IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009 457

Construction of Tunable Radial Basis Function
Networks Using Orthogonal Forward Selection

Sheng Chen, Xia Hong, Bing L. Luk, and Chris J. Harris

Abstract—An orthogonal forward selection (OFS) algorithm
based on leave-one-out (LOO) criteria is proposed for the con-
struction of radial basis function (RBF) networks with tunable
nodes. Each stage of the construction process determines an RBF
node, namely, its center vector and diagonal covariance matrix,
by minimizing the LOO statistics. For regression application, the
LOO criterion is chosen to be the LOO mean-square error, while
the LOO misclassification rate is adopted in two-class classifi-
cation application. This OFS-LOO algorithm is computationally
efficient, and it is capable of constructing parsimonious RBF
networks that generalize well. Moreover, the proposed algorithm is
fully automatic, and the user does not need to specify a termination
criterion for the construction process. The effectiveness of the
proposed RBF network construction procedure is demonstrated
using examples taken from both regression and classification
applications.

Index Terms—Classification, leave-one-out (LOO) statistics, or-
thogonal forward selection (OFS), radial basis function (RBF)
network, regression, tunable node.

I. INTRODUCTION

HE RADIAL basis function (RBF) network is a popular

artificial neural network architecture that has found wide
applications in diverse fields of engineering [1]-[14]. The pa-
rameters of the RBF network include its center vectors and vari-
ances or the covariance matrices of the basis functions as well
as the connecting weights from the RBF nodes to the network
output. All the parameters of an RBF network can be learned
together via nonlinear optimization using the gradient-based
algorithms [15]-[18], the evolutionary algorithms [19]-[21], or
the expectation-maximization algorithm [22], [23]. Generally,
learning based on such a nonlinear approach is computationally
expensive and may encounter the problem of local minima.
Additionally, the network structure or the number of RBF nodes
has to be determined via other means, typically based on cross-
validation. Alternatively, clustering algorithms can be applied
to find the RBF center vectors as well as the associated basis
function variances [24]-[27]. This leaves the RBF weights to
be determined by the usual linear least squares solution. Again,

Manuscript received March 31, 2008; revised July 3, 2008. First published
December 16, 2008; current version published March 19, 2009. This paper was
recommended by Associate Editor Q. Zhao.

S. Chen and C. J. Harris are with the School of Electronics and Computer
Science, University of Southampton, SO17 1BJ Southampton, U.K.

X. Hong is with the School of Systems Engineering, University of Reading,
RG6 6AY Reading, U.K.

B. L. Luk is with the Department of Manufacturing Engineering and Engi-
neering Management, City University of Hong Kong, Kowloon, Hong Kong,
China.

Digital Object Identifier 10.1109/TSMCB.2008.2006688

the number of the clusters has to be determined via other means,
such as cross-validation.

One of the popular approaches for constructing RBF net-
works for regression is to formulate the problem as a linear
learning one by considering the training input data points as
candidate RBF centers and employing a common variance
for every RBF node. A parsimonious RBF network is then
identified using the orthogonal least squares (OLS) algorithm
[28]-[32]. Similarly, the support vector machine (SVM), the
relevance vector machine (RVM), and other sparse kernel
modeling methods [33]-[39] also fix the kernel centers to the
training input data points and adopt a common kernel variance
for every kernel. A sparse kernel representation is then sought.
Since the common variance is not provided by the learning
algorithms in this /inear learning approach, it must be treated
as a hyperparameter and determined via cross-validation. For
the kernel modeling methods, additionally, some learning algo-
rithm’s hyperparameters also have to be determined by cross-
validation. For example, for the SVM algorithm with the ¢
insensitive cost function [34], the regularization parameter and
the value of € must be specified. The experimental results ob-
tained in [32] show that the locally regularized OLS algorithm
based on the leave-one-out (LOO) mean-square error (mse)
criterion (LROLS-LOO) compares favorably with many other
existing sparse kernel modeling methods for regression model-
ing, in terms of model sparsity and generalization performance.

The sparse kernel modeling methods [33]-[39] are equally
applicable to classification. A recent work [40] has devel-
oped an orthogonal forward selection (OFS) algorithm based
on minimizing the LOO misclassification rate for two-class
classification application using RBF classifiers. Because of
orthogonal decomposition, the LOO misclassification rate can
be computed efficiently, just as in the case of the LOO mse
for regression [32], and this ensures a fast RBF classifier con-
struction. As with other sparse kernel modeling methods, the
RBF variance is treated as a hyperparameter and determined via
cross-validation. This RBF classifier construction algorithm can
be viewed as the LROLS-LOO algorithm for classification. One
aspect of the linear learning approach for RBF models, which
deserves consideration, is the true computational cost. Given
the RBF variance, the LROLS-LOO algorithm is computation-
ally very efficient. However, the true computational cost should
include hyperparameter learning, which is typically via a
grid-search-based cross-validation. For sparse kernel modeling
methods, such as the SVM with two or three hyperparameters,
the total computational requirements can become very costly.

This paper proposes a construction algorithm for the tunable
RBF network, where each RBF node has a tunable center

1083-4419/$25.00 © 2008 IEEE

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

458 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

vector and an adjustable diagonal covariance matrix. An OFS
procedure is developed to append the RBF units one by one by
minimizing the LOO statistics. For constructing RBF classi-
fiers, the LOO criterion is chosen to be the LOO misclassi-
fication rate, while the LOO mse is used for selecting RBF
networks in regression application. Because the RBF centers
are not restricted to the training input points and each RBF node
has an adjusted covariance matrix, the proposed OFS-LOO
algorithm can produce sparser representations with excel-
lent generalization capability, in comparison with the existing
sparse kernel modeling methods. In addition, our algorithm
does not have hyperparameters that must be learning via costly
cross-validation. Our method is also very different from those
RBF learning methods based on nonlinear optimization, as we
do not attempt to optimize all the RBF units together, which
could be a too large and complicated nonlinear optimization
task. Rather, we optimize one RBF node at each stage of
construction based on the LOO criterion. The determination
of the RBF center vector and diagonal covariance matrix at
each stage can readily be carried out by an efficient global
search algorithm called the repeated weighted boosting search
(RWBS) [41]. Moreover, because the LOO criterion is “locally
convex” with respect to the model size [32], [42], the construc-
tion process is fully automatic, and there is no need for the user
to specify additional termination criterion in order to determine
the size of the RBF network.

