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Real-Time Robot Path Planning via a
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Abstract—An efficient grid-based distance-propagating dy-
namic system is proposed for real-time robot path planning
in dynamic environments which incorporates safety margins
around obstacles using local penalty functions. The path through
which the robot travels minimizes the sum of the current known
distance to a target and the cumulative local penalty functions
along the path. The algorithm is similar to D∗ but does not
maintain a sorted queue of points to update. The resulting gain
in computational speed is offset by the need to update all points
in turn. Consequently, in situations where many obstacles and
targets are moving at substantial distances from the current
robot location, this algorithm is more efficient than D∗. The
properties of the algorithm are demonstrated through a number
of simulations. A sufficient condition for capture of a target is
provided.
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I. I NTRODUCTION

In a previous paper [1], we presented a simple yet effi-
cient distance-propagating dynamic system for real-time robot
path planning in dynamic environments. The algorithm is
essentially a distance-transform method [2]–[5] applied to a
fully dynamic environment. Distance-transform methods solve
the shortest path problem by using a dynamic programming
(DP) algorithm on a cyclic network [6]. Here we extend
the algorithm to incorporate safety margins around obstacles;
robots not only avoid obstacles, but travel a “safe” distance
around them. This is achieved by propagating not just the
distance to a target, but also the distance to an obstacle. The
“distance” to a target is then modified by a penalty function
based on the distance to an obstacle along the path.

Similar to many robot path-planning approaches, the en-
vironment is discretized and represented by a topologically
organized map. For the distance-propagating dynamic system,
each grid point has only local connections to its neighboring
grid points. Neighbors need not be all at the same distance.
At each time step, each grid pointi queries its neighbors
to determine their information about distances to targets and
obstacles. Distance information thus propagates outward from
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target/obstacle locations through neighboring grid points. If
a target or obstacle moves, a new “wave” of information
spreads out from the new location. The algorithm prevents
target distance information from traveling through obstacles.

The safety margins around obstacles are computed in
a way conceptually equivalent to distance transformation
methods [3], [7], [8], with our local updating of neighbors
acting similar to sequential erosions with small structuring
elements [8]. Our algorithm however allows for dynamic
environments where obstacles and targets are permitted to
move, and there is no limitation on the size of the obstacles
or size of the free space.

True wave front path planners [2], [9], [10] spread infor-
mation from a source outward in waves to all other points on
the grid by updating a grid point’s neighbors in the direction
of wave propagation and in the order in which the wave
arrives at the sites. This information may be simply the
distance to a target, or a more complicated function such as
a penalized distance for safety considerations, or any other
quantity that is intended to be minimized. The order of arrival
of waves at different points also depends on the information
being propagated. For expositional simplicity we considerhere
the information as simply the distance to a target. The D∗

algorithm [10], [11] (which is a modification of A∗ [9]) and
its variants (Focused D∗ [12], D∗-Lite [13], and E∗ [14]) are
true wave front planners. D∗ determines the correct order of
updating points by sorting its open list according to the current
distance to the target; updates for points close to the target
occur before those further away. By sorting its open list, D∗

ensures that all points that have moved off its open list have
recorded the optimal distance to the target (up to the current
information available in the map). The primary feature of D∗

is that it is capable of re-computing new optimal trajectories
when alterations to the map are made (the movement of an
obstacle or target is detected) without having to necessarily re-
compute the entire solution. Only the solution “down stream”
from the alteration is re-computed. Thus, for example, if an
obstacle half way between the target and the robot shifts its
location, only the solution from this distance out to the robot
needs to be re-computed, however, if the target itself moves
D∗ essentially needs to re-compute the entire solution from
scratch. D∗ is most efficient when the alterations to the map
occur at points close to the robot [10], and this makes it
well-suited for a robot path-planning problem where the robot
is equipped with an on-board sensor of limited range, and
where information is not being incorporated from other distant
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sources.
Our algorithm is similar to D∗ in that solutions are changed

down stream from where the map alteration occurred. How-
ever, unlike D∗, our algorithm does not maintain a sorted open
list but rather simply updates each point in turn. Speed is
gained by not having to maintain a queue but is lost because
points far from the optimal solution are also being updated.
Consequently, in comparison with D∗, our algorithm is best
suited for highly dynamic environments where alterations to
the map are being incorporated from all points, not just those
in proximity to the robot. Our algorithm is not a true wave
front planner since information does not spread to neighboring
points in the order of the distance from the target. This means
that occasionally the solution at a particular point may notbe
the minimal distance to the target even assuming the map is
completely up to date. However, given a constant map, our
algorithm does quickly converge to the optimal solution [1].
We accept this suboptimality in order to achieve simplicity
and efficiency by dispensing with the necessity to determine
which point needs to be updated next. Computing each point
in turn rather than working from the target outwards as
done by D∗ may make it seem like our algorithm needs to
do considerably more work. This is certainly the case for
constant environments or ones where only map alterations
associated with obstacle movements close to the robot are
made. However, if we are in highly dynamic environments
where many obstacles are moving, where the target itself is
moving, and where this information is available locally to the
points where the movements are occurring, and not just in a
limited proximity to the robot, then our algorithm is actually
more efficient.

We emphasize that in our algorithm, the computations
at each pointuse only local information. This means that
our algorithm is exceedingly easy to parallelize in a shared
memory architecture: the grid points are divided into subsets
and assigned to different processors for updating. In contrast,
most other path-planning algorithms use global information in
some way and hence are difficult to parallelize. Algorithms
based on a dynamic programming approach make use of
global information by stepping through the nodes in an order
determined by the current recorded distances at each node or
the order in which node values most recently changed. For
example, the A∗ algorithm [9] estimates the distance from a
noden to the goal as the sum of a locally propagated distance
g(n) from the starting point ton, plus an estimateh(n) of the
distance fromn to the goal (a piece of global information).
Even if A∗ is implemented with a non-informed heuristic,
h(n) ≡ 0, the algorithm still sorts the nodes in its open list
in ascending distance order, which implies the algorithm has
global knowledge of the current distance for each node. The
D∗ family of algorithms also sort based on global knowledge
of the current distance at each point in the grid, and focusedD∗

also uses global heuristics like A∗.
Neural network approaches to robot path planning [15]–

[19] are similar to our approach in that information about
the location of the target and obstacles is propagated through
local neighbors, however our algorithm has several advantages
over these. Typically, in a neural network approach, target

locations in the grid input a positive activity to the network
and obstacles are either sinks or held at a minimum activity
level. Activity is then propagated through the network by local
connections according to some ordinary differential equation
(ODE) model, and robots follow the path of steepest ascent to
the target location. Unlike our algorithm where the penalized
distance is propagated through the network, the activity values
of most neural networks do not have a direct physical meaning.
In addition, although correlated with distance, activity levels
often suffer from saturation effects [1] where the gradientin
the activity is very small and/or shows considerable sensitivity
to the arbitrary parameters of the model. Finally, the compu-
tational effort for neural networks is generally considerably
more, since numerically solving the ODE requires more work
than the simple computations in our discrete algorithm.

