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Abstract—Jerne’s idiotypic network theory postulates that the immune response involves inter-antibody 

stimulation and suppression as well as matching to antigens. The theory has proved the most popular 

Artificial Immune System (AIS) model for incorporation into behavior-based robotics but guidelines for 

implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique 

have not been demonstrated in the form of a comparison with non-idiotypic systems. This paper aims to 

address these issues. A method for integrating an idiotypic AIS network with a Reinforcement Learning 

based control system (RL) is described and the mechanisms underlying antibody stimulation and 

suppression are explained in detail. Some hypotheses that account for the network advantage are put 

forward and tested using three systems with increasing idiotypic complexity. The basic RL, a simplified 

hybrid AIS-RL that implements idiotypic selection independently of derived concentration levels and a full 

hybrid AIS-RL scheme are examined. The test bed takes the form of a simulated Pioneer robot that is 

required to navigate through maze worlds detecting and tracking door markers. 

 

Index Terms—Artificial immune system, behavior arbitration mechanism, idiotypic network theory, 

reinforcement learning. 

 

I. INTRODUCTION 

THE main focus of mobile robot research has been behavior-based reactive control since the publication of 

Brooks’ subsumption architecture in the mid-eighties [22]. This approach allows a degree of intelligence to 

emerge from competence module (individual behavior) interactions, but it is normally integrated with other 
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AI methods, for example reinforcement learning [17] or neural networks [14], as these provide greater 

flexibility for dynamically changing environments. More recently, researchers have been exploiting the 

learning and adaptive properties of the vertebrate immune system in order to design effective sensory 

response algorithms. In essence the immune system matches antibodies (receptors on b-cells) to antigens 

(foreign material that invades the body), so that b-cells with suitable receptors undergo stimulation, increase 

in number (clonal selection) and destroy the invading cells. Artificial Immune Systems (AIS) have a 

matching function that determines the strength of the bond between the antibody and antigen and they 

utilize a concentration parameter as an additional measure of antibody fitness. A comprehensive 

introduction to AIS systems and their applications is provided in [4]. 

Within mobile robotics, Farmer's [2] computational model of Jerne’s idiotypic network theory [1] has 

been notable as a means of inducing flexible behavior mediation and it has demonstrated some encouraging 

results. In these idiotypic networks, antibodies (competence modules) are linked both to antigens 

(environmental stimuli) and to each other, forming a dynamic chain of suppression and stimulation that 

affects their concentration levels globally. The system is balanced so that concentration levels also play a 

role in determining the degrees of stimulation and suppression that occur. This “global perspective” differs 

from the more conventional AIS approach (clonal selection theory [3]), which considers that only antibody-

antigen stimulation alters antibody concentrations. 

The success of the idiotypic systems has largely been attributed to the behavior arbitration capabilities of 

the communicating antibodies, but no attention has been directed towards proving that this is the case, or 

showing that other systems are inferior. In addition, there has been little attempt to explain the particular 

mechanisms by which antibodies stimulate and suppress each other and how this is able to improve robot 

performance. This paper aims to address these issues by providing a comprehensive description of a hybrid 

robot control system that implements Reinforcement Learning (RL) with a Farmer-based idiotypic network 

for antibody selection. Although the system described does not attempt to evolve network connections and 

uses a fixed set of antibodies, additional details missing from earlier narratives are supplied. In particular, a 
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rigorous account of the implementation of stimulation and suppression and some hypotheses that try to 

explain the idiotypic advantage are given. Most importantly, this paper seeks to test these hypotheses by 

undertaking a number of experiments that introduce idiotypic effects into the RL system gradually.  

In the first system (S1) an idiotypic network is not implemented and antibodies are selected on the basis 

of strength of match to antigens only. In effect this is a pure reinforcement learning system. The second 

system S2 is a hybrid that couples reinforcement learning with a simplified idiotypic network. Antibodies 

are selected by summing the effects of the network interactions to provide a global strength of match, but 

concentration levels do not influence the idiotypic process in any way. The third system S3 is a full AIS that 

bases selection on a combination of the global strength of match and the concentration level and also feeds 

the concentrations levels back to the network. This step-wise approach is important in attempting to assess 

and explain the effects of introducing the idiotypic network into the system. In addition, idiotypic dynamics 

have not previously been uncoupled from antibody concentrations when implementing the Farmer equation, 

which represents a novel investigation. 

The paper is arranged as follows. Section II provides background information including a brief account of 

the biological immune system that highlights the main differences between the more traditional clonal 

selection theory [3] and Jerne's idiotypic network theory [1]. The section also describes how the network 

theory has been applied to autonomous robot navigation and a short review of recent work in this field is 

given. Section III discusses the motivation behind the research, relating the problems associated with 

reinforcement learning and introducing some hypotheses that attempt to explain the idiotypic network 

advantage. Section IV details the navigation problem and environments that have been used as the test bed 

for the hypotheses. Section V presents information on system architecture, Section VI focuses on the 

experimental methodology adopted and Section VII reports on the results and their interpretation. Section 

VIII concludes the paper. 
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II. BACKGROUND 

A. Clonal Selection Theory 

In the adaptive immune system of vertebrates, b-cells play an important role in the identification and 

removal of antigens. The clonal selection theory [3] states that division occurs for b-cells with receptors 

that have a high degree of match to a stimulating antigen’s epitope pattern and that these cells then mature 

into plasma cells that secrete the matching receptors or antibodies into the bloodstream. The reproduction of 

the b-cells also causes a high rate of mutation so that weakly matching cells may mutate to produce 

antibodies with higher affinities for the stimulating antigen. Once in the bloodstream the antibody 

combining sites or paratopes bind to the antigen epitopes, causing other cells to assist with elimination. 

Paratopes and epitopes are complimentary and are analogous to keys and locks. Paratopes can be viewed as 

master keys that may open a set of locks and some locks can be opened by more than one key [2]. 

Some of the matching b-cells are retained in circulation for a long time, acting as memory cells. The 

efficiency of the immune response to a given antigen is hence governed by the dynamically changing 

concentration of matching b-cells, which in turn depends on previous exposure to the antigen. In this way, 

the immune system adapts by building up high concentrations of b-cells that have proved useful in the past. 

Diversity is maintained by replacement of the cells in the bone marrow at the rate of about 5% per day, 

during which time mutation can occur.  

 

B. Idiotypic Network Theory 

Jerne's idiotypic network theory [1] proposes that antibodies also possess a set of epitopes and so are 

capable of being recognized by other antibodies. Epitopes unique to an antibody type are termed idiotopes 

and the group of antibodies sharing the same idiotope belongs to the same idiotype. When an antibody's 

idiotope is recognized by the paratopes of other antibodies, it is suppressed and its concentration is reduced. 

However, when an antibody's paratope recognizes the idiotopes of other antibodies or the epitopes of 
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antigens it is stimulated and its concentration increases. Jerne's theory hence views the immune system as a 

complex network of paratopes that recognize idiotopes and idiotopes that are recognized by paratopes, see 

Fig. 1. This implies that b-cells are not isolated, but are communicating with each other via collective 

dynamic network interactions [10]. The network is self-regulating and continually adapts itself, maintaining 

a steady state that reflects the global results of interacting with the environment [1]. This is in contrast to 

the clonal selection theory, which supports the view that change to immune memory is the result of 

antibody-antigen interactions only. In addition, Jerne's theory asserts that antibodies continue 

communicating even in the absence of antigens, which produces continual change of concentration levels. 

This can be interpreted as two forms of inter-antibody activity, “background” communication which occurs 

perpetually and “active” communication that takes place only when antigens are present. In the latter case, a 

single antibody becomes more dominant since the cell with the paratope that best fits the antigen epitope 

contributes more to the collective response [11]. It presents itself to the system as the antigenic antibody 

[7], which disturbs the network, inducing further inter-antibody suppression and stimulation.  

 

C. Incorporation of the Network Theory into Mobile Robotics 

   Farmer et al. [2] propose that Jerne's hypothesis can be modeled as a differential equation simulating the 

changing concentrations of antibodies with respect to the stimulatory and suppressive effects and the 

natural death rate. Their model supposes that in a system with N antibodies [x1, x2 ... xN] and L antigens [y1, 

y2 ... yL], the differential equation governing rate of change in concentration C of antibody xi is given by (1). 
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The first sum in the square bracket expresses the stimulation of antibody xi in response to all antigens.  

