
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 2, APRIL 2008 577

AdaBoost-Based Algorithm for Network
Intrusion Detection

Weiming Hu, Senior Member, IEEE, Wei Hu, and
Steve Maybank, Senior Member, IEEE

Abstract—Network intrusion detection aims at distinguishing the at-
tacks on the Internet from normal use of the Internet. It is an indispensable
part of the information security system. Due to the variety of network
behaviors and the rapid development of attack fashions, it is necessary to
develop fast machine-learning-based intrusion detection algorithms with
high detection rates and low false-alarm rates. In this correspondence,
we propose an intrusion detection algorithm based on the AdaBoost algo-
rithm. In the algorithm, decision stumps are used as weak classifiers. The
decision rules are provided for both categorical and continuous features.
By combining the weak classifiers for continuous features and the weak
classifiers for categorical features into a strong classifier, the relations
between these two different types of features are handled naturally, with-
out any forced conversions between continuous and categorical features.
Adaptable initial weights and a simple strategy for avoiding overfitting are
adopted to improve the performance of the algorithm. Experimental re-
sults show that our algorithm has low computational complexity and error
rates, as compared with algorithms of higher computational complexity,
as tested on the benchmark sample data.

Index Terms—AdaBoost, computational complexity, detection rate,
false-alarm rate, intrusion detection.

I. INTRODUCTION

With the development of the Internet, information security is of
increasing importance. Information security on the Internet includes
the following.

1) Protection: The information system is protected automatically to
avoid security violations that are called intrusions.

2) Detection: Security violations are detected when they occur.
3) Reaction: Reactions, such as automatic alarm or pursuit of

hackers, are performed when the system is intruded.
4) Recovery: The information system automatically repairs the

damage caused by an intrusion.

Intrusion detection is a crucial part of information security. Only
if intrusions are correctly detected can the subsequent reaction and
recovery be implemented.

A. Definition and Categories

There is no standard definition of intrusion detection. Generally,
intrusion detection is the detection of network behaviors that violate
or endanger network security. Intrusion detection can be treated as a
pattern recognition problem—distinguishing between network attacks
and normal network behaviors or further distinguishing between
different categories of attacks.

Manuscript received November 10, 2006; revised April 4, 2007. This work
was supported in part by the National Natural Science Foundation under Grants
60520120099 and 60672040 and in part by the National 863 High-Tech R&D
Program of China under Grant 2006AA01Z453. This paper was recommended
by Associate Editor J. Basak.

W. Hu and W. Hu are with the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China
(e-mail: wmhu@nlpr.ia.ac.cn; whu@nlpr.ia.ac.cn).

S. Maybank is with the School of Computer Science and Information
Systems, Birkbeck College, University of London, WC1E 7HX London, U.K.
(e-mail: sjmaybank@dcs.bbk.ac.uk).

Digital Object Identifier 10.1109/TSMCB.2007.914695

a) Host- and network-based detections: As far as the data source
is concerned, intrusion detection can be classified into host- and
network-based detections [1]. Host-based approaches detect intrusions
utilizing audit data that are collected from the target host machine.
As the information provided by the audit data can be extremely
comprehensive and elaborate, host-based approaches can obtain high
detection rates and low false-alarm rates. However, there are disadvan-
tages for host-based approaches, which include the following.

1) Host-based approaches cannot easily prevent attacks: when an
intrusion is detected, the attack has partially occurred.

2) Audit data may be altered by attackers, influencing the reliability
of audit data.

Network-based approaches detect intrusions using the IP package
information collected by the network hardware such as switches and
routers. Such information is not so abundant as the audit data of the
target host machine. Nevertheless, there are advantages for network-
based approaches, which include the following.

1) Network-based approaches can detect the so-called “distributed”
intrusions over the whole network and thus lighten the burden on
each individual host machine for detecting intrusions.

2) Network-based approaches can defend the machine against at-
tack, as detection occurs before the data arrive at the machine.

b) Misuse and anomaly detections: Intrusion detection is di-
vided into misuse and anomaly detections [1], [10]. Misuse detec-
tion utilizes signatures of attacks to detect intrusions by modeling
attacks. Misuse detection has high detection rates for the well-known
intrusions but fails to detect novel intrusions. Anomaly detection is
based on the models for normal behaviors. Any deviation from the
constructed models of normal behaviors is considered an anomaly
[21]. As it is difficult to precisely model all normal behaviors, it is
easy for anomaly detection to mistakenly classify normal behaviors as
attacks.

B. Related Work

In the following, we review the related work, focusing on the types
of algorithms that are described in the literature.
1) Statistics-Based Approaches: Denning [2] proposes a statistical

method for intrusion detection. According to audit data, a profile is
constructed to describe a given subject (network user) or a given
object (task). Several metrics are defined for the profiles. The Gaussian
models of the metrics are constructed to detect intrusions. Li et al. [14]
utilize statistical characteristics of n-grams to detect intrusions in the
host system. Vigna and Kemmerer [26] use data that are sourced
from network nodes, rather than the audit data, to construct profiles,
enlightening the research on network-based intrusion detection.

Some researchers propose more complex metrics and statistical
models. Qu et al. [27] analyze the attacks to routing protocols by es-
timating the frequency of each event related to a protocol and propose
a metric to describe similarity between the observed event distribution
and the expected distribution. It is assumed that the metric obeys the
chi-square distribution. Ye et al. [28] extract an event frequency vector
and then measure the chi-square distance between this vector and the
expected frequency vector. It is assumed that the distance obeys the
standard Gaussian distribution. Li and Manikopoulos [13] propose
some representative parameters of IP data flow, and they model the
parameters using a hyperbolic distribution.

