
A New Adaptive Merging and Growing Algorithm
for Designing Artificial Neural Networks

言語: eng

出版者: 

公開日: 2009-06-18

キーワード (Ja): 

キーワード (En): 

作成者: ISLAM, Md. Monirul, SATTAR, Md. Abdus,

AMIN, Md. Faijul, YAO, Xin, Fellow, IEEE, MURASE,

Kazuyuki

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10098/2089URL
IEEE



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 3, JUNE 2009 705
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Abstract—This paper presents a new algorithm, called adaptive
merging and growing algorithm (AMGA), in designing artificial
neural networks (ANNs). This algorithm merges and adds hidden
neurons during the training process of ANNs. The merge oper-
ation introduced in AMGA is a kind of a mixed mode opera-
tion, which is equivalent to pruning two neurons and adding one
neuron. Unlike most previous studies, AMGA puts emphasis on
autonomous functioning in the design process of ANNs. This is the
main reason why AMGA uses an adaptive not a predefined fixed
strategy in designing ANNs. The adaptive strategy merges or adds
hidden neurons based on the learning ability of hidden neurons
or the training progress of ANNs. In order to reduce the amount
of retraining after modifying ANN architectures, AMGA prunes
hidden neurons by merging correlated hidden neurons and adds
hidden neurons by splitting existing hidden neurons. The proposed
AMGA has been tested on a number of benchmark problems in
machine learning and ANNs, including breast cancer, Australian
credit card assessment, and diabetes, gene, glass, heart, iris, and
thyroid problems. The experimental results show that AMGA
can design compact ANN architectures with good generalization
ability compared to other algorithms.

Index Terms—Adding neurons, artificial neural network (ANN)
design, generalization ability, merging neurons, retraining.

I. INTRODUCTION

ARTIFICIAL neural networks (ANNs) have been used
widely in many application areas such as system identifi-

cation, signal processing, classification, and patternrecognition.
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Most applications use feedforward ANNs and the back-
propagation (BP) learning algorithm [1]. The central issue in
using ANNs is to choose their architectures appropriately. A too
large architecture may overfit the training data, owing to its ex-
cess information processing capability. On the other hand, a too
small architecture may underfit the training data, owing to its
limited information processing capability. Both overfitting and
underfitting cause bad generalizations, an undesirable aspect of
using ANNs. It is therefore necessary to design ANNs automat-
ically so that they can solve different problems efficiently.

There have been many attempts in designing ANNs auto-
matically, such as various constructive, pruning, constructive–
pruning, and regularization algorithms [2]–[4]. A constructive
algorithm adds hidden layers, neurons, and connections to
a minimal ANN architecture. A pruning algorithm does the
opposite, i.e., it deletes unnecessary hidden layers, neurons, and
connections from an oversized ANN. A constructive–pruning
algorithm is a hybrid approach that executes a constructive
phase first and then a pruning phase. In addition, evolution-
ary approaches, such as genetic algorithms [5], evolution-
ary programming [6], [7], and evolution strategies [8], have
been used extensively in designing ANNs automatically. The
detailed description of designing ANNs using constructive,
pruning, constructive–pruning, and evolutionary approaches are
presented in Section II.

A regularization algorithm [4], [9], [10] adds a penalty
term to the objective function to be minimized. The objective
function looks like E = Et + λEc, where Et is the training
error, Ec is the penalty term, and λ is a positive constant that
controls the influence of the penalty term. The difficulty of
using such an objective function lies in choosing a suitable
coefficient λ, which often requires trial-and-error experiments.
The Bayesian approach [11] allows the values of λ to be
automatically tuned during training. However, this approach is
developed based on simplifying assumptions that do not take
into account the multiple minima of an error function [12]
(although some techniques are introduced in [13] to moderate
this statement). The main problem with constructive, pruning,
constructive–pruning, and regularization algorithms is that they
use a predefined, fixed, and greedy strategy in designing ANNs.
Thus, these algorithms are susceptible to becoming trapped at
architectural local optima [14].

This paper presents a new algorithm, called adaptive merging
and growing algorithm (AMGA), in designing ANNs. This
algorithm merges and adds hidden neurons repeatedly or alter-
natively during ANNs’ training. The decision when to merge or
add hidden neurons is completely dependent on the improve-
ment of hidden neurons’ learning ability or the training progress
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of ANNs. It is argued in this paper that such an adaptive strategy
is better than a predefined greedy strategy. AMGA’s emphasis
on using an adaptive and nongreedy strategy can avoid the
architectural local optima problem in designing ANNs. It is
well known that the nongreedy approach has a lesser chance to
be trapped into local optima [14], [15]. The proposed AMGA
described in Section III indicates that AMGA does not use any
predefined and greedy strategy in designing ANNs.

Our algorithm, AMGA, differs from previous works in de-
signing ANNs on a number of aspects. First, it emphasizes
on adaptive functioning of the design process by not guid-
ing the process in a predefined, fixed, and same way for all
problems. This strategy is quite different from the one used in
constructive, pruning, constructive–pruning, and regularization
algorithms [4]–[9], [16]–[30]. Unlike AMGA, these algorithms
guide the ANN design process in a predefined, fixed, and same
way for all problems, although different problems may have
different characteristics. Even for the same problem, different
strategies may be needed at different stages of the design
process. This is the main reason for the better performance
of BP [1] with different strategies (i.e., learning rates) than
with a fixed strategy [31]. Since a number of user-specified
parameters, some for a design algorithm and some for a learning
algorithm, is necessary in designing ANNs, it is reasonable to
think that ANN design algorithms with adaptive strategies may
yield a good performance.

Second, AMGA gives importance on reducing retraining
epochs after modifying ANN architectures by merge and add
operations. It is well known that, when a design algorithm
adds or prunes any parameter to or from existing ANN ar-
chitectures, it retrains the modified architectures to adapt their
connection weights. Since the design algorithm may modify
ANN architectures several times during their entire training
process, this may result to overtraining, which has a detrimen-
tal effect on the generalization performance of ANNs [32].
The issue of overtraining is ignored in most existing works.
Thus, no technique is developed to reduce retraining epochs in
designing ANNs.

The proposed AMGA acknowledges the importance of re-
ducing the retraining epochs in designing ANNs. To achieve
this goal, this algorithm merges two correlated hidden neurons
in such a way that the effect of the merged neuron to an
ANN is nearly same as the combined effect of its two parent
neurons. This can be considered as compensating the effect of
one pruned neuron by its correlated counterpart. In the neuron
addition process, AMGA adds a hidden neuron not with random
connection weights but with mutating the weights of an existing
hidden neuron. The essence of using such pruning and addition
techniques is that a small number of epochs would be required
for retraining after the modification of the ANN architecture.
Our empirical studies presented in Section IV-C confirm the
aforementioned intuition.

Third, AMGA encourages compactness in designing ANNs
by several ways. For example, although AMGA can add one
neuron at each step, it can prune several neurons by combining
several correlated pairs of hidden neurons. The encourage-
ment of decorrelation by merging correlated hidden neurons
is also beneficial for producing compact ANN architectures.

When hidden neurons are less correlated, ANNs with a small
number of hidden neurons can process more information be-
cause decorrelated hidden neurons do not learn redundant in-
formation. Moreover, AMGA also tries to execute the merge
operation before the add operation. The way and sequence
used by AMGA for merge and add operations reflect clearly
the algorithm’s preference in designing compact ANNs. These
kinds of techniques are rarely used in existing algorithms for
designing ANNs. Although constructive–pruning algorithms
execute a pruning phase in association with a constructive phase
to produce compact ANNs, no emphasis is given in pruning.
Hidden neurons are generally pruned by constructive–pruning
or pruning algorithms without considering their correlation.