Here, U represents a matching function between antibodies and antigens and the C(xi)C(yj) terms model that 
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the probability of a collision between them (and hence the probability of stimulation) is dependent on their 

relative concentrations.  The second sum represents suppression of antibody xi in response to all other 

antibodies. V is a function that models the degree of recognition for suppression and C(xi)C(xm) is the 

collision factor. The third sum models the stimulation of antibody xi in response to the other antibodies. The 

function W represents the degree of recognition for stimulation and C(xi)C(xp) models the collisions. The 

variable k1 allows possible inequalities between inter-antibody stimulation and suppression, but if k1 = 1 

these forces are equal. The k2 term outside the brackets is a damping factor, which denotes the tendency of 

antibodies to die in the absence of interactions, with constant rate. Variable b is a rate constant that 

simulates both the number of collisions per unit time and the rate of antibody production when a collision 

occurs.  

Equation (1) is based on the principle that antibody levels are dependent upon affinity between the 

antibody and the antigen, past use and the inter-antibody connections. The concentration levels are 

calculated dynamically in this way so that they can be used to determine fitness to the current environment. 

In addition, those with levels below a threshold can be eliminated from the system and replaced with new 

ones, as in nature.  

Some robotics researchers construct communication networks without using the Farmer equation. For 

example Sathyanath et al. [23], [24] and Opp et al. [25] implement mine detection in the multi robot 

domain by modeling the locations of the mines and robots as the antigen epitopes and antibody paratopes 

respectively. A broadcast network that communicates antigen location information between the antibodies 

is analogous to the Jerne network. Robots are stimulated to move towards the mine to aid in diffusing it 

when they receive its location and are suppressed and move randomly otherwise. Idiotopes are not modeled 

and play no role in determining suppression and stimulation levels. In addition, the number of robots 

remains constant, meaning that variable antibody concentrations cannot be implemented.  

However, most integrations of idiotypic selection and behavior-based robotics use the Farmer model 

since it approximates the biology very closely. For instance, Watanabe et al. [5], [6], [15] use the approach 
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for a garbage-collecting robot with conflicting objectives. They represent epitopes, paratopes and idiotopes 

as binary strings that model the sensor readings, pre-condition and disallowed condition of the antibody 

respectively and use a roulette wheel manner of selection based on antibody concentrations after idiotypic 

interactions. The work presented in [15] is concerned with using reinforcement signals to derive appropriate 

idiotopes that are initially random. References [5] and [6] use a genetic algorithm with devised crossover to 

evolve the idiotopes, the network connections and the number and types of antibodies. Michelan and Von 

Zuben [12] solve the same problem, proposing a similar evolutionary mechanism for determining the 

network connections but they do not establish the antecedent and consequent parts of the antibodies 

automatically. Vargas et al. [7] also use the garbage example but evolve the network structure with a 

genetic algorithm and update the attributes that define their antibodies using a Learning Classifier System 

(LCS) [8]. Antibodies are selected based on activation, given by the product of concentration and strength 

of match to antigens after idiotypic effects have been calculated. Reinforcement learning is used both on the 

selected antibody and on those connected to it in the network. Krautmacher and Dilger [13] apply the 

idiotypic technique to navigation in a simulated maze world using the same basic approach as Watanabe et 

al. [5], but their antigens are variable, being composed of an object type and an object position and they do 

not implement meta-dynamics, i.e. antibodies are not replaced. Luh and Liu [9] use an idiotypic system to 

overcome local minima problems, modeling their antibodies as steering directions and their antigens as a 

fusion data set consisting of orientation of goal, distance between obstacles and sensors and positions of 

sensors. They implement stimulation and suppression by defining trigonometric relations between the 

steering angles.  

In all the Farmer-based systems described ([5], [6], [7], [9], [12], [13] and [15]) antigens represent 

environmental situations, antibodies represent competence modules and the dynamics are governed using 

(1) or variations of it. However, the idiotypic controllers are not compared with base line systems to provide 

an indication of the idiotypic contribution to performance and no alternative selection procedures are tested. 

Furthermore, each paper assumes that the idiotypic system is readily adaptable to environmental change via 
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highly flexible behavior selection, but the underlying mechanisms by which the dynamics facilitate 

selection of efficient and adaptable solutions are not explained in any depth.  

 

III. MOTIVATION 

A. Problems with the Reinforcement Approach 

    When robots explore terrain they are forced to make generalizations about environmental information 

and respond to those conclusions. For example, the message object to right could apply to a multitude of 

different situations, for instance, where another object is also fairly close to the left or a situation where 

turning away too much could lead the robot away from its target position. For this reason, a non-adaptive 

controller that prescribes a fixed course of action for each generalization will almost certainly lead the robot 

into a trap, i.e. into a position where it cannot free itself or repeats its behavior indefinitely. 

Reinforcement learning, for example [16], [17] and [18] is more adaptive as it allows robots to score their 

performance and adjust their behavior accordingly, but it suffers from three main problems. First, the 

behaviors adopted and the speed of learning are too intimately linked with the reinforcement algorithms, 

which often need to be carefully engineered in order to yield a good solution. This compromises the 

system’s autonomy. Second, the technique tends to undergo premature convergence preventing certain 

behaviors from being selected; a score increase is immediately awarded to the first successful behavior and 

other potentially better actions are hence perceived as inferior and subsequently ignored.  Finally, when 

localized scoring structures are used, it can often take a long time for a robot to change its strategy when it 

gets caught in repeated behavior patterns that score positively in the local sense but do not contribute to 

achieving the overall goal. The delay is often caused by having to wait for an action's score to reduce 

sufficiently so that another is selected. If the reinforcement learning is not crafted carefully, robots can end 

up in never ending loops of repeated behavior. 
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B. The Idiotypic Advantage 

When Farmer-based idiotypic systems are implemented, behavior selection is a three stage process. The 

first stage is the nomination of the antibody with the highest strength of match to the presenting antigens 

(the antigenic antibody or stage 1 winner). In biological systems this degree of match is a physical attribute 

of the antibody's paratope, but in robotics where antibodies represent actions it is never accurately known 

and needs to be estimated, for example using current reinforcement learning scores. 

During the second stage idiotypic suppression and stimulation occur. The antibodies with idiotopes that 

are recognized by the stage 1 winner's paratope are suppressed and those with paratopes that recognize the 

stage 1 winner's idiotope are stimulated. Earlier works have hinted that antibodies of the same type or 

species (i.e. valid “alternatives”) should be chosen for stimulation and that different species should be 

suppressed.  For example Watanabe et al. [5] suggest that stimulation and suppression chains work as a self 

and non-self recognizer. In addition Jerne [1] maintains that when an antibody paratope recognizes a 

foreign idiotope the suppressive forces dominate. This is not to say that antibodies identical to the stage 1 

winner should be stimulated and others suppressed because this would exacerbate premature convergence. 

The main function of idiotypic communication is to promote those antibodies that demonstrate a balance 

between similarity with and difference from the first winner. Simplistically this can be viewed as 

stimulation of antibodies of the same basic type (or species) but possessing different parameters. For 

example, reversing backwards in a straight line and reversing with a left spin of 30º are both of type 

“reverse” but have different spin components.  Stimulation increases strength of match and suppression 

reduces it so that the antibody with the highest strength of match after these effects have been calculated has 

a high chance of being selected to execute its action. The actual antibody chosen also depends on the third 

stage, which considers current antibody concentration levels as well as the strength of match. In some cases 

the final elected antibody is the stage 1 winner; in others a different antibody may be called.  

Theoretically, one should see improvement in a robot's performance when idiotypic suppression and 

stimulation are introduced into reinforcement learning based behavior selection. This is because the 
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idiotypic system is potentially able to overcome the three main problems listed above. Although the system 

is still highly dependent on the structure of the reinforcement learning (since antibody-antigen matrices are 

updated according to the reinforcement scores awarded), the action with the highest stage 1 fitness is not 

always selected and the concentrations of all antibodies are adjusted according to the degrees of stimulation 

and suppression. This should instigate a degree of detachment from the engineered learning, providing a 

more autonomous approach. In addition, the method should significantly reduce premature convergence 

since antibodies with lower stage 1 fitness should also get a chance to demonstrate their abilities and 

increase their fitness. This offers increased flexibility to derive more creative solutions to problems. In 

addition, robots should be able to break out of repeated sets of behavior much faster since they do not have 

to wait for fitness to reduce before another behavior is selected. The idiotypic network should provide a 

more dynamic system that demonstrates a higher rate of antibody change, potentially enabling the robot to 

break the cycle. Even if the cycle is not broken straight away, the dynamics should ensure that a suitable 

behavior is eventually chosen. 