So far, we have discussed static data models. Dynamic data models
are also used. Caberera et al. [29] assume that the first derivative of
the number of observed events in a time segment obeys the Poisson
distribution, from which the Kolmogorov statistical values are ex-
tracted to measure the dissimilarity between observation network and

1083-4419/$25.00 © 2008 IEEE

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 17, 2008 at 20:05 from IEEE Xplore. Restrictions apply.

578 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 2, APRIL 2008

normal behavior signals. Ye et al. [30] represent a sequence of events
in time order as a Markov stochastic process. The joint probability for
a particular sequence of events is used to distinguish between normal
network behaviors and intrusions. In recent years, the hidden Markov
model has been used in intrusion detection based on host audit data
[31], [32].

2) Data-Mining-Based Approaches: Data mining is used in intru-
sion detection [8], [11]. Lee et al. [11] use data-mining techniques to
construct rules describing normal network behaviors. The rules include
association rules that describe frequency associations between any two
fields of the network record database and also frequent episodes that
describe the frequency with which a field takes a certain value after two
other fields have particular values in a definite time interval. Deviations
from these rules indicate an attack on the network. Han et al. [34]
analyze the content for network data packages and use the data-mining
techniques to acquire attack signatures. Qin and Hwang [35] propose
an approach, which dynamically omits some nonfunctionary frequent-
episode rules, as a supplement to the data-mining-based approaches.
Otey et al. [52] propose a general-purpose outlier detection algorithm
that works on mixed attribute data in distributed settings. Further-
more, they extend their algorithm to handle dynamic and streaming
data sets.

3) Supervised Learning-Based Approaches: Recently, methods
from machine learning and pattern recognition have been utilized to
detect intrusions. Supervised learning and unsupervised learning are
both used. In this section, we review the supervised-learning-based
methods, and the unsupervised learning-based methods are reviewed
in Section I-B4.

For supervised learning for intrusion detection, there are mainly
supervised neural network (NN)-based approaches [17], [24], and
support vector machine (SVM)-based approaches [7], [25].

a) NN-based approaches: Bonifacio et al. [36] propose an NN
for distinguishing between intrusions and normal behaviors. They
unify the coding of categorical fields and the coding of character string
fields in order to map the network data to an NN. Rapaka et al. [37]
use execution numbers of system calls in a host machine as the
features of network behaviors to train the NN. Zhang et al. [24]
propose an approach for intrusion detection using hierarchical NNs.
Han and Cho [38] use evolutionary NNs to detect intrusions.

b) SVM-based approaches: Mukkamala et al. [39], [40] use
SVMs to distinguish between normal network behaviors and intrusions
and further identify important features for intrusion detection. Mill
and Inoue [41] propose the TreeSVM and ArraySVM for solving
the problem of inefficiency of the sequential minimal optimization
algorithm for the large set of training data in intrusion detection. Zhang
and Shen [25] propose an approach for online training of SVMs for
real-time intrusion detection based on an improved text categorization
model.

Aside from the aforementioned supervised-learning-based ap-
proaches for intrusion detection, decision tree [42] and discriminant
analysis [43] are applied to detect intrusions. Comparisons between
different classifiers and fusion of multiple classifiers for intrusion
detection are studied in [1], [19], and [44].

4) Unsupervised Learning-Based Approaches: Supervised learning
methods for intrusion detection can only detect known intrusions.
Unsupervised learning methods can detect the intrusions that have
not been previously learned. Examples of unsupervised learning
for intrusion detection include K-means-based approaches and
self-organizing feature map (SOM)-based approaches [3], [9].

a) K-means-based approaches: Guan et al. [45] propose a
K-means-based clustering algorithm, which is named Y -means, for
intrusion detection. Xian et al. [46] combine the fuzzy K-means
method and a clonal selection algorithm to detect intrusions.
Jiang et al. [47] use the incremental clustering algorithm that is an
extension of the K-means algorithm to detect intrusions.

b) SOM-based approaches: Hoglund et al. [48] extract features
that describe network behaviors from audit data, and they use the SOM
to detect intrusions. Kayacik et al. [9] propose a hierarchical SOM ap-
proach for intrusion detection. Specific attention is given to the hierar-
chical development of abstractions, which is sufficient to permit direct
labeling of SOM nodes with connection type. Sarasamma et al. [21]
propose a hierarchical SOM for intrusion detection. They use the
classification capability of the SOM on selected dimensions of the data
set to detect anomalies. Their results are among the best known for
intrusion detection.

Previous discussions review the related work. Current approaches
for intrusion detection have the following two problems.

1) Current approaches often suffer from relatively high false-alarm
rates, whereas they have high detection rates. As most network
behaviors are normal, resources are wasted on checking a large
number of alarms that turn out to be false.

2) Their computational complexities are oppressively high. This
limits the practical applications of these approaches.

C. Our Work

Aiming at constructing an intrusion detection approach with a low
computational complexity, a high detection rate, and a low false-alarm
rate, in this correspondence, we apply the AdaBoost algorithm to
intrusion detection [57]. The motivation for applying the AdaBoost
algorithm includes the following points.

1) The AdaBoost algorithm is one of the most popular machine-
learning algorithms. Its theoretical basis is sound, and its im-
plementation is simple. It has been applied to many pattern
recognition problems, such as face recognition. However, the
application of the AdaBoost algorithm to intrusion detection has
not been explored so far.

2) The AdaBoost algorithm corrects the misclassifications made
by weak classifiers, and it is less susceptible to overfitting
than most learning algorithms. Recognition performances of the
AdaBoost-based classifiers are generally encouraging.

