POSTPRINT OF: IEEE TRANS. SYST., MAN, CYBERN., B, 38(3), 200848893. 1

Real-Time Robot Path Planning via a
Distance-Propagating Dynamic System with
Obstacle Clearance

Allan R. Willms, Simon X. YangMember, IEEE

Abstract—An efficient grid-based distance-propagating dy- target/obstacle locations through neighboring grid it
namic system is proposed for real-time robot path planning a target or obstacle moves, a new “wave” of information
in dynamic environments which incorporates safety margins spreads out from the new location. The algorithm prevents

around obstacles using local penalty functions. The path through
which the robot travels minimizes the sum of the current known target distance information from traveling through obletsc

distance to a target and the cumulative local penalty functions ~ The safety margins around obstacles are computed in
along the path. The algorithm is similar to D* but does not a way conceptually equivalent to distance transformation
_maintain a sorted queue of points to update. The resulting ggin methods [3], [7], [8], with our local updating of neighbors
in computational speed is offset by the need to update all points 4ting similar to sequential erosions with small structgri
in turn. Consequently, in situations where many obstacles and | ts [8]. O lgorithm h I for d .
targets are moving at substantial distances from the current eemen s [8]. Our algorithm however allows for yn.amlc
robot location, this algorithm is more efficient than D*. The €nvironments where obstacles and targets are permitted to
properties of the algorithm are demonstrated through a number move, and there is no limitation on the size of the obstacles
of si_mulations. A sufficient condition for capture of a target is or size of the free space.
provided. True wave front path planners [2], [9], [10] spread infor-
Keywords: mation from a source outward in waves to all other points on
dynamic system, path planning, safety margins, obstaelrcl the grid by updating a grid point's neighbors in the direstio
ance, mobile robot, real-time navigation, dynamic enviro®f wave propagation and in the order in which the wave

ment, dynamic programming. arrives at the sites. This information may be simply the
distance to a target, or a more complicated function such as
I, INTRODUCTION a penalized distance for safety considerations, or anyrothe

. . 1Lguantity that is intended to be minimized. The order of aifriv
. In a previous paper .[1]’ we pr_esented a S|mple_yet €15t waves at different points also depends on the information
cient distance-propagating dynamic system for real-tioket being propagated. For expositional simplicity we conslune
path planning in dynamic environments. The algorithm iﬁle information as simply the distance to a target. THe D
essentially a distance-transform method [2]-[5] appliedat algorithm [10], [11] (which is a modification of A[9]) and
fully dynamic environment. Distance-transform methodseso its variants (Focused D[12], D*-Lite [13], and E [14]) are
the shortes_t path problem_by using a dynamic programmi e wave front planners. 'Ddetermines the correct order of
(DP) alg_orlthm on a cyclic network [61' Here we exten pdating points by sorting its open list according to theeuotr
the algorithm to mcc_)rporate safety margins ar?undnomddistance to the target; updates for points close to the ttarge
robots not only a_v0|_d obst_acles, but travel a safe d_'smn%ccur before those further away. By sorting its open list, D
a_round them. This is achieved by_ propagating not just the,qreg that all points that have moved off its open list have
dlstance to a target, b.Ut also the (_jl_stance to an obstacka._ g'corded the optimal distance to the target (up to the ctirren
‘distance” to a .target is then modified by a penalty funCt'ofﬁformation available in the map). The primary feature d&f D
based on the distance o an obstacle along the path. is that it is capable of re-computing new optimal trajeceri

Similar to many robot path-planning approaches, the elpa, ajterations to the map are made (the movement of an