 

C. Hypotheses on the Performance of Idiotypic Networks 

As stated above, an idiotypic network should be able to overcome the problems associated with 

reinforcement learning. To this end, three hypotheses are proposed as follows: 

 

H1 The idiotypic network system shows a degree of de-coupling from engineered reinforcement learning 

and hence provides a more autonomous approach. 

H2  The idiotypic network system significantly reduces the problem of premature convergence. 

H3 The idiotypic network system allows rapid escape from repeated behavior patterns or prevents them 

from happening entirely. 

 

Note that H3 is linked to H2 since reduced premature convergence facilitates a less greedy strategy, which 
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encourages more varied behaviors. The following sections describe the problem, models, programs and 

experimental procedures that are used to test the above hypotheses. 

 

IV. TEST ENVIRONMENT AND PROBLEM 

 

The agents used in this research are virtual Pioneer P3DX robots that are required to navigate around 

maze worlds developed with Stage 2.0.1, a 2D simulator for the Player 2.0.1 interface [19]. For example, 

Maze World represents a fictitious building in which the robot must travel through six rooms A – F, 

avoiding obstacles and entrapment (see Fig. 2). Small square cyan markers are used to indicate the 

doorways and competence modules for detecting them with a camera and tracking them are provided. Once 

the robot has passed a marker or doorway, the path back is manually blocked using the movable blocking 

lines shown in Fig. 2. The blocking positions are also indicated using dashed lines. This procedure 

effectively simulates automatic closure of the doors once the robot has passed through.  

The robot carries a SICK LMS 200 laser with minimum range set at 0.0 m and maximum range set at 8.0 

m. The device takes 361 readings covering the front 180° and measures the distances between the robot’s 

centre and any obstacles ahead.  When processing the data this area is divided into eight equal sectors 0 – 7 

each 22.5° wide, with sectors 3 and 4 at the front of the robot, sectors 0, 1 and 2 to the left and sectors 5, 6 

and 7 to the right. The minimum reading and its sector, the sector with the maximum reading and the 

average reading are determined. A Canon VCC4 pan-tilt-zoom camera and blob finding software are used 

to search for the door markers. The blob finding software enables translation of the camera data into groups 

of like-colored pixels or blobs distinguishable by their RGB value. The camera remains fixed ahead at 0° at 

all times, with field of view set to 60°. The internal odometry determines the distance traveled and eight 

rear sonar measure the average distance behind the robot.  

The robot is started in room A1 in the position shown, with its final target mid-way through room F, i.e. it 
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is allowed to stop when the blob area from the final line is greater than 1,000 pixels. The robot's 

performance is assessed according to how fast it completes the journey and by the number of collisions with 

the obstacles or walls. Additionally, Mirror World, a mirror image of Maze World is used to test the robot's 

performance after initial training has been carried out. 

The mazes are deliberately designed to facilitate the drawing of more general conclusions, i.e. the 

problems are entirely solvable but provide a level of difficulty suitable for differentiating between weak and 

strong methodologies. For example, the doors are wide enough for the robot to pass through, but small 

enough so that very refined movements are required if the robot is to pass without collision. Obstacles are 

strategically placed so that doorways are not blocked, but also so that freedom of movement is restricted in 

some places. The course is kept fixed throughout all experiments to provide a fair comparison between the 

different approaches. Although it may be argued that variation of the environment is limited, there are 

several rooms in the world and each of these may be considered a sub-environment. Furthermore, the 

worlds used have proved extremely non-deterministic. 

The control software uses the libplayerc++ client library developed for use with the Player server (version 

2.0.1) and it is run on GNU/Linux 2.6.9 (CentOS distribution) with a Pentium 4 processor and 3.6 GHz of 

memory. All simulations are run in real time.  

 

V. SYSTEM ARCHITECTURE 

A. Equations Used to Model the Network 

The functions V and W in (1) model both background antibody communication and active antibody 

communication, i.e. they compare each antibody with all of the others so that the levels of stimulation and 

suppression can be determined. Background communication is not simulated here as active communication 

represents a stronger force and since in this system all environmental situations are modeled as antigens 

(even the case where average sensor readings are high), active communication is of most interest. In 
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addition the removal of background communication produces a simpler system, as each antibody need only 

be compared with the antigenic antibody denoted here as xw1. The communication is mimicked by 

comparing the paratope of xw1 with the idiotopes of the other competing antibodies and vice versa. This 

involves constructing a paratope matrix P that shows the strength of match between antibodies and antigens 

and an idiotope matrix I that shows disallowed matches so that desired combinations can be recognized 

against unwanted ones. The process of computing the internal network effects thus consists of summing P 

and I strength of match values between antigens and antibodies. A variation of Farmer's equation (2) that 

sums the inter-antibody suppressive and stimulatory effects over the number of antigens L rather than the 

number of antibodies is hence used. The idiotypic matching functions are termed V’ and W’ here to 

distinguish them from functions V and W in (1). Another important difference is that equation (2) uses 

concentration of the antigenic antibody C(xw1) rather than that of every antibody in the system C(xm) and 

C(xp) in (1). In addition, the antigen concentration term C(yj) and the associated C(xi) term in (1) have been 

removed from the first part of (2) since antigen concentrations are not modeled and their relative 

importance is already represented by weighting them according to a priority ranking. Other than this, the 

terms in (2) are identical to those used in (1), which are fully explained in Section II, Part C. 
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Equation (2) must be evaluated in separate parts, since the antigenic antibody xw1 is unknown until the 

first sum in the square brackets is used to determine it. It is therefore split into five separate equations (3) – 

(7). Equation (3) represents the first sum in the square brackets, i.e. T1(xi) is the strength of match of 

antibody xi to the set of presenting antigens and U is the antigen matching function. Once (3) is evaluated 

for all antibodies, the antibody with the highest T1(xi) value is selected as the antigenic antibody xw1, 

therefore equation (3) is always processed first. Equation (4) represents the second sum in the square 
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brackets, i.e. T2(xi) calculates the suppression in antibody xi by using V’ as a suppressive matching function 

and modeling the probability of collisions between antibodies xi and xw1. Similarly, T3(xi) in (5) sums the 

stimulation in xi, using W’ as a stimulatory matching function. Functions U, V’ and W’ are expressed in 

terms of P and I and are explained further in Part D. Tg(xi) in (6) represents the global strength of match, a 

strength metric that encompasses all molecular activity, i.e. Tg(xi) equates to all of the terms in the square 

bracket in (2). The parameter k1 in (6) is the same as in (1) and (2). 

Equation (7) is equation (2) re-written in terms of Tg(xi) and it expresses the rate of change of 

concentration of antibody xi with time. As the concentrations must be computed discretely, a difference 

equation form of (7) is used, (8). 
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In hybrid AIS systems antibody fitness F is often measured using a combination of metrics that represent 

the individual components of the scheme. For example [7] uses activation A(xi), defined as the product of 
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the global strength of match Tg(xi) and the concentration, see (9). This method of assessing fitness is 

adopted here as it incorporates both the AIS and reinforcement learning aspects of the hybrid system. 

 

)()()( 1 ig+tii xTxC=xA                           (9) 

 

B. Choice of Antibodies and Antigens 

As in many previous robot AIS systems ([5], [6], [7], [9], [12], [13] and [15]), environmental situations 

are modeled as antigens and competence modules are modeled as antibodies. For simplicity, fixed numbers 

are used (8 antigens and 16 antibodies) and antibody replacement is not implemented. 

The set of antigens (listed in Table I) is given a priority structure based on the principle that the needs of 

some situations outweigh those of others. For example, if the robot is stalled against a wall it must take 

action to free itself before it can deal with less urgent problems such as an object to the left. Since antigens 

0 – 6 have a wide application to most robot navigation problems and antigen 7 would be useful for any 

problem involving tracking an object, this priority ranking is reasonably unspecific and means that more 

general conclusions may be drawn from the experiments. The condition parameters are selected from the 

results of conducting pre-trials that enabled the door tracking task to be carried out efficiently using system 

S1.  