3) Data sets for intrusion detection are a heterogeneous mixture
of categorical and continuous types. The different feature types
in such data sets make it difficult to find relations between
these features. By combining the weak classifiers for continuous
features and the weak classifiers for categorical features into a
strong classifier, the relations between these two different types
of features are handled naturally, without any forced conversions
between continuous and categorical features.

4) If simple weak classifiers are used, the AdaBoost algorithm is
very fast.

In our AdaBoost-based algorithm for intrusion detection, decision
stumps are used as weak classifiers. The decision rules are provided
for both categorical and continuous features. Special provision is made
for overfitting. Experimental results show that our algorithm has low
computational complexity and error rates, as compared with algo-
rithms of higher computational complexity, as tested on the benchmark
sample data.

The remainder of this correspondence is organized as follows.
Section II gives an overview of our algorithm. Section III describes in
detail our AdaBoost-based intrusion detection algorithm. Section IV
analyzes the computational complexity of our algorithm. Section V
illustrates the experimental results. The last section summarizes the
correspondence.

II. OVERVIEW OF OUR ALGORITHM

According to the characteristics of the AdaBoost algorithm and
the characteristics of the network intrusion detection problem, the

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 17, 2008 at 20:05 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 2, APRIL 2008 579

Fig. 1. Framework of our algorithm.

framework of our approach consists of the following four modules:
feature extraction, data labeling, design of the weak classifiers, and
construction of the strong classifier, as shown in Fig. 1.

a) Feature extraction: For each network connection, the fol-
lowing three major groups of features for detecting intrusions are
extracted: basic features of individual Transmission Control Protocol
(TCP) connections, content features within a connection suggested by
domain knowledge, and traffic features computed using a 2-s time
window [23]. The framework for constructing these features can be
found in [10].

b) Data labeling: Because the AdaBoost algorithm uses super-
vised learning, a set of data has to be labeled for training. This labeled
data set should contain both normal samples labeled as “+1” and
attack samples labeled as “−1.” We explain two points: 1) In contrast
to misuse detection, which utilizes signatures of attacks to detect
intrusions, and anomaly detection, which detects intrusions by mod-
eling normal behaviors, as mentioned in Section I-Ab, our algorithm
models both attacks and normal behaviors to detect intrusions. 2) It
is hard to obtain a large amount of labeled data in realistic settings.
In our previous paper [54], we propose a hierarchical graph-theoretic
clustering active learning algorithm for automatically selecting highly
informative data for people to label under the condition that a small
number of labeled samples are ready for use.

c) Design of weak classifiers: The AdaBoost algorithm requires
a group of weak classifiers designed beforehand. An individual weak
classifier is simple and easy to implement. Its classification accuracy
is relatively low.

d) Construction of the strong classifier: A strong classifier is
obtained by combining the weak classifiers. The strong classifier has
higher classification accuracy than each weak classifier.

A strong classifier is trained using the sample data. Then, a new
network connection, which is represented by the three groups of
features introduced in a) earlier, is input to the strong classifier and
is classified as either “normal” or “attack” as the detection result.

III. METHODOLOGY

It is the construction of weak classifiers that mainly influences
the computational complexity of AdaBoost. LogitBoost and Gentle
AdaBoost algorithms employ recursion to construct weak classifiers;
thus, their computational complexities are comparatively high. The
continuous AdaBoost algorithm estimates weighted conditional prob-
abilities, and all samples are checked in each iteration; therefore,
the computational complexity of the algorithm is also comparatively
high. In a discrete AdaBoost algorithm, the optimal weak classifier
in each iteration is chosen from a group of weak classifiers; for that
reason, its computational complexity is comparatively low. Therefore,
we select the discrete AdaBoost algorithm to learn the classifier. In this
section, we describe the technical details of our algorithm, including
the construction of the weak classifiers, the choice of initial weights,
and the handling of overfitting.

A. Weak Classifiers

Classification algorithms in common use, such as K-neighbors, su-
pervised neural networks, and SVMs, can be used as weak classifiers.
In our algorithm, we select decision stumps [49] as weak classifiers. A
decision stump is a decision tree with a root node and two leaf nodes.
For each feature in the input data, a decision stump is constructed.
The following points support our selection of decision stumps as the
weak classifiers: 1) the model that decision stumps use is very simple;
2) there is only one comparison operation in each decision stump for
testing a sample; thus, the test time for each decision stump is very low;
and 3) the decision stumps for continuous features and the decision
stumps for categorical features can be constructed in a similar way,
such that the strong classifier can easily combine the information from
continuous and categorical features in the next step.

a) Decision stumps for categorical features: A categorical fea-
ture f can only take finite discrete values. A decision stump cor-
responds to a partition of the range of f into two nonoverlapping
subsets Cf

p and Cf
n . Let X be the feature vector, and Xf be the

component of X , which corresponds to feature f . Then, the decision
stump corresponding to Cf

p and Cf
n is described as

hf (X) =

{
+1, Xf ∈ Cf

p

−1, Xf ∈ Cf
n .

(1)

Let ε+
hf

and ε−hf
denote the false-classification rates of the decision

stump hf for normal and attack samples, respectively. The optimal

subsets C̃f
p and C̃f

n that correspond to the optimal decision stump h̃f

are determined by minimizing the sum of the false-classification rates
for the normal and attack samples(

C̃f
p , C̃f

n

)
= arg min(

C
f
p ,C

f
n

) [
ε+

hf

(
Cf

p , Cf
n

)
+ ε−hf

(
Cf

p , Cf
n

)]
. (2)

b) Decision stumps for continuous features: For a continuous
feature f , given a segmentation value θ, a decision stump hf can be
constructed as

hf (X) =
{

+1, Xf ≤ θ
−1, Xf > θ.