The rest of this paper is organized as follows. Section II
discusses different approaches to design ANN architectures and
their potential problems. Section III describes AMGA in detail
and gives motivations behind various design choices and ideas.
Section IV presents experimental results on AMGA and some
discussions. Finally, Section V concludes with a summary of
this paper and few remarks.

II. PREVIOUS WORK

Since the performance of any ANN is greatly dependent on
its architecture, a myriad of algorithms have been proposed for
designing ANNs. Most algorithms are either constructive or
pruning in nature, and they determine the number of hidden
neurons in three-layered ANNs. It has been known that three-
layered ANNs can solve any linear or nonlinear problems
[33]–[37]. A review for constructive algorithms can be found
in [2], while that for pruning algorithms in [3]. There are
also few algorithms that combine constructive and pruning ap-
proaches in one algorithm [27]–[30]. In addition, evolutionary
approaches have been used in designing ANNs. There has been
a great interest in combining learning and evolution with ANNs.
A large number of ANN design algorithms have been pro-
posed based on evolutionary approaches (see the review papers
[38]–[40]). This section delineates the features of these four
classes of algorithms so that the reasons behind different tech-
niques and ideas used in AMGA can easily be understood.

A. Constructive Algorithm

A constructive algorithm starts with a minimal ANN archi-
tecture, for example, a single-hidden-layered ANN with one
neuron in the hidden layer. Dynamic neuron creation [41]
is probably the first-ever constructive algorithm in designing
ANNs. A large number of constructive algorithms following the
dynamic-creation algorithm were developed (e.g., [16]–[18],
[42]–[46]). Hidden neurons with sigmoid or complicated trans-
fer functions are generally added in constructive algorithms.
The whole network or only the newly added hidden neuron is
trained after each addition step. Fig. 1 shows how a constructive
algorithm works to find a near optimal ANN architecture for a
given problem. This algorithm can add either sigmoid or other
neurons and can train either the whole network or only the
newly added hidden neuron.

There are several advantages of using constructive algo-
rithms. It is relatively easy for an inexperienced user to specify
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Fig. 1. Typical constructive algorithm in designing ANNs.

Fig. 2. Typical pruning algorithm in designing ANNs.

the initial conditions in constructive algorithms. For example,
the number of hidden layers and neurons can simply be set
to one. Constructive algorithms are computationally efficient
because they always search small solutions first. Furthermore,
they are very easy to implement. There are also hurdles that
constructive algorithms need to overcome [2]. For example, one
has to determine when to add hidden neurons and when to stop
the neuron addition process.

B. Pruning Algorithm

Unlike constructive algorithms, a pruning algorithm starts
with an oversized ANN architecture, for example, a single-
hidden-layered ANN with a large number of hidden neurons.
Most pruning algorithms start the removal of irrelevant param-
eters (connections and/or hidden neurons) after training an
oversized ANN to a minimum error (see the review paper [3]).
They generally prune one neuron in each pruning step. There
are only few recent works that prune several neurons in each

pruning step during training (e.g., [12] and [47]). The deci-
sion to prune hidden neurons is taken based on the neuron’s
significance or relevance. A number of pruning criteria have
been proposed to decide which hidden neurons are to be pruned
from a trained ANN [see the review paper [3] and some recent
works (e.g., [12] and [26])]. When an ANN is trained, each
of its hidden neurons learns some information during training,
although they may be insignificant for some neurons. The ANN
is usually retrained after pruning so that its existing hidden
neurons can adjust their weights to compensate the roles played
by pruned hidden neurons (e.g., [25], [26], and [29]).

Fig. 2 shows how a pruning algorithm deletes hidden neurons
from an oversized ANN either during training (e.g., [12] and
[47]) or after converging to a minimum error (e.g., [24]–[26]).
There are several advantages of a pruning algorithm. This
algorithm can learn the target function very quickly and has a
lesser chance to trap into local minima [3], [26], [48]. These two
facilities are obtained due to extra parameters (e.g., hidden neu-
rons) in the initial ANN architecture of the pruning algorithm.
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Fig. 3. Typical constructive–pruning algorithm in designing ANNs.

However, one does not know in practice how big the initial
architecture should be for a given problem [2]. Furthermore,
it should be kept in mind that the pruning algorithm is not
completely free from the local optima problem because it uses
a greedy strategy in determining ANN architectures [14].

C. Constructive–Pruning Algorithm

As seen from Fig. 1, a constructive algorithm adds hidden
neurons to a minimal ANN architecture one by one during
training. The number of hidden neurons may become ridicu-
lously large in some cases if the addition process is not stopped
properly. Some algorithms (e.g., [27]–[30]) try to solve the
aforementioned problem by employing a pruning phase in
conjunction with a constructive phase. These algorithms first
determine the number of hidden neurons and/or connections in
an ANN roughly using a constructive approach. A pruning ap-
proach is then applied for refining the selection, i.e., removing
the irrelevant hidden neurons and/or connections.

Fig. 3 shows how a constructive–pruning algorithm adds
and prunes hidden neurons in order to find a near optimal
ANN architecture for a given problem. The advantage of the
constructive–pruning algorithm is that one can add more than
one hidden neuron in each addition step. This may help to speed
up the training process. Furthermore, this algorithm may pro-
duce compact architectures. These two facilities are obtained
due to the inclusion of the pruning phase in the constructive
algorithm. However, one needs to determine when to stop the
pruning process.

D. Evolutionary Algorithm

Evolutionary algorithms [5]–[8] have been used widely
to adapt various parameters of ANNs, such as connection
weights, architectures, and learning rules. These stochastic
search algorithms are developed from ideas and principles
of natural evolution. They apply a number of operators bor-
rowed from natural genetics, like recombination, crossover,
and mutation, on existing solutions to produce better solutions.
Evolutionary algorithms differ from constructive, pruning, and
constructive–pruning algorithms in that they involve a search
from a population of solutions, not from a single solution.

The evolution of connection weights introduces an adaptive
and global approach to training ANNs (e.g., [49]–[51]). The
evolution of architectures enables ANNs to adapt their archi-
tectures and thus provides an automatic approach in design-
ing ANNs (e.g., [52]–[54]). The evolution of learning rules
can be regarded as a process of learning to learn in ANNs
where the adaptation of learning rules is achieved through
evolution (e.g., [55]–[57]). In addition, some algorithms evolve
architectures and connection weights simultaneously (e.g.,
[58]–[60]). We have already seen that constructive, pruning,
and constructive–pruning algorithms are used in conjunction
with a learning algorithm in which the former approach is
used to adapt network architectures while the later one for
their connection-weight adaptation. Similarly, an evolutionary
approach can be used in conjunction with a learning algorithm
[61], [62].

A typical evolutionary approach that combines the architec-
tural evolution with the weight learning is shown in Fig. 4.
The main advantage of this approach is that it can avoid the
architectural local optima problem [14], [40]. However, the
evolutionary approach is quite demanding in both time and
user-defined parameters [2]. Moreover, it is necessary to find
a set of optimal control parameters so that an evolutionary
process can balance exploration and exploitation in finding
good quality solutions. For example, if crossover and mutation
rates are chosen very high, much of the search space will be
explored, but there is a high probability of losing good solutions
and failing to exploit existing solutions.