The antibody repertoire, i.e. the set of possible behaviors listed in Table II, is selected on the basis of 

providing the robot with the ability to move in a number of different directions and at a number of different 

speeds covering both the front and rear. In addition, selection of more intelligent actions such as wandering 

toward the maximum laser reading and tracking the door markers are provided. Apart from tracking the 

markers, all the actions may be considered generic to navigation problems that require a robot to avoid 

obstacles and traps. The maximum speed permitted M is 2.0 m/s. 
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C. The Paratope and Idiotope Matrices 

Five different paratope matrices P1 - P5 (antibody-antigen strength of match matrices) are used in the 

experiments. To help minimize any initial bias these are prepared beforehand by generating random 

element values P[xi, yj] between 0.50 and 0.75, i.e. not too high and not too low. These values are then 

adjusted by adding a small number δ(xi) (positive or negative) to each antibody's elements so that the mean 

across each row of P is 0.625. Variable δ(xi) is given by (10) where the original mean for row i is denoted 

by µi and the desired mean by µd. Again, L is the number of antigens. The derivation is given below. 
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When the program executes the elements of P are updated approximately once each second using 

reinforcement learning. However, it is worth noting that values are not allowed to fall below 0.00 or rise 

above 1.00. 

Only one fixed idiotope matrix I is used, i.e. it is not permitted to change, either within the duration of the 

robot's run or throughout the course of the experiments. This is deliberate in order to render easy 

investigation and explanation of the idiotypic mechanisms. The matrix is hand coded according to 

perceived disallowed antibody-antigen combinations, i.e. pairs that would produce non-sensible or 

unwanted actions are given positive element values, see Table IV. Numbers in the range 0.00 to 1.00 are 

possible, but the sum of elements for each antibody (across all antigens) is set to 1.00. This is to reduce the 

likelihood of any antibody becoming over stimulated or suppressed. The positive values indicate the level 

of confidence that the combination is poor in some way. Null values do not necessarily indicate a good 
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combination, they merely show complete uncertainty. 

 

D. The Algorithm and Matching Functions 

The random, variable paratope matrix P and fixed idiotope matrix I are both imported from files and the 

robot sensors are read in a continuous loop. The system checks the sensor data for the presence of antigens 

approximately once per second, i.e. every ten iterations of the continuous loop.   

Multiple antigens are allowed to present themselves simultaneously, but one is deemed dominant 

according to the priorities given in Table I. An antigen array G(xi) is formed, which has value 0 for non-

presenting antigens, value 2 for a dominant antigen yd with P[xi, yd] > 0, value 0 for a dominant antigen 

with P[xi, yd] = 0 and value ¼ for all other presenting antigens, so that the dominant one receives greater 

weighting for all antibodies with positive P[xi, yd]. For example, if antigens 2, 4 and 7 present themselves 

then G(xi) = [0, 0, ¼, 0, 2, 0, 0, 0, ¼], provided P[xi, yd] > 0.  

An antibody is selected to have its action executed in response to the presenting antigens and this is 

effectively a three stage process. The first stage is selection of the antigenic antibody xw1 by computing 

T1(xi), i.e. summing strength of match to the antigen set using (3), where the matching function U is defined 

by (11) below. Here P is the paratope matrix and G is the antigen array. 

 

jijiij xGy,xP=U )(][                          (11) 

 

This definition of U uses the weighted current reinforcement scores for antigen matching and ensures that 

all antibodies with zero match to the dominant antigen are discounted, i.e. are assigned T1 = 0. This is 

important since reinforcement learning operates on the degree of match to the dominant antigen. Negative 

scoring would therefore have no effect on antibodies with zero match since match values are not allowed to 

fall below zero. Once xw1 is determined it presents itself to the idiotypic network as the antigenic antibody. 
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The second stage is summing the stimulation and suppression that the antigenic antibody causes. In other 

words each antibody’s global strength value Tg(xi) is calculated by computing the T2(xi) and T3(xi) values 

from (4) and (5) that represent the effects of suppression and stimulation respectively. In this algorithm all 

other antibodies with T1 > 0 must compete with xw1 for selection via the idiotypic process. Note that xw1 

does not compete with itself, i.e. it is not permitted to stimulate or suppress itself; its strength remains 

unchanged throughout the entire second stage, i.e. Tg(xw1) = T1(xw1), T2(xw1) and T3(xw1) = 0. In addition, 

non-competing antibodies must have Tg = T1 = T2 = T3 = 0. For this purpose, an antibody array H is formed 

that has value 1 for competing antibodies with T1 > 0, but value 0 for antibodies with T1 = 0 and antibody 

xw1. The function V’ in (4) is given by (12) below, where I is the fixed idiotope matrix.  

 

imimwim Hy,xIy,xP=V ][][ 1′                          (12) 

 

Under this definition of V’ equation (4) simulates suppression by comparing the stage 1 winner's paratope 

with the competing antibody's idiotope. Since the paratope constitutes approved antigen matches and the 

idiotope shows disallowance, the product of these elements provides a good indication of the level of 

suppression that should be induced in the competitor.  

 

( ) ipwpiip Hy,xIy,xP=W ][][1 1−′                          (13) 

 

The function W’ in (5) is given by (13). This definition allows equation (5) to mimic stimulation, this 

time examining the stage 1 winner’s idiotope and the competing antibody’s paratope. A low paratope 

element coupled with a positive idiotope value indicates a possible similar species and that the antibody 

should be stimulated. Here, the paratope element is subtracted from 1 in order that the elemental product 

yields high values for a high level of stimulation.  

Equations (4) and (5) show that the elemental products in (12) and (13) are summed over all the antigens 
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and multiplied by the concentration terms.  In this way an individual antibody may undergo multiple 

idiotypic suppressions and stimulations. The net result of these and the original antigen matching 

determines Tg(xi) via (6). 
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The third stage involves the use of (8) to calculate each new antibody concentration and (9) to calculate 

activation. Here, the term concentration is used to mean the proportional number of clones of an antibody 

type in circulation if the total number is held at N, where N is the number of antibodies. Therefore all 16 

antibodies begin with equal concentrations of 1. Once the new concentration values are derived from (8) 

they are normalized using (14), and multiplied by N to keep the total number of clones at 16. This process 

prevents scaling problems that arise when the total number becomes too high and is in keeping with many 

other investigations involving AIS networks, for example [6] and [21]. In addition, studies with mice have 

suggested that an almost constant number of b-cells are active, so it is likely that there is a mechanism in 

nature that controls this [20]. 

In order to test the hypotheses H1 - H3, an incremental approach is adopted, i.e. three experimental 

systems S1 – S3, each with increasing levels of idiotypic complexity are used to solve the navigation 

problem and the performance of each is compared in terms of the speed and agility of the robot.  S1’s 

overall winning antibody is always xw1 but S2’s is the antibody with the highest global strength of match 

Tg(xi) and S3’s is the one with the highest activation A(xi).  S1 and S2 are therefore simply sub-programs of 

S3 that implement only stages 1 and 2 respectively. In addition, S1 and S2’s antibody concentrations are 

held constant at 1 throughout, i.e. the terms C(xi) and C(xw1) in (4) and (5) are effectively ignored to 

simplify the dynamics and provide an indication of the effect of introducing a network that is independent 

of concentration. However, in S3 the concentration levels are allowed to vary, i.e. the system implements 
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the concentration terms in (4), (5), (8) and (9) as variables, which represents a full AIS system. Table III 

summarizes the three systems and describes how fitness is measured for each. 

Since fitness in S1 does not consider idiotypic effects and ignores concentrations of antibodies it is purely 

an RL system that uses P as a belief table for executing actions. It is in no sense an AIS. S2 is not a true AIS 

as it does not base selection on a function of antibody concentration and molecular collisions are not 

modeled within the network. In addition, the system has no global feedback from the network as the 

strength Tg(xi) is used only to select the fittest antibody, and only the fittest undergoes a paratope adjustment 

from reinforcement learning. The Tg(xi) values for the other antibodies are not used to adjust the paratope in 

any way. System S3 represents a true AIS because feedback from the network is global through alteration of 

all antibody concentrations using (8) and there is also feedback from concentrations to the network since 

collisions between molecules are modeled in (4) and (5). 

To illustrate use of the equations (3) – (6), Table VI shows the results of calculating T1(xi), T2(xi), T3(xi) 

and Tg(xi) using the idiotope values from Table IV and the example paratope values given in Table V. In 

these calculations all antibody concentrations are held constant at 1 for simplicity, as in the case of S2 and 

k1 is set at 0.625.  In the example, the antigens presented to the system are 1, 3 and 5, hence 5 is dominant. 

The table shows that the stage 1 winner is antibody 14 but that the idiotypic processes nominate antibody 

10, i.e. an alternative reverse antibody as the overall winner. 

Once the fittest antibody has been chosen it executes its action and its effect is assessed using 

reinforcement learning. The appropriate element of the paratope matrix P is either increased or decreased, 

depending on whether a reward or penalty is issued by the reinforcement algorithm. 