(3)

where Xf denotes the component of feature vector X , which corre-
sponds to feature f .

The optimal segmentation value θ̃ corresponding to the optimal
decision stump h̃f is determined by minimizing the sum of the false-
classification rates for normal and attack samples.

B. Algorithm

In the AdaBoost algorithm, weak classifiers are selected iteratively
from a number of candidate weak classifiers and are combined lin-
early to form a strong classifier for classifying the network data.
Let H = {h̃f} be the set of constructed weak classifiers. Let the
set of training sample data be {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)},
where xi denotes the ith feature vector; yi ∈ {+1,−1} is the label of
the ith feature vector, denoting whether the feature vector represents
a normal behavior or not; and n is the size of the data set. Let
{w1, . . . , wi, . . . , wn} be the sample weights that reflect the impor-
tance degrees of the samples and, in statistical terms, represent an
estimation of the sample distribution. The AdaBoost-based algorithm
for intrusion detection is described as follows.

Step 1) Initialize weights wi(1) (i = 1, . . . , n) satisfying∑n

i=1
wi(1) = 1. The initialization is further described in

Section III-C.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 17, 2008 at 20:05 from IEEE Xplore. Restrictions apply.

580 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 2, APRIL 2008

Step 2) Observe the following for (t = 1, . . . , T).
a) Let εj be the sum of the weighted classification errors

for the weak classifier hj

εj =

n∑
i=1

wi(t)I [yi �= hj(xi)] (4)

where

I[γ] =
{

1, γ = True
0, γ = False.

(5)

Choose, from constructed weak classifiers, the weak
classifier h(t) that minimizes the sum of the weighted
classification errors

h(t) = arg min
hj∈H

εj . (6)

b) Calculate the sum of the weighted classification errors
ε(t) for the chosen weak classifier h(t).

c) Let

α(t) =
1

2
log

(
1 − ε(t)

ε(t)

)
. (7)

d) Update the weights by

wi(t + 1) =
wi(t) exp (−α(t)yih(t)(xi))

Z(t)
(8)

where Z(t) is a normalization factor

Z(t) =

n∑
k=1

wk(t) exp (−α(t)yih(t)(xk)) . (9)

Step 3) The strong classifier is defined by

H(x) = sign

(
T∑

t=1

α(t)h(t)(x)

)
. (10)

We explain two points: 1) By combining the decision stumps for
both categorical and continuous features into a strong classifier, the
relations between categorical and continuous features are handled
naturally, without any forced conversions between continuous and
categorical features. This is the main reason why our AdaBoost-
based algorithm obtains good results for intrusion detection. 2) For the
AdaBoost algorithm, it has been proved that the weighted classification
error rate for the strong classifier converges to zero as the number of it-
erations increases [6], [51], i.e., when T → ∞,

∑n

i=1
w

(1)
i I[H(xi) �=

yi] → 0, provided that the misclassification rates for the weak classi-
fiers are less than 50%. The decision stumps minimize the sum of the
false-classification rates for normal and attack samples. It is guaranteed
that the misclassification rates for the selected weak classifiers are
lower than 50%; this ensures the convergence of the algorithm. As
we focus on the application of the AdaBoost algorithm to intrusion
detection in this correspondence, we only briefly discuss the conver-
gence of our algorithm. Rudin et al. [51] make a thorough study of the
convergence properties of the AdaBoost algorithm. Readers may refer
to [51] for details.

C. Adjustable Initial Weights

The initial weights (wi(1) (i = 1, . . . , n)) reflect the importance
degrees of the samples and influence the sum of the weighted errors for
the strong classifier. Usually, the initial weights are chosen to be equal:
wi(1) = 1/n (i = 1, . . . , n). In the AdaBoost theory, the uniform

initial weights have a strong influence on the mean of the classification
errors. This is not very suitable for intrusion detection because it is
necessary to reduce the false-alarm rate rather than the mean error: In
real applications, almost all behaviors are normal. A high false-alarm
rate wastes resources, as each alarm must be checked. In the following,
we propose adjustable initial weights to make a tradeoff between the
false-alarm and detection rates.

Let n+ and n− be the numbers of normal and attack samples
in the training set, and let ε+ and ε− be the false-alarm and false-
classification rates (the sum of the false-classification and detection
rates equals “1”) for the normal and attack samples, respectively. Then,
a weighted mean ε of the classification errors is defined as follows:

ε =
1

n

n∑
i=1

I [H(xi) �= yi]

=
1

n
|{i : yi = +1, H(xi) = −1}|

+
1

n
|{i : yi = −1, H(xi) = +1}|

=
n+

n
ε+ +

n−
n

ε−. (11)

From (11), it is shown that the degrees of punishment to the false-alarm
and detection rates are different in the case of the uniform weights. In
order to make a tradeoff between the false-alarm and detection rates,
the weighted classification rate is written in the following form:

εw = rε+ + (1 − r)ε− (12)

where r is the scale factor that penalizes the false-alarm rate. Corre-
spondingly, the initial weights are defined as follows:

wi(1) =

{ r
n+

, yi = +1
1−r
n−

, yi = −1
, (i = 1, . . . , n). (13)

The larger r is, the greater the tendency to reduce the false-alarm rate
during learning. By choosing a suitable value for r, the detection and
false-alarm rates can be well balanced.