Our original algorithm is similar to the “dynamic wave
expansion neural network” model proposed by Lebedev et
al. [20]. Their model does not record thephysical distance
to the target but rather the sum of twice thegrid distance
and the number of time steps since the target last moved.
Also, their algorithm uses only integer arithmetic which de-
creases computation time but consequently only gives phys-
ically minimal distance paths if all neighbors are an equal
physical distance from each other. Thus, even for regular
square grids, neighbors are restricted to the four horizontal
and vertical neighbors; diagonal connections are not allowed.
In addition, their algorithm as specified reduces computation
time by choosing thefirst neighbor which is passing updated
information. They do this to avoid checking all neighbors.
However, as a result, their algorithm will generally fail to
find the optimal path in situations where moving obstacles
suddenly open up shorter paths to a target. To rectify this
situation, their algorithm would need to check all neighbors
to determine the best information. In contrast, our algorithm
records the actual physical (penalized) distance to the nearest
target. This information may be useful in a real situation where
the behavior of the robot may wish to be altered depending
on the proximity of a target. In addition, our algorithm works
for any grid, the only requirement is that each grid point hasa
predefined set of neighbors at known distances through which
the robots and targets may travel.

Since we are concerned with changing environments and
moving targets, it is not possible to give a measure of the
computational effort required for a robot to reach a target
on a grid of certain size without reference to the particular
environment and how it is changing. (Indeed, it is easy to
construct changing environments where the robot can never
reach a target no matter how fast the robot moves [1]).
However, the computational effort for each node in the grid
to be updated once is clearly proportional to the total number
of points,M , since each node must simply query the values
of its finite set of neighbors. See [1] for a comparison of our
algorithm with a number of others.

Although our exposition and most of our simulations are
in terms of a mobile robot because this scenario is easy to
visualize, the algorithm has more application for robots such
as manipulator arms (see Section III-D) where a complete grid
of the configuration space is more likely attainable.
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II. T HE ROBOT PATH ALGORITHM

In this section, we present the distance-propagating dynamic
system with obstacle clearance, and the algorithm for the
robot, target and obstacle movement. For a description of the
original algorithm without obstacle clearance, see [1]. Note
that [1] uses different notation than we use here.

A. The Penalized Distance-Propagating Dynamic System

Suppose the robot environment is discretized into a grid of
M points, labeled by an index,i, each point being either a
free space or an obstacle location. The targets and the robot
may occupy any free space. For each pointi, Bi is the set
of its neighbors, anddij is the physical distance fromi to
neighborj. Bi could be, for example, the eight nearest points
to i in a regular square grid, but in general, could be any
set of points which you wish to define as the neighbors ofi.
However, it is assumed that the targets and robots may only
move from points to neighboring points. We definedmin and
dmax to be the minimum and maximum distances between any
two neighbors in the grid.

Each grid point has two associated real-valued variables:
xi(n) which records the “distance” to the nearest obstacle at
time stepn, andyi(n) which records the “penalized distance”
to the nearest target. In addition, each point maintains two
integer-valued variables,pxi (n) and pyi (n) which record the
“parents” forx andy, that is, the neighbors ofi through whom
the values ofxi(n) and yi(n) were calculated respectively.
Define a local obstacle penalty function,q(x), 0 ≤ q(x) <
qmax, whereqmax is some finite constant. The functionq(x)
is the penalty per unit distance traveled. The cost of travel,
that is, the penalized distance, along a path that is a distance
x from an obstacle is equivalent to an unpenalized path that
is 1 + q(x) times longer.

The system is initialized as

xi(0) =

{

0, if an obstacle is ati,,

D, otherwise,

pxi (0) = i,

yi(0) =

{

0, if a target is ati,

D, otherwise,

pyi (0) = i.

where D as some large maximal penalized distance. The
precise value ofD is not too important. IfD is chosen too
small, then only grid points which are less than a penalized
distanceD from a target will participate in the algorithm.
A sufficiently large maximalD value which ensures all grid
points participate is given byD > (M−1) (dmax [1 + qmax]).

The dynamic system evolves as follows:

xi(n) =

{

0, if an obstacle is ati,

min
j∈Bi

(

xj(n− 1) + dij
)

, otherwise. (1)

pxi (n) =







i, if an obstacle is ati,

argmin
j∈Bi

(

xj(n− 1) + dij
)

, otherwise. (2)

yi(n) =























D, if an obstacle is ati,

dminq (xi(n)) , if a target is ati,

min
j∈Bi

(

yj(n− 1) + dij
[

1 + q(xi(n))
]

)

,

otherwise.

(3)

pyi (n) =















i, if an obstacle or target is ati,

argmin
j∈Bi

(

yj(n− 1) + dij
[

1 + q(xi(n))
]

)

,

otherwise.

(4)

if yi(n) ≥ D
yi(n) = D
if an obstacle is not ati & q(xi(n)) > 0

pyi (n) = argmax
j∈Bi

xj(n),

else
pyi (n) = i.



