Finally, we emphasize the novelty of our proposed approach
by highlighting the differences of this algorithm with our previ-
ous LROLS-LOO algorithm (for regression [32] and classifica-
tion [40]). The LROLS-LOO algorithm places candidate RBF
centers at all the training data points and employs a common
RBF variance for every RBF unit. The model is then selected
from the resulting big candidate model set using the OFS pro-
cedure. The common RBF variance is treated as a hyperpara-
meter and determined via costly cross-validation. The proposed
OFS-LOO algorithm learns the RBF units, which have tunable
center vectors and diagonal covariance matrices, one by one via
an OFS procedure. Although determining a tunable RBF unit
may cost more than selecting a fixed RBF unit, the algorithm
constructs fewer RBF units, compared with the LROLS-LOO
algorithm. Moreover, the proposed OFS-LOO algorithm does
not have any hyperparameter and achieves substantial saving
in cross-validation. The overall computational cost of this
OFS-LOO algorithm is not necessarily more than that of the
LROLS-LOO algorithm. Our experimental results demonstrate
that the novel OFS-LOO algorithm compares favorably with
several sparse RBF or kernel modeling methods, including the
LROLS-LOO algorithm.

II. REGRESSION USING THE TUNABLE RBF NETWORK

Consider the regression problem of approximating the N
pairs of training data {(xy,yx)}_, with the RBF network
defined in

M

Y = Uk + e = Zwigi(xk) +er=g (B)w+er (1)
=1

where the input x; € R™, the desired output yx € R, 3
denotes the RBF model output, e, = y; — 9 is the model-
ing error, M is the number of RBF units, w =

[wr ws wyr] T is the RBF weight vector, g; () for 1 <
i< M denote the RBF regressors, and g(k)=
[g1(xk) g2(xk) g (xi)]T. We will consider the

general RBF regressor of the form

50 =K (Vo™= k- m)) @

where p; is the center vector of the ith RBF unit, the diagonal
covariance matrix has the form X; = diag{o?,,...,07,,},
and K (e) is the chosen basis or kernel function. By defin-

ingy =[y1 1 yn]T,e=[e1 e -+ en]|T, and
G=[g g gn] with
g = [gi(x1) gi(x2) axn)", 1<I<M ()

the regression model (1) over the training data set can be written
in the matrix form

y =Gw +e. @)
Here, g, is the kth column of G while g (k) the kth row of G.

A. OFS Based on the LOO Mean Square Error

Let an orthogonal decomposition of G be G = PA, where

1 ap o1,M

A — 0 1 ", : 5)
: . QN—1,M
0 .- 0 1

P=[p1 p2 P (6)

with the orthogonal columns that satisfy p;ij =0if i #j.
The regression model (4) can alternatively be expressed as

y=PO+e 7

where 0 = [0, 6, Orr]T satisfies the triangular sys-
tem Aw = 6. Since the space spanned by the original model
bases g;(e), 1 < i < M, is identical to the space spanned by the
orthogonal model bases, the RBF model output is equivalently
expressed by

e =p" (k)0 ®)

where p"(k) = [pi(k) p2(k)
row of P.

Consider the modeling process that has produced the
n-unit model. Let us denote the constructed n model columns
as P, =[p1 p2 Pn], the kth model output of this
n-unit model identified using the entire training data set as
g),(c”) =", 0;p;(k), and the corresponding kth modeling er-
roras e{” =y, — g\ If we “remove” the kth data point from
the training data set and use the remaining N — 1 data points to
identify the n-unit RBF network instead, the “test” error of the
resulting model can be calculated on the data point removed

pu (k)] is the kth

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

CHEN et al.: CONSTRUCTION OF TUNABLE RADIAL BASIS FUNCTION NETWORKS USING OFS 459

from training. This LOO modeling error, denoted as efcn’fk), is

given by [43]
o = o o

where n,(cn) is the LOO error weighting [43]. The LOO mse for
the n-unit RBF network is then defined by

R G

k=1

(10)

Jp, i1s a measure of the model generalization capability [43],
[44]. For (8), the computation of the LOO criterion J,, is very
efficient because ¢! and 7™

using [32], [42]

can be computed recursively

e =y — Z Oipi(k) = e ™" — 0, (k) e8Y)
=1
n 2 2
(n) i (k) -1y Pa(k)
-1 =, — 12
T ; pipit A T S

where \ > 0 is a small regularization parameter [32].

The proposed OFS-LOQO algorithm constructs the RBF units
one by one by minimizing the LOO mse .J,,. Specifically, at the
nth stage of the construction procedure, the nth RBF node is
determined by minimizing .J,, with respect to the node’s center
vector p,, and diagonal covariance matrix X5,

min J, (p,, Xp)-

72 37

13)

The construction procedure is automatically terminated when

JIum < JIn (14)
yielding an M -term RBF network. Note that the LOO criterion
J,, is at least locally convex with respect to the model size n,
i.e., there exists an “optimal” M such that, for n < M, J,
decreases as the model size n increases while condition (14)
holds [42]. After the OFS-LOO model construction, we have
a very small model set containing only M units. At this stage,
we may apply the LROLS-LOO algorithm of [32] to further
reduce the model size and to automatically update the individ-
ual regularization parameter for each weight. This refinement
requires a very small amount of computation, as the regression
matrix G is completely specified with only a few columns. Note
that, in the OFS-LOO algorithm, the regularization parameter A
can simply be set to zero (no regularization) or a very small
value (e.g., 1075). The refinement with the LROLS-LOO will
automatically optimize each regularization parameter for indi-
vidual weight [32]. Our experience shows that, for regression,
this refinement involving the LROLS-LOO is beneficial but,
for classification, it is unnecessary (no further reduction in
model size).

An advantage of this OFS-LOOQO algorithm is that the model
construction is based directly on optimizing the model gen-
eralization capability without involving an additional valida-
tion data set and the model size is determined automatically

without the need for the user to specify additional termination
criterion. Moreover, this learning algorithm does not contain
any hyperparameter which requires costly cross-validation to
tune. The regularization parameter A in (12) can simply be set
to zero or a very small value. This is not the case for many
existing sparse RBF modeling methods. For example, to use
the SVM algorithm, the user has to specify the kernel variance,
regularization parameter C, and the parameter that defines
the loss function [34]. These learning hyperparameters have
critical influence on the algorithm’s performance and must be
determined via cross-validation. In fact, most of the complexity
for many existing learning algorithms is due to the need of
tuning these hyperparameters.

B. Positioning and Shaping an RBF Node

The task at the nth stage of the RBF network construction is
to solve the optimization problem (13). Since this optimization
problem is nonconvex with respect to u,, and 3,,, a gradient-
based algorithm may become trapped at a local minimum.
Alternatively, global search methods, such as the genetic algo-
rithm [45], [46] and adaptive simulated annealing [47], [48],
may be used to perform the optimization task (13). We adopt
a simple yet efficient global search algorithm called the RWBS
[41] to determine p,, and 3,,. The motivation and analysis of
the RWBS algorithm as a general global optimizer are detailed
in [41], and they will not be repeated here. The procedure for
determining the nth RBF unit based on the RWBS algorithm is
now summarized. Let u be the vector that contains p,, and 3,,.
Give the following initial conditions:

0 _ 4

e,io):yk and 7,

T 1 2 ’ (15)
JO L\7}’ :’ N Zi}v—fl yk"

Specify the RWBS algorithmic parameters, namely, the popu-

lation size Pg, the number of generations in the repeated search
Ng, and the number of weighted boosting search iterations M.