"”O””.‘e”(; 'S d'SISret'EEd dand represented_ by da tOp‘?log'c""lﬁbstacle or target is detected) without having to necdgseri
organized map. or the |stance-propa_gat|ng _ynam'cmysf[ecompute the entire solution. Only the solution “down stream
eaCh gf'd pomt_ has only local connections to its nmght@pnqrom the alteration is re-computed. Thus, for example, if an
grid po;]nts_. Neighbors nﬁ ed_got be all at thg same g'bStanB%stacle half way between the target and the robot shifts its
At eac t.'me stgp_, each gri po'mq‘%'e”es Its neighbors location, only the solution from this distance out to theabb
to determine their information about distances to targets a_..qs to pe re-computed, however, if the target itself moves
obstacles. Distance information thus propagates outward f . essentially needs to re-compute the entire solution from
A. R. Willms is with the Department of Mathematics and Statsstic scratch. D is_ most efficient when the alterations 'tO the map
University of Guelph, Guelph, Ontario N1G 2W1, Canada. EmAlV- occur at points close to the robot [10], and this makes it

ilms@uoguelph.ca , _ well-suited for a robot path-planning problem where theotob
S. X. Yang is with the Advanced Robotics and Intelligent 8yt (ARIS)

Laboratory, School of Engineering, University of Guelphyelph, Ontario, is equi-pped Wilth ?‘n on'bo_ard_ sensor of limited range_’ and
N1G 2W1, Canada. E-mail: syang@uoguelph.ca. where information is not being incorporated from otheratist

2 POSTPRINT OF: IEEE TRANS. SYST., MAN, CYBERN., B, 38(3), 200848893.

sources. locations in the grid input a positive activity to the netlor

Our algorithm is similar to D in that solutions are changedand obstacles are either sinks or held at a minimum activity
down stream from where the map alteration occurred. Hovevel. Activity is then propagated through the network bgdb
ever, unlike O, our algorithm does not maintain a sorted opeconnections according to some ordinary differential eiguat
list but rather simply updates each point in turn. Speed (©DE) model, and robots follow the path of steepest ascent to
gained by not having to maintain a queue but is lost becaube target location. Unlike our algorithm where the peraliz
points far from the optimal solution are also being updatedistance is propagated through the network, the activityesa
Consequently, in comparison with*Dour algorithm is best of most neural networks do not have a direct physical meaning
suited for highly dynamic environments where alteratioms tn addition, although correlated with distance, activiéydls
the map are being incorporated from all points, not justehosften suffer from saturation effects [1] where the gradient
in proximity to the robot. Our algorithm is not a true wavahe activity is very small and/or shows considerable siityit
front planner since information does not spread to neighor to the arbitrary parameters of the model. Finally, the compu
points in the order of the distance from the target. This meatational effort for neural networks is generally considdya
that occasionally the solution at a particular point may ot more, since numerically solving the ODE requires more work
the minimal distance to the target even assuming the maptisan the simple computations in our discrete algorithm.
completely up to date. However, given a constant map, ourOur original algorithm is similar to the “dynamic wave
algorithm does quickly converge to the optimal solution. [Lexpansion neural network” model proposed by Lebedev et
We accept this suboptimality in order to achieve simplicitgl. [20]. Their model does not record thphysical distance
and efficiency by dispensing with the necessity to determibe@ the target but rather the sum of twice tged distance
which point needs to be updated next. Computing each poand the number of time steps since the target last moved.
in turn rather than working from the target outwards a&lso, their algorithm uses only integer arithmetic which de
done by D may make it seem like our algorithm needs tereases computation time but consequently only gives phys-
do considerably more work. This is certainly the case facally minimal distance paths if all neighbors are an equal
constant environments or ones where only map alteratigpisysical distance from each other. Thus, even for regular
associated with obstacle movements close to the robot agmare grids, neighbors are restricted to the four horaont
made. However, if we are in highly dynamic environmentand vertical neighbors; diagonal connections are not aitbw
where many obstacles are moving, where the target itselflisaddition, their algorithm as specified reduces compoati
moving, and where this information is available locally @t time by choosing thdirst neighbor which is passing updated
points where the movements are occurring, and not just irirdormation. They do this to avoid checking all neighbors.
limited proximity to the robot, then our algorithm is actiyal However, as a result, their algorithm will generally fail to
more efficient. find the optimal path in situations where moving obstacles