(5)

where the functionargminj∈Bi
f(j) returns thefirst element

j in Bi at which f(j) is a minimum. Theargmax function
is defined analogously. In Section II-C we discuss how we
sort Bi so thatargmin and argmax preferentially select an
appropriate parent when more than one possibility exists. The
first step of the evolution, (1) and (2), simply computes the
distance to the nearest obstacle, keeping track of thex-parent,
that is, the neighbor through whom the minimal distance is
measured. Note that theargmin in (2) is computed at the
same time as the minimum in (1). If an obstacle is ati, we
define thex-parent of i to be itself. Equations (3) and (4)
compute the penalized distance to the nearest target, keeping
track of they-parent (again, theargmin in (4) is computed
simultaneously with the minimum in (3)). In this case, if either
an obstacle or a target is ati, we define they-parent ofi to be
itself. The significance of settingyi to be nonzero wheni is a
target is discussed below in Section II-B. Finally, (5) modifies
the parent ofyi if the distance to the target is as big asD; this
is for robot movement and is discussed in Section II-C. Note
that the dynamical system, (1)–(5), uses values ofx(n− 1) to
updatex(n) and px(n), and values ofx(n) and y(n − 1) to
updatey(n) andpy(n). Thusx(n) must be computed before
y(n). It is not necessary to store values ofx, andy for all n,
the current and previous values are sufficient. An illustration
of how Equations (1)–(4) work is shown in Figure 1.

The variablexi(n) records the distance fromi to the nearest
obstacle at time stepn. Of course obstacles can move and it
takes some time for the entire system to reflect this alteration,
so the value ofxi(n) may not be up to date for alli. More
precisely,xi(n) records the minimum overk ∈ {0, 1, . . . , n}
of the physical distance fromi to the nearest obstacle which
was k grid steps away fromi at k time steps in the past.
The physical distance,x, and the number of grid steps,k, are
related by

kdmin ≤ x ≤ kdmax.

Define fu to be the system update frequency: the number
of time steps per unit of real time. Thus ifxi(n) is less

thanD, it records information from between
⌈

xi(n)
dmax

⌉

/fu and

min
(

n,
⌊

xi(n)
dmin

⌋)

/fu time units in the past, where⌈w⌉ and
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Fig. 1. Illustration of the dynamic system evolution, equations (1)–(4). The
figure shows four time steps for a unit grid with six points, labeled 1 through
6. Point 2 is an obstacle (shaded) and point 4 is a target (thick circle). The two
sets of numbers inside each circle are[x, px] (upper set), and[y, py ] (lower
set). The initial situation,n = 0, is displayed in the upper left. The penalty
function isq(x) = max(3−2x, 0). At n = 1, points 1 through 4 have correct
x values andx-parents while points 5 and 6 have not yet received information
about the obstacle. By stepn = 2 all points have correct[x, px] pairs. The
situation is more complicated for they values. For example, atn = 1, point
1 hasx(1) = 1 henceq(x(1)) = 1 and soy(1) is 2

√

2, while point 3 has
x(1) =

√

2 henceq(x(1)) = 3 − 2
√

2 and soy(1) is 4 − 2
√

2. Also at
n = 1, they value for point 4 increases to 1 due to the second line of (3). This
increase iny for the target atn = 1 causes alterations iny for its neighbors at
n = 2. For example, the computation ofy(2) for point 1 yields6−2

√

2 with
the parent being point 3 since the penalized distance to point 4 from point 1
is 1 +

√

2 (1 + q(1)) = 1 + 2
√

2 > 6 − 2
√

2 = 4 − 2
√

2 + (1 + q(1)).
By n = 3 though,y values for all points have converged to their appropriate
values.

⌊w⌋ are the smallest integer greater than or equal tow and
largest integer less than or equal tow respectively. Similarly,
yi(n) records the minimal cost (penalized distance to a target)
for point i at time stepn, which may be out of date by at
most

⌊

yi(n)
dmin

⌋

/fu real time units.
Since the minimization is performed by searching over the

neighbors of each point and each point has a finite number
of neighbors, the computational burden for this penalized
distance-propagating dynamic system (the time required to
update every grid point once) is proportional to the total
number of points,M .

B. Penalty Function

The relative degree of “safety” is specified by the user in
the penalty function formation. The safety margin around an
obstacle is defined as the region in which the penalty function
is nonzero. The safety margins around the obstacles are “soft”
in the sense that if a route that passes into a safety margin is

lower cost (distance plus penalty) than all routes which stay
out of the safety margin, then the former will be chosen. If
hard safety margins were desired then one could simply define
the points in the safety margin to be obstacle points (that is,
grow the obstacle) and then use the original algorithm without
obstacle clearance. In particular, the soft margins allow the
robot to pass adjacent to obstacles if there is no other safer
way to reach a target.

The precise manner in which the penalty information has
been applied warrants some discussion. Along the path be-
tween any two neighbors, the distance to the nearest obstacle
is in general changing. In a continuous setting, the penalty
should be specified as

Q =

∫ dij

0

q (x(s)) ds, (6)

where s is the distance along the path. Sincex(s) is only
known at the two end points of this integral, an obvious
approximation is

Q ≈ dij
2

(q(xi) + q(xj)) .

However, in (3) the single end-point approximationQ ≈
dijq(xi) has been used. The reason for this is that the two-
point approximation yields a dynamical system with approx-
imately 5/3 the number of arithmetic operations as the one-
point approximation. If extra storage is used to hold the values
dij (1 + (q(xj) + q(xi)) /2), then this factor can be reduced to
about 4/3. In any event, we did not feel that the improvement in
the approximation warranted the slow down in the algorithm.
Also to minimize computations, the penalty atxi is used in (3)
rather than atxj ; thus the one-point approximation for the
penalty is applied at the “uphill” ends of the path segments,
that is, at the ends closest to the robot. Consider the situation
where a target at pointi lies within the safety margin of some
obstacle but the rest of the points along the optimal path to the
robot lie outside all safety margins. Ifyi were zero, then, the
distance along this path would incur no penalty. In order to
avoid ignoring a penalty contribution at the target end of the
path, the value foryi when a target is ati is set todminq(xi)
rather than zero. However, this only has any effect on the
algorithm if there is more than one target.

