
0 −J−1

2 0
0 0 −J−1

3


 .

In Theorem 1, the symbol “∗” denotes the transposed element
of the matrix at the corresponding position. It should be noted
that the system performance is measured by a scalar perfor-
mance index defined in (B1) and the weighting matrices J1,
J2, and J3 are needed to be determined by the designer prior
to applying Theorem 1. The proofs for the LMI-based stability
and performance conditions are shown in Appendices A and B,
respectively.

IV. APPLICATION EXAMPLE

The proposed sampled-data fuzzy controller is employed to
deal with a truck-trailer with time delay [13].

Step 1) It was reported in [13] that the dynamics of the truck
trailer with time delay are defined as follows [13]:

ẋ1(t) = −a νt

Lto
x1(t)− (1− a)

νt

Lto
x1(t− td)

+
νt

lto
u(t) (12)

ẋ2(t) = a
νt

Lto
x1(t)+(1−a) νt

Lto
x1(t−td) (13)

ẋ3(t) =
νt

Lto
sin (f1 (x(t),x(t−td))) (14)

where x(t) = [x1(t) x2(t) x3(t) ]T, x1(t) is
the angle difference between the truck and the
trailer, x2(t) is the angle of the trailer, x3(t) is
the vertical position of the rear end of the trail-
er, f1(x(t),x(t− td)) = x2(t) + a(νt̄/2L)x1(t) +
(1− a)(νt̄/2L)x1(t− td), l = 2.8 is the length of
the truck, L = 5.5 is the length of the trailer,
ν = −1.0 is the constant backward speed,
a = 0.7 is the retarded coefficient, t̄ = 2.0, to =
0.5. The system is assumed to be operating
in the operating domain of x1(t) ∈ [−π/2 π/2 ],
ẋ1(t) ∈ [−3 3 ], x2(t) ∈ [−π/2 π/2 ], and
ẋ2(t) ∈ [−2 2 ]. The control objective is to
backward move the truck-trailer along a straight
line, i.e., x(t) = 0, using the sampled-data fuzzy
controller. It is reported in [13] that the truck trailer
can be represented by a fuzzy model with the
following two rules.

Rule1 : IF f1 (x(t),x(t− τd)) is about 0
THEN ẋ(t)=A1x(t)+Ad1x(t−τd)+B1u(t) (15)

Rule2 : IF f1 (x(t),x(t− τd)) is about π or − π

THEN ẋ(t)=A2x(t)+Ad2x(t−τd)+B2u(t) (16)

Qij =




X5 + XT
5 ∗ ∗ ∗ ∗

Nj − X1 + XT
6 −X1 − XT

1 ∗ ∗ ∗
Kj − X2 + XT

7 Kj − X3 −X4 − XT
4 ∗ ∗

(Ai + Adi)X1 + BiX2 − X5 + XT
8 BiX3 − X6 BiX4 − X7 −X8 − XT

8 ∗
(hd + hs)X5 (hd + hs)X6 (hd + hs)X7 (hd + hs)X8 −(hd + hs)M




+ hd

[
Mi 0
0 0

]
+ hs

[
Tj 0
0 0

]

X =




X1 0 0 0
X1 X1 0 0
X2 X3 X4 0
X5 X6 X7 X8


 Yi = XT−1




0
0
0

Adi


 Ŷi = XT−1




0
Gi

0
0
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where

A1 =



−a νt

Lto
0 0

a νt
Lto

0 0

a ν2t
2

2Lto

νt
to

0




A2 =



−a νt

Lto
0 0

a νt
Lto

0 0

adν2t
2

2Lto

dνt
to

0




Ad1 =



−(1− a) νt

Lto
0 0

(1− a) νt
Lto

0 0

(1− a) ν2t
2

2Lto
0 0




Ad2 =



−(1− a) νt

Lto
0 0

(1− a) νt
Lto

0 0

(1− a)dν2t
2

2Lto
0 0




B1 =B2 =


 νt

lto

0
0




and d = 10to/π. The overall system is described by
(2) in which the membership functions are defined
as follows:

w1(x(t),x(t− τd))

=
(
1− 1

1+ exp (−3 (f1 (x(t),x(t−τd))−0.5π))

)

×
(

1
1+ exp (−3 (f1 (x(t),x(t−τd))+ 0.5π))

)

and

w2 (x(t),x(t− τd)) = 1− w1 (x(t),x(t− τd))

Step 2) A four-rule sampled-data fuzzy controller is em-
ployed to stabilize the truck trailer with time delay.
Referring to (9), the sampled-data fuzzy controller
is designed as follows:

u(t) =
2∑

j=1

2∑
k=1

mj(x (tγ))mk(x (tγ))Gjkx(tγ) (17)

where Gjk = FjGk, j, k = 1, 2. It is chosen that
mj(x(tγ)) = wj(x(tγ)), j = 1, 2.