In addition to the problem mentioned for the constructive,
pruning, and constructive–pruning algorithms, these algorithms
use a kind of predefined and greedy search strategy in designing
near optimal ANN architectures. Such a predefined and greedy
strategy may be suitable for some simple problems. However,
this strategy may not be suitable for other problems as its search
process may be trapped into architectural local optima, an
inherent problem of any greedy approach [14], [15]. It has been
shown for linear networks with Ψ inputs and Ψ outputs that
up to Ψ local minima are possible; for multilayer ANNs, the
situation is even worse [63]. Although evolutionary algorithms
can avoid the local optima problem, this avoidance ability is
dependent on the autonomous functioning of an evolutionary
process [64].
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Fig. 4. Typical evolutionary algorithm in designing ANNs.

III. AMGA

In order to avoid the architectural local optima problem,
AMGA uses an adaptive search strategy in designing ANNs.
This strategy merges and adds hidden neurons based on the
learning ability of hidden neurons and the training progress
of ANNs, respectively. The algorithm AMGA is used here
to determine the number of hidden neurons for three-layered
feedforward ANNs with a sigmoid transfer function. This is,
however, not an inherent constraint. In fact, AMGA has little
constraints on the type of ANN architectures and transfer
functions used in its design process. Cascade [65] or other types
of ANN architectures, and hyperbolic tangent [66], Hermite
polynomial [67], or any other type of transfer function can be
used in AMGA.

The steps of AMGA can be described by the flowchart shown
in Fig. 5, which are explained further as follows.

Step 1) Create an initial ANN architecture consisting of
three layers. The number of neurons in the input and
output layers is the same as the number of inputs
and outputs of a given problem, respectively. The
number of neurons M in the hidden layer is gen-
erated at random. Initialize all connection weights
of the ANN uniformly at random within a small
range.

Step 2) Initialize an epoch counter μi = 0, i = 1, 2, . . . ,M ,
for each hidden neuron hi of the ANN. This counter
is used to count the number of epochs for which a
hidden neuron is trained so far.

Step 3) Partially train the ANN on the training set for a
fixed number of epochs using BP [1]. The number
of epochs τ is specified by the user.

Step 4) Increment the epoch counter as follows: for i =
1, 2, . . . , N

μi = μi + τ (1)

where N is the number of hidden neurons in the
existing ANN architecture. Initially, N and M are
the same.

Step 5) Compute the error of the ANN on the validation set.
If the termination criterion is satisfied, stop the train-
ing process, and the current network architecture is
the final ANN. Otherwise, continue. According to
Prechelt [68], the error E is computed as follows:

E = 100
omax − omin

KV

V∑

v=1

K∑

i=1

(Yi(v) − Zi(v))2 (2)

where omax and omin are the maximum and mini-
mum values of the output coefficients in a problem
representation, respectively, V is the number of ex-
amples in the validation set, and K is the number
of output neurons. Yi(v) and Zi(v) are the actual
and desired outputs, respectively, of the ith output
neuron for a validation example v. The aforemen-
tioned error equation is normalized by V and K to
make the error measure less dependent on the size of
the validation set and the number of output neurons
[68]. According to Prechelt [68], this error measure
is called squared error percentage.

Step 6) Remove the label of hidden neurons, if there exists,
and compute the significance ηi of each hidden
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Fig. 5. Flowchart of AMGA.

neuron hi using an empirical formula as follows
[47]: for i = 1, 2, . . . , N

ηi =
σi

3
√

μi
(3)

where σi is the standard deviation, which is com-
puted based on the outputs of hi for the examples in
the training set.

Step 7) If the significance of one or more hidden neurons is
less than a predefined threshold, label those neurons
with S and continue. Otherwise, go to Step 12). The
significance threshold ηth is a parameter specified by
the user. It is important here to note that AMGA puts
a label at most N/2 hidden neurons of the ANN.

Step 8) Compute the correlation between each S-labeled
hidden neuron and other unlabeled hidden neurons
in the ANN. Like σ, AMGA computes the corre-
lation between two hidden neurons based on their
outputs over the examples in the training set.

Step 9) Merge each S-labeled hidden neuron with its most
correlated unlabeled counterpart. It is assumed here
that the S-labeled hidden neuron is not only less
significant but also redundant. Thus, AMGA pro-
duces one new hidden neuron by merging the
S-labeled hidden neuron with its unlabeled coun-
terpart. This new neuron does not contain any label
S, and AMGA initializes a new epoch counter with
zero for it.

Step 10) Retrain the modified ANN, which is obtained after
merging hidden neurons, until its previous error
level has been reached. If the modified ANN is able
to reach its previous error level, continue. Otherwise,
restore the unmodified ANN and go to Step 12).

Step 11) Update the epoch counter for each hidden neuron
in the modified ANN and go to Step 5). The epoch
counter is updated as follows:

μi = μi + τr, i = 1, 2, . . . , N (4)

where τr is the number of epochs for which
the modified ANN is retrained after the merge
operation.

Step 12) Check the neuron addition criterion that monitors
the progress of the training error reduction. If this
criterion is satisfied, continue. Otherwise, go to
Step 3) for further training. It is assumed here that,
since the merge operation is found unsuccessful
(or cannot be applied) and the neuron addition cri-
terion is not satisfied, the performance of the ANN
can only be improved by training.

Step 13) Add one neuron to the current ANN architecture
and go to Step 3). Since the error of the ANN
does not reduce significantly after training and the
merge operation is found unsuccessful (or cannot be
applied), the performance of the ANN can only be
improved by adding hidden neurons. In this work,
AMGA adds a hidden neuron by splitting an existing
hidden neuron of the ANN. The splitting operation
produces two new hidden neurons from an existing
hidden neuron hi. The algorithm AMGA initializes
two epoch counters for the new neurons. The epoch
counters are initialized by μi/2, where μi is the
number of epochs for which the existing hidden
neuron hi is trained so far.

It is now clear that AMGA can merge or add hidden neurons,
depending on the hidden neurons’ significance or the progress
of the training error reduction. In other words, AMGA can
execute merge and add operations repeatedly, alternatively,
or in any other sequence. This execution behavior indicates
that AMGA does not guide the ANN design process in a
predefined and fixed way. Although the design scheme used
in AMGA seems to be a bit complex, its essence is the use
of an adaptive search strategy with four components: neuron
merging, neuron addition by splitting, architecture adaptation,
and termination criterion based on validation error. Details
about each component of AMGA are given in the following
sections.
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A. Neuron Merging

Unlike conventional pruning algorithms, AMGA uses a dif-
ferent pruning scheme, called merging. This scheme is equiva-
lent to pruning two neurons and adding one neuron. The merge
operation uses a significance criterion and correlation informa-
tion in merging hidden neurons. If the significance of a hidden
neuron is found less than a predefined threshold level ηth,
AMGA merges this less significant hidden neuron with another
more significant and correlated hidden neuron. The algorithm
AMGA computes the significance of hidden neurons after every
τ training epochs or after every successful merge operation.
It merges one or more hidden neurons if their significance is
less than the threshold level. The merge operation in AMGA is
accomplished in two steps.

In the first step, AMGA computes the significance of each
hidden neuron in an ANN using (3). The significance is com-
puted based on the variation of the hidden neuron’s output over
all examples in the training set. The standard deviation is used
here to determine how much the neuron’s output deviates for
different examples in the training set. Since the output of the
hidden neuron is connected only to the neurons in the output
layer of a three-layered feedforward ANN, the variation in the
hidden neuron’s output may produce a variation in the ANN’s
output. This is the main reason for using the variation of the
hidden neuron’s output for computing its significance, which
can be computed with a small cost. The hidden neuron is
considered less significant if its output does not vary much for
different inputs.