 

E. Reinforcement Learning 

Reinforcement learning occurs when knowledge is implicitly coded in a scalar reward or penalty function. 

There is no teacher and no instruction about the correct action, just a score that is yielded by the robot’s 

interaction with its environment. Here, the technique is employed for dynamic estimation of the degree of 
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match between antibodies (actions) and antigens (environmental situations).  

This paper seeks to compare a basic RL system (S1) with hybrids that utilize an idiotypic network (S2 

and S3) and thus establish whether the idiotypic treatment enhances robot performance. It is therefore 

essential to construct a good reinforcement scheme to test whether the network can add something to a 

design that already performs reasonably well. For this reason, a scheme that is highly engineered is used.  

This is based on a “brute force” approach that coerces the robot into behaving in a desirable way, e.g. by 

penalizing it for going backwards under certain conditions. The reward and penalty increments coded are 

ratio orientated e.g. the robot is rewarded more when it travels fast than when it travels slow if the sensors 

show no danger.   

As well as testing a good RL algorithm, a weaker strategy is also employed as a direst test for H1. If 

idiotypic robots can produce good results despite using poor learning then they will have demonstrated a 

degree of detachment from the structured reinforcement signals.  

In both strategies the reinforcement value rf is set to 0 at the start of the learning exercise, which is carried 

out once every ten loops but five loops out of synchronization with the completion of the actions. In other 

words, approximately half a second after acting, the selected antibody's performance is scored either 

negatively or positively by re-reading the sensor values and using one of the scoring algorithms described 

below. The algorithm used is largely dependent upon the dominant antigen. However, this does not render 

the scheme too problem specific because the antigens represent environmental situations that are reasonably 

universal to navigation and tracking problems. A brief description of the stronger reinforcement design is 

given below. Note that the absolute values of the scoring parameters are not presented as they are somewhat 

arbitrary. The network system S3 should be able to work alongside any basic RL scheme to enhance 

performance.  

For dominant antigens 0, 1 and 2 (obstacles present) the learning algorithm provides linear rewards for an 

increase in the distance between the robot and the obstacle and linear penalties for a decrease. However, if 

the sector producing the minimum reading changes it is not immediately obvious whether the robot is 
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encountering the same object, so the scores are reduced by a factor of 4. Reverse antibodies are awarded an 

additional penalty since reversing away from obstacles does not contribute to the overall goal of moving 

forwards towards the target.  

For dominant antigen 4 (low average laser reading) the algorithm scores in a linear fashion, rewarding an 

increase in average laser reading and penalizing a decrease. As one of the objectives of robot navigation is 

to utilize space so that collisions are avoided it also makes sense to reward any antibody that is able to 

move the robot forward from enclosed to more open areas. The change in average reading is hence also 

used as a global assessment metric for all cases, regardless of the dominant antigen.  In addition, reverse 

antibodies that have reduced the average reading are penalized further to discourage their general use. 

Reversing is contrary to the overall goal and should only be necessary to escape from stall situations.   

When antigens 5 or 6 (stalled or blocked behind) are dominant assessment is based on the distance 

traveled in the half second between reading the sensors and scoring. This scheme provides linear rewards 

for movement and a fixed penalty for failing to move. 

The algorithm for dominant antigens 3 and 7 (average reading above threshold and door marker seen) 

rewards faster antibodies as the robot can afford to travel quickly when no obstacles are present and it is not 

trapped. Slower antibodies receive a small penalty. Additionally, antibodies that keep the door marker in 

sight are rewarded further and the score is even greater for those moving directly toward it. In contrast, 

antibodies close to a door marker that then lose sight of it are penalized. Again, rf is reduced for negative 

speeds. 

The final reinforcement learning score rf (either positive or negative) is added to the paratope matrix 

element P[xw, yd], i.e. that representing the affinity between the dominant antigen yd and the overall winning 

antibody xw. However, if P[xw, yd] becomes negative as a result of this, it is set to 0. The algorithm is 

summarized by (15) below. 

 

( )0.51 )(][0,][ MAX +tftdw+tdw r+y,xP=y,xP                          (15) 



 

 23 

 

Any antibodies that are penalized also have their concentration increase removed, i.e. their concentration is 

set back to the figures from the previous iteration.  

The weaker learning strategy is the same as that described above except that it over penalizes the obstacle 

avoidance antibodies 1, 2, 4, 5, 6, 7, 8, 9 and 12 by applying the door tracking part of the algorithm for 

dominant antigens 3 and 7 to all antigens. This is too tough a test and as a result robots do not tend to 

develop very good obstacle avoidance strategies. The program architecture also differs slightly as all 

dominant antigens, even those with zero P[xi, yd], are given a value of 2 in the array G(xi) in (11). The 

system is thus less robust since antibodies with zero match to the dominant antigen may be selected, 

meaning that negative reinforcement scoring has no effect. This encourages repeated behavior.  

 

VI. EXPERIMENTAL PROCEDURES 

A. Measuring Robot Performance and System Properties 

The program recognizes a collision when the dominant antigen is either blocked behind or stalled. 

However, on its own the number of collisions or stalls ns does not represent a good measure of task fitness 

since it does not allow for robots that are highly cautious but too slow. Robots should be able to complete 

the course as rapidly and with as few stalls as possible. On the other hand, the time to complete the course t 

does not provide an indication of the robot's safety attributes; a fast robot is no good if it damages itself or 

the environment. For this reason a score metric S that combines the run time with the number of stalls is 

used to determine task fitness. S is defined by (16), where φ is the ratio of mean t to mean ns over all 

experiments (17). The score thus gives equal weighting to ns and provides a linear combination of the two 

metrics that has the same mean as t over all runs, see proof below. Throughout these experiments φ is set at 

9.08, the figure computed in a series of pre-trials using all three systems, S1 – S3.  
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In addition to S, the reinforcement success rate, defined as the percentage of positive scores awarded and 

the rate of antibody change (the percentage of selected antibodies that differ from the previous iteration) are 

measured for each system. For S2 and S3 the rate of idiotypic difference (the percentage of iterations where 

the stage 1 winner and final winner differ) and reinforcement success rate when an idiotypic difference 

occurs are calculated, both over the entire run and during stall conditions only. These metrics may help in 

explaining any perceived differences between the systems. A set of data that shows the iteration number 

and antibody used during a collision is also preserved. 

 

B. Selection of Parameters – Initial Investigation 

Before exhaustive comparisons of the three systems are carried out, several preliminary investigations are 

undertaken to establish suitable parameters for b and k1 in equations (6) and (8). However, since all 

antibodies are to be retained in the repertoire without replacement, it is not necessary to test so stringently 

for an acceptable value for k2. This parameter serves mainly to determine how rapidly antibodies die out in 

system S3, so as long as it is kept low in comparison to b no antibodies are removed from the system. 

Testing has shown that a value of 0.05 is effective for this purpose when the system is implemented with 8 

≤ b ≤ 800 and with 0.00 ≤ k1 ≤ 1.00. If a meta-dynamic system were to be used, k2 would become much 

more important, see [21]. As antibody replacement is not the focus of this work, the value of 0.05 is 

retained throughout all further experiments.  

In order to establish satisfactory values for b and k1 the Maze World environment is used as the test bed 
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with the robot using the initial paratope matrix P1.  As a precursor to a more thorough treatment, first b is 

set at 8 for system S3 and a set of results for k1 values between 0.0 and 1.0 are determined by finding the 

mean score S for six runs. Next b values of 80 and 800 are trialed in the same way and a set of mean scores 

for system S2 and a mean score for system S1 are found. For S1 30 runs are completed and a 95% 

confidence interval is computed using a standard one-tailed t-test. The mean rate of idiotypic difference is 

also measured for systems S2 and S3 each time. Fig. 3 shows a plot of mean score against k1 for S2 and for 

S3 using the different b values and Fig. 4 shows mean idiotypic difference rate. Although system S1 does 

not use k1 its performance is included in Fig 3. as a straight line for comparison purposes.   

The chart in Fig. 4 shows that k1 has a great effect on the degree of idiotypic influence for both S3 and S2 

and strongly suggests that this is independent of the value used for b in S3.  It also shows that k1 values in 

the range 0.0 to 1.0 produce difference rates almost between 0% – 90%, although after k1 = 0.8 this tails off 

to about 4%. In fact, the relationship between k1 and idiotypic difference rate appears almost linear, which  

fits in with the theory since from (6) a low k1 should reduce the suppression of antibodies, producing a high 

number of iterations where the antibody selected first differs from the final winner. In contrast, a higher 

value should increase suppression and reduce the rate of difference. It is also notable that for k1 values 

lower than about 0.8 S2’s rates are slightly lower than those of S3. 