Step 3) Based on Theorem 1, with hd = τd = 1s,
hs = 0.04s, ρ = 0.725, ζ = 2, η = 10−2, J1 =
 1 0 0
0 1 0
0 0 1


, J2 =


 0.1 0 0

0 0.1 0
0 0 0.1


, and J3 =

0.1, we have G11 = [1.4781 − 0.1771 0.0040],
G12 = [1.4784 − 0.1805 0.0040], G21 =
[1.4793 − 0.1811 0.0041], and G22 =
[1.4798 − 0.1844 0.0040]. In this example,

the nonlinear plant is assumed to operate in the
domain characterized by ẋ1(t) ∈ [−3 3] and
ẋ2(t) ∈ [−2 2]. With this information and
considering tγ ≤ t ≤ tγ + hs, we have x1(t) =
x1(tγ) +

∫ t

tγ
ẋ1(t)dt which offers the lower and

upper bounds as x1(tγ)− 3
∫ tγ+hs

tγ
dt = x1(tγ)−

3hs = x1(tγ)− 0.12 and x1(tγ) + 3
∫ tγ+hs

tγ
dt =

x1(tγ) + 3hs = x1(tγ) + 0.12, respectively. Simi-
larly, we have x2(t) = x2(tγ) +

∫ t

tγ
ẋ2(t)dt which

offers the lower and upper bounds as x2(tγ)−
2
∫ tγ+hs

tγ
dt = x2(tγ)− 2hs = x2(tγ)− 0.08 and

x2(tγ) + 2
∫ tγ+hs

tγ
dt = x2(tγ) + 2hs = x2(tγ) +

0.08, respectively. Consequently, for any sampling
instant tγ , the value of x1(t) and x2(t) on or
before the next sampling instant are in the range
of x1(tγ)− 0.12 ≤ x1(t) ≤ x1(tγ) + 0.12 and
x2(tγ)− 0.08 ≤ x2(t) ≤ x2(tγ) + 0.08, respec-
tively, for tγ ≤ t ≤ tγ + hs. For the system op-
erating in its operating domain, it can be shown
that wj(x(t))− 0.725mj(x(tγ)) ≥ 0 for x(t),
x(tγ) and all j.

To illustrate the effectiveness of the performance conditions,
another set of feedback gains are obtained with the same design

parameter values except J2 =


 100 0 0

0 100 0
0 0 100


. By apply-

ing Theorem 1, G11 = [1.4775 − 0.1766 0.0040], G12 =
[1.4780 − 0.1801 0.0040], G21 = [1.4785 − 0.1806
0.0041], and G22 = [1.4792 − 0.1839 0.0040] are
obtained.

The sampled-data fuzzy controllers, with the two sets of
feedback gains, are employed to control the truck-trailer. Fig. 3
shows the system state responses and the control signals of the
sampled-data time-delay fuzzy-model-based control systems
under the initial state condition of x(t) = [1.5 − 2 5]T.
The initial system state function is defined as ϕ(t) =
[1.5 − 2 5]T for t ∈ [−1 0]. Referring to Fig. 3, it can
be seen that both sampled-data fuzzy controllers can stabilize
the nonlinear system with time delay. A sampled-data fuzzy

controller with J2 =


 100 0 0

0 100 0
0 0 100


 puts heavy weights

to the control signal. It can be seen from Fig. 3 that the time
integral of control signal is suppressed and its effect is also
reflected in the system states x1(t) to x3(t). Furthermore, it
can be seen that the control signals are stepwise which are kept
constant during the sampling period.