The inclusion of μ in (3) is necessary to measure the signif-
icance of a hidden neuron, although it is not used in existing
pruning algorithms. This is because AMGA not only merges
but also adds hidden neurons at different stages in the training
process of an ANN. This means that AMGA may train different
hidden neurons for a different number of training epochs. The
number of training epochs is very important to make hidden
neurons significant. For example, if a hidden neuron is trained
for a small number of epochs, it may be unable to distinguish
different training examples because of insufficient training.
The hidden neuron, therefore, may respond in a similar way
for different training examples, resulting in a small standard
deviation.

The significance ηi, which AMGA computes using (3), of
the hidden neuron hi is small when its standard deviation σi

and/or its number of training epochs μi is large. The smaller
the value of ηi is, the less significant the hi is. A less significant
hidden neuron delivers almost constant information (because
of the small σ) to the neurons of the output layer. In other
words, the characteristics of such a hidden neuron become
known. Thus, the hidden neuron’s effects to an ANN can easily
be compensated by modifying the connection weights of its
correlated counterpart. The proposed AMGA detects the less
significant hidden neurons in the ANN and labels them with S
if their significance is found less than a predefined threshold
ηth. Here, the parameter ηth is specified by the user.

In the second step, AMGA computes the correlation between
each S-labeled hidden neuron and other hidden neurons in
the ANN. Correlation is one of the most common and useful

statistics that describes the degree of relationship between
two variables. A number of criteria have been proposed in
statistics to estimate correlation. In this paper, AMGA uses the
best known Pearson product-moment correlation coefficient to
measure correlation between different hidden neurons in the
ANN. The correlation coefficient Cij between the S-labeled
hidden neuron i and the unlabeled hidden neuron j is

Cij =

∑P
p=1

(
hi(p) − h̄i

) (
hj(p) − h̄j

)

σiσj
(5)

where hi(p) and hj(p) are the outputs of hidden neurons i
and j, respectively, for the example p in the training set. The
variables h̄i and h̄j represent the mean values of hi and hj ,
respectively, averaged over all training examples. The standard
deviations σi and σj of the hidden neurons hi and hj are also
computed over all training examples.

The algorithm AMGA merges each S-labeled hidden neu-
ron with its most correlated unlabeled counterpart. The most
correlated hidden neuron pair can be found by ordering the
correlation coefficient in descending order. It is important here
to note that, if an unlabeled hidden neuron maintains the highest
correlation with more than one S-labeled hidden neuron, the
unlabeled hidden neuron is merged with only one S-labeled
hidden neuron. The other S-labeled hidden neuron is merged
with its another correlated counterpart. In this scenario, the
maximum number of hidden neurons that can be pruned by
merging is N/2 for an ANN consisting of N hidden neurons.
In order to reduce retraining epochs after merging, AMGA
merges two correlated neurons in such a way that the effect
of the merged neuron to the ANN is nearly the same as
the combined effect of two correlated neurons. Consider that
AMGA produces a neuron hm by merging two neurons ha

and hb. The algorithm assigns the input and output connection
weights of the hm in the following way:

wmi =
wai + wbi

2
, i = 1, 2, . . . , p (6)

wjm = wja + wjb, j = 1, 2, . . . , q (7)

where p and q are the number of neurons in the input and output
layers of the ANN, respectively. The weights wai and wbi are
the ith input connection weights of ha and hb, respectively,
while wja and wjb are their jth output connection weights.
The weights wmi and wjm are the ith input and jth output
connection weights of hm, respectively. Since ha and hb are
highly correlated, it can be easily shown that hm delivers almost
the same amount of information to the output layer as it is
delivered together by ha and hb. The pseudocode of the merge
operation is shown in Fig. 6.

B. Neuron Addition

The proposed AMGA uses a simple criterion to add a hidden
neuron in an ANN. This criterion is based on the training
progress of the ANN. When the training error of the ANN does
not reduce by an amount ε after training epochs τ , AMGA
assumes that the information processing capability of the ANN
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Fig. 6. Pseudocode of merge operation used in AMGA.

is insufficient. It is therefore necessary to add hidden neurons
in the ANN. Here, ε and τ are two user-specified parameters.
The neuron addition criterion can be expressed as

E(t) − E(t + τ) <= ε, t = τ, 2τ, 3τ, . . . (8)

where E(t) and E(t + τ) are the training errors at epochs t
and t + τ , respectively. This simple addition criterion is used
widely in many constructive algorithms (e.g., [18], [23], [27],
[29], and [69]). Our algorithm AMGA tests this neuron addition
criterion if the merging criterion is not satisfied or the execution
of the merge operation is found unsuccessful. If the neuron
addition criterion is satisfied, AMGA adds one neuron to the
existing network architecture.

Unlike most constructive algorithms, AMGA adds a hidden
neuron by splitting an existing hidden neuron of an ANN.
This addition scheme can be considered as pruning one neuron
and adding two neurons. The process of a neuron splitting is
called “cell division” [70]. In addition to the reasons given by
Odri et al. [70], growing an ANN by splitting an existing hidden
neuron can preserve the behavioral link between the parent
ANN and the newly grown ANN better than growing the ANN
by adding a hidden neuron with random connection weights. It
is expected that the grown ANN will be able to learn the target
function more quickly, because it has more processing power
(hidden neurons) than its parent network.

In AMGA, a neuron that is going to be split is chosen
uniformly at random among all hidden neurons in an ANN. Two
new neurons created by splitting an existing neuron have the
same number of connections as the parent neuron. The weights
of the new neurons are calculated as [70]

w1 = (1 + α)w (9)

w2 = − αw (10)

where w is the weight vector of the parent (existing) neuron, w1

is the weight vector of the first daughter (new) neuron, and w2

is the weight vector of the second daughter (new) neuron. The
mutation parameter α may take either a fixed or random value
according to a certain distribution rule. However, in any case,
the value of α needs to be chosen small for avoiding a large
change in the existing network functionality [70]. In this paper,
AMGA uses the Gaussian distribution with a mean of zero and
a variance of one in selecting the value of α.

C. Architecture Adaptation

As mentioned before, AMGA is used here for designing
three-layered feedforward ANNs. The algorithm assigns the
number of neurons in the input and output layers of an ANN
according to the characteristics of a given problem. These num-
bers are not modified during the adaptation process. Initially,
AMGA assigns a random number of neurons in the hidden layer
of the ANN. The aim of the architecture adaptation process
is to find a near optimal number of the hidden neurons and
connection weights of the ANN.

The algorithm AMGA uses neuron merging and addition op-
erations to find a near optimal number of hidden neurons, while
it uses the BP learning algorithm [1] to find near optimal con-
nection weights. The merge operation reduces the network size
by pruning correlated hidden neurons. This operation thereby
helps to undermine the overfitting effect. The add operation
increases the information processing capacity by adding hidden
neurons to an existing network architecture. This operation
thereby helps to reduce the underfitting effect.

The adaptation process of AMGA starts by training an initial
ANN architecture. In AMGA, the merge or add operation is
applied when the criterion of the operation is satisfied during
training. This indicates that AMGA adapts both the numbers
of hidden neurons and connection weights simultaneously. The
merge operation is applied when hidden neurons in the ANN
are found less significant after training them. The add operation
is applied when the training and the merge operation fail to
improve the performance of the ANN. Since two different
criteria are used for merge and add operations, AMGA can
apply these operations in any sequence, depending on when the
criteria are satisfied. By applying the merge and add operations
again and again during training, AMGA is expected to find a
near optimal number of hidden neurons and connection weights
of the ANN for solving a given problem.