D. Over fitting Handling

In the AdaBoost algorithm, overfitting to some weak classifiers can
easily occur [33], [50]. In our algorithm, we adopt the following simple
method to avoid the overfitting: In the first Tq iterations, if the sum of
the weighted errors for a weak classifier is less than a threshold θq , it
is considered that this weak classifier fits the samples over-well, i.e.,
overfits the samples. Then, we select, from the weak classifiers for
each of which the sum of the weighted errors is not less than θq , the
optimal weak classifier that produces the minimum of the weighted
errors compared with other weak classifiers for each of which the sum
of the weighted errors is not less than θq . After the first Tq iterations,
this correction for overfitting is discarded. The experimental results
show that this simple method avoids the overfitting very well.

E. Handling of Noise

There are noise and outliers in the training data set for intrusion
detection. We handle them as follows. First, the classifier is trained
using the full training data that include noise and outliers. Then, the
sample data whose weights are exceptionally high are selected and
treated as noise or outliers (as shown in Section III-B, each sample
is associated with a weight in the AdaBoost algorithm). Finally, the
noise or outliers in the training data are removed, and the classifier
is retrained using the new training data. This way, we extend the
applicability of the AdaBoost algorithm to intrusion detection.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 17, 2008 at 20:05 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 2, APRIL 2008 581

TABLE I
NUMBER OF SAMPLES OF VARIOUS TYPES IN THE TRAINING SET

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In the training stage, the computational complexity of the algorithm
arises from the construction of the decision stumps and strong clas-
sifier. For the construction of the decision stumps, all samples should
be searched for each feature; thus, the computational complexity for
constructing the decision stumps is O(nM), where n is the number
of samples, and M is the number of features, i.e., the number of
decision stumps. There are T iterations for constructing the strong
classifier. Therefore, in the training stage of the AdaBoost algorithm,
the computational complexity is only O(nTM). For the SOM-based
algorithm or the supervised NN-based algorithms, the computational
complexity in the training stage is at least O(n2) or, in the worst
case, O(n2M2). For the SVM-based and K-means-based algorithms,
the complexity of training is at least O(nM log2(nM)) or, in the
worst case, O(n2M2). Thus, the computational complexities of the
existing algorithms are higher than the computational complexity of
our AdaBoost-based algorithm, particularly when n is very large.

In the testing stage, the computational complexity of our AdaBoost
algorithm is also very low. As discussed in Section III-A, there is only
one comparison operation in each decision stump for testing a sample;
thus, the test time for each decision stump is extremely low. The
strong classifier is a combination of decision stumps. As there are T
iterations in the construction of the strong classifier, the computational
complexity of testing a sample is O(T). Because T is commonly of the
same order as the number of features, the test time for our algorithm is
very low.

In short, our AdaBoost-based algorithm possesses the lowest com-
putational complexity in the published learning algorithms for intru-
sion detection. This property is very attractive and promising because
the classifiers for intrusion detection should be retrained very quickly
in practice, and fast detection is essential for an effective defense
against intrusions.

V. EXPERIMENTS

We utilize the Knowledge Discovery and Data Mining CUP 1999
data set [23] to test our algorithm. This intrusion data set originated
from the Lincoln Laboratory, Massachusetts Institute of Technology.
It was developed for intrusion detection evaluation by the Defense
Advanced Research Projects Agency [19]. Despite some drawbacks
mentioned in [18], it has served as a reliable benchmark data set for
many network-based intrusion detection algorithms. In this data set,
each TCP/IP connection was labeled, and 41 continuous or categorical
features were extracted.

There are four general types of attack in the data set: denial of
service (DOS), user to root (U2R), remote to local (R2L), and PROBE.
Detailed descriptions of the four general types of attack can be found in
[15] and [19]. The numbers of samples of various types in the training
set and those in the test set are listed in Tables I and II, respectively.
“Others” in Table II represents the attacks whose types do not appear
in the training set.

In all our experiments, the parameters are set as follows: T = 40,
Tq = 5, and θq = 0.1. In the following, we first introduce the results
with adaptable initial weights and overfitting handling, and we then
compare the performance of our algorithm with the published perfor-
mances of the existing algorithms.

TABLE II
NUMBER OF SAMPLES OF VARIOUS TYPES IN THE TEST SET

TABLE III
RESULTS WITH UNIFORM INITIAL WEIGHTS

AND WITHOUT OVERFITTING HANDLING

TABLE IV
RESULTS WITH ADAPTABLE INITIAL WEIGHTS

AND WITHOUT OVERFITTING HANDLING

A. Initial Weights and Overfitting

Table III shows the detection and false-alarm rates for the training
and test data sets when uniform initial weights are used and overfitting
is not handled. Table IV shows the detection and false-alarm rates
when overfitting is not handled, but adaptable initial weights formu-
lated by (13) are used, where r varies from 0 to 1 with the step length
of 0.1. It can be seen that, when r is neither too small nor too large,
i.e., from 0.3 to 0.7, the results with adaptable initial weights are better
than those with uniform initial weights.

Table V shows the detection and false-alarm rates for the training
and test data sets when the uniform weights are used and overfitting
is handled. From the comparison between Tables III and V, it can be
seen that overfitting handling improves both the detection and false-
alarm rates.

Table VI shows the detection and false-alarm rates when overfitting
is handled and adaptable initial weights are used. From the comparison
between Tables IV and VI, it can be seen that, when the value of r is
taken between 0.3 and 0.7, the detection rates with overfitting handling
are all higher than those without overfitting handling, and the false-
alarm rates with overfitting handling are all lower than those without
overfitting handling.