The form of the penalty function is important. It is reason-
able to assume thatq(x) is a decreasing function ofx, and that
beyond some certain value,x = B, q is zero (although such
local limitation on the size of penalty margins is not essential).
The simplest such form forq(x), is a piecewise linear function

q(x) =

{

A(B − x), x < B,

0, x ≥ B,
(7)

whereA > 0 is a strength factor andB > 0 represents the
width of the safety margin. However, other forms are possible.
The simulations of Section III illustrate that the algorithm
can be very sensitive to the precise penalty function being
used. For (7), increasingA has the effect of “hardening” the
safety margin so that the robot is less likely to get close to an
obstacle, and increasingB widens the margin.
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C. Robot Movement

We assume that the robot can move from any grid point
to any neighboring free space, that is, point robot dynamics.
The robot location,r(t), is specified as an index of one of the
points on the grid, and is a (discontinuous) function of real
time t ≥ t0. Initially, r(t0) = i0. We assume that the robot’s
travel path is updated at a set of real time valuest1 < t2 <
t3 < . . ., and that the robot’s actual location fort ∈ (tk, tk+1)
is somewhere between the grid pointsr(tk) and r(tk+1). At
time tk, the next update time,tk+1, and next update location,
r(tk+1), are determined. The latter is defined as

r (tk+1) = py
r(tk)

(

n(r(tk), tk)
)

, (8)

wheren(i, tk) means the highest time stepn for which yi has
been computed up to timetk. Thus, when a robot arrives at
locationi it proceeds to the currenty-parent ofi. For example,
consider the situation shown in Figure 1 and suppose the points
are updated in their label order and that updating each point
requires 0.1 time units. To update all six points once would
require0.6 time units. Suppose the robot is at point 5 at time
tk = 2.0 (r(2.0) = 5). For this value oftk, n(i, tk) is 3
for points i = 1 and i = 2, but is only 2 for pointsi =
3, . . . , 6. Consequently, the next position of the robot will be
r(tk+1) = py

r(2.0)(2) = 3. However, if tk was 2.3 or higher
thenn(5, tk) = 3 and the next robot position would have been
r(tk+1) = 4.

When computingyi(n) in (3), it is possible that more than
one indexj ∈ Bi attains the minimum off = yj(n − 1) +
dij

(

1 + q(xi(n))
)

. Which index to select as the parent of
yi(n) is not unique. The method we used was to select the
neighborj ∈ Bi such thatf was minimized and the angle
from i to pyi (n) was as close as possible to the angle from
i to pyi (n − 1). In other words, we minimized changes over
time in the direction of the optimal path throughi. To achieve
this, we had each grid point,i, store not just a setBi of its
m neighbor indices, butm differently ordered versions ofBi,
each in increasing angle magnitude starting from one of the
m neighbors. These orderings are determined by the geometry
of the grid and do not change, hence need only be computed
once at the beginning. Ifpyi (n − 1) is not i (that is, if the
parent at the previous time step is one of the neighbors) then
the neighborpyi (n − 1) is always queried first, followed by
the other neighbors in increasing angle magnitude order. The
value ofpyi (n) only changes iff as measured through the next
neighbor strictly decreases.

It is possible that while a robot is waiting at a grid point
(with y = D) for distance information to be propagated to it
from a target, an obstacle moves toward the robot and would
collide with it if the robot did not move. Since the dynamical
system calculates the distance to obstacles, this information
can be used to make the robot move away from obstacles when
it does not know which way to go toward a target. This is the
purpose of (5). Ifi is a free space withyi(n) = D, and the
penalty valueq(xi(n)) is positive, then a further computation
is performed to set the parent ofyi to be the neighbor that
is furthest from an obstacle. Again, this maximum may be
attained by several neighbors so we query the neighbors in

the order described above so that again the changes in the
angle of the potential robot paths are minimized over time.

Note that the update interval,∆tk = tk+1 − tk, need not
be constant nor predetermined. For example, with a regular
unit square grid, if the robot moves at constant speedvr, then
∆tk will be either 1/vr or

√
2/vr time units, depending on

whether the distance fromr(tk) to r(tk+1) is 1 or
√
2.

In the case of a static environment, once the location at
which the robot resides has settled to its finaly value (which
occurs when the number of time steps exceeds the number of
grid steps between the target and the robot via the shortest
distance path) evolution of the dynamic system can cease and
the robot can simply follow the minimum distance path to the
target using (8).

D. Target and Obstacle Movement

Alterations to the environment map regarding the locations
of targets and obstacles can happen at any time. An alteration
at pointi will begin to be reflected in the dynamical system as
soon as pointi or any of its neighbors is next updated. When a
point i that was previously a free space becomes an obstacle,
all paths fromi outward (increasing distance) are no longer
valid. To increase the speed of computing new solutions for
these descendant points,j, the values ofyj and pyj are reset
to D andj. This is done before the system resumes updating
points in turn. More precisely, if an obstacle newly appearsat
point i during time stepn, then the functionErasePath(i) is
called where

ErasePath(i)
for each neighborj of i

if pyj (n− 1) = i

yj(n− 1) = D
pyj (n− 1) = j

ErasePath(j)
end if

end for
end

Since obstacles can move, collisions with robots or targets
are possible. The simulations of the next section were designed
so that obstacles never collided with the target. (Except in
the fourth simulation where points can be simultaneously
obstacles and targets.) The penalty function is designed to
keep the robots away from the obstacles but collisions with
obstacles are still possible, for example when the only pathto a
target passes adjacent to a moving obstacle. If such a collision
occurs then the penalty function needs to be increased, and/or
the robot speed needs to be increased to prevent collisions.

III. S IMULATION STUDIES

In this section we demonstrate the effectiveness and effi-
ciency of the proposed algorithm with various simulations.In
all of these simulations the system clock is used to create
a real-time environment. For example, if the robot begins
(system clock att = 0) traveling at two units per second
toward a pointi that is one unit away, the robot will arrive at
t = 0.5 and the decision as to where the robot will next move
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Fig. 2. Target Chasing. Four time snap shots of the environmentare shown.
Obstacles are black points with dark grey shading around them. The target
is a bull’s eye pattern and its path is a thin solid line; it starts at (5,5) and
zig-zags around the obstacles. The robot is a square and its path, starting at
(1,1), is shown as a thick solid line. Free spaces are shaded from light to dark,
light being smallest values for the penalized distance,y, to a target. The short
lines emanating from the free spaces point to the neighbor through whom the
information for updatingy was obtained, that is, they point in the direction
of greatest decrease iny. The safety margin is1+

√

2 and the robot remains
outside these margins untilt = 71, after which it remains within the safety
margin of the third obstacle until catching the target at (20,19).

is made based on the value ofpyi at timet = 0.5. Similarly, if
an obstacle is moving at a speed of one grid unit per second,
then its presence at each subsequent point on the grid is not
signaled until the system clock advances another second.