D. Termination Criterion

The training error of an ANN may reduce as its training
process progresses. However, at some point, usually in the later
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stages of training, the ANN may start to take advantage of idio-
syncrasies in the training data. Consequently, its generalization
performance may start to deteriorate even though the training
error continues to decrease. Chauvin [32] describes an example
of this type of overfitting caused by overtraining. In [71], a
number of plausible criteria are proposed for terminating the
training process of the ANN automatically.

One common approach to avoid overfitting is to estimate the
validation error during training and stop the training process
using a criterion based on the validation error. The simplest
method to achieve this goal is to divide the training data into
training and validation sets. The training set can be used to
modify the weights of the ANN, while the validation set can
be used to terminate the training process of the ANN.

The proposed AMGA uses a very simple criterion that ter-
minates the training process of the ANN when its validation
error increases for T successive times measured at the end of
each of T successive strips [71]. In each strip, AMGA adds
one hidden neuron and retrains the modified ANN architecture,
or prunes several hidden neurons and retrains the modified
ANN architecture or trains the existing ANN architecture. The
idea behind the termination criterion is to stop the training
process of the ANN when its validation error increases not
just once but during T consecutive times independent of how
large the increases actually are. It can be assumed that such
increases indicate the beginning of the final overfitting not just
the intermittent. Thus, AMGA stops the training process of
the ANN when its validation error increases for T consecutive
times. This criterion can be expressed by the following way:

E(i) < E(i + j), j = 1, 2, . . . , T (11)

where E(i) and E(i + j) are the errors of the ANN at strips
i and i + j, respectively, and T is a parameter specified by
the user. The proposed algorithm computes these errors on the
validation set using (2) and tests the termination criterion after
completion of every strip.

IV. EXPERIMENTAL STUDIES

This section presents AMGA’s performance on several well-
known benchmark classification problems, including breast
cancer, Australian credit card assessment, and diabetes, gene,
glass, heart disease, iris, and thyroid problems. These problems
have been the subject of many studies in ANNs and machine
learning. The characteristics of these problems are summarized
in Table I, which show a considerable diversity in the number
of examples, attributes, and classes. The detailed description
of these problems can be obtained from the University of
California Irvine Machine Learning Repository and [68].

A. Experimental Methodology

In this work, the data sets of different problems were parti-
tioned into three sets: a training set, validation set, and testing
set. The number of examples in these sets are shown in the
Table I. The training set was used to train and modify ANN
architectures. The validation set was used for stopping the

TABLE I
CHARACTERISTICS OF EIGHT BENCHMARK CLASSIFICATION PROBLEMS

TABLE II
PERFORMANCE OF AMGA ON EIGHT BENCHMARK CLASSIFICATION

PROBLEMS. ALL RESULTS WERE AVERAGED OVER

50 INDEPENDENT RUNS

training process of ANNs, while the testing set for measuring
their generalization ability. In all data sets, the first P1 examples
were used for the training set, the following P2 examples for
the validation set, and the final P3 examples for the testing
set. These partitions were used according to the suggestion
provided in benchmarking methodologies [72], [73].

For all experiments, one bias neuron with a fixed input +1
was connected to the neurons of the hidden and output layers.
The logistic sigmoid function was used for the neurons in the
hidden and output layers. The learning rate and momentum
term for BP [1] were chosen as 0.10 and 0.9, respectively. The
weights of ANNs were initialized to random values in the range
between −0.5 and +0.5. The number of training epochs for
partial training, i.e., τ , was set to 20. The values for ε and η
were set to 1E-03 and 0.06, respectively. The value of T used
in the termination criterion was set to 3. We have chosen these
parameters after some preliminary runs. They were not meant
to be optimal.

B. Experimental Results

Table II shows the performance of AMGA over 50 inde-
pendent runs. The testing error rate (TER) refers to the per-
centage of wrong classifications produced by ANNs on the
testing set. The number of epochs refers to the total number
of training cycles required in designing final from initial ANN
architectures.

It is evident that AMGA was able to design ANNs with
a good generalization ability, i.e., small TER. For example,
for the card problem, the average TER of ANNs designed by
AMGA was 12.67. It was only 1.89 for the easy iris problem.
A moderate TER was achieved for the diabetes and glass
problems, which were recognized as the difficult problems in
machine learning and ANNs [68].
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The ability of AMGA in designing ANNs for different prob-
lems using a different number of epochs and hidden neurons
is clear from the results presented in Table II. The proposed
AMGA spent the highest number of epochs to design ANNs
for the thyroid problem, which was the largest compared to the
other problems we tested in this work (Table I). In terms of
average results, AMGA spent 630.1 epochs in designing ANNs
with 5.60 hidden neurons for the thyroid problem, while it spent
only 131.8 epochs in designing ANNs with 1.66 hidden neurons
for the card problem. The number of training examples for
the thyroid problem was 3600, while it was 345 for the card
problem. It is natural to require more computational resources,
i.e., large architectures and training epochs, to process a large
amount of information. This may be the main reason that
AMGA used more computational resources for the thyroid
problem.

The close observation of Tables I and II reveals that the size
of the training set is not only the factor in determining the
computational resources needed for solving different problems
but also the characteristics of the problems. It is interesting that
AMGA produced the second largest ANN architecture (next to
thyroid) for one of the smallest problems, the glass problem.
The difficulty of the glass problem lies with its small training
set with respect to the number of output classes. For example,
the number of training examples and output classes of the glass
problem were 107 and 6, respectively, while they were 350
and 2, respectively, for the cancer problem (Table I). In terms of
average results, AMGA spent 234.5 epochs in designing ANNs
with 1.80 hidden neurons for the cancer problem, while it spent
499.5 epochs in designing ANNs with 5.02 hidden neurons
for the glass problem. It is natural to require more hidden
neurons and training epochs for learning and partitioning more
classes. This may be the main reason that AMGA spent more
computational resources for the glass problem. The complexity
of the glass and cancer problems can be understood from their
TERs. The average TER of ANNs designed by AMGA for the
glass problem was 30.56, while it was 1.30 for the cancer prob-
lem. The aforementioned examples illustrate AMGA’s ability
in designing ANNs based on the complexity of problems.

To observe how AMGA designs ANNs, Fig. 7 shows, as
the number of training epochs increases, the training error and
the number of hidden neurons in ANNs for three different
problems. This figure represents the results of a single run
for each problem. Several observations can be made from this
figure.

First, AMGA could dynamically prune or add hidden neu-
rons at different stages of the training process. This means
that AMGA applied the merge or add operation when the
criteria for these operations were satisfied during training. It
is noticeable that AMGA tried to solve problems with compact
ANN architectures. When compact ANN architectures failed to
solve problems, AMGA added neurons at the very end of the
training process. This scenario can be observed in designing
ANNs for the glass and thyroid problems (Fig. 7).

Second, it is clear from Fig. 7 that AMGA did not follow a
fixed and straightforward strategy in solving different problems.
For example, for the diabetes problem, AMGA pruned and
added hidden neurons from the beginning to nearly the middle

of the training process. After that, AMGA used only training to
solve the diabetes problem. For the glass problem, AMGA tried
to solve the problem first by pruning a few hidden neurons, then
by training, and finally, by adding and pruning hidden neurons
several times. A quite different scenario is observed for the easy
thyroid problem. The algorithm AMGA first pruned several
hidden neurons at the beginning of the training process, then
trained the pruned ANN for a long time, and finally, added one
neuron at the very end of the training process. These examples
illustrate our intuition that an adaptive search strategy is needed
in designing near optimal ANN architectures for solving dif-
ferent problems. It can be observed that the characteristics and
complexity of all problems are not same (Tables I and II). Thus,
the adaptive strategy is very much necessary to solve different
problems efficiently.