B. Selection of r

From a comparison between Tables III and IV, it can be seen that,
when r = 0.5, the detection rate slightly decreases from 90.738% to
90.140%, but the false-alarm rate has a larger decrease from 3.428%
to 2.200%. A similar comparison between Tables V and VI shows the

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 17, 2008 at 20:05 from IEEE Xplore. Restrictions apply.

582 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 2, APRIL 2008

TABLE V
RESULTS WITH UNIFORM WEIGHTS AND OVERFITTING HANDLING

TABLE VI
RESULTS WITH ADAPTABLE INITIAL WEIGHTS

AND OVERFITTING HANDLING

TABLE VII
COMPARISON OF DETECTION AND FALSE-ALARM RATES

same result. This illustrates that adjustable initial weights are a good
way for balancing the detection and false-alarm rates.

In fact, the selection r = 0.5 gives the best balance between the
detection and false-alarm rates, as it ensures that we pay equal attention
to the detection and false-alarm rates, i.e., the normal and attack
samples are equally emphasized at the beginning of the algorithm. If a
lower false-alarm rate is requested, we can moderately increase r. For
example, when r = 0.7, the false-alarm rate decreases to 0.307% on
the test set, but the detection rate simultaneously decreases to 90.04%.
This trend is consistent with the theoretical analysis.

C. Comparisons

In the following, we first compare the detection and false-alarm rates
of our algorithm with those published ones of the existing algorithms,
which are tested on the benchmark data set, and then compare the
running speed of our algorithm with the published running speeds of
the existing algorithms.

1) Detection and False-Alarm Rates: The detection and false-
alarm rates of our algorithm and those published ones tested on the
KDD CUP data set are listed in Table VII. Our results are competitive
with others in that the false-alarm rate is kept low without many missed
detections.

2) Computational Times: Our AdaBoost-based algorithm is im-
plemented on a Pentium IV computer with 2.6-GHz CPU and

256-MB RAM, using MATLAB 7. The mean training time is only 73 s,
using all 494 021 training samples. This is an empirical substantiation
that the computational complexity of our algorithm is particularly
low. In [12], the least training times of the SOM and the improved
competitive neural network are 1057 and 454 s, respectively, using
only 101 000 samples for training. The Bagged C5 algorithm [4], [20]
took slightly more than a day on a machine with a two-processor
UltraSparc2 (2–300 MHz) and 512-MB main memories. The random
subset selection-dynamic subset selection (RSS–DSS) algorithm [22]
needs 15 min to finish the learning process on a 1-GHz Pentium III
laptop with 256-MB RAM. In [52], 8 min is taken for processing the
training data in an eight-node cluster, where each node has dual 1-GHz
Pentium III processors and 1-GB memory, running Red Hat Linux7.2,
whereas 212 min is taken for the algorithm in [53].

From the aforementioned comparisons, we find that our algorithm
has the best running speed, which is an important property in practice.
This is consistent with the earlier analysis of computational complexity
in Section IV.

D. Limitation

It is noted that the implementation of our AdaBoost-based intrusion
detection algorithm is not amenable to incremental learning. When
the system changes over time, the newly produced data should be
labeled and merged with the previous sample data, and the classifier
is retrained using the merged sample data. Although our algorithm
has a very low computational complexity, which makes it possible
to frequently retrain the classifier, offline learning is still a limitation
when it is necessary to adapt to complicated and changing network
environments.

VI. CONCLUSION

We have proposed an AdaBoost-based algorithm for intrusion de-
tection. In the algorithm, decision stumps are used as weak classifiers.
The decision rules are provided for both categorical and continuous
features. The relations between categorical and continuous features are
handled naturally, without any forced conversions between these two
types of features. A simple overfitting handling is used to improve the
learning results. In the specific case of network intrusion detection,
we use adaptable initial weights to make the tradeoff between the
detection and false-alarm rates. The experiment results show that our
algorithm has a very low false-alarm rate with a high detection rate,
and the run speed of our algorithm is faster in the learning stage
compared with the published run speeds of the existing algorithms.
The experimental results illustrate that our algorithm has a competitive
performance, as compared with the published intrusion detection
algorithms, as tested on the benchmark sample data.

Our future work will focus on the following aspects.

1) We will find new types of weak classifiers to further improve the
error rates.

2) We will investigate the application of online versions [55],
[56] of boosting algorithms to incremental learning for network
intrusion detection in order to implement online updating of the
model in the presence of streaming data.

REFERENCES

[1] S. Chebrolu, A. Abraham, and J. P. Thomas, “Feature deduction and
ensemble design of intrusion detection systems,” Comput. Secur., vol. 24,
no. 4, pp. 295–307, Jun. 2005.

[2] D. Denning, “An intrusion detection model,” IEEE Trans. Softw. Eng.,
vol. SE-13, no. 2, pp. 222–232, Feb. 1987.

[3] M. O. Depren, M. Topallar, E. Anarim, and K. Ciliz, “Network-based
anomaly intrusion detection system using SOMs,” in Proc. IEEE 12th
Signal Process. Commun. Appl. Conf., Apr. 2004, pp. 76–79.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 17, 2008 at 20:05 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 2, APRIL 2008 583

[4] C. Elkan, “Results of the kdd99 classifier learning contest,” SIGKDD
Explor., vol. 1, no. 2, pp. 63–64, 2000.

[5] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A geometric
framework for unsupervised anomaly detection: Detecting intrusions in
unlabeled data,” in Applications of Data Mining in Computer Security,
D. Barbara and S. Jajodia, Eds. Norwell, MA: Kluwer, 2002, ch. 4.

[6] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119–139, Aug. 1997.