For comparison purpose, the sampled-data fuzzy controller
of (17) is reduced to u(t) =

∑2
j=1 mj(x(tγ))Fjx(tγ) by

choosing Gk = I, where I is the identity matrix. This form
of fuzzy controller is generally used in many continuous-
time fuzzy systems designed through the PDC technique [5]–
[9], [31]. It can be seen that this PDC sampled-data fuzzy
controller provides a simpler controller structure. Under the
PDC approach, as Gk = NkX−1

1 , we have to set Nk = X−1 to
make Gk = I. Hence, by replacing Nk with X−1, Theorem 1
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Fig. 3. System state responses and control signals of the truck-trailer with time delay under the sampled-data fuzzy controller with J2 =

[
0.1 0 0
0 0.1 0
0 0 0.1

]

(solid lines) and J2 =

[
100 0 0
0 100 0
0 0 100

]
(dotted lines). (a) x1(t). (b) x2(t). (c) x3(t). (d) u(t) for 0s ≤ t ≤ 50s. (e) u(t) for 0s ≤ t ≤ 2s.

can be modified to verify the stability of the closed-loop system
with the PDC sampled-data fuzzy controller. Under the PDC
case, it can be seen that no feasible solution can be obtained.
In the proposed sampled-data fuzzy controller, the introduction
of the feedback gains Gk effectively enhances the nonlinearity
to compensate the unstable elements of the nonlinear system.
Consequently, an enhanced stabilization ability of the proposed
sampled-data fuzzy controller is offered as compared with that
of the PDC one.

V. CONCLUSION

A sampled-data fuzzy controller with enhanced nonlinearity
compensation ability has been proposed to deal with nonlinear
systems with time delay. The sampled-data fuzzy controller
can be implemented by a microcontroller or a digital computer
to reduce the implementation time and cost. LMI-stability
conditions have been derived based on Lyapunov method to
guarantee the system stability. A descriptor representation has
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been employed to facilitate the stability analysis. The complex-
ity introduced by the sampling actions and the number of LMI-
based stability conditions have been reduced. Furthermore, the
information of the membership functions of both the fuzzy
plant model and fuzzy controller has been used to ease the
satisfaction of the stability conditions. LMI-based performance
conditions have been proposed to help design a well-performed
sampled-data fuzzy controller. An application example has
been given to show the effectiveness of the proposed approach.

APPENDIX A

The proof of the LMI-based stability conditions in
Theorem 1 is given in this appendix. The stability of the
sampled-data time-delay fuzzy-model-based control system of
(11) is studied based on the descriptor representation [20].
From (2), the fuzzy model with time delay can be written
as follows:

ẋ(t) =y(t) (A1)

y(t) =
p∑

i=1

wi (Aix(t) + Adix(t− τd) + Biu(t))

=
p∑

i=1

wi ((Ai + Adi)x(t) + Biu(t))

−
p∑

i=1

wiAdi

t∫
t−τd

y(ϕ)dϕ. (A2)

To facilitate the stability analysis, the feedback gains are
defined as Gij = FiGj where Fi ∈ �m×n and Gj ∈ �n×n.
From (9), the sampled-data fuzzy controller can be written as
follows:

u(t) =
p∑

i=1

miFis(t) (A3)

s(t) =
p∑

i=1

miGix (t− τs(t))

=
p∑

i=1

miGix(t)−
p∑

i=1

miGi

t∫
t−τs(t)

y(ϕ)dϕ. (A4)

Considering (A2), we have the following property which will
be used during the analysis:

p∑
i=1

wi




0 0 0 0
0 0 0 0
0 0 0 0

Ai + Adi 0 Bi −I






x(t)
s(t)
u(t)
y(t)


−

p∑
i=1

wi




0
0
0

Adi




t∫
t−τd

y(ϕ)dϕ =




0
0
0
0


 . (A5)

Similarly, from (A3) and (A4), we have the following
properties:

p∑
i=1

mi




0 0 0 0
0 0 0 0
0 Fi −I 0
0 0 0 0






x(t)
s(t)
u(t)
y(t)


 =




0
0
0
0


 (A6)

p∑
i=1

mi




0 0 0 0
Gi −I 0 0
0 0 0 0
0 0 0 0






x(t)
s(t)
u(t)
y(t)




−
p∑

i=1

mi




0
Gi

0
0




t∫
t−τs(t)

y(ϕ)dϕ =




0
0
0
0


 . (A7)

To investigate the system stability, the following Lyapunov
function candidate is considered:

V (t) = V1(t) + V2(t) (A8)

where

V1(t) =x(t)TP1x(t) (A9)