We emphasize that in our algorithm, the computatiorsuddenly open up shorter paths to a target. To rectify this
at each pointuse only local information. This means thasituation, their algorithm would need to check all neiglsor
our algorithm is exceedingly easy to parallelize in a share¢d determine the best information. In contrast, our altonit
memory architecture: the grid points are divided into stebseecords the actual physical (penalized) distance to theesea
and assigned to different processors for updating. In eshtr target. This information may be useful in a real situatiorereh
most other path-planning algorithms use global infornratio the behavior of the robot may wish to be altered depending
some way and hence are difficult to parallelize. Algorithmsn the proximity of a target. In addition, our algorithm werk
based on a dynamic programming approach make use fafany grid, the only requirement is that each grid point has
global information by stepping through the nodes in an ordpredefined set of neighbors at known distances through which
determined by the current recorded distances at each nodeher robots and targets may travel.
the order in which node values most recently changed. ForSince we are concerned with changing environments and
example, the A algorithm [9] estimates the distance from anoving targets, it is not possible to give a measure of the
noden to the goal as the sum of a locally propagated distancemputational effort required for a robot to reach a target
g(n) from the starting point ta, plus an estimaté(n) of the on a grid of certain size without reference to the particular
distance fromn to the goal (a piece of global information).environment and how it is changing. (Indeed, it is easy to
Even if A* is implemented with a non-informed heuristicconstruct changing environments where the robot can never
h(n) = 0, the algorithm still sorts the nodes in its open listeach a target no matter how fast the robot moves [1]).
in ascending distance order, which implies the algorithre h&lowever, the computational effort for each node in the grid
global knowledge of the current distance for each node. Thebe updated once is clearly proportional to the total numbe
D* family of algorithms also sort based on global knowledgef points, M, since each node must simply query the values
of the current distance at each point in the grid, and focSed of its finite set of neighbors. See [1] for a comparison of our
also uses global heuristics like*A algorithm with a number of others.

Neural network approaches to robot path planning [15]- Although our exposition and most of our simulations are
[19] are similar to our approach in that information aboun terms of a mobile robot because this scenario is easy to
the location of the target and obstacles is propagated ghrowisualize, the algorithm has more application for robotshsu
local neighbors, however our algorithm has several adgasta as manipulator arms (see Section 111-D) where a complete gri
over these. Typically, in a neural network approach, targef the configuration space is more likely attainable.

WILLMS & YANG: REAL-TIME ROBOT PATH PLANNING WITH OBSTACLE CLEARANCE 3

Il. THE ROBOT PATH ALGORITHM D, if an obstacle is at,
In this section, we present the distance-propagating dimam) = dming (z:(n)) , if a target is at, -
system with obstacle clearance, and the algorithm for thd\" = mgl (yj(n— 1) +d;;[1 +q(xi(n))]),
J€b;

robot, target and obstacle movement. For a descriptioneof th

original algorithm without obstacle clearance, see [1]teNo otherwise.
that [1] uses different notation than we use here. i, if an obstacle or target is at
Y . 1 . — . .
A. The Penalized Distance-Propagating Dynamic System pi(n) = aﬁge%ljn(yj(n D+ [1 - q(%(nm)’ @
Suppose the robot environment is discretized into a grid of otherwise.
M points, labeled by an index, each point being either a if y;(n) > D
free space or an obstacle location. The targets and the robot yi(n_) -D
may occupy any free space. For each painB; is the set if an obstacle is not at & q(z;(n)) > 0
of its neighbors, andi;; is the physical distance from to p!(n) = argmax z;(n), (5)
neighborj. B; could be, for example, the eight nearest points ’ JEB;
to ¢ in a regular square grid, but in general, could be any else
set of points which you wish to define as the neighbors. of pY(n) =i.

However, it is assumed that the targets and robots may o
move from points to neighboring points. We defidg;,, and
dmax t0 be the minimum and maximum distances between a
two neighbors in the grid.