Third, the training errors of ANNs reduced as their training
processes progressed. However, there were some instances
when the training errors increased. This was due to the merge
operation that prunes hidden neurons. It is evident from Fig. 7
that the training error did not increase too much when AMGA
pruned hidden neurons at any stage of the training. As a
result, the pruned ANNs could reach to the previous error level
after a small number of training epochs. This result indicates
that, when ANNs were trained, some of their hidden neurons
maintained much correlation with other neurons. This is quite
natural because hidden neurons could not communicate with
each other during training. The merge operation that produces
one hidden neuron by combining two correlated hidden neurons
seems to be a good alternative of the pruning operation in
designing ANNs.

C. Effect of Merging and Addition Strategies

The previous section gives an idea about the performance
of AMGA for different classification problems. However, the
effects of pruning neurons by merging and adding neurons
by splitting are not clear. To observe the effects of merging
and splitting, we performed a set of new experiments. The
setup of these experiments was exactly the same as those
described previously. The only difference was that AMGA did
not use here merging and splitting for pruning and adding
hidden neurons, respectively. Rather, AMGA pruned neurons
directly and added new neurons with random initial weights.
This variant of AMGA is referred to as adaptive pruning
and growing algorithm (APGA). To make a fair comparison,
APGA used (3) and (8), respectively, to prune and add hidden
neurons.

Table III shows the average results of our new experiments
over 50 independent runs. The positive effect of pruning neu-
rons by merging and adding neurons by splitting can be clearly
understood from these results. For example, for the diabetes
problem, the number of hidden neurons and epochs achieved
by APGA were 5.36 and 420.7, respectively. These values were
larger compared to those achieved by AMGA (Table II), which
employed merge and split operations. It is worth mentioning
that the amount of CPU time spent by AMGA in designing
ANNs was also smaller compared to that spent by APGA.
Although the merge operation needs some time to compute
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Fig. 7. ANN design process of AMGA for (top row) diabetes, (middle row) glass, and (bottom row) thyroid problems.

TABLE III
PERFORMANCE OF APGA, A VARIANT OF AMGA, ON EIGHT BENCHMARK

CLASSIFICATION PROBLEMS. ALL RESULTS WERE AVERAGED

OVER 50 INDEPENDENT RUNS

correlation information, AMGA needed a small amount of CPU
time because it took a smaller number of epochs in designing
ANNs.

It can also be observed that the average TER achieved by
APGA was worse (larger) compared to that achieved by AMGA
for different problems (Tables II and III). The larger TER
achieved by APGA might be due to its requirement for solving
problems using a large number of hidden neurons and epochs.
The lower values of these two numbers have been widely recog-
nized as important factors for obtaining a small TER. As men-
tioned earlier, the merge operation increases the capability of
hidden neurons and encourages decorrelation among neurons.
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TABLE IV
PERFORMANCE OF AMGA ON THREE BENCHMARK CLASSIFICATION

PROBLEMS FOR DIFFERENT PARAMETER VALUES. ALL RESULTS

WERE AVERAGED OVER 50 INDEPENDENT RUNS

It is natural to require less computational resources, i.e., a
smaller number of hidden neurons and epochs, when hidden
neurons are less correlated. This is because decorrelated hidden
neurons would learn less redundant information than correlated
hidden neurons. Since the split operation facilitates to add
hidden neurons with some information, it is also beneficial for
reducing training epochs.

In order to observe the significance in performance differ-
ence, we conducted a t-test between the results of AMGA and
APGA. The t-test based on the number of hidden neurons,
epochs, and TER indicates that AMGA was significantly better
than APGA at 95% confidence interval, with the exception
for the cancer problem. The TERs achieved by AMGA and
APGA were found similar for the cancer problem. These results
elucidate the essence of using merge and splitting operations in
designing ANNs for different problems.

D. Effect of Different Parameter Values

As seen from Section III, AMGA introduces four parameters
in training neural networks so that they can adapt their archi-
tectures during training. These parameters are τ , ε, ηth, and T .
The results presented in Tables II and III were obtained for the
specific values of these parameters. Thus, the effects of different
parameter values are not known. The aim of this section is to
observe such effects.

We performed a set of new experiments using AMGA with
three different values for τ , ε, ηth, and T . The values for τ
and ε were chosen in the range of 10–40 and 1E-02–1E-06,
respectively, while those for ηth and T were chosen in the range
of 0.03–0.07 and 1–10, respectively. The average results of the
new experiments over 50 runs are presented in Table IV. It is
seen that a small or moderate value of τ , ηth, and T , and a large
value of ε are beneficial for both training epochs and TER. The
proposed AMGA performed very badly when the value of T
was chosen very large (e.g., ten). This is reasonable because
AMGA terminated only when the validation error increased ten
consecutive times in each of the ten consecutive strips. Thus,
AMGA needed a large number of training epochs to satisfy
the termination criterion. This allowed ANNs to learn very
detailed information from the training data, resulting in poor
generalization ability, i.e., a large TER (Table IV).

TABLE V
PERFORMANCE OF AGMA, A VARIANT OF AMGA, ON FIVE BENCHMARK

CLASSIFICATION PROBLEMS. ALL RESULTS WERE AVERAGED

OVER 50 INDEPENDENT RUNS

E. Effect of Merge and Add Operations’ Sequence

It is seen from Section III that AMGA executes the merge
operation before the add operation. The reason for using such
a sequence is to encourage AMGA in producing compact
network architectures. The merge operation reduces the size of
ANNs, while the add operation increases the size. As seen from
Section III, the criterion for both merge and add operations
is based on the training data. If the add operation is executed
before the merge operation, the add operation is likely to be
successful because it increases the processing power (hidden
neurons) of ANNs. Thus, further training after the add opera-
tion will reduce the training error, and consequently, the chance
for applying the merge operation will reduce. The result is the
development of large ANN architectures.

We performed a new set of experiments to visualize the
aforementioned fact. In these experiments, the add operation
was executed before the merge operation. We call this variant of
AMGA as adaptive growing and merging algorithm (AGMA).
To make fair comparisons, the same experimental setup as
described in Section IV-A was used here. Table V shows the
average results of AGMA over 50 independent runs for five
benchmark classification problems. The comparisons of the
results presented in Table V with those presented in Table II
indicate the essence of trying to execute the merge operation
before the add operation. In terms of the average number of
hidden neurons and TER, the performance of AMGA that tried
to execute the merge operation before the add operation was
found better than AGMA that tried to execute the add operation
before the merge operation (Tables II and V). However, there
were some instances when AMGA took more epochs than
AGMA in designing ANNs (Tables II and V). This is reasonable
in the sense that AMGA explores a large search space to
produce compact network architectures.