Outer loop: generations For (I = 1;1 < Ng;l=1+1){
Generation initialization: Initialize the population by setting

u[ll} = uLle_slt] and randomly generating the rest of the population
members u,El], 2 <1 < Pg, where u][;] denotes the solution

]
1

eSjtl]
found in the previous generation. If [= 1, u
chosen.
Weighted boosting search initialization: Assign the initial dis-
tribution weightings 6;(0) = 1/Ps, 1 <14 < Pg, for the popu-
lation. Then

1) For1 < < Pg, generate gfl) from ugl], the candidates for

the nth model column, and orthogonalize them

is also randomly

i)

o), =plel) /plp;, 1<j<n 16)
n—1)
pl =g - o) p, (17)
j=1

o) = (:?)Ty/ ((p:?)Tpi?H)- (18)

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

460 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

2) For 1 < i < Pg, calculate the LOO cost for each uy]

@) =e" Y —pl(k)8), 1<k<N (19)
. 2
() (n—1) (p’)(k))
ny (@) =mn, - 1<k<N (20)

(pﬁf)T) +/\’

o™)

Jz):1§:< k 7’>2 (21)
" Nk::l

(
g (i)

where p'; (k) is the kth element of pl.

Inner loop: weighted boosting search For (t=1;¢t <

Mpt=t+1){
Step 1: Boosting
1) Find
. _ .)
Tbest = arg, min, gy
tworst = arg max J};L).
1<i<Ps
Denote ul” M apdul? =l

best = uibcst worst —
2) Normalize the cost function values

Tworst ©

72‘7)
P AN
S I

3) Compute a weighting factor 3; according to

T =

1<i< Ps.

_ &
-

Ps
=Y 6t-1J) B
i=1

4) Update the distribution weightings for 1 < ¢ < Pg

5y = 4 0t = 18", forf <1
7 - i)
Si(t—1)B; ", for By > 1
and normalize them
0;(t
0;i(t) = Ps() 1 <3< Pg.

Zj:l 5]'(15)7

Step 2: Parameter updating
1) Construct the (Ps + 1)th point using

Ps
1
Uupg+1 = Z (51(t)u£]
i=1
2) Construct the (Pg + 2)th point using

Ups+2 = u{)l}sst + (ul[al]est - uPS+1) .
3) Calculate ngH) and g55+2) from up,4+; and upgyo,
orthogonalize these two candidate model columns (as in
(16), (17) and (18)), and compute their corresponding

LOO cost function values Jf,,), i1 =Ps+1,Ps+2(asin
(19), (20) and (21)). Then, find

1, = ar min J0.
: g1':Ps+1,1':'s+2 "
. i*) [l] iworst) :
(u;,,Jn”’) then replaces (Uyoysts JIn) in the
population

End of inner loop The solution found in the /th generation is
g
[

u= ubest'

} End of outer loop This yields the solution u = uLIZSCi], ie.,
1, and 3, of the nth RBF node, the nth model column g;,, the
orthogonalization coefficients «; ,,, 1 < j < n, the correspond-
ing orthogonal model column p,,, and the weight 6,,, as well as

the n-term modeling errors e,in) and associated LOO modeling

error weightings 771(!L) forl1 <k < N.

The appropriate values of Pg, Ng, and M depend on the
dimension of u and how hard is the objective function to be
optimized. Generally, these algorithmic parameters have to be
found empirically, and some general rules are discussed in [41].
For example, in the inner optimization loop, there is no need
for every member of the population to converge to a (local)
minimum, and it is sufficient to locate where the minimum
lies. Thus, the maximum number of iterations M for the inner
optimization loop can be set to a relatively small value. This
makes the search efficient, achieving convergence with a small
number of the cost function evaluations. The population size
Pg and the number of generations N should be set sufficiently
large so that the parameter space will be sampled sufficiently.

C. Computational Complexity Comparison

The computational requirements of the proposed OFS-LOO
algorithm can be characterized by the number of the LOO cost
function evaluations and associated model column orthogonal-
izations. This number can readily be shown to be

Comp(OFS-LOO) = M (Ng(Ps + 2M;) — (Ng — 1))
~MNg(Ps + 2Mj) (22)

where M is the constructed model size, Ps is the population
size, N¢ is the number of generations, and M7 is the number of
weighted boosting search iterations. The number of LOO cost
evaluations and associated model column orthogonalizations
for the LROLS-LOO algorithm with a given RBF variance, on
the other hand, is given by

MI
Comp(LROLS-LOO) = > (N — (i —1)) » M'N (23)
i=1

where the approximation is arrived because the selected model
size M’ is usually much smaller than the training data size N.
Typically, Comp(OFS-LOO) >>> Comp(LROLS-LOO). For
instance, for the Boston Housing regression example consid-
ered in Section IV-A, on average, we have Comp(OFS-LOO) =
162 085 while Comp(LROLS-LOO) = 26 904. However, the

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

CHEN et al.: CONSTRUCTION OF TUNABLE RADIAL BASIS FUNCTION NETWORKS USING OFS 461

complexity (23) is for a given RBF variance. This hyperpara-
meter has to be determined by a line search based on cross-
validation. Let us make an optimistic assumption that, at each
point of the line search, the algorithm produces the same model
size M'. The true complexity of the LROLS-LOO algorithm
will be Lg x Comp(LROLS-LOO), where Lg is the total
points of the line search. Again, consider the Boston Housing
example. If the line search needs to be performed for Lg > 8§,
the total cost of the LROLS-LOO algorithm will be more than
that of the proposed OFS-LOO algorithm.

In the regression modeling experiments presented in
Section I'V-A, we also applied the e-SVM algorithm [34] as a
benchmark, and we employed a standard quadratic optimizer
to solve the optimization task of the SVM learning, which has
a computational complexity much higher than the other two
algorithms, the LROLS-LOO and OFS-LOO. Our experimental
records show that, for the Boston Housing regression example,
the run time for the OFS-LOQ algorithm was 50 times faster
than the standard SVM. One could argue that a fast implementa-
tion of the SVM learning could be adopted, which would reduce
the computational run time. However, the need to perform a 3-D
grid search to determine the learning hyperparameters (kernel
variance, regularization parameter, and error band parameter)
makes the SVM uncompetitive in terms of the total cost, in
comparison with the other two algorithms.