A. Target Chasing

In this simulation, the target moves at a speed of 0.35 grid
units per second from the location(u, v) = (5, 5) in a zig-zag
pattern around some non-moving obstacles toward (25,25), see
Figure 2. The robot starts at (1,1) and travels at a speed of 0.5
grid units per second. The penalty function is given by (7) with
A = 2 and a safety margin ofB = 1 +

√
2. Notice that the

robot remains outside the safety margins around the obstacles
until t = 71 when it occupies the point(u, v) = (17, 14).
It enters the safety margin at that point since the target is
very close by at (19,15), and all other safer paths have larger
distance to the target. Thereafter, the robot remains closeto
the obstacle as it chases down the target, finally reaching itat
(20,19).

The precise form of the penalty function can substantially
alter the robot’s path. For example, if the penalty function(7)
is altered so thatA = 1.95 rather than2, the resulting robot
path is shown in Figure 3. Note that the robot enters the safety
margins several times because the penalty for doing so is not
as great as remaining outside the margin and traveling a longer
path. The robot ends up catching the target earlier at (18,15).
Similar results can be achieved by decreasingB.
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Fig. 3. The same simulation as in Fig. 2, but withA = 1.95 in the penalty
function rather then2.0. With the lower penalty for being close to obstacles,
the robot ventures inside the safety margins (again of width1+

√

2) a number
of times while chasing the target, resulting in a shorter overall path and an
earlier capture of the target.
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Fig. 4. Path Abandonment. Three time snap shots of the environment are
shown. Symbols as in Figure 2. The target moves clockwise around the edge
starting in the south-east corner. The robot, starting in the north-west corner,
initially moves east of the central barrier toward the target. However, as the
target moves west and the barrier atv = 2 slides east, this path to the target
becomes increasingly unsafe. Eventually, the robot turns around and pursues
the target by going north around the barrier at a safe distance.

This simulation also illustrates how penalty functions
around obstacles can prevent the robot from reaching a target
even if the robot travels considerably faster than the target. If
the target continues to weave close in around obstacles, and
the penalty function is sufficiently high, the optimal safe path
for the robot will be substantially longer than the target’spath.
In the above simulation, the robot speed was sufficiently large
that eventually the robot caught the target. However, it is not
difficult to imagine a scenario where the speed advantage of
the robot is exactly countered by its longer path. Indeed when
we re-ran the above simulation, either increasingA to 3.5 orB
to 3, the robot failed to catch the target until after it had halted
at (25,25). If the obstacles were arranged in a closed loop and
the target wove tightly through them, it would be possible to
have the distance between the target and robot settle into a
stable periodic cycle, bounded above and below.

B. Path Abandonment

In this simulation, Fig. 4, the robot’s path to the target
becomes increasingly unsafe as the target and obstacles move.
Eventually, the robot abandons this path to the target and
chooses a safer path. The penalty function is again given by (7)
with a safety margin ofB = 1 +

√
2, and A = 2.5. The

target starts at(u, v) = (9, 1) and moves clockwise around
the exterior at a speed of 0.25 grid units per second. There is
a stationary north-south barrier up the center of the grid grid,
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and an east-west barrier that starts by blocking2 ≤ u ≤ 5,
v = 2. This barrier moves eastward at a rate of 0.18 grid units
per second until it blocks5 ≤ u ≤ 8 at which point it moves
back west to its initial placement and so on. The robot starts
at (1,9) and moves at a speed of 0.65 grid units per second.
Initially, the robot moves to the east of the central barrier
toward the moving target. However, when the robot reaches
(9, 3) shortly beforet = 19, the path it has been following
toward the target now runs adjacent to the east-west barrier
along its entire length. The penalty for being this close to
the barrier for this many points outweighs the extra distance
needed to reach the target by going back north around the
barrier. The robot therefore turns around and pursues the target
by going north safely around the barrier.

C. Sliding Grates

This example illustrates how our algorithm is more effi-
cient than D∗ in situations where the target is moving and
there are many obstacles continually moving. Simulations
were performed on an Intel Pentium 4, 3.06 GHz machine.
Qualitatively similar results were obtained on a faster SGI
Altix machine using larger grids.

The D∗ algorithm can determine when a point is recording
the up-to-date optimal path to a target. In contrast, our
algorithm as we have specified it here, does not keep track
of whether the current recorded information at a point is
either optimal or up-to-date. As indicated earlier, we accept
this suboptimality to maintain simplicity. In most situations
we also expect that the information will not be significantly
suboptimal since our system converges rapidly to the optimal
solution [1], and will not be significantly out of date provided
the system update frequency,fu, is sufficiently large. Our
algorithm could also be modified to implement a convergence
test for optimality as described in [1], or global information
could be utilized to check if the information is up-to-date,
if it was felt necessary. In the following simulations, we
compare our algorithm with two implementations of D∗. The
first implementation requires the robot to wait at a point until
the information there is optimal, and the second allows the
robot to move based on the current information available.
We name these two implementations D∗-patient and D∗-
eager respectively. The second implementation allows a fairer
comparison with our algorithm. Further, we have incorporated
safety margins in both implementations of D∗ by modifying
the cost functions whenever the distance to an obstacle changes
for a point [11]. This “distance to an obstacle” informationis
itself computed with another D∗ algorithm which halts when
correct distances from obstacles out to the edge,B, of the
safety margin are computed.