V2(t) =

0∫
−hd

t∫
t+σ

y(ϕ)TRy(ϕ)dϕdσ

+

0∫
−hs

t∫
t+σ

y(ϕ)TRy(ϕ)dϕdσ (A10)

where P1 = PT
1 ∈ �n×n > 0 and R = RT ∈ �n×n > 0. It

will be shown that V̇ (t) ≤ 0 (equality holds when x(t) =
y(t) = 0) which implies asymptotic stability of the system.
From (A1) to (A4), and with the property that

∑p
i=1 wi =∑p

j=1 mj =
∑p

i=1

∑p
j=1 wimj = 1, we have

V̇1(t) =x(t)TP1ẋ(t) + ẋ(t)TP1x(t)

=




x(t)
s(t)
u(t)
y(t)




TPT




0 0 0 I
0 0 0 0
0 0 0 0
0 0 0 0


+



0 0 v0 I
0 0 0 0
0 0 0 0
0 0 0 0




T

P




×




x(t)
s(t)
u(t)
y(t)


 (A11)

where

P =




P1 0 0 0
P2 P3 0 0
P4 P5 P6 0
P7 P8 P9 P10
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and P2 ∈ �n×n, P3 ∈ �n×n, P4 ∈ �m×n, P5 ∈ �m×n, P6 ∈
�m×m, P7 ∈ �n×n, P8 ∈ �n×n, P9 ∈ �n×m, and P10 ∈
�n×n. From (A5)–(A7) and (A11), we have

V̇1(t) =
p∑

i=1

p∑
j=1

wimj




x(t)
s(t)
u(t)
y(t)




T

×


PT




0 0 0 I
Gj −I 0 0
0 Fj −I 0

Ai + Adi 0 Bi −I




+




0 0 0 I
Gj −I 0 0
0 Fj −I 0

Ai + Adi 0 Bi −I




T

P






x(t)
s(t)
u(t)
y(t)




− 2
p∑

i=1

wi




x(t)
s(t)
u(t)
y(t)




T

PT




0
0
0

Adi




t∫
t−τd

y(ϕ)dϕ

− 2
p∑

i=1

mi




x(t)
s(t)
u(t)
y(t)




T

PT




0
Gi

0
0




t∫
t−τs(t)

y(ϕ)dϕ.

(A12)

In the following, based on the property [29] that

−2a(t)TN̂iy(ϕ) ≤
[
a(t)
y(ϕ)

]T[ Ri Yi − N̂i

YT
i − N̂T

i R

] [
a(t)
y(ϕ)

]

where Ri = RT
i ∈ �4n×4n and

[
Ri Yi

YT
i R

]
≥ 0, i = 1,

2, . . . , p, the last two integral terms of (A12) can be
handled. Considering the second last integral term, i.e.,

−2
∑p

i=1 wi




x(t)
s(t)
u(t)
y(t)




T

PT




0
0
0

Adi


∫ t

t−τd
y(ϕ)dϕ and let

a(t) =




x(t)
s(t)
u(t)
y(t)


 and N̂i = Yi = PT




0
0
0

Adi


, and using the

property of τd ≤ hd, we have

−2
p∑

i=1

wi




x(t)
s(t)
u(t)
y(t)




T

PT




0
0
0

Adi




t∫
t−τd

y(ϕ)dϕ ≤ hd

p∑
i=1

wi




x(t)
s(t)
u(t)
y(t)




T

× Ri




x(t)
s(t)
u(t)
y(t)


+

t∫
t−τd

y(ϕ)TRy(ϕ)dϕ. (A13)

Similarly, considering the last integral term in the right-hand

side of (A13), i.e., −2
∑p

i=1 mi




x(t)
s(t)
u(t)
y(t)




T

PT




0
Gi

0
0


y(ϕ)

and using the properties of −2a(t)TM̂iy(ϕ) ≤
[

a(t)
y(ϕ)

]T
[

Si Ŷi − M̂i

ŶT
i − M̂T

i R

][
a(t)
y(ϕ)

]
and τs(t) ≤ hs where

M̂i=Ŷi=PT




0
Gi

0
0


, Si=ST

i ∈�4n×4n and

[
Si Ŷi

ŶT
i R

]
≥0,

i = 1, 2, . . . , p, we have

−2
p∑

i=1

mi




x(t)
s(t)
u(t)
y(t)




T

PT




0

Gi

0

0




t∫
t−τs(t)

y(ϕ)dϕ ≤hs

p∑
i=1

mi




x(t)
s(t)
u(t)
y(t)




T

× Si




x(t)
s(t)
u(t)
y(t)