WMere the functiorargmin; ¢ 5, f(j) returns thefirst element

| in B; at which f(j) is a minimum. Theargmax function
defined analogously. In Section II-C we discuss how we

. sort B; so thatargmin and argmax preferentially select an

Each grid point has two associated real-valued variabl 'propriate parent when more than one possibility exidie. T

x;(n) which records the “distance” to the nearest obstacle fist step of the evolution. (1) and (2). simplvy computes the
time stepn, andy;(n) which records the “penalized distance” P volution, (1) (2), simply Pu

0 th ‘1 ¢ In addit h boint intai distance to the nearest obstacle, keeping track of:tharent,
t0 the nearest target. In addition, each point maintains Ot is, the neighbor through whom the minimal distance is
integer-valued variableg;? (n) and p!(n) which record the

measured. Note that thergmin in (2) is computed at the
“parents” forz andy, that is, the neighbors afthrough whom gmin in (2) p

. same time as the minimum in (1). If an obstacle isi,atve
the values ofr;(n) and y;(n) were calculated respectively. yofine the,-parent ofi to be itself. Equations (3) and (4)
Define a local obstacle penalty functiop,z), 0 < g(x) <

h . fini The f ; compute the penalized distance to the nearest target,rigeepi
Gmax, WNETEGp, is some finite constant. The funcligftz) yacy of the y-parent (again, thergmin in (4) is computed
is the penalty per unit distance traveled. The cost of trav%*multaneously with the minimum in (3)). In this case, iteit

that is, the penalized distance, along a path that is a @stal, gpgiacle or a target is gtwe define they-parent ofi to be
v from an obstacle is equivalent to an unpenalized path tn%telf. The significance of setting to be nonzero whenis a

S 1: q() times !o_n_gtla_r. d target is discussed below in Section II-B. Finally, (5) niiedi

The system is initialized as the parent ofy; if the distance to the target is as big s this
0, if an obstacle is at,, is for robot movement and is discussed in Section II-C. Note

z;(0) = that the dynamical system, (1)—(5), uses values(af— 1) to

D, otherwise, updatez(n) and p*(n), and values ofc(n) andy(n — 1) to

pi(0) =1, updatey(n) andp¥(n). Thusz(n) must be computed before
0, if atarget is at y(n). It is not necessary to store valuesagfandy for all n,
yi(0) = D7 otherwise the current and previous values are sufficient. An illugirat
’ ' of how Equations (1)—(4) work is shown in Figure 1.

pi(0) = . The variabler;(n) records the distance froirto the nearest
obstacle at time step. Of course obstacles can move and it

Whefe D as some large mqmmal penahzgd distance. Tr%gkes some time for the entire system to reflect this altarati
precise value ofD is not too important. IfD is chosen too

small, then only grid points which are less than a penalizesg the value ofr;(n) may not be up to date for all More

distance D from a target will participate in the algorithm.prec'sely’xi.(n) records the minimum ovek € {0, 1,...,n}
e : : ., of the physical distance fromto the nearest obstacle which
A sufficiently large maximalD value which ensures all grid

. 2 C - was k grid steps away front at k& time steps in the past.
points part|C|p.ate is given bp > (M —1) (d’fla" [+ Gmax])- The physical distance;, and the number of grid stepk, are
The dynamic system evolves as follows:

related by
0, if an obstacle is at, L kdmin <z < kdpax.
r;(n) = . : .
() min (zj(n —1) +d;;), otherwise. Define f, to be the system update frequency: the number
of time steps per unit of real time. Thus if;(n) is less
i, if an obstacle is af, than D, it records information from betweeﬁ%w /f. and

JEB;

dmin

T(n) = . ; 2
p; (n) argmin(z;(n — 1) +d;;), otherwise. (2) min (n, LMJ) /£, time units in the past, wherfw] and

4 POSTPRINT OF: IEEE TRANS. SYST., MAN, CYBERN., B, 38(3), 200848893.

3
I
o
|
—

lower cost (distance plus penalty) than all routes whicly sta
out of the safety margin, then the former will be chosen. If
hard safety margins were desired then one could simply define
the points in the safety margin to be obstacle points (that is
grow the obstacle) and then use the original algorithm witho
obstacle clearance. In particular, the soft margins alloes t
robot to pass adjacent to obstacles if there is no other safer
way to reach a target.