 The chart in Fig. 3 provides clear evidence that the performance of the robot is dependent upon selecting 

appropriate values for both k1 and b.  The 95% confidence interval for the mean score of S1 is between 402 

and 265, which means that out of the four other systems trialed, only S3 with b set at 8 or 80 is likely to be 

able to produce results with significantly better scores. System S2 and system S3 with b = 800 both stay 

within these confidence limits for all values of k1 tested. In addition, for b = 80 and b = 8 the region of the 

x-axis between 0.45 and 0.65 shows a trend towards a dip in mean score, which remains well below the 

lower limit for S1.  

The evidence from Fig. 3 and Fig. 4 suggests that there is an optimal level for the idiotypic difference rate 

and hence for k1; a low level of suppression (low k1) produces a system that tries alternative behaviors too 
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often as it is not strict enough in its selection of them, but a high suppression level (high k1) creates a system 

that does not try them often enough as it is too rigid. Hence a system with a higher k1 value has a lower 

idiotypic difference rate and as the k1 value becomes higher it becomes less distinct from system S1, which 

has 0% difference since it does not use idiotypic selection. This theory is supported by Fig. 3 as the lower k1 

values remain within the bounds for the mean score of S1 for all the systems tested.  Alternatively, as k1 

approaches zero the robot will tend not to accept the winner from stage 1 and will hence miss out on 

striking a desirable balance between accepting and rejecting it. Consequently, its performance deteriorates 

as evidenced in the graph.  

Fig. 4 shows a remarkably similar pattern of idiotypic difference for widely different b values, suggesting 

that b does not have much influence on idiotypic stimulation and suppression levels. However it is clear 

from Fig. 3 that a b value of 800 is not likely to out-perform S1 for any given k1 value, so how can this be 

explained?  From (8) it is apparent that b plays an important role in determining the weighting that is given 

to the global strength of match Tg when calculating the new concentration values. It is therefore used to 

provide an indication of the relative importance of Tg against the historic concentration value C(xi)t. Use of 

lower values favors antibodies that have been successful in the past, whereas a high value tends to produce 

a system that chooses those that best match current environmental information. In addition, a higher value 

gives rise to a faster rate of change of concentration meaning that levels can build up and reduce rapidly 

between iterations, providing a more useful indication of antibody fitness. It is likely that there is a range of 

values that strike a good balance between using historical data and current environmental information and it 

is probable that 800 is too high for this range when implementing this reinforcement structure with this 

particular environment and idiotope. 

There is an extremely high level of correlation between the score data, stall data and task completion time 

data, i.e. the patterns in the graphs are almost identical. For this reason, it is sufficient to proceed by 

examining score data only. 
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C. Selection of Parameters – More Detailed Investigation 

In order to gain a better understanding of the role of b and k1, a wider range of b values (8, 15, 20, 40, 60, 

80, 100, 120, 160, 200 and 800) is examined. This range is used for k1 between 0.45 and 0.65 in increments 

of 0.50, adopting the same experimental procedure, i.e. six runs in Maze World starting with the random 

paratope matrix P1 only. This region of k1 is selected because of its superior performance in the first set of 

trials, i.e. it is assumed that k1 values outside of this range are unlikely to yield mean scores significantly 

different to those from S1.  

Fig. 5 shows mean scores against b for k1 values in the selected range. It is readily apparent from the 

graph that there is a region of b where best performance is with k1 set at 0.60 and where best performance 

also represents a “good” performance with mean score less than 200. This range is approximately between 

40 and 160. When k1 = 0.60 is used with higher values of b, performance drops considerably with no best 

scores lower than 200. At the other end of the scale, lower b values still perform well, but the optimum k1 

appears to have shifted towards a lower value.  

Fig. 6 is a plot of mean score against k1 for the region 40 ≤ b ≤160 only. Here, maximum performance 

occurs at k1 = 0.60 for each system and mean score values are well below the lower confidence limit line for 

S1. The same is not true for any of the other values tested, although it is possible that values very close to 

0.60 may also produce this phenomenon. In addition, one-tailed t-tests have shown that the mean score 

(173) at k1 = 0.60 in this range of b is significantly higher than the mean scores for all the other values of k1, 

(295, 254, 248, 234) at the 99% level. It is reasonable to assume that the optimum value for k1 is very close 

to 0.60 for this scheme, environment and idiotope, as long as b remains in the approximate range 40 to 160.  

An interpretation of the graphs in Figs. 5 and 6 is that the approximate region 40 ≤ b ≤ 160 represents a 

more stable form of equation (8), which shows optimum performance close to k1 = 0.60, i.e. when the 

idiotypic difference rate is at about 20%. The stability is attributed to the selection of b, which permits a 

good balance between use of historical antibody information and reaction to the environment. However, for 

higher b values, the equation becomes too dependent on environmental information, i.e. it becomes more 
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like S2 since concentration plays a less important role. It is not surprising that the performance of S2 and S3 

with b = 800 are similar in Fig. 3.  Conversely, for b less than 40 the system tends to rely more on historical 

information, placing less emphasis on which antibody has the higher Tg value and more on concentration. 

These preliminary experiments provide a good gauge for parameter setting during more extensive testing 

of S3 and have also shown that b is far more robust than k1 since good performances can be achieved for 

widely differing b values, whereas k1 is much more sensitive to change. In addition, pre-trials with the weak 

learning strategy have revealed that the rate of idiotypic difference is intrinsically higher than the strong 

learning strategy because the robot is penalized by reinforcement more often. Consequently the “optimum” 

k1 value increases for the stable region of b when learning is weaker. This is because more suppression is 

needed to yield an equivalent idiotypic difference rate to the stronger learning strategy. 

 

D. More Rigorous Comparison of S1, S2 and S3 

Here, the aim is to show that the AIS-RF hybrid S3 can perform significantly better than the RF system 

S1 or indeed the simpler hybrid S2.  When investigating parameters six runs are able to provide a strong 

indication of robot performance, but six runs are not sufficient for accurately testing significant differences 

between the systems.  For this reason, each system S1 – S3 is tested 30 times in Maze World, six times with 

each of the five initially random paratope matrices P1 – P5. The 90 runs are repeated again in Mirror World, 

starting not with a random paratope matrix, but with the appropriate matrix saved from the first run. This is 

to test how well the robot learns from its first experience and to distinguish a “lucky” first run from a 

genuinely resourceful one, where a good set of behaviors develops.   

The parameter k1 is set at 0.625 for both S2 and S3 as this represents a value close to the empirically 

measured “optimum”. In addition, the parameter b is set at 80 for S3 as this value lies well within the stable 

region.  

Results measure mean, maximum and minimum number of stalls, task completion time and score and 

also mean antibody change rate, idiotypic difference rate and reinforcement success rate. Runs with scores 
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below 200 are labeled as good since they show above average attainment. Alternatively, runs with scores 

greater than 400 are declared bad since this represents a performance ranked in the bottom 10%.  

However, the above measurements provide information on all runs and do not indicate what is happening 

to system dynamics when robots get into difficulty, i.e. when they are spending a lot of time trying to 

escape entrapment. For this reason, a number of runs with an ns value higher than average, (i.e. a lower 

performance) are sampled from the S1 and S3 data, so that antibody information is available for 

approximately 80 long stall sequences, i.e. sequences that last more than one iteration.  

It is also important to establish that S3 is able to out-perform S1 for other values of k1 and b within the 

established “optimum” regions. For this reason an additional two sets of 30 runs are conducted with S3 in 

Maze World using untrained robots. These two tests use k1 = 0.600, b = 60 and k1 = 0.585, b = 100. S2 is 

not tested further with different parameters since it does not use b and its preliminary results already 

covered the region 0.0 ≤ k1 ≤ 1.0. In addition, S1 and S3 are the systems of most interest. 

Finally, S1 and S3 are tested with untrained robots in Maze World using the weak reinforcement learning 

strategy. Only one world is used since only one comparison with the good scheme is necessary. Although 

the original value used for b (80) is preserved, k1 is raised to 0.800 to reduce the idiotypic difference rate 

down to a level comparable to the rate for the “optimum” k1 value used in strong learning experiments, i.e. 

to about 20%.  