III. CLASSIFICATION USING THE TUNABLE
RBF NETWORK

Consider the two-class classification problem with a given
training data set {(xx, yx)}2_,, where x}, is an m-dimensional
pattern vector and yj, € {£1} is the class label for x;,. The data
set is used to construct the RBF classifier of the form

M
Gt = sgn(e) with i, = fin(x) = > wigi(xk) (24)
=1

where ¥y, is the estimated class label for xy, ff({ﬂé%(o) denotes
the RBF classifier with A/ RBF units, and

717

<0

y > 0. (25)
If we define the modeling residual or error as ex = yr — Y,
all the notations of the RBF network for regression, defined
in (1)—(8) of Section II, carry over to the present classification
application. The goal of a classifier is to minimize the misclas-
sification or error rate. Define the signed decision variable

sk = sgn(Yr) Uk = Yk = ykff(ﬂ”g[%(xk). (26)

Then, the misclassification rate over {(xj,yx)}h., is eval-
uated as

27)

where the indication function Z; is defined by

L y<0
Id(y):{o y > 0.

The test error rate over a data set not used in training measures
how good a classifier’s generalization capability is.

(28)

A. OFS Based on the LOO Misclassification Rate

Let us denote the n-unit RBF classifier, identified using the
entire training data set {(xy,yx)}h_;. as 1%13)1?(')- The kth

modeling error for this RBF classifier is given by

el =y — fue (1) =y — 95

(29)
Let fl({ggk)(o) be the n-unit RBF classifier identified using
the data set {(xg,yx)}h_, but with its kth data point being
removed. The test output of this n-unit RBF classifier at the
kth data point not used in training is computed by

S(n,—k) _

) N (k). (30)

The associated LOO signed decision variable is then defined by

s =g 31)
and the LOO misclassification rate is computed by
L (n,—k)
Jn =~ ;Id (sk) . (32)

J,, is a measure of the classifier’s generalization capability,
and it an be calculated efficiently owing to the orthogonal
decomposition [40]. From the LOO modeling error (9), we have
(also see [32])

v — 35"

3
n p? (k)
1- Zi:l p;F?PiJr/\

(n,—k
ye — gy =

(33)

Multiplying both sides of (33) with y,, and applying y7 = 1
yields

~(n)

_ 1-—
1— s(n k) _ YrYy, . (34)
k 1 n by (k)
ie.,
n n 2(k)
Yoi Ykbipi(k) — > i = . (n)
SI(Cn,—k) _ p; PitA (bk (35)

n 7 (k) ()7
=2 p§p¢+>\ K

The recursive formula for 77,(6") is given in (12), while qﬁ,(fn) can

be represented using the following recursive formula:

pa (k)

(n) _ ,(n—1) 0 k) —

(36)

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

462 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

Just as in regression, the proposed OFS-LOO algorithm con-
structs the RBF units of the classifier one by one by minimizing
the LOO misclassification rate (32). Specifically, at the nth
stage of the construction, the nth RBF node is determined by
minimizing J,, with respect to the node’s center vector u,, and
diagonal covariance matrix 3,. The construction procedure
is automatically terminated when Jy; < Jpsyq, yielding an
M-term RBF network classifier.

B. Determining a Unit of the RBF Classifier

The nth stage of the classifier construction is to determine
the nth RBF unit by minimizing the LOO misclassification
rate with respect to the node’s center vector p,, and diagonal
covariance matrix ¥,. This optimization task is carried out
by the same global search algorithm, the RWBS, presented in
Section II-B with some small modifications. Specifically, the
initialization (15) is replaced by

©D—0 and ¥ =1,1<k<N,and Jo=1 (37)
while the calculation of the LOO cost function value for each
ul! (19)-(21) is replaced by

oy (i) = 0" + yupl (k)62
. 2
(p%)(k))

V) 1<k<N (38)
NT 5
(pn) Pn + A
. 2
(n) iy _ . (n-1) (p”)(k))
m, (1) =y TN 1<ELSN, (39
(p) P2+

h_ 1 (4)
J,?:ZId(;) (40)

N k=1 771(c)(l)

At the end of the outer loop, the algorithm yields the solution
u= uL]szt] ,i.e., u,, and X, of the nth RBF node, the nth model
column g,,, the orthogonalization coefficient o5 ,, 1 < j < n,
the corresponding orthogonal model column p,,, and the weight

6., as well as qb,(c") and n,(c”) forl < k < N.

IV. EXPERIMENTAL RESULTS

Two regression examples and three two-class classifica-
tion data sets were used to compare the performance of our
OFS-LOO algorithm with several existing algorithms for con-
structing RBF models.

A. Regression Modeling Examples

Engine Data: This example constructed an RBF network
model representing the relationship between the fuel rack po-
sition (input uy) and the engine speed (output yy,) for a Leyland
TL11 turbocharged direct-injection diesel engine. The data set,
shown in Fig. 1, contained 410 samples. The first 210 data
points were used in modeling and the last 200 points in model

6 T T T T T T T T
\‘“
551 \
- |
>
g 5
IS
2
2 4.5
[43] ‘ I
4] |
35 : - - - - - - -
50 100 150 200 250 300 350 40C
sample
(a)
5 :
4.5+
3
5 4r
I}
€
[0
w 35}
>
n
3
25 L L L 1 1 L L L
0 50 100 150 200 250 300 350 400
sample
(b)

Fig. 1. Engine data set: (a) System input uj, and (b) system output yy,.
TABLE 1
COMPARISON OF THE THREE GAUSSIAN RBF NETWORK MODELS
OBTAINED BY THE e-SVM, LROLS-LOO, AND PROPOSED
OFS-LOO ALGORITHMS FOR THE ENGINE DATA SET

algorithm RBF type | model size | training MSE | test MSE
e-SVM fixed 92 0.000447 0.000498
LROLS-LOO fixed 22 0.000453 0.000490
OFS-LOO tunable 15 0.000466 0.000480

validation. The study [49] has shown that this data set can be
modeled adequately as
e = fo(xi) + ex @1
where fq(e) describes the unknown underlying system to
be identified, e; denotes the system noise, and xj =
[y-1 up_1 ug_2]*. Two Gaussian RBF models obtained by
the e-SVM [34] and LROLS-LOO [32] algorithms are listed in
Table I. These two construction algorithms all place the RBF
centers in the training input data points and use a common basis
variance for every RBF node. For the LROLS-LOO algorithm,
the single RBF variance was optimized via cross-validation. For
the SVM algorithm, in addition to the RBF variance, two more
hyperparameters, the regularization parameter C' and error
band e, were also optimized via cross-validation.
We applied the proposed OFS-LOO technique to this data
set, and Fig. 2 shows the LOO mse as a function of the model
size during the modeling process. It is seen that the algorithm