In the first simulation, a grid of size 89 by 86 is used.
There are two stationary obstacles along the north (v = 86)
and south (v = 0) boundaries fromu = 5 to u = 85. There are
also 11 sets of north-south “grates”, atu = 5, 13, 21, . . . , 85.
Each set has 12 grates spanning three points and separated by
four points. All the grates in a set slide in unison northward
until the north-most grate touches the north stationary obstacle,
then southward until the south-most grate touches the south
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Fig. 5. Sliding Grates. Symbols as in Figure 2. The top panel shows a portion
of the grid near the robot’s initial location att = 10 seconds. At this point,
the obstacles atu = 5 are moving northward, while those atu = 13, and21
are moving southward. The target is off the graph to the east. The grey line
shows a portion of the path of the robot under our algorithm. Under both D∗

implementations, the robot is still waiting at(1, 1). The bottom panel shows
the robot paths under the two algorithms when the target is captured at the
eastern edge. Under D∗-eager (dark line), the target is captured att = 50
seconds while under our algorithm (grey line) it is capturedsooner att = 23
seconds. Under D∗-patient the robot never leaves the starting point. The stars
on the two robot paths are at five second intervals, to allow comparison of
the two paths in time. Two of these times are labeled.

stationary obstacle, etc., at a speed of two units per second.
The initial north-south location of each grate set is randomly
selected. See Figure 5. The target starts in the south-east corner
and moves northward with a speed of two units per second;
if it reaches the north-east corner it begins moving south at
the same speed. The robot starts in the south-west corner, at
(u, v) = (1, 1), and moves with a speed of six units per second.
The penalty function is given by (7) withA = 2 andB = 4.
Under our algorithm, the robot safely reaches the target at
time t = 23. Using D∗-eager, where the robot is permitted
to move based on suboptimal information, the robot captures
the target att = 50. If the robot is required to wait until
optimal information has been computed (D∗-patient) then the
robot never actually leaves the starting point. The many map
alterations due to distant moving obstacles and targets cause
D∗ to continually insert points onto its sorted open list and
to make changes to its path cost functions. The time required
to do these alterations and the sorting slows the propagation
of information outward to the robot. Consequently, under both
D∗ implementations the robot ends up waiting at the starting
location for a long time (21.3 seconds) before any information
arrives there. Under D∗-eager, once the robot starts to move
the algorithm performs comparably to ours, with the robot
capturing the target about 29 seconds later. Under D∗-patient,
even though some information arrives at(1, 1), the continual
updating of target and obstacle locations over the whole grid
does not allow D∗ to ever complete computation of optimal
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Fig. 6. Manipulator arm specifications. The barrier and target move left to
right at constant height and speed.

information at (1, 1), and hence the robot never moves. In
comparison, information under our algorithm first arrives at
the robot at timet = 0.6 and the robot immediately begins to
move.

We also ran similar simulations with different height grids.
Removing one grate from each set (so the grid is89 × 79)
was enough to make all three algorithms comparable. Capture
times were:t = 23.16 for ours,t = 28.11 for D∗-patient, and
t = 23.01 for D∗-eager. If one grate was added to each set (so
the grid is89×93), then under our algorithm the robot captured
the target att = 23.2 while under both implementations of D∗

the robot never moved. This is beyond D∗’s limit of size for
this example on our machine; the continual updates to obstacle
and target movements completely occupy the computations
preventing information from ever reaching all the way across
the grid to the robot’s initial location. Our algorithm was
successful for much larger grids also, for example it captured
the target att = 46 seconds under a grid of size161×142 (20
sets of 20 grates). We also performed similar simulations on
a faster computer (an Altix 350 with an Itanium 2 processor)
and found qualitatively similar results with larger grid sizes.

D. Manipulator Arm

In this simulation we consider a two-hinged manipulator
arm as shown in Figure 6. A barrier of length 45 cm moves
from left to right across the arm’s field at a height of 110 cm
and a speed of 10 cm per second. At its trailing edge and
25 cm higher, a target moves with the same velocity. The
first link of the arm has length 1 m and is initially pointing
straight upward (θ = 90 degrees). The second link is 0.7 m and
initially the angle between the two arms,φ, is 243 degrees. The
task is to make the tip of the arm reach the target. The arm’s

speed is set at 30 degrees per second, that is,
√

θ̇2 + φ̇2 = 30.
Rather than physical space, the optimal path is determined in
the arm’s configuration space,(θ, φ). In this space, the bar
shaped barrier becomes an irregularly shaped obstacle since
no part of the arm is allowed to contact the barrier. Also,
the mapping from configuration space to physical space is
two to one (except whenφ is a multiple of π), hence the
single target has two representations in configuration space.
Also, since there are manipulator arm configurations which
reach the target but which also intersect the barrier, a point in
configuration space can be both an obstacle and a target. In
this case, to avoid moving toward such a point, the obstacle
takes precedence in (3) so thaty will have a valueD there.
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Fig. 7. Manipulator arm configuration space at three times. Target points
which are simultaneously obstacles are indicated as large solid black circles.
Initially the target is not in the arm’s field but the barrier moving toward the
arm causes, through the penalty function, the arm to move out of the way.
By t = 7.5, the target is in the arm’s field but is unreachable due to the
barrier’s location. The target first becomes reachable at about t = 15 and the
second link of the arm swings completely around (φ = 2π) in order to reach
it, which occurs att = 22.5.

Figure 7 shows four time snap shots of the environment in
configuration space. Here we have discretized the angles so
that there are nine degrees between successive grid points.
That is, u = 1 + 20θ/π, 0 ≤ θ ≤ π, and v = 1 +
40 (φ mod 2π) /(2π). The penalty function is again given
by (7) with A = 0.2, andB = 0.4. The clock starts when
the leading edge of the barrier first enters the arm’s field. The
target does not enter the arm’s field until aboutt = 7.1, and
when it does so, it is unreachable since the barrier location
precludes arm configurations that would otherwise reach the
target. This remains the case until aboutt = 14 seconds
when the target becomes reachable from the left. However,
well before the target is ever visible to the robot, the barrier
has moved sufficiently far into the arm’s field to have collided
with the arm had the arm not moved. In the first panel of
Figure 7 we see that att = 5.7 the robot arm has already
moved up and to the left a short distance. (Movement began at
aboutt = 2.6.) This movement is in response to the obstacle’s
penalty function becoming nonzero at the robot’s location even
though the value ofy is everywhere stillD on the grid. The
robot movement algorithm has the robot moving in a direction
the greatest distance from an obstacle if the value ofy is D
and the penalty function is nonzero. Once the robot’s location
receives the information about the reachability of the target,
it moves, increasingφ through2π so that the manipulator’s
second link passes over the first. The movement of the arm in
physical space is shown in Figure 8.