F. Comparison

There are many algorithms in designing ANNs that one could
compare against. However, a direct comparison with other al-
gorithms using statistical tests is impractical at present, because
different algorithms use different experimental methodologies.
Moreover, the results of independent runs, which are necessary
for statistical tests, are generally not available. Thus, it is impos-
sible to compare different algorithms fairly unless one reimple-
ments all algorithms under the same experimental setup. Since
the aim of our experimental comparison here is to understand
the strengths and weaknesses of AMGA, we implemented the
basic constructive algorithm (BCA), basic pruning algorithm
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TABLE VI
COMPARISON BETWEEN AMGA, BCA, BPA, AND BCPA ON EIGHT CLASSIFICATION PROBLEMS BASED ON THE NUMBER OF HIDDEN NEURONS

IN ANN ARCHITECTURES DESIGNED BY THESE ALGORITHMS. ALL RESULTS WERE AVERAGED OVER 50 INDEPENDENT RUNS

TABLE VII
COMPARISON BETWEEN AMGA, BCA, BPA, AND BCPA ON EIGHT CLASSIFICATION PROBLEMS BASED ON THE NUMBER OF EPOCHS USED

BY THESE ALGORITHMS IN DESIGNING ANN ARCHITECTURES. ALL RESULTS WERE AVERAGED OVER 50 INDEPENDENT RUNS

TABLE VIII
COMPARISON BETWEEN AMGA, BCA, BPA, AND BCPA ON EIGHT CLASSIFICATION PROBLEMS BASED ON THE TER OF THE

ANNS DESIGNED BY THESE ALGORITHMS. ALL RESULTS WERE AVERAGED OVER 50 INDEPENDENT RUNS

(BPA), and basic constructive–pruning algorithm (BCPA) as
shown in Figs. 1–3.

The algorithms BCA and BCPA employed the same neuron
addition criterion as the one used in AMGA, but they added
neurons with random initial connection weights. Since BPA
and BCPA do not use merging, they deleted hidden neurons by
pruning instead by merging. For pruning, BPA and BCPA used
(3) without its denominator to compute the significance of hid-
den neurons in an ANN. The denominator of (3) was not needed
for pruning because BPA and BCPA started pruning after the
ANN converges to a minimum error. The same experimental
setup as described in Section IV-A was used for performing
experiments using BCA, BPA, and BCPA. The initial ANN
architecture for BCA and BCPA consisted of a three-layered
ANN with one hidden neuron. However, the number of hidden
neurons in the initial ANN of BPA was chosen two times
the number of hidden neurons shown in Table II. All these
arrangements were made to make a fair comparison so that the
essence of using an adaptive strategy in designing ANNs can be
understood.

Tables VI–VIII presents the average results of AMGA, BCA,
BPA, and BCPA over 50 independent runs for eight benchmark
classification problems. It can be seen that the ANNs designed
by AMGA had the smallest number of hidden neurons for
seven out of eight problems and the second smallest (next to
BPA) for one problem (Table VI). In terms of average training
epochs, AMGA took the smallest number of training epochs
for six out of eight problems and the second smallest for
two problems (Table VII). This is reasonable because AMGA
explored more search space in designing ANNs than the other
three algorithms. However, the ANNs designed by AMGA
achieved the lowest TER for all eight problems (Table VIII).

The t-test based on the number of hidden neurons, epochs,
and TER shows that AMGA was significantly better than BCA,

BPA, and BCPA at 95% confidence level for all problems,
with the exception of the cancer and gene problems. The BPA
was found significantly better than AMGA with respect to the
number of hidden neurons of the cancer problem, while BCA
outperformed AMGA with respect to the number of epochs
of the gene problem. Since we implemented AMGA, BCA,
BPA, and BCPA under the same experimental setup, the results
of the t-test indicate the essence of the three components,
i.e., adaptive search strategy, pruning neurons by merging, and
adding neurons by splitting, used in AMGA for designing
ANNs.

The previous comparison shows that AMGA is better than
its classical counterparts. It is interesting to compare the perfor-
mance of AMGA with state-of-the-art algorithms. We therefore
compared the results of AMGA with those of feedforward
neural network construction algorithm (FNNCA) [18], con-
structive feedforward neural networks (CFNN) [23], optimal
brain damage (OBD) [24], optimal brain surgeon (OBS) [25],
variance nullity pruning (VNP) [26], and optimization method-
ology for neural network (OMNN) [74]. The CFNN and FN-
NCA used a constructive approach in designing ANNs, while
VNP, OBD, and OBS used a pruning approach. The algorithm
OMNN used a hybrid simulated annealing [75] and tabu [76]
search methods in designing ANNs.

Tables IX–XI present the results of the aforementioned algo-
rithm along with AMGA. The results of AMGA were averaged
over 50 independent runs, while they were averaged over 40
and 30 independent runs for CFNN and OMNN, respectively.
The result of FNNCA was the best result of five independent
runs, while those for OBD, OBS, and VNP were not mentioned
in [26]. In terms of TER, AMGA was found better compared
to all other algorithms. In terms of hidden neurons, AMGA
was also found better than all other algorithms for seven out
of eight problems. For one (the cancer) problem, the ANN
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TABLE IX
COMPARISON BETWEEN AMGA, FNNCA [18], CFNN [23], OBD [24], OBS [25], AND VNP [26] ON THE CANCER PROBLEM. THE RESULTS OF AMGA

WERE AVERAGED OVER 50 INDEPENDENT RUNS, WHILE THOSE OF CFNN WERE AVERAGED OVER 40 INDEPENDENT RUNS. THE RESULTS OF

FNNCA [18] WERE THE BEST RESULTS OF FIVE RUNS, WHILE IT WAS NOT MENTIONED IN [26] WHETHER THOSE FOR VNP [26],
OBD [24], AND OBS [25] WERE THE AVERAGE OR THE BEST

TABLE X
COMPARISON BETWEEN AMGA, OBD [24], OBS [25], VNP [26], AND OMNN [74] ON THE DIABETES AND IRIS PROBLEMS. THE RESULTS OF AMGA

WERE AVERAGED OVER 50 INDEPENDENT RUNS, WHILE THOSE OF OMNN WERE AVERAGED OVER 30 INDEPENDENT RUNS.
IT WAS NOT MENTIONED WHETHER THE RESULTS OF OBD, OBS, AND VNP WERE THE AVERAGE OR THE BEST

TABLE XI
COMPARISON BETWEEN AMGA AND OMNN [74] ON THE THYROID

PROBLEM. THE RESULTS OF AMGA WERE AVERAGED OVER 50
INDEPENDENT RUNS, WHILE THOSE OF OMNN WERE

AVERAGED OVER 30 INDEPENDENT RUNS

architecture designed by VNP had a lesser number of hidden
neurons compared to that designed by AMGA.

In order to compare the performance of AMGA with evo-
lutionary approaches used in designing ANNs, EPNet [61]
is considered for comparisons. The algorithm EPNet can add
or prune hidden neurons as AMGA does during the training
process of an ANN. However, there are two different ways that
AMGA and EPNet execute the pruning and addition operations.
First, EPNet uses a predefined, fixed, and greedy strategy in
executing prune and add operations, while AMGA uses an
adaptive strategy. For example, EPNet executes the prune op-
eration first. If this operation is found unsuccessful, EPNet then
executes the add operation. At this point, one may think that
AMGA also uses a greedy strategy. This is not the case because
AMGA checks the merging (pruning) criterion first and then
the addition criterion. Based on the fulfillment of these criteria,
AMGA executes the merging and/or addition operations. For
different problems and learning parameters, AMGA, therefore,
may execute merge and add operations repeatedly, alternatively,
or in any other sequences. Second, EPNet selects a number of
hidden neurons randomly for pruning. This number is specified
by a user. Pruning hidden neurons by random selection may
deteriorate the performance of ANNs significantly, because it
is not known whether the pruned neurons are unimportant. In
contrast, AMGA prunes hidden neurons indirectly by merging.
It merges an insignificant neuron with a significant neuron that
maintains the highest correlation with the insignificant one. In
AMGA, the number of hidden neurons to be pruned is depen-
dent on the significance of hidden neurons. Finally, EPNet is
an evolutionary approach, while AMGA is a nonevolutionary
approach. The ideas used in AMGA, however, can be applied
to evolutionary approaches. One of the future works could be

TABLE XII
COMPARISON BETWEEN AMGA AND EPNET [61] ON THREE

CLASSIFICATION PROBLEMS. THE RESULTS OF BOTH ALGORITHMS

WERE AVERAGED OVER 50 INDEPENDENT RUNS

to apply the ideas used by AMGA to an evolutionary approach
for designing ANNs.