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

CHEN et al.: CONSTRUCTION OF TUNABLE RADIAL BASIS FUNCTION NETWORKS USING OFS 463

i

S

o}

]

S 0.01 AN

o

2]

c

[

[0}

£

S 0.001 —y
' —

0 2 4 6 8 10 12 14 16 18 20
number of kernels

Fig. 2. Evolution of the LOO mse versus the model size for the engine data
set using the OFS-LOO algorithm.

automatically constructed a 17-term RBF model, since Jig >
J17. The LROLS-LOO algorithm was then employed to further
simplify this 17-unit RBF model, yielding a final 15-term RBF
network. It was found empirically that setting the algorithmic
parameters to Pg = 37, M; = 100, and Ng = 11 was suffi-
cient, and we noticed that the performance of the algorithm
was not overly sensitive to the values of Pg, M;, and N¢. This
15-term RBF network model is also listed in Table I. It can be
seen that all the three models have the same excellent general-
ization capability, as indicated by their test mse values, but the
model produced by the proposed OFS-LOO algorithm has the
smallest model size, containing only 15 RBF units. The 15-unit
RBF network model constructed by the OFS-LOO algorithm
was used to generate the model prediction according to

Uk = frBF(Xk) (42)
where fRBF(') denotes the constructed RBF model mapping.
Fig. 3 shows the model prediction ¢, and the prediction error
ér = Yr — Ui generated by this 15-unit RBF model.

Boston Housing Data: This is a regression benchmark data
set, available at the University of California, Irvine (UCI)
repository [50]. The data set comprises 506 data points with
14 variables. We performed the task of predicting the median
house value from the remaining 13 attributes. We randomly
selected 456 data points from the data set for training and
used the remaining 50 data points to form the test set. Average
results were given over 100 repetitions. The RBF network with
the Gaussian basis function was used, and three construction
algorithms, the e-SVM [34], the LROLS-LOO [32], and the
proposed OFS-LOO, were compared. The first two algorithms
place the RBF center vectors at the training input data points
and employ a common RBF variance for every RBF unit, while
the OFS-LOO algorithm is designed for the RBF network with
tunable nodes. The RBF variance, regularization parameter,
and error band of the e-SVM algorithm were determined via
cross-validation. Similarly, the RBF variance of the LROLS-
LOO algorithm was optimized via cross-validation. The three
optimization algorithmic parameters of the OFS-LOO algo-
rithm were chosen empirically to be Ps = 21, M; = 200, and
N¢g = 11. The performances of the three algorithms over the
100 realizations of the data set are compared in Table II.

The recorded average run time given hyperparameters for
the LROLS-LOO method was 4 times faster than that of the

J
UL

—
—_—

system output/model prediction

2.5

0 50 100 150 200 250 300 350 400
sample
(a)
0.1
S 005
()
c
kel
S
5 0
()
a
©
8
g -0.05
-0.1
0 50 100 150 200 250 300 350 400
sample
(b)

Fig. 3. Modeling of the engine data set by the 15-unit RBF network con-
structed using the OFS-LOO algorithm: (a) Model prediction g superimposed
on system output y; and (b) model prediction error éx = yr, — Yk

OFS-LOO algorithm and 200 times faster than the SVM algo-
rithm. Thus, without counting the hyperparameter tuning, the
LROLS-LOO algorithm is the fastest while the SVM algorithm
is the slowest. By adopting the fast implementation of the
SVM algorithm, significant reduction in run time may be
achieved. It can be seen from Table II that the best modeling
result was obtained by the proposed OFS-LOO algorithm. It
can also be seen that the test mse of the SVM was poor. This
was probably because the three learning hyperparemeters were
not tuned to the optimal values. For this regression problem of
input dimension of 13 and data size N ~ 500, the 3-D grid
search required by the SVM was expensive, and the optimal
hyperparameters were hard to find, compared with the smaller
engine data set.

B. Classification Examples

Synthetic Data: This synthetic two-class problem was taken
from [51], and we obtained the data set form [52]. The di-
mension of the feature space was m = 2. The training set
contained 250 samples, and the test set had 1000 points. The
optimal Bayes error rate for this example is known to be 8%.
With the population size Pg = 7, the number of inner-loop
iterations M = 400, and the number of generations Ng = 11,
we applied the OFS-LOO algorithm to the 250-sample training
set to construct the Gaussian RBF classifier with tunable nodes,

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

464

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

TABLE 1I
COMPARISON OF THE THREE GAUSSIAN RBF NETWORK MODELS OBTAINED BY THE £-SVM, LROLS-LOO, AND OFS-LOO ALGORITHMS FOR THE
BOSTON HOUSING DATA SET. THE RESULTS WERE AVERAGED OVER 100 REALIZATIONS AND QUOTED AS THE MEAN £ STANDARD DEVIATION

algorithm RBF type model size training MSE test MSE
e-SVM fixed 243.24+5.3 6.7986 + 0.4444 23.1750 £ 9.0459
LROLS-LOO fixed 58.6 £11.3 12.9690 + 2.6628 17.4157 + 4.6670
OFS-LOO tunable 34.6 £ 8.4 | 10.0997 4+ 3.4047 | 14.0745+ 3.6178
0.5 TABLE 1II
o COMPARISON OF THE FOUR GAUSSIAN RBF NETWORK CLASSIFIERS
© OBTAINED BY THE SVM, RVM, LROLS-LOO, AND OFS-LOO
§ 04 ALGORITHMS FOR THE SYNTHETIC DATA SET. THE RESULTS FOR THE
"§ SVM AND RVM ALGORITHMS ARE QUOTED FROM [36]
=
2 03 algorithm RBF type | model size | test error rate
3 SVM fixed 38 10.6%
é’ RVM fixed 4 9.3%
o 92 LROLS-LOO | fixed 5 9.0%
0 OFS-LOO tunable 3 8.0%
S
01 0 1 2 3 4 5 TABLE IV

number of kernels

Fig. 4. Evolution of the LOO misclassification rate versus the classifier size
for the synthetic data set using the OFS-LOO algorithm.