+

t∫
t−τs(t)

y(ϕ)TRy(ϕ)dϕ. (A14)

From (A12)–(A14), we have

V̇1(t)≤
p∑

i=1

p∑
j=1

wimj




x(t)
s(t)
u(t)
y(t)




T

×


PT




0 0 0 I

Gj −I 0 0

0 Fj −I 0

Ai+Adi 0 Bi −I




+




0 0 0 I

Gj −I 0 0

0 Fj −I 0

Ai+Adi 0 Bi −I




T

P+hdRi+hsSj




×




x(t)
s(t)
u(t)
y(t)


+

t∫
t−τd

y(ϕ)TRy(ϕ)dϕ

+

t∫
t−τs(t)

y(ϕ)TRy(ϕ)dϕ. (A15)
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From (A10), we have

V̇2(t) =hdy(t)TRy(t)−
t∫

t−hd

y(ϕ)TRy(ϕ)dϕ

+ hsy(t)TRy(t)−
t∫

t−hs

y(ϕ)TRy(ϕ)dϕ

=




x(t)
s(t)
u(t)
y(t)




T 


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 (hd + hs)R






x(t)
s(t)
u(t)
y(t)




−
t∫

t−hd

y(ϕ)TRy(ϕ)dϕ−
t∫

t−hs

y(ϕ)TRy(ϕ)dϕ.

(A16)

With the facts that hd ≥ τd and hs ≥ τs(t), they lead
to

∫ t

t−hd
y(ϕ)TRy(ϕ)dϕ ≥ ∫ t

t−τd
y(ϕ)TRy(ϕ)dϕ and∫ t

t−hs
y(ϕ)TRy(ϕ)dϕ ≥ ∫ t

t−τs(t) y(ϕ)
TRy(ϕ)dϕ. From

(A8), (A15), and (A16), we have (A17), shown at the

bottom of the page, where z(t) = X−1




x(t)
s(t)
u(t)
y(t)


, X =

P−1 =




X1 0 0 0
X1 X1 0 0
X2 X3 X4 0
X5 X6 X7 X8


, X1 = XT

1 = P−1
1 ∈ �n×n,

X2 ∈ �m×n, X3 ∈ �m×n, X4 ∈ �m×m, X5 ∈ �n×n,
X6 ∈ �n×n, X7 ∈ �n×m, X8 ∈ �n×n, and

Qij =PT




0 0 0 I
Gj −I 0 0
0 Fj −I 0

Ai + Adi 0 Bi −I




+




0 0 0 I
Gj −I 0 0
0 Fj −I 0

Ai + Adi 0 Bi −I




T

P

+




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 (hd + hs)R


+ hdRi + hsSj .

Let XTRiX = Mi = MT
i ∈ �(3n+m)×(3n+m), XTSiX =

Ti = TT
i ∈ �(3n+m)×(3n+m), Gi = NiX−1

1 , and Fi =
KiX−1

1 where Ni ∈ �n×n and Ki ∈ �m×n, i = 1, 2, . . . , p.
From (A17), we consider the term in the right-hand side of the
last equation which is restated in (A18), shown at the bottom
of the next page.

When Q =
∑p

i=1

∑p
j=1 wimjXTQijX < 0, it can be seen

from (A17) that, V̇ (t) ≤ 0 which implies the asymptotic sta-
bility of (11). From (A18), by Schur complement, Q < 0 is
equivalent to the following condition:

Q =
p∑

i=1

p∑
j=1

wimjQij < 0 (A19)

where M = R−1 ∈ �n×n and Qij is defined as shown at the
bottom of the next page.

The symbol “∗” denotes the transposed element of the
matrix at the corresponding position. From (A19), let ρ > 0

V̇ (t) ≤
p∑

i=1

p∑
j=1

wimj




x(t)
s(t)
u(t)
y(t)




TPT




0 0 0 I
Gj −I 0 0
0 Fj −I 0

Ai + Adi 0 Bi −I


+




0 0 0 I
Gj −I 0 0
0 Fj −I 0

Ai + Adi 0 Bi −I




T

P

+ hdRi + hsSj +




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 (hd + hs)R








x(t)
s(t)
u(t)
y(t)