 

VII. RESULTS AND DISCUSSION 

 

Table VII shows the means and standard deviations for S, t and ns and the percentages of good and bad 

runs for each system used (with initial parameters) in Maze World. Table VIII presents the same data for 

Mirror World and Table IX averages the data from both worlds. Table X reveals the results of conducting 

standard one-tailed t-tests on the means of S, t and n from these data sets. Throughout this research, 

differences are accepted as significant at the 95% level but if the difference is also significant at the 99% 
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level this is indicated. The percentages of good and bad runs from this set of experiments are also shown 

graphically in Fig. 7. 

Table XI presents mean and standard deviation data for the experiments using different k1 and b 

parameters for S3. It includes the performances of S1 and S3 with the original parameters to make 

comparison easier. Significant differences between these results and the initial S1 results are summarized in 

Table XII. The weaker learning results are provided in Tables XIII (means and standard deviations) and 

XIV (significant differences).  

 

A. Initial Parameters - The Untrained Robots 

In Maze World S3 shows the best performance in terms of all of the fitness measures and S1 shows the 

worst, with system S2 second best in each case. In addition, 53% of S3's runs are considered good and none 

are considered bad, compared with 27% good, 33% bad for S1 and 33% good, 7% bad for S2 (see Fig. 7). 

S3 is significantly better than S1 at the 99% level for S and ns and at the 95% level for t. Also, S3 is 

significantly better than S2 and S2 is significantly better than S1 at the 95% level when comparing the mean 

ns and S values.   

Although S2 out-performs S1, system S3 demonstrates faster and safer results than S2. This indicates that 

a full implementation of the network is required to elicit a suitable idiotypic response. In S2 there is no 

global feedback to the system from the communicating antibodies, i.e. the adjusted strength of match values 

Tg make a difference only within the current iteration and are discarded once the stage 2 competition is 

finished. However, in S3 the Tg values are incorporated into the updated concentration level through (8) for 

every antibody in the system. The concentration levels also feed back into the network for the next iteration 

via (4) and (5), which renders a much more dynamic system. Comparison of S2 and S3 has thus shown that 

concentration levels have a vital role in mediating the suppressive and stimulatory responses of the 

idiotypic system, i.e. it is not sufficient just to nominate alternative behaviors on the basis of a fitness 

metric that is governed only by paratope and idiotope values. The paratope and idiotope comparisons also 
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need to be weighted using a second fitness measure that is non-antigen specific (concentration). Further 

research into the complex dynamics is clearly needed, but it is apparent that concentration serves to enrich 

the process by which alternative antibodies are selected. It is possible that S3 is able to discriminate 

between suitable and inappropriate alternatives in a more efficient manner.  

The above observations represent strong statistical evidence that the implementation of a full idiotypic 

network improves the performance of a reinforcement learning robot, influencing its behavior in a positive 

manner during the initial learning period. However, analysis of maximum and minimum data reveals that 

all three systems are capable of fast and safe runs, (the minimum t is between 152 and 156 and the 

minimum ns is between 2 and 9 for each system) and all are likely to get into some kind of difficulty 

(maximum t values are all over 380 and maximum ns values are all above 45). However, the maximum 

values for t (485, 406 and 385 for S1 - S3 respectively), the maximum number of stalls (127, 111 and 50) 

and the lower standard deviations for S3 indicate that the idiotypic robots are somehow protected from 

executing disastrous runs. In order to investigate this further, the rates of reinforcement success, antibody 

change and idiotypic difference are examined. 

Analysis of the mean rates of reinforcement success reveals an important difference between systems S1 

and S3. In S1 the mean is 48%, but this falls to 46% in stall situations. In S2 the mean is the same (50%) in 

both cases. However, in S3 the overall success rate (49%) rises to 58% when the robot stalls. The difference 

between S1 and S3 is significant at the 95% level, i.e. S3 produces a significantly better success rate when 

it stalls than S1. In addition, the difference is significant at the 95% level within S3, i.e. it produces a 

significantly higher success rate during stalls than overall.  

In S3 the mean idiotypic difference rate is 21% rising to 29% during stalls (although the difference is not 

significant). The mean idiotypic success rate is 20% overall, but increases to 49% when the robot stalls. 

This represents a significant difference at the 99% level and suggests that, when stalled, the full idiotypic 

robot is able to choose more successful antibodies by increasing the rate of idiotypic difference. This 

advocates that a mechanism for recognizing and responding to dangerous situations is inherent in the 
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idiotypic dynamics.  

There are no significant differences between S2 and S3 in terms of idiotypic differences and idiotypic 

success rates. S2's mean idiotypic difference rate is 18% rising to 27% during stalls. The mean idiotypic 

success rate is 21% in total, increasing to 46% when the robot stalls. This represents a significant difference 

within the system at the 99% level but is not significantly different to the value of 49% for S3. However, 

the figures may be misleading because in S2 the process of selecting the stage 1 winner is not influenced by 

past idiotypic calculations as there is never any global feedback from the network. In S3 the choice of 

antibody in stage 1 is directly affected by past Tg scores, which means that undetectable idiotypic 

differences are constantly occurring.  Not surprisingly, when the robots are stalled the antibody change rates 

show significant differences between the systems with S3 demonstrating a rate of 65% rising to 88% when 

stalled compared with 66% rising to only 78% for S1 and 58% rising to 82% for S2. The change rate for S3 

is significantly higher than both the others at the 95% level. However, the observed increase in change rate 

is significant at the 99% level within each system, which shows that there is a need for rapid antibody 

change during stall conditions and that all the systems are capable of delivering such changes. This 

interpretation may be deceptive though, because these results deal with both good and bad runs and 

collisions lasting only one iteration are also counted as stalls. In order to gain a better understanding it is 

necessary to consider the sampled long stall data. 

Detailed analysis of the long stall sequence data reveals that there is a significant difference at the 99% 

level for the mean duration of sequences. In S3 the idiotypic robots remain stuck in these sequences for an 

average of 4.78 iterations before freeing themselves, whereas the non-idiotypic robots in S1 remain trapped 

on average for 8.53 iterations. In addition, examination of the antibodies used in these trap conditions 

shows that the mean number of repeated behaviors in S3 is 1.54 compared with 3.42 for S1. This difference 

is significant at the 95% level. In addition, the antibody change rate during these sequences is 68% for S3 

but only 19% for S1. However, there is no significant difference between the means of the numbers of long 

stall sequences. These observations support the view that idiotypic robots are able to out-perform their non-
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idiotypic counterparts by freeing themselves from stalls more quickly. In addition, it suggests that their 

rapid escape is accomplished by an ability to switch behaviors at a higher rate. This provides good evidence 

to support hypotheses H2 and H3 and is further substantiated by analysis of the idiotypic differences in S3 

for this sub-set of the data. On average 72% of S3's long stall sequences are terminated (i.e. the robot 

escapes) when an idiotypic difference occurs. Moreover in 63% of the long sequences the idiotypic 

difference generates an untried antibody that proves successful when the stage 1 matching process is still 

suggesting the use of antibodies that have already failed. This analysis helps to explain the large differences 

in the standard deviations between S1 and S3 and fits in with the other observations. All the systems are 

capable of performing well, but when stall problems occur it seems that S3 is able to resolve them more 

rapidly, which means that it is not inclined to produce disastrous runs. 

 

B. Initial Parameters - The Trained Robots 

In Mirror World, where the initial paratope matrix is taken as the output from Maze World, each system 

improves on the mean ns, t, and S from its Maze World trials, which demonstrates that all three systems 

allow a degree of learning to take place. In addition, standard deviations are generally lower as there are far 

fewer bad performances and an improvement in S is demonstrated on 77%, 70% and 80% of runs for S1 - 

S3 respectively. The percentage of good runs also increases from the first environment to 60%, 57% and 

80% for the three systems. However, although S3 produces no unacceptable runs, S1 and S2 still under-

perform for approximately 7%. S3 again shows the best performance in terms of all of the metrics and 

consistently demonstrates a lower standard deviation than S1. It is also significantly better than S1 at the 

99% level for S and ns. In addition, S3 shows that it is significantly better than S2 at the 95% level for all 

the criteria. S2 produces the second best results on all counts except for time to complete the task, but its 

performance is not significantly better than S1.  

 The observations and analysis of the Mirror World data suggest that the robots are less likely to get into 

difficulties when using a paratope matrix from a previous run, because they have developed good obstacle 
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avoidance strategies from their earlier experiences. This means that stalls tend to happen less frequently and 

run times are generally faster. However, significant differences are still apparent between S1 and S3 and S2 

and S3, suggesting that the full idiotypic network still has an important role to play in assisting robots to 

escape from traps after initial learning has taken place. This supports the hypothesis H1, that idiotypic 

systems permit a degree of de-coupling from an engineered learning system, since it alludes to the fact that 

the idiotypic network is still able to influence a reinforcement system positively, even after the robot has 

had ample time to complete the learning process. 