1.5
o
o
1 e © s s
® o ®o "E o ©0
3
0‘38%0%*2 3 I):gg o &dy
S 0%
W@%%o § T
N 05 % N0 o E o2
1% . N FERE o P % &
Xx H\% o o
o
w0 i O
X)0 X PRI
M)z& X % x
0 x
* x
x
x
-0.5
-1.5 -1 -0.5 0 0.5 1
x1

Fig. 5. Decision boundary of the three-unit RBF classifier obtained by the
OFS-LOO algorithm for the synthetic data set. The 250 samples of the training
data are shown as crosses and circles for the two classes.

and Fig. 4 shows the evolution of the LOO misclassification
rate during the model construction. It is seen from Fig. 4 that the
algorithm automatically constructed a three-unit RBF classifier,
since J4 > J3. The decision boundary of this constructed three-
unit Gaussian RBF network is shown in Fig. 5. The SVM
and RVM algorithms were applied to construct Gaussian RBF
networks for this data set in [36]. The results given in [36]
are compared with our result in Table III. We also applied the
LROLS-LOO classification algorithm [40] to this data set, and
the result obtained is also listed in Table III. It can be seen from
Table III that our proposed method not only had the sparsest
model containing three RBF units but also achieved the optimal
Bayes classification error rate of 8§%.

Breast Cancer Data: This data set was originated in the UCI
repository [50], and we obtained the data from [53]. The input
dimension was m = 9. There were 100 realizations of this data
set, each containing 200 training patterns and 77 test patterns.

AVERAGE CLASSIFICATION TEST ERROR RATE IN PERCENTAGE OVER THE
100 REALIZATIONS OF THE BREAST CANCER DATA SET. THE FIRST
SEVEN RESULTS WERE QUOTED FROM [53]

method test error rate model size
RBF-Network 27.64 £ 4.71 5
AdaBoost with RBF-Network 30.36 £ 4.73 5
LP-Reg-AdaBoost (--) 26.79 + 6.08 5
QP-Reg-AdaBoost (-7-) 25.91 +4.61 5
AdaBoost-Reg (-7-) 26.51 + 4.47 5

SVM with RBF-Kernel 26.04 +4.74 not available

Kernel Fisher Discriminant 24.77 + 4.63 200
LROLS-LOO 25.74 £+ 5.00 6.0 2.0
Proposed OFS-LOO 24.49 + 3.28 3.1+1.2

In [53] and [54], seven RBF classifier construction algorithms
were compared, and the performance averaged over all the
100 realizations were given. We applied the LROLS-LOO and
OFS-LOO algorithms to the 100 realizations of the data set,
and our results are given in Table IV, in comparison with the
benchmark results quoted from [53]. For the first five methods
studied in [53], the Gaussian RBF network with five optimized
units was used. For the SVM with Gaussian kernel, no average
model size was given in [53] but it could safely be assumed that
it was larger than 50. The kernel Fisher discriminant was the
nonsparse optimal classifier using all the N = 200 training data
samples. From Table IV, it is seen that our OFS-LOOQO algorithm
compares favorably with other benchmark RBF classifiers, both
in terms of classification accuracy and model size.

Diabetes Data: This was a benchmark data set in the UCI
repository [50], and we obtained the data set from [53]. The
feature space dimension was m = 8. There were 100 realiza-
tions of the data set, each having 468 training patterns and
300 test patterns. Seven RBF classifiers were studied in [53]
and [54], and the results of [53] were reproduced in Table V.
For the first five methods studied in [53], the Gaussian RBF
network with 15 optimized units was used. For the SVM with
RBF kernel, no average model size was given in [53] but we
could safely assume that it was larger than 100. We applied
our OFS-LOO algorithm and the LROLS-LOO algorithm to
construct the Gaussian RBF classifiers to this data set, and our
results are also listed in Table V. It can be seen that our method
produced the best classification accuracy with the smallest
RBF classifier.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

CHEN et al.: CONSTRUCTION OF TUNABLE RADIAL BASIS FUNCTION NETWORKS USING OFS 465

TABLE V
AVERAGE CLASSIFICATION TEST ERROR RATE IN PERCENTAGE OVER THE
100 REALIZATIONS OF THE DIABETES DATA SET. THE FIRST SEVEN
RESULTS WERE QUOTED FROM [53]

method test error rate model size
RBF-Network 24.29 4+ 1.88 15
AdaBoost with RBF-Network 26.47 + 2.29 15
LP-Reg-AdaBoost (--) 24.11 £1.90 15
QP-Reg-AdaBoost (-"-) 25.39 £ 2.20 15
AdaBoost-Reg (-"-) 23.79 + 1.80 15

SVM with RBF-Kernel 23.53 £ 1.73 not available
Kernel Fisher Discriminant 23.21 +1.63 468
LROLS-LOO 23.00 £ 1.70 6.0+ 1.0
Proposed OFS-LOO 22.16 +1.47 4.04+1.6

V. CONCLUSION

A novel construction algorithm has been proposed for RBF
networks with tunable nodes. Unlike most of the sparse RBF
or kernel modeling methods, the RBF centers are not re-
stricted to the training input data points, and each RBF node
has an individually adjusted diagonal covariance matrix. On
the other hand, we do not attempt to optimize all the RBF
network’s parameters together using nonlinear optimization.
Rather, we optimize the RBF units one by one by minimizing
the LOO statistics, which is a measure of the model gener-
alization capability. The proposed RBF network construction
algorithm can be applied to both regression and classification.
The RBF units are selected in a computationally efficient OFS
procedure, and the orthogonal decomposition ensures a fast
updating of the LOO criterion. Moreover, the RBF network
construction is fully automatic, and the user does not need
to specify any additional termination criterion. Our proposed
method is computationally attractive, since it does not have
any hyperparameter that requires costly tuning based on cross-
validation. Several examples taken from both regression and
classification applications have been used in our simulation
experiment, and the results obtained have demonstrated that the
proposed RBF network construction algorithm compares favor-
ably with several existing benchmark RBF network construc-
tion algorithms.

REFERENCES

[1] S.Chen, S. A. Billings, C. F. N. Cowan, and P. M. Grant, “Non-linear sys-
tems identification using radial basis functions,” Int. J. Syst. Sci., vol. 21,
pp- 2513-2539, 1990.

[2] J. A. Leonard and M. A. Kramer, “Radial basis function networks for clas-
sifying process faults,” IEEE Control Syst. Mag., vol. 11, no. 3, pp. 31-38,
Apr. 1991.

[3] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering technique for
digital communications channel equalization using radial basis func-
tion networks,” IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 570-579,
Jul. 1993.

[4] A. Caiti and T. Parisini, “Mapping ocean sediments by RBF networks,”
IEEE J. Ocean. Eng., vol. 19, no. 4, pp. 577-582, Oct. 1994.

[5] D. Gorinevsky, A. Kapitanovsky, and A. Goldenberg, “Radial basis func-

tion network architecture for nonholonomic motion planning and control

of free-flying manipulators,” IEEE Trans. Robot. Autom., vol. 12, no. 3,

pp- 491-496, Jun. 1996.