Table XII presents the average results of AMGA and EPNet
over 50 independent runs. In terms of average number of hidden
neurons and TER, AMGA was found better than EPNet for two
out of three problems we compared here. However, in terms
of epochs, AMGA was found far better than EPNet for all
three problems. For example, EPNet required on average of
109 000 epochs for a single run [61], while AMGA required
less than 1000 epochs (Table II). The highest number of epochs
spent by AMGA was for the thyroid problem, and it was
670.8 epochs. It is known that the important parameters of any
ANN design algorithm are the consideration of generalization
ability and training time [29], [77]. However, both of these
parameters are important in many application areas; improving
one at the expense of the other becomes a crucial decision [77].

G. Discussion

This section briefly explains why the performance of AMGA
is better than those of the other algorithms we compared in
Tables VI–XI. There are three major differences that might
contribute to the better performance of AMGA compared to
other algorithms.

The first reason is that AMGA uses an adaptive strategy
in designing ANNs, while BCA, BPA, BCPA, FNNCA [18],
CFNN [23], OBD [24], OBS [25], VNP [26], and OMNN [74]
use a predefined and same greedy strategy for all problems.
It can be observed that the characteristics and complexity of
all problems are not same (Table I, Tables VI–IX). Thus, the
use of the same strategy may not be suitable for all problems.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 14, 2009 at 02:14 from IEEE Xplore.  Restrictions apply.



ISLAM et al.: NEW ADAPTIVE MERGING AND GROWING ALGORITHM FOR DESIGNING ANNs 719

The significance of using an adaptive strategy can be easily
understood by comparing the performances of BCA, BPA,
BCPA, VNP, OBD, and OBS with that of an adaptive-strategy-
based algorithm OMNN. For example, for the complex diabetes
problem, the numbers of hidden neurons in ANN architectures
designed by BCA, BPA, BCPA, OBD, OBS, and VNP were
5.96, 5.56, 5.80, 16.00, 26.00, and 8.00, respectively, and the
TERs achieved by these ANNs were 26.04, 26.25, 26.22, 31.40,
34.60, and 30.90, respectively. In terms of average results,
the number of hidden neurons in ANN architectures designed
by OMNN was 4.53, and the TER achieved by these ANNs
was 25.87. However, AMGA performed better than OMNN.
In terms of average results, the number of hidden neurons in
ANN architectures designed by AMGA was 4.14, and the TER
achieved by these ANNs was 21.97.

The second reason is the training method adopted in de-
signing ANNs. The algorithms BCA, BCPA, CFNN [23], and
FNNCA [18] add hidden neurons to an ANN one by one and
train the ANN after each addition operation. The problem of
this scheme is the long-time training of some hidden neu-
rons that are added in the earlier part of a training process.
These neurons, therefore, may learn redundant information
and also overfit the training data. On the other hand, BPA,
OBD, OBS, and VNP start the training process with a large
ANN architecture. The OBD and OBS start pruning when the
training error of the ANN reaches to a minimum value, while
BPA and VNP start pruning when overfitting begins, which is
monitored by utilizing a validation set. Although the use of a
large ANN architecture expedites the initial training process,
the retraining of the pruned ANN after each pruning step may
need many training epochs to compensate the effect of pruning.
This problem is acute when an initial ANN architecture is
assigned to be very large, because in this case, an algorithm
needs to execute many pruning steps to find a near optimal
ANN architecture. Since a pruning algorithm needs to start the
training process with a large ANN architecture and one does
not precisely quantify such a large architecture in advance, it
is very likely that the initial ANN architecture can be very
large. To overcome the problem associated with the use of
a minimal and a large architecture used by constructive and
pruning algorithms, respectively, AMGA allows the training
process of an ANN to start with any number of hidden neurons.
This is possible because AMGA can prune or add hidden
neurons any time during training. To reduce the amount of
retraining, AMGA tries to compensate the effect of pruning
by increasing the capability of some remaining hidden neurons
in the ANN and adds hidden neurons by splitting existing
hidden neurons. Our experimental studies reveal the essence of
using the compensation technique and addition with splitting in
designing ANNs (Section IV-C).

The third reason is the encouragement of decorrelation
among hidden neurons in an ANN. The proposed AMGA
encourages decorrelation among hidden neurons in the ANN
by merging correlated hidden neurons. This is beneficial in the
sense that the ANN with a small number of hidden neurons
can learn more information when hidden neurons are less
correlated. In other words, decorrelation among hidden neurons
may help to produce compact ANN architectures. This may

be the reason that ANNs designed by AMGA had lesser num-
bers of hidden neurons compared to those of other algorithms
(Tables IX–XI). The only exception is the cancer problem in
which an ANN designed by VNP [26] had a lesser number
of hidden neurons than that designed by AMGA. Since the
number of hidden neurons needed to solve the cancer problem
was small, the encouragement of decorrelation did not work.
In addition, it is not known whether the result presented in [26]
for VNP was the best result or the average result of several runs.
The best ANN designed by AMGA had also one hidden neuron.

V. CONCLUSION

The generalization ability of ANNs is greatly dependent on
their architectures. Although a number of algorithms exist to
design ANNs automatically, most existing algorithms use a
kind of greedy strategy in determining a near optimal ANN
architecture for a given problem. This paper describes a new
algorithm, AMGA, in designing ANNs automatically. The idea
behind AMGA is to put more emphasis on an adaptive strategy
and to reduce retraining epochs in the design process of ANNs.
The adaptive strategy is better suited due to its ability to cope
with different conditions that may arise at different stages dur-
ing the design process of ANNs. This strategy also has a lesser
chance to trap into architectural local optima, a common prob-
lem suffered by the greedy strategy. The reduction of retraining
epochs is suitable for undermining the effect of overtraining,
which has a detrimental effect on the generalization ability
of ANNs.

The adaptive strategy of AMGA allows the pruning or ad-
dition of hidden neurons any time during the ANNs’ training,
depending on the condition of the learning ability of hidden
neurons or the training progress of ANNs, respectively. A
merging operation is used in AMGA to prune hidden neurons.
This operation produces one new neuron by merging two
correlated neurons in such a way that the effect of the new
neuron to the ANN is nearly the same as the combined effect
of its two parent neurons. This kind of pruning is completely
different from the one used in existing algorithms. The essence
of this pruning mechanism is that it encourages decorrelation
among hidden neurons in ANNs, resulting in compact ANN
architectures. Moreover, this pruning mechanism reduces the
retraining epochs. In adding hidden neurons, AMGA adds a
hidden neuron by splitting an existing hidden neuron in an
ANN. All these techniques are adopted in AMGA for designing
compact ANN architectures with good generalization ability.

The extensive experiments reported in this paper have been
carried out to evaluate how well AMGA performed on different
problems compared to other algorithms. In almost all cases,
AMGA outperformed the others (Tables VI–IX). In its current
implementation, AMGA has a few user-specified parameters
although this is not unusual in the field. These parameters,
however, are not very sensitive to moderate changes. One of
the future improvements to AMGA would be to reduce the
number of parameters or make them adaptive. In addition, the
use of a different significance criterion in the merging operation
of AMGA would also be an interesting future research topic.
Since AMGA has been applied to the classification problems, it
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would be interesting to study how well AMGA would perform
on regression problems.
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