+

t∫
t−τd

y(ϕ)TRy(ϕ)dϕ+

t∫
t−τs(t)

y(ϕ)TRy(ϕ)dϕ−
t∫

t−hd

y(ϕ)TRy(ϕ)dϕ−
t∫

t−hs

y(ϕ)TRy(ϕ)dϕ

≤
p∑

i=1

p∑
j=1

wimjz(t)TXTQijXz(t) (A17)
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which is chosen such that wi − ρmi > 0, i = 1, 2, . . . , p, for
all x(t) and x(tγ), and using the property of

∑p
j=1 mj =∑p

i=1

∑p
j=1 wimj = 1, we have

Q =
p∑

i=1

p∑
j=1

(wi − ρmi + ρmi)mjQij

= ρ

p∑
i=1

miQii +
p∑

i=1

p∑
j=1

(wi − ρmi)mjQij

+
p∑

i=1

p∑
j=1

(wi − ρmi)mj(Λj − Λj)

= ρ

p∑
i=1

miQii +
p∑

i=1

p∑
j=1

(wi − ρmi)mjQij

+
p∑

i=1

p∑
j=1

(wi − ρmi)mjΛj − ρ

p∑
j=1

mj
(1− ρ)

ρ
Λj

= ρ

p∑
i=1

mi

(
Qii −

(1− ρ)
ρ

Λi

)

+
p∑

i=1

p∑
j=1

(wi − ρmi)mj(Qij + Λj) (A20)

where Λj = ΛT
j ∈ �(4n+m)×(4n+m), j = 1, 2, . . . , p, are ar-

bitrary matrices. From (20), it can be seen that Q < 0
if the stability conditions of Qii − ((1− ρ)/ρ)Λi < 0 and
Qij + Λj < 0 for all i and j are satisfied. The introduction
of Λj is to share the unstable elements between the two

matrices inside the summation terms in order to reduce the
conservativeness of the stability conditions.

It should be noted that the holding of the inequality of (A13)

requires

[
Ri Yi

YT
i R

]
≥ 0 for all i. Postmultiply

[
X 0
0 X1

]T
and premultiply

[
X 0
0 X1

]
to

[
Ri Yi

YT
i R

]
, we have

[
X 0
0 X1

]T [ Ri Yi

YT
i R

] [
X 0
0 X1

]

=
[

XTRiX XTYiX1

X1YT
i X X1RX1

]

=
[

Mi ∗
X1YT

i X X1M−1X1

]

≥ 0, i=, 1, 2, . . . , p. (A21)

It should be noted that (A21) is not an LMI due to the
existence of the term XM−1X. With the property that M =
MT > 0, we consider the following inequality:

(X1 − ζM)TM−1(X1 − ζM)

= XT
1 M−1X1 − ζXT

1 − ζX1 + ζ2M

> 0 ⇒ X1M−1X1 > 2ζX1 − ζ2M (A22)

Q =
p∑

i=1

p∑
j=1

wimjXTQijX

=
p∑

i=1

p∑
j=1

wimj






X5 + XT
5 ∗ ∗ ∗

Nj − X1 + XT
6 −X1 − XT

1 ∗ ∗
Kj − X2 + XT

7 Kj − X3 −X4 − XT
4 ∗

(Ai + Adi)X1 + BiX2 − X5 + XT
8 BiX3 − X6 BiX4 − X7 −X8 − XT

8




+ hdMi + hsTj + (hd + hs)




XT
5

XT
6

XT
7

XT
8


R




XT
5

XT
6

XT
7

XT
8




T (A18)

Qij =




X5 + XT
5 ∗ ∗ ∗ ∗

Nj − X1 + XT
6 −X1 − XT

1 ∗ ∗ ∗
Kj − X2 + XT

7 Kj − X3 −X4 − XT
4 ∗ ∗

(Ai + Adi)X1 + BiX2 − X5 + XT
8 BiX3 − X6 BiX4 − X7 −X8 − XT

8 ∗
(hd + hs)X5 (hd + hs)X6 (hd + hs)X7 (hd + hs)X8 −(hd + hs)M




+ hd

[
Mi 0
0 0

]
+ hs

[
Tj 0
0 0

]
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where ζ is a nonzero positive scalar. From (A21) and (A22), it
can be seen that the holding of the following LMIs implies the
holding of (A21):

[
Mi ∗

X1YT
i X 2ζX1 − ζ2M

]
≥ 0, i = 1, 2, . . . , p. (A23)

Similarly, the holding of the inequalities of (A14) requires[
Si Ŷi

ŶT
i R

]
≥ 0 for all i which hold when the following

LMIs hold:

[
Ti ∗

X1ŶT
i X 2ζX1 − ζ2M

]
≥ 0, i = 1, 2, . . . , p. (A24)

The sampled-data time-delay fuzzy-model-based control
system of (11) is asymptotically stable if wi − ρmi > 0, Qii −
((1− ρ)/ρ)Λi < 0 and Qij + Λj < 0 for all i and j and the
LMI-based stability conditions of (A23) and (A24) hold. Fur-
thermore, it can be seen that if there exists a solution to the sta-
bility conditions. It implies that X1 = XT

1 > 0, X4 + XT
4 > 0

and X8 + XT
8 > 0 which are sufficient conditions for X to be

a nonsingular matrix to guarantee the existence of the inverse
of X = P−1. Q.E.D.

APPENDIX B

The proof of the LMI-based performance conditions in
Theorem 1 is given in this appendix. The system performance
is quantitatively measured by the following scalar performance
index [30]:

J =

∞∫
0


 x(tγ)

s(tγ)
u(tγ)




T 
J1 0 0

0 J2 0
0 0 J3




 x(tγ)

s(tγ)
u(tγ)


 dtγ (B1)

where J1 = JT
1 ∈ �n×n > 0, J2 = JT

2 ∈ �n×n > 0 and J3 =
JT

3 ∈ �m×m > 0. It can be seen from the performance index
of (B1) that J is regarded as the integral of the energy of
system states and control signals. The contribution of each term
is governed by the corresponding weighting matrix J1, J2, or

J3 determined by the designer. From (A3), (A4), and (B1),
we have

J =

∞∫
0


x(tγ)

x(tγ)
s(tγ)




T




I 0 0

0
p∑

i=1

miGT
i 0

0 0
p∑

i=1

miFT
i




×

J1 0 0

0 J2 0
0 0 J3






I 0 0

0
p∑

i=1

miGi 0

0 0
p∑

i=1

miFi




×

x(tγ)

x(tγ)
s(tγ)


 dtγ . (B2)

Let J < η
∫ τ1

τ0


x(tγ)x(tγ)
s(tγ)




T
X−1

1 X−1
1 0 0

0 X−1
1 X−1

1 0
0 0 X−1

1 X−1
1




×

x(tγ)

x(tγ)
s(tγ)


 dtγ , where η is a nonzero positive scalar. The

scalar performance index can be attenuated to a prescribed
level governed by the value of η. Based on this condition and
from (B2), we have (B3), shown at the bottom of the page.

From (B3) and recalling that Gi = NiX−1
1 and Fi =

KiX−1
1 , i = 1, 2, . . . , p, we have

τ1∫
τ0


x(tγ)

x(tγ)
s(tγ)




T 
X−1

1 0 0
0 X−1

1 0
0 0 X−1

1


×

W


X−1

1 0 0
0 X−1

1 0
0 0 X−1

1




x(tγ)

x(tγ)
s(tγ)


 dtγ < 0 (B4)

where

W =
p∑

i=1

miW
(21)T

i

(
−W(22)−1

) p∑
j=1

mjW
(21)
j + W(11)

(B5)

τ1∫
τ0


x(tγ)

x(tγ)
s(tγ)




T






I 0 0

0
p∑

i=1

miGT
i 0

0 0
p∑

i=1

miFT
i




J1 0 0

0 J2 0
0 0 J3


×




I 0 0

0
p∑

i=1

miGi 0

0 0
p∑

i=1

miFi


− η


X−1

1 X−1
1 0 0

0 X−1
1 X−1

1 0
0 0 X−1

1 X−1
1






x(tγ)

x(tγ)
s(tγ)


 dtγ <0 (B3)
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where W(11) =


−ηI 0 0

0 −ηI 0
0 0 −ηI


, W(21)

i =


X1 0 0

0 Ni 0
0 0 Ki


, i = 1, 2, . . . , p, and W(22) =


−J−1

1 0 0
0 −J−1

2 0
0 0 −J−1

3


. It can be seen that the inequality of

(B4) holds when W < 0. From (B5) and by Schur complement,
W < 0 is equivalent to the following inequality:

W =
p∑

i=1

miWi < 0 (B6)

where Wi =
[
W(11) ∗
W(21)

i W(22)

]
, i = 1, 2, . . . , p.

It can be seen that inequality of (B6) holds when Wi < 0,
i = 1, 2, . . . , p, which are the LMI-based performance condi-
tions summarized in Theorem 1. Q.E.D.
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