M. Rosenblum and L. S. Davis, “An improved radial basis function net-

work for visual autonomous road following,” IEEE Trans. Neural Netw.,

vol. 7, no. 5, pp. 1111-1120, Sep. 1996.

J. A. Reface, M. Mohandes, and H. Maghrabi, “Radial basis function

networks for contingency analysis of bulk power systems,” IEEE Trans.

Power Syst., vol. 14, no. 2, pp. 772-778, May 1999.

[6

[t}

[7

—

[8] R. Mukai, V. A. Vilnrotter, P. Arabshahi, and V. Jamnejad, “Adaptive
acquisition and tracking for deep space array feed antennas,” IEEE Trans.
Neural Netw., vol. 13, no. 5, pp. 1149-1162, Sep. 2002.

[9] C.-T. Su, T. Yang, and C.-M. Ke, “A neural-network approach for semi-
conductor wafer post-sawing inspection,” IEEE Trans. Semicond. Manuf.,
vol. 15, no. 2, pp. 260-266, May 2002.

[10] Y. Li, N. Sundararajan, P. Saratchandran, and Z. Wang, “Robust neuro-
Hoo controller design for aircraft auto-landing,” IEEE Trans. Aerosp.
Electron. Syst., vol. 40, no. 1, pp. 158-167, Jan. 2004.

[11] M.-J. Lee and Y.-K. Choi, “An adaptive neurocontroller using RBFN for
robot manipulators,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 711-
717, Jun. 2004.

[12] S. X. Ng, M.-S. Yee, and L. Hanzo, “Coded modulation assisted radial
basis function aided turbo equalization for dispersive Rayleigh-fading
channels,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2198-2206,
Nov. 2004.

[13] N. Acir, I. Oztura, M. Kuntalp, B. Baklan, and C. Guzelis, “Automatic
detection of epileptiform events in EEG by a three-stage procedure based
on artificial neural networks,” IEEE Trans. Biomed. Eng., vol. 52, no. 1,
pp. 30-40, Jan. 2005.

[14] K. K. Tan, S. Zhao, and S. Huang, “Iterative reference adjustment for
high-precision and repetitive motion control applications,” IEEE Trans.
Control Syst. Technol., vol. 13, no. 1, pp. 85-97, Jan. 2005.

[15] S. Chen, C. F. N. Cowan, S. A. Billings, and P. M. Grant, “Parallel
recursive prediction error algorithm for training layered neural networks,”
Int. J. Control, vol. 51, no. 6, pp. 1215-1228, 1990.

[16] P. E. An, M. Brown, S. Chen, and C. J. Harris, “Comparative aspects of
neural network algorithms for on-line modeling of dynamic processes,”
Proc. Inst. Mech. Eng., Pt. I, vol. 207, pp. 223-241, 1993.

[17] S. McLoone, M. D. Brown, G. Irwin, and A. Lightbody, “A hybrid lin-
ear/nonlinear training algorithm for feedforward neural networks,” IEEE
Trans. Neural Netw., vol. 9, no. 4, pp. 669-684, Jul. 1998.

[18] H. Peng, T. Ozaki, V. Haggan-Ozaki, and Y. Toyoda, “A parameter op-
timization method for radial basis function type models,” IEEE Trans.
Neural Netw., vol. 14, no. 2, pp. 432-438, Mar. 2003.

[19] B. A. Whitehead and T. D. Choate, “Evolving space-filling curves to
distribute radial basis functions over an input space,” IEEE Trans. Neural
Netw., vol. 5, no. 1, pp. 15-23, Jan. 1994.

[20] B. A. Whitehead, “Genetic evolution of radial basis function coverage us-
ing orthogonal niches,” IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1525—
1528, Nov. 1996.

[21] J. Gonzalez, I. Rojas, J. Ortega, H. Pomares, F. J. Fernandez, and
A. F. Diaz, “Multiobjective evolutionary optimization of the size, shape,
and position parameters of radial basis function networks for function
approximation,” IEEE Trans. Neural Netw., vol. 14, no. 6, pp. 1478-1495,
Nov. 2003.

[22] Z. R. Yang and S. Chen, “Robust maximum likelihood training of het-
eroscedastic probabilistic neural networks,” Neural Netw., vol. 11, no. 4,
pp. 739-747, Jun. 1998.

[23] M.-W. Mak and S.-Y. Kung, “Estimation of elliptical basis function pa-
rameters by the EM algorithm with application to speaker verification,”
IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 961-969, Jul. 2000.

[24] J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Comput., vol. 1, no. 2, pp. 281-294, 1989.

[25] S. Chen, S. A. Billings, and P. M. Grant, “Recursive hybrid algorithm for
non-linear system identification using radial basis function networks,” Int.
J. Control, vol. 55, no. 5, pp. 1051-1070, May 1992.

[26] S. Chen, “Nonlinear time series modeling and prediction using Gaussian
RBF networks with enhanced clustering and RLS learning,” Electron.
Lett., vol. 31, no. 2, pp. 117-118, Jan. 1995.

[27] Z. Uykan, “Clustering-based algorithms for single-hidden-layer sigmoid
perceptron,” IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 708-715,
May 2003.

[28] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods
and their application to non-linear system identification,” Int. J. Control,
vol. 50, no. 5, pp. 1873-1896, Nov. 1989.

[29] S.Chen, C.F. N. Cowan, and P. M. Grant, “Orthogonal least squares learn-
ing algorithm for radial basis function networks,” IEEE Trans. Neural
Netw., vol. 2, no. 2, pp. 302-309, Mar. 1991.

[30] S.Chen, Y. Wu, and B. L. Luk, “Combined genetic algorithm optimization
and regularized orthogonal least squares learning for radial basis function
networks,” IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1239-1243,
Sep. 1999.

[31] S. Chen, X. Hong, and C. J. Harris, “Sparse kernel regression mod-
eling using combined locally regularized orthogonal least squares and
D-optimality experimental design,” IEEE Trans. Autom. Control, vol. 48,
no. 6, pp. 1029-1036, Jun. 2003.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

466

[32] S.Chen, X. Hong, C.J. Harris, and P. M. Sharkey, “Sparse modeling using
orthogonal forward regression with PRESS statistic and regularization,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 2, pp. 898-911,
Apr. 2004.

V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

S. Gunn, “Support vector machines for classification and regression,”
ISIS Res. Group, Dept. Electron. Comput. Sci., Univ. Southampton,
Southampton, U.K., May 1998. Tech. Rep..

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129-159, 2001.

M. E. Tipping, “Sparse Bayesian learning and the relevance vector ma-
chine,” J. Mach. Learn. Res., vol. 1, pp. 211-244, Sep. 2001.