E. Hall and Rooms

In this final simulation there is a hallway connecting four
rooms, each of size 6 m by 11 m. The grid is rectangular but
not uniform. In the center of the rooms the grid spacing is 1 m
but in the hallway, around the edges of each room, and near the
doorways the grid spacing is 0.5 m, as shown in Figure 9. Each
room contains one target moving to random points in the room
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Fig. 9. Hall and Rooms. Three time snap shots of the environment are shown. Symbols as in Figure 2. Moving obstacles are shown assolid black circles
and move up and down the hall randomly visiting two locations ina room. Initially each room contains one target and the robot starts at the south end of
the hall. The previous 15 seconds of target, robot and obstacle paths are shown in each plot as solid lines. Att = 20 the robot has entered the south-east
room and is chasing down the target there. Byt = 90 the robot has captured the target in the south-west room and has returned to the hall heading to the
north-east room. Byt = 160 the target in the north-east room has been captured and the robot is entering the north-west room to capture the final target.

0

0.5

1

1.5

 0.0 <= t < 10.6

Y
 (

m
)

10.6 <= t < 16.6

−1 0 1
0

0.5

1

1.5

16.6 <= t < 19.8

X (m)

Y
 (

m
)

−1 0 1

19.8 <= t < 22.5

X (m)

Fig. 8. Manipulator arm physical space showing the arm, barrier and target
movement through time.

at a speed of 0.25 m/s. In addition to the permanent walls, there
are moving obstacles (“people”) which primarily move up and
down the hallway randomly visiting several points in a room
before returning to the hall and moving on. These obstacles
move at a speed of 0.5 m/s. The robot starts at the south end of
the hall and moves at a speed of 0.375 m/s. The robot’s goal
is to capture all four targets while avoiding all obstacles.The
penalty function is given by (7) withA = 10 andB = 2

√
2.

Figure 9 shows three snapshots of this simulation. The
locations of the robot, targets, and moving obstacles in the15
seconds prior to the indicated time are shown as solid lines.
At t = 20 the robot has entered the southeast room and is
chasing down the first target. Byt = 90 it has captured the
target in the southwest room and is returning to the hall. The
robot moves down the center of the hall since the moving

obstacles tend to move along the sides of the hall. Att = 160
the robot has captured the target in the north-east room and
successfully crossed a very crowded hallway and entered the
north-west room. The final target is captured att = 170.7. A
video (avi file) of this simulation is attached.

IV. SUFFICIENT CONDITIONS FORCAPTURE

In [1] it was proved in the case where obstacles are static,
that the algorithm always results in the robot catching a target
provided the system update frequency,fu, (the number of
times the entire grid system is updated in each unit of real
time) satisfies

fu >
3

dmin

(

1
vt

− 1
vr

) (9)

wheredmin is the minimum distance between any two neigh-
boring grid points, andvt and vr are the target and robot
speeds respectively. The sufficient condition (9) can be ex-
tended to the dynamic obstacle situation with some restrictions
on the obstacle movement. In an unrestricted moving obstacle
situation, no matter how fast the robot speed and the system
update frequency, and no matter how slow the obstacles move,
it is always possible to construct an environment where the
target cannot be captured [1]. As an obstacle moves (or
extends) from one grid point to a neighbor which is on the
current optimal path from the robot to the target, the lengthof
the path that the robot is taking toward the target may increase
(either because the optimal path is displaced one grid pointor
the optimal path is completely occluded and a new optimal
path to the target which goes around the obstacle is found). If
the number of times that obstacle movements cause increases
in the length of the optimal path is finite, then (9) will also
be a sufficient condition for capture of the target in the fully
dynamic environment.

As noted in Section III-A, the new algorithm with obstacle
clearance via the local penalty function, can result in situations
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where, despite moving significantly faster than the target,the
penalty function may force the robot to take a longer “safe”
path and thus never catch the target. Here we re-derive (9)
to show how the penalty function is incorporated into the
sufficient condition for capture.

First considern(i, tk) as defined in Section II-C, the highest
time step for whichyi has been computed by timetk. If fu
is the system update frequency, thenn(i, t) is as shown in
Figure 10. As can be seen from this figure, for allt, n(i, t)
satisfies

n(i, t+ k/fu) = n(i, t) + k, ∀ k ∈ Z (10)

n(i, t+ g/fu) ≤ n(i, t) + 1, 0 < g < 1, (11)

n(j, t) ≤ n(i, t) + 1, ∀ i, j. (12)

Consider now a robot moving along an optimal path,
leaving from pointi at time tk and arriving at a neighbor
j at time tk+1 = tk + dij/vr. We have at departure, since
j = pyi

(

n(i, tk)
)

,

yi(n(i, tk)) = yj(n(i, tk)− 1) + dij

(

1 + q
(

xi

(

n (i, tk)
)

)

)

≥ yj(n(i, tk)− 1) + dij (13)

and at arrival, by (10)–(12),

yj (n(j, tk+1)) = yj
(

n (j, tk + dij/vr)
)

= yj
(

n (j, tk + rem[dijfu/vr] /fu

+ ⌊dijfu/vr⌋ /fu)
)

= yj
(

n (j, tk + rem[dijfu/vr] /fu)

+ ⌊dijfu/vr⌋
)

≤ yj
(

n (j, tk) + 1 + ⌊dijfu/vr⌋
)

≤ yj
(

n (i, tk) + 2 + ⌊dijfu/vr⌋
)

(14)

whererem[w] = w − ⌊w⌋. Comparing (13) and (14) we see
that we must consider at most1 + 2 + ⌊dijfu/vr⌋ updates of
yj . This corresponds to a real time of

∆t =
(

3 + ⌊dijfu/vr⌋
)

/fu,

and in this time, the target can have moved at most a distance
vt∆t further away from the robot. In the worst case, all of
this extra distance is alongside obstacles incurring maximum
penalty, so thatyj cannot have increased in value more than

vt∆t (1 + qmax) .