[7] P. Hong and R. E. Schapire, “An intrusion detection method based on
rough set and SVM algorithm,” in Proc. Int. Conf. Commun., Circuits
Syst., Jun. 2004, vol. 2, pp. 1127–1130.

[8] H. Jin, J. Sun, H. Chen, and Z. Han, “A fuzzy data mining based intrusion
detection model,” in Proc. l0th IEEE Int. Workshop Future Trends Distrib.
Comput. Syst., May 2004, pp. 191–197.

[9] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “On the
capability of an SOM based intrusion detection system,” in Proc. Int. Joint
Conf. Neural Netw., Jul. 2003, vol. 3, pp. 1808–1813.

[10] W. Lee and S. J. Stolfo, “A framework for constructing features and
models for intrusion detection systems,” ACM Trans. Inf. Syst. Secur.,
vol. 3, no. 4, pp. 227–261, Nov. 2000.

[11] W. Lee, S. J. Stolfo, and K. Mok, “A data mining framework for building
intrusion detection models,” in Proc. IEEE Symp. Secur. Priv., May 1999,
pp. 120–132.

[12] J. Z. Lei and A. Chorbani, “Network intrusion detection using an im-
proved competitive learning neural network,” in Proc. 2nd Annu. Conf.
Commun. Netw. Serv. Res., May 2004, vol. 4, pp. 190–197.

[13] J. Li and C. Manikopoulos, “Novel statistical network model: The hyper-
bolic distribution,” Proc. Inst. Electr. Eng.—Commun., vol. 151, no. 6,
pp. 539–548, Dec. 2004.

[14] Z. W. Li, A. Das, and S. Nandi, “Utilizing statistical characteristics
of N -grams for intrusion detection,” in Proc. Int. Conf. Cyberworlds,
Dec. 2003, pp. 486–493.

[15] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999
DARPA off-line intrusion detection evaluation,” ACM Trans. Inf. Syst.
Secur., vol. 34, no. 4, pp. 579–595, Oct. 2000.

[16] Y. G. Liu, K. F. Chen, X. F. Liao, and W. Zhang, “A genetic clustering
method for intrusion detection,” Pattern Recognit., vol. 37, no. 5, pp. 927–
942, May 2004.

[17] Y.-H. Liu, D.-X. Tian, and A.-M. Wang, “Annids: Intrusion detection
system based on artificial neural network,” in Proc. Int. Conf. Mach.
Learn. Cybern., Nov. 2003, vol. 3, pp. 1337–1342.

[18] J. McHugh, “Testing intrusion detection systems: A critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed by
Lincoln Laboratory,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 262–
294, Nov. 2000.

[19] S. Mukkamala, A. H. Sung, and A. Abraham, “Intrusion detection using
an ensemble of intelligent paradigms,” J. Netw. Comput. Appl., vol. 28,
no. 2, pp. 167–182, Apr. 2005.

[20] B. Pfahringer, “Winning the kdd99 classification cup: Bagged boosting,”
SIGKDD Explor., vol. 1, no. 2, pp. 65–66, 2000.

[21] S. T. Sarasamma, Q. A. Zhu, and J. Huff, “Hierarchical Kohonenen net
for anomaly detection in network security,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 35, no. 2, pp. 302–312, Apr. 2005.

[22] D. Song, M. I. Heywood, and A. N. Zincir-Heywwd, “Training genetic
programming on half a million patterns: An example from anomaly detec-
tion,” IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 225–239, Jun. 2005.

[23] S. Stolfo, The Third International Knowledge Discovery and Data Mining
Tools Competition. Univ. California, 2002. [Online]. Available: http://
kdd.ics.uci.edu/databases/kddCup99/kddCup99.html

[24] C. Zhang, J. Jiang, and M. Kamel, “Intrusion detection using hierarchical
neural networks,” Pattern Recognit. Lett., vol. 26, no. 6, pp. 779–791,
May 2005.

[25] Z. Zhang and H. Shen, “Online training of SVMs for real-time intru-
sion detection,” in Proc. Int. Conf. Adv. Inf. Netw. Appl., 2004, vol. 1,
pp. 568–573.

[26] G. Vigna and R. A. Kemmerer, “NetSTAT: A network-based intrusion
detection approach,” in Proc. Comput. Secur. Appl. Conf., Dec. 1998,
pp. 25–34.

[27] D. Qu, B. M. Vetter, F. Wang, R. Narayan, S. F. Wu, Y. F. Hou,
F. Gong, and C. Sargor, “Statistical anomaly detection for link-state rout-
ing protocols,” in Proc. 6th Int. Conf. Netw. Protocols, 1998, pp. 62–70.

[28] N. Ye, S. M. Emran, X. Li, and Q. Che, “Statistical process control for
computer intrusion detection,” in Proc. DARPA Inf. Survivability Conf.
Expo. II, 2001, vol. 1, pp. 3–14.

[29] J. B. D. Caberera, B. Ravichandran, and R. K. Mehra, “Statistical traffic
modeling for network intrusion detection,” in Proc. Model., Anal. Simul.
Comput. Telecommun. Syst., 2000, pp. 466–473.

[30] N. Ye, Y. Zhang, and C. M. Borror, “Robustness of the Markov-chain
model for cyber-attack detection,” IEEE Trans. Rel., vol. 53, no. 1,
pp. 116–123, Mar. 2004.

[31] D. Yeung and Y. Ding, “Host-based intrusion detection using dynamic and
static behavioral models,” Pattern Recognit., vol. 36, no. 1, pp. 229–243,
Jan. 2003.