 

C. Initial Parameters - The Combined Results 

Analysis of the combined results, i.e. means of the two ns, t, and S values from each run, shows that S3 is 

significantly better than S1 and S2 for all three fitness measures, even task time. These differences are at the 

99% level for S and ns and at the 95% level for t. The effect of combining the results in this way is to 

smooth out the data, reducing the standard deviations, which allows good comparison. From Table X it is 

readily apparent that S3 is superior both to S2 and S1. In addition, the percentages of good and bad runs 

reflect the incremental nature of the systems, with S3 performing well in 67% of all runs and badly in none, 

S2 running well in 57% and badly in 3% and S1 achieving a good run in 30% and a bad run in 20%, see 

Fig. 3. This analysis provides good evidence that the full idiotypic network can significantly improve robot 

performance during longer tasks, i.e. through tasks that include a learning phase and a mature phase, where 

a stable paratope matrix has developed.   

 

D. Varying Parameters 

Table XI shows that S3 achieves a remarkably similar performance to its first trial when different 

parameters are used. This is especially true for the mean and standard deviation of the score and number of 

stalls. As in the first trial these are both significantly better than S1’s performance at the 99% level. 



 

 35 

Moreover, S3 improves on its original mean time of 237 seconds, yielding mean completion times of 215 

and 225 seconds for b = 100 and b = 60 respectively. These increased levels of performance permit 

significant differences between S3 and S1 at the 99% level for time, rather than at the 95% level in the 

original data. This provides even stronger evidence to support the case for the full idiotypic advantage and 

demonstrates that there is a degree of flexibility within the k1 and b parameters. These additional sets of 

results may also indicate that 0.625 is slightly too high to be optimum for k1 in this region of b and with this 

reinforcement scheme. 

 

E. The Weaker Learning Strategy 

Comparison of Tables VII and XIII shows that the means and standard deviations of S, t and ns increase 

for both systems when the weaker strategy is implemented. In addition, the number of good scores reduces 

and the number of bad scores increases, reflecting the fact that obstacle avoidance is more difficult to 

achieve. Within the weak learning experiments, the differences between mean S, t and ns for S1 and S3 is 

significant at the 99% level. This is further evidence in support of the implementation of a full idiotypic 

network to accompany reinforcement learning, but the real value of this experiment lies in comparing S3's 

weak learning performance with S1's strong learning performance. S3 achieves a mean (ns, t, S) of (27, 273, 

257) with weak learning compared with (45, 277, 342) for S1 using strong learning. The difference between 

the ns values is significant at the 99% level and the difference between the S values is significant at the 95% 

level. This means that robots implementing the full idiotypic network and poor learning are performing as 

well as (possibly better than) robots with good learning but no idiotypic selection, which suggests that a full 

network may be able to offer a degree of compensation for poor learning. This supports hypothesis H1 and 

shows that the idiotypic robots may have been implementing more creative solutions to the problem. 
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VIII. CONCLUSION AND FUTURE AIMS 

A. Conclusion 

A computational method for simulating idiotypic effects is developed, based on Farmer’s popular model 

of Jerne’s idiotypic network. The scheme is incorporated into a reinforcement learning (RL) architecture 

and compares antibody idiotopes and paratopes in order to determine inter-antibody suppression and 

stimulation levels. The architecture is fully described and incrementally implemented with virtual robots 

that perform a color-tracking task in order to test three hypotheses H1 – H3. H1 asserts that idiotypic systems 

allow a degree of detachment from reinforcement learning, H2 proposes that they reduce premature 

convergence and H3 postulates that they allow escape from repeated behavior patterns.  

The use of the full idiotypic network (S3) produces significantly better results than partial 

implementations that use RL only (S1) and a simplified network without global feedback (S2), thus 

highlighting the benefits of introducing greater idiotypic complexity. The faster and safer performance of 

S3 is chiefly attributed to its ability to recover from stall situations much more rapidly than the other 

systems, which is thought to be a direct result of idiotypic activity. Indeed this paper provides evidence to 

suggest that during a sequence of stalls, S3 is capable of increasing the rate of antibody change 

autonomously so that repeated behaviors are discarded in favor of suitably selected alternatives. This may 

be a result of the system's ability to raise the rate of idiotypic communication during a stall, so that a much 

higher reinforcement success rate is achieved, implying that idiotypic networks have an inherent 

mechanism for detecting and responding to trap situations. These results confirm the likelihood of 

hypothesis H2, as an increased rate of antibody change implies a much less greedy strategy. In addition, this 

paper supplies evidence that during stall sequences, the idiotypic process tends to generate previously 

untried successful antibodies whilst the antigen matching process recommends repeated failures. This is 

direct evidence for the support of H2 and also upholds H3. However, since repeated loops of behavior may 

also occur in non-stall situations, further tests that isolate recurring behavior patterns are recommended to 
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test H3 further. 

The simplified idiotypic system S2 is believed to have under performed in comparison to S3 because of 

the lack of global feedback from the idiotypic network to the antibody concentrations and vice versa. Its 

inferior attainment demonstrates that concentration and feedback are extremely important components of an 

idiotypic system, possibly providing an additional memory feature that allows discrimination between 

suitable and inappropriate alternatives in a more efficient manner.  

Evidence to support H1 is provided by comparing performance of the systems after training, where S3 

still proves superior to S1. This shows that the network retains its influence over the system once learning 

has taken place, i.e. that there is a sense of de-coupling from the reinforcement strategy. Furthermore, when 

S3 is implemented with a weaker learning strategy, its performance is still significantly better than with S1 

using stronger learning. This clearly suggests that a full idiotypic network permits robots greater scope for 

creating solutions to the task as they are able to assert a degree of independence over behaviors prescribed 

by the engineered reinforcement signals.  

 

B. Future Aims 

It may be argued that using a hand designed idiotope is equivalent to providing the robot with a priori 

information about the behaviors, since it effectively shows which are of similar type. Indeed, the idiotypic 

selection algorithm may be regarded as somewhat redundant when using a contrived matrix such as this 

because it is readily apparent which antibodies are of similar type and which are different. The next step to 

this research is therefore to investigate whether similar results can be obtained when an initially random 

variable idiotope is used. The variable matrix would develop by incrementing antibody-antigen 

combinations that produce a high rate of negative reinforcement learning scores as in [15]. Once a self 

regulating and variable idiotope is in place a meta-dynamic system with mutation may be designed and 

concentration levels can be used to determine which antibodies are retained and which die. Future research 

will therefore focus on developing means for creating new antibodies, testing and mutating them.  
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In addition, further investigation into the complex dynamics of the full idiotypic network is the logical 

extension to this work. In particular, more extensive research into the relationships between the parameters 

k1, k2 and b will be conducted with testing taking place using a wide variety of environments, reinforcement 

schemes, problems, robots and antibody selection mechanisms. The effect of the idiotope matrix upon these 

parameters will also be studied by testing different fixed matrices and several variable schemes.  

 Moreover, since it is always extremely difficult to know whether simulation results generalize to the real 

world, these systems will also be trialed using real robots that attempt to solve similar problems in 

dynamically changing environments. It is possible that an idiotypic network may bring even more 

advantage to a real world system, since it is less predictable and should therefore require a less pre-

determined method of behavior selection. However, prior to this it is necessary to develop a method that 

can provide reasonably good starting paratopes, allowing close to zero stalls for the real robots. A major 

part of extending this work will therefore involve integrating the AIS system with a genetic algorithm that 

will run in highly accelerated simulations, evolving a strong set of base rules to initialize the real robot. 
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FIGURE CAPTIONS 

 

Fig.  1.  Showing antibody paratope and idiotope regions and inter-antibody stimulation and suppression 

[4]. 

Fig.  2.  The Maze World used for conducting the door tracking experiments with untrained robots. 

Fig.  3.  Mean score versus k1 for S2 and S3 with b values of 8, 80 and 800. 

Fig.  4.  Idiotypic difference rate versus k1 for S2 and S3 with b values of 8, 80 and 800. 

Fig.  5.  Mean score versus b for S3 with k1 between 0.45 and 0.65 

Fig.  6.  Mean score versus k1 between 0.45 and 0.65 for S3 in the region 40 ≤ b ≤ 160 

Fig.  7.  Histogram of good and bad runs for the three systems, S1 – S3.  