Here we have ignored the time taken for the propagation of the
signal back from the new target location, which, if included
would reduce this upper bound. Thus a sufficient condition for
yj(n(j, tk+1)) to be smaller thanyi(n(i, tk)) is

vt
(

3 + ⌊dijfu/vr⌋
)

(1 + qmax) /fu < dij ,

which, since⌊dijfu/vr⌋ ≤ dijfu/vr, will be satisfied if

3

fu
< dij

(

1

vt (1 + qmax)
− 1

vr

)

.

If the target speed is faster than the robot speed or ifqmax is
too large then the term in parantheses above will be negative
and consequently the inequality cannot be met. This does not
mean the robot will fail to reach the target, only that this
sufficient condition is not applicable to the situation. If the
term in parantheses is positive, a sufficient condition fory to
be strictly decreasing along the robot’s path is

fu >
3

dmin

(

1
vt(1+qmax)

− 1
vr

) . (15)

Since the grid is finite,y can only take on a finite number
of values, hence strict decreasing along the path impliesy
eventually reaches zero or the valueq(x)dmin, and thus reaches
the target.

Comparing (15) with (9) we see that the addition of penal-
ties for being close to obstacles effectively causes a increase
in the target speed by a factor of(1 + qmax). This represents
the worst case scenario where the target travels through a
maximum penalty area, directly away from the robot, and
the robot is traveling outside the obstacle safety margins.We
emphasize that this is just a sufficient condition, and we would
expect the robot to capture the target in many situations where
this condition is not met, including many situations wherey is
not strictly decreasing along the robot’s path. Indeed, forall of
simulations in Section III, this condition is not met since the
qmax values are quite large, yet in all cases the robots capture
the targets.

V. CONCLUSION

The distance-propagating dynamic system algorithm for
robot path planning in dynamic environments has been ex-
tended to the situation where the optimal paths are not simply
the shortest path from a robot to a target, but paths which
minimize a cost function based on both distance to a target and
proximity to obstacles. The algorithm works in real time and
requires no prior knowledge of target or obstacle movements.
Updating the distance values at each grid point is done without
any global knowledge, neither of distances at non-neighboring
points nor the update history of any point. Thus each point
could be implemented as an independent processor with only
local connections to its neighbors. This feature makes it easy to
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implement the algorithm on a parallel architecture. The robot
path is determined in real-time completely from information
obtained from the robot’s current grid point location. The
computational effort to update each point is minimal allowing
for rapid propagation of the distance information outward
along the grid from target locations.

The algorithm can cope well with situations where there are
many distant obstacles moving and this information is to be in-
corporated into the path-determination algorithm. This feature
distinguishes it from the D∗ algorithm which is most efficient
when alterations to the environment are primarily local to the
robot’s current location. Indeed, the simulation in Section III-C
showed that in a very highly cluttered environment, the D∗

algorithm may fail to propagate any information to the robot
at all, whereas our algorithm will always bring information
and direct the robot toward the target.

The Hall and Rooms simulation (Section III-E) suggests a
modification of the penalty function based on directionality
of the moving obstacles. Clearly, when people navigate a
crowded hallway, they anticipate where others are going and
avoid stepping in front of others but do not hesitate to pass
behind them, often at very close quarters. Such behavior
requires an estimation of the moving obstacle’s velocity, and
not just its position. Work along these lines has been done by
Shiller and others [21], [22]. Fraichard and others [23], [24]
have used obstacle velocity information to define “inevitable
collision states” which must be avoided by the robot. Such a
behavior could possibly be mimicked with our algorithm by
modifying the penalty function to take into account both the
distance to the nearest obstacle and whether this distance is
increasing or decreasing. In the decreasing case, the penalty
should be larger. This would effectively make paths cutting
in front of moving obstacles more costly than those going
behind them. However, such a simple modification would not
be effective for points near fixed obstacles, since their distance
to an obstacle is unaffected by other moving obstacles. Also,
there is the question as to how long one should consider back
in time to determine whether the distance to an obstacle has
increased or decreased. It would not make sense to base this
simply on the last update, since the system is updating at a
rapid rate and hence this information would very rapidly be
lost. In order to base this on the speed of the obstacles, each
grid point would also have to have access to a clock. More
work in this direction is required.

Kinematic constraints of the robot have not been considered
here. Combining this path planning algorithm with measures
which address the kinematic constraints is a requirement
before appropriate implementation on a real robot can succeed.
The same statement is true for the D∗ algorithm. In addition,
as with all grid-based approaches, the resulting path is not
smooth. Recent work by Philippsen [14] has extended the
D∗ algorithm to E∗ using interpolation schemes to generate
smooth paths. As our algorithm is computing the same infor-
mation as D∗ but in a different way, interpolation schemes
could also be applied to this algorithm to generate smooth
trajectories.

A sufficient condition for the robot to capture the target
was derived and was shown to be the same as for the

algorithm without safety considerations but with the target
speed effectively increased by a factor of(1 + qmax), where
qmax is the maximum value for the penalty function, that is,
the value of the penalty function at points that are a distance
dmin away from obstacles. Although for high penalty functions
the sufficient condition is not likely to be met, we still expect
the target to be captured in many of these situations.

The computationally local nature of our algorithm distin-
guishes it from most algorithms. For example, A∗ and D∗ sort
their open lists using knowledge of the function values at all
grid points, and focused D∗ uses global information to estimate
the distance to the robot. Thus global information is used when
updating each point, or determining the order of updating.
In contrast, our algorithm uses only local information when
computing an update at each point, and the order of updating
is pre-determined. This makes our algorithm exceedingly easy
to parallelize by simply assigning a subset of points to each
processor. Neural network approaches are also local in this
sense, however, our algorithm is faster than most of these
approaches which generally require numerical integrationof
a nonlinear differential equation.

Many robot path-planning algorithms do not easily extend to
the dynamic situation and become computationally expensive
when the environment is complex. Our algorithm in contrast
is designed for the dynamic situation and is not at all affected
by the complexity of the environment as far as computational
speed is concerned.
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