[32] X. A. Hoang and J. Hu, “An efficient hidden Markov model training
scheme for anomaly intrusion detection of server applications based on
system calls,” in Proc. IEEE Int. Conf. Netw., 2004, vol. 2, pp. 470–474.

[33] Y. Freund and R. Schapire, “Experiments with a new boosting algorithm,”
in Proc. 13th Int. Conf. Mach. Learn., 1996, pp. 148–156.

[34] H. Han, X. L. Lu, and L. Y. Ren, “Using data mining to discover signatures
in network-based intrusion detection,” in Proc. Int. Conf. Mach. Learn.
Cybern., 2002, vol. 1, pp. 13–17.

[35] M. Qin and K. Hwang, “Frequent episode rules for Internet anomaly detec-
tion,” in Proc. IEEE Int. Symp. Netw. Comput. Appl., 2004, pp. 161–168.

[36] J. M. Bonifacio, Jr., A. M. Cansian, A. C. P. L. F. De Carvalho, and
E. S. Moreira, “Neural networks applied in intrusion detection systems,”
in Proc. IEEE Int. Joint Conf. Neural Netw., 1998, vol. 1, pp. 205–210.

[37] A. Rapaka, A. Novokhodko, and D. Wunsch, “Intrusion detection
using radial basis function network on sequences of system calls,” in
Proc. Int. Joint Conf. Neural Netw., 2003, vol. 3, pp. 1820–1825.

[38] S. J. Han and S. B. Cho, “Evolutionary neural networks for anomaly
detection based on the behavior of a program,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 36, no. 3, pp. 559–570, Jun. 2006.

[39] S. Mukkamala, G. Janoski, and A. H. Sung, “Intrusion detection
using neural networks and support vector machines,” in Proc. Int. Joint
Conf. Neural Netw., 2002, vol. 2, pp. 1702–1707.

[40] A. H. Sung and S. Mukkamala, “Identifying important features for in-
trusion detection using support vector machines and neural networks,” in
Proc. Symp. Appl. Internet, 2003, pp. 209–216.

[41] J. Mill and A. Inoue, “Support vector classifiers and network intrusion
detection,” in Proc. Int. Conf. Fuzzy Syst., 2004, vol. 1, pp. 407–410.

[42] T. Abbes, A. Bouhoula, and M. Rusinowitch, “Protocol analysis in in-
trusion detection using decision tree,” in Proc. Int. Conf. Inf. Technol.:
Coding Comput., 2004, vol. 1, pp. 404–408.

[43] M. Asaka, T. Onabura, T. Inoue, and S. Goto, “Remote attack
detection method in IDA: MLSI-based intrusion detection using discrim-
inant analysis,” in Proc. Symp. Appl. Internet, 2002, pp. 64–73.

[44] S. Mukkamala and A. H. Sung, “A comparative study of techniques
for intrusion detection,” in Proc. Int. Conf. Tools Artif. Intell., 2003,
pp. 570–577.

[45] Y. Guan, A. A. Ghorbani, and N. Belacel, “Y -means: A clustering method
for intrusion detection,” in Proc. IEEE Can. Conf. Electr. Comput. Eng.,
2003, vol. 2, pp. 1083–1086.

[46] J. Xian, F. Lang, and X. Tang, “A novel intrusion detection method based
on clonal selection clustering algorithm,” in Proc. Int. Conf. Mach. Learn.
Cybern., 2005, vol. 6, pp. 3905–3910.

[47] S. Jiang, X. Song, H. Wang, J. Han, and Q. Li, “A clustering-based method
for unsupervised intrusion detections,” Pattern Recognit. Lett., vol. 27,
no. 7, pp. 802–810, May 2006.

[48] A. J. Hoglund, K. Hatonen, and A. S. Sorvari, “A computer host-
based user anomaly detection system using the self-organizing map,” in
Proc. Int. Joint Conf. Neural Netw., 2000, vol. 5, pp. 411–416.

[49] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” in Proc. Int. Conf. Comput. Vis. Pattern Recog., 2001,
vol. 1, pp. I-511–I-518.

[50] Y. Freund and R. Schapire, “A short introduction to boosting,” J. Jpn. Soc.
Artif. Intell., vol. 14, no. 5, pp. 771–780, 1999.

[51] C. Rudin, I. Daubechies, and R. E. Schapire, “The dynamics of AdaBoost:
Cyclic behavior and convergence of margins,” J. Mach. Learn. Res.,
vol. 5, pp. 1557–1595, Dec. 2004.

[52] M. E. Otey, A. Ghoting, and S. Parthasarathy, “Fast distributed outlier
detection in mixed-attribute data sets,” Data Min. Knowl. Discov., vol. 12,
no. 2/3, pp. 203–228, May 2006.

[53] S. Bay and M. Schwabacher, “Mining distance-based outliers in near
linear time with randomization and a simple pruning rule,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., 2003, pp. 29–38.

[54] W. Hu and W. M. Hu, “HIGCALS: a hierarchical graph-theoretic cluster-
ing active learning system,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
2006, vol. 5, pp. 3895–3900.

[55] N. C. Oza, “Online ensemble learning,” Ph.D. dissertation, Univ.
California at Berkeley, Berkeley, CA, 2001.

[56] A. Fern and R. Givan, “Online ensemble learning: An empirical study,” in
Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 279–286.

[57] W. Hu and W. M. Hu, “Network-based intrusion detection using Adaboost
algorithm,” in Proc. IEEE/WIC/ACM Int. Conf. Web Intell., Sep. 2005,
pp. 712–717.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 17, 2008 at 20:05 from IEEE Xplore. Restrictions apply.