B. Scholkopf and A. J. Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA:
MIT Press, 2002.

[33]

[34]

[35]
[36]

[37]

[38] P. Vincent and Y. Bengio, “Kernel matching pursuit,” Mach. Learn.,
vol. 48, no. 1, pp. 165-187, 2002.
[39] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and

M. L Jordan, “Learning the kernel matrix with semidefinite program-

ming,” J. Mach. Learn. Res., vol. 5, pp. 27-72, Dec. 2004.

X. Hong, S. Chen, and C. J. Harris, “A fast linear-in-the-parameters

classifier construction algorithm using orthogonal forward selection to

minimize leave-one-out misclassification rate,” Int. J. Syst. Sci., vol. 39,

no. 2, pp. 119-125, 2008.

S. Chen, X. X. Wang, and C. J. Harris, “Experiments with repeating

weighted boosting search for optimization signal processing applica-

tions,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 4,

pp. 682-693, Aug. 2005.

X. Hong, P. M. Sharkey, and K. Warwick, “Automatic nonlinear predictive

model-construction algorithm using forward regression and the PRESS

statistic,” Proc. Inst. Elect. Eng.—Control Theory Appl., vol. 150, no. 3,

pp- 245-254, May 2003.

R. H. Myers, Classical and Modern Regression With Applications,

2nd ed. Boston, MA: PWS-KENT, 1990.

M. Stone, “Cross-validatory choice and assessment of statistical predic-

tions,” J. R. Stat. Soc. Ser. B, vol. 36, no. 2, pp. 111-147, 1974.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, MA: Addison-Wesley, 1989.

[46] K. F. Man, K. S. Tang, and S. Kwong, Genetic Algorithms: Concepts and
Design. London, U.K.: Springer-Verlag, 1998.

[47] L. Ingber, “Simulated annealing: Practice versus theory,” Math. Comput.

Model., vol. 18, no. 11, pp. 29-57, 1993.

S. Chen and B. L. Luk, “Adaptive simulated annealing for optimization in

signal processing applications,” Signal Process., vol. 79, no. 1, pp. 117-

128, Nov. 1999.

S. A. Billings, S. Chen, and R. J. Backhouse, “The identification of linear

and non-linear models of a turbocharged automotive diesel engine,” Mech.

Syst. Signal Process., vol. 3, no. 2, pp. 123—142, 1989.

[50] [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[51] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[52] [Online]. Available: http://www.stats.ox.ac.uk/PRNN/

[53] [Online]. Available: ida.first.fhg.de/projects/bench/benchmarks.htm

[54] G. Ritsch, T. Onoda, and K. R. Miiller, “Soft margins for AdaBoost,”
Mach. Learn., vol. 42, no. 3, pp. 287-320, Mar. 2001.

[40]

[41]

[42]

[43]
[44]

[45]

[48]

[49]

Sheng Chen received the B.Eng. degree in con-
trol engineering from Huadong Petroleum Institute,
Dongying, China, in 1982, the Ph.D. degree in con-
trol engineering from the City University, London,
U.K,, in 1986, and the D.Sc. degree from the Univer-
sity of Southampton, Southampton, U.K., in 2005.

He has been with the School of Electronics
and Computer Science, University of Southampton,
since September 1999. He previously held research
and academic appointments with the University
of Sheffield, Sheffield, UK., the University of
Edinburgh, Edinburgh, U.K., and the University of Portsmouth, Portsmouth,
U.K. He has published over 350 research papers. In the database of the
world’s most highly cited researchers, compiled by the Institute for Scientific
Information of the USA, he is on the list of the highly cited researchers in the
engineering category. His research interests include wireless communications,
machine learning and neural networks, finite-precision digital controller design,
and evolutionary computation methods.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

Xia Hong received the B.Sc. and M.Sc. degrees in
automatic control from the National University of
Defence Technology, Changsha, China, in 1984 and
1987, respectively, and the Ph.D. degree in automatic
control from the University of Sheffield, Sheffield,
U.K., in 1998.

She was a Research Assistant with the Beijing
Institute of Systems Engineering, Beijing, China,
from 1987 to 1993. She was a Research Fellow
with the Department of Electronics and Computer
Science, University of Southampton, Southampton,
U.K,, from 1997 to 2001. She is currently a Lecturer with the School of Systems
Engineering, University of Reading, Reading, U.K. She is actively engaged in
research into nonlinear systems identification, data modeling, estimation and
intelligent control, neural networks, pattern recognition, learning theory, and
their applications. She has published over 100 research papers and coauthored
a research book.

Dr. Hong was the recipient of a Donald Julius Groen Prize by IMechE
in 1999.

Bing L. Luk received the B.Sc. degree in electrical
and electronic engineering from Portsmouth Poly-
technic, Portsmouth, U.K., in 1985, the M.Sc. degree
in digital computer systems from Brunel Univer-
sity, Uxbridge, UK., in 1986, and the Ph.D. de-
gree in robotics from the University of Portsmouth,
Portsmouth, in 1991.
He has been with the Department of Manu-
4 facturing Engineering and Engineering Manage-
‘_’ ment, City University of Hong Kong, Kowloon,
Hong Kong, China, since 2000. He previously held
research and academic appointments with the University of Portsmouth and
engineering consultant positions with Portsmouth Technology Consultant, Ltd.
and also with other industrial companies. His recent research works include
mobile robotics, telemedicine research, nondestructive test methods, machine
learning, and evolutionary computation methods.

Chris J. Harris received the Ph.D. and D.Sc.
degrees from the University of Southampton,
Southampton, U.K., in 1972 and 2001, respectively.

He previously held appointments with the Univer-
sity of Hull, Hull, U.K., the University of Manchester
Institute of Science and Technology, Manchester, the
University of Oxford, Oxford, U.K., and the Univer-
sity of Cranfield, Cranfield, U.K. He was also with
the U.K. Ministry of Defence. He returned to the
University of Southampton as the Lucas Professor of
Aerospace Systems Engineering in 1987 to establish
the Advanced Systems Research Group and, later, he jointed the School of
Electronics and Computer Science to establish Image, Speech and Intelligent
Systems Group. He has authored and coauthored 12 research books and over
400 research papers, and he is the Associate Editor of numerous international
journals. His research interests lie in the general area of intelligent and adaptive
systems theory and its application to intelligent autonomous systems such
as autonomous vehicles, management infrastructures such as command and
control, intelligent control, and estimation of dynamic processes, multisensor
data fusion, and systems integration.

Dr. Harris was elected as a Fellow of the Royal Academy of Engineering
in 1996 and was awarded the IEE Senior Achievement medal in 1998 for his
work in autonomous systems and the highest international award in IEE, the
IEE Faraday medal, in 2001 for his work in intelligent control and neurofuzzy
systems.

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on March 20, 2009 at 12:00 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