The precise manner in which the penalty information has
been applied warrants some discussion. Along the path be-
tween any two neighbors, the distance to the nearest obstacl
is in general changing. In a continuous setting, the penalty
should be specified as

’@ o
’» S

|
)
(V)
Il |
w
no

dij
Q= /0 ¢ (a(s)) ds, ®)

where s is the distance along the path. Singés) is only
known at the two end points of this integral, an obvious
approximation is

N
N

Q~ % (glar) +olay)).

However, in (3) the single end-point approximatiéh =
Fio 1 ilustration of the d , t i s (1-(4). Th d;jq(z;) has been used. The reason for this is that the two-
1g. 1. ustration o e dynamic system evolution, eqal —(4). e H H H . H . _
figure shows four time steps for a unit grid with six points,dkgal 1 through pomt approximation y|elds a Qynamlcal SySt?m with approx
6. Point 2 is an obstacle (shaded) and point 4 is a targek(dicle). The two imately 5/3 the number of arithmetic operations as the one-
seB% c%fhnum_lgelrs _ipsi?e each Ocir_cled@elp’] éU_ppt?]r set), anltﬂz#t, pij]h (lower Itypoint approximation. If extra storage is used to hold thei@al
set). The initial situationp. = 0, is displayed in the upper left. The pena -]] -
function isq(z) = max(3—2z,0). At n = 1, points 1 through 4 have correct d” (1 + (q(xj) + Q(Il)) /2)’ then this factor can _be reduced to_
« values andz-parents while points 5 and 6 have not yet received informatioabout 4/3. In any event, we did not feel that the improvement i
a_?outt_ the obstacle. Byllstezpd:f2 i:;ﬁpoilnts haFve correCPIC,p;] pairS- T_hte the approximation warranted the slow down in the algorithm.
Situation Is more complicatea tor values. For example, = 1, poin S : H .
1 hasz(1) = 1 henceq(x(1)) = 1 and soy(1) is 2v'2, while point 3 has Also to m|n|m|ze.computat|ons, thg penaltymtlls us_,ed in (3)
z(1) = v/2 henceq(z(1)) = 3 — 2v/2 and soy(1) is 4 — 2¢/2. Also at rather than atr;; thus the one-point approximation for the
n = 1, they value for point 4 increases to 1 due to the second line of @ T penalty is applied at the “uphill” ends of the path segments,
increase iny for the target ah = 1 causes alterations infor its neighbors at that is. at the ends closest to the robot. Consider the &ituat
n = 2. For example, the computation g{2) for point 1 yields6 — 2v/2 with ! T o ’ .
the parent being point 3 since the penalized distance ta goirom point 1 Where a target at pointlies within the safety margin of some
iS1+v2(14+q(1)) =1+2v2>6-2vV2=4-2V2+(1+4¢(1)). obstacle but the rest of the points along the optimal patheo t
ByI n = 3 though,y values for all points have converged to their approprlat?obot lie outside all safety margins. M were zero. then. the
values. . . . ' ’
distance along this path would incur no penalty. In order to
avoid ignoring a penalty contribution at the target end & th
g gap y g
|w] are the smallest integer greater than or equalbtand path, the value foy; when a target is at is set todming(;)
largest integer less than or equalitorespectively. Similarly, rather than zero. However, this only has any effect on the
y;(n) records the minimal cost (penalized distance to a targefgorithm if there is more than one target.
for point ¢ at time stepn, which may be out of date by at The form of the penalty function is important. It is reason-

most MJ / fu real time units. able to assume thatz) is a decreasing function of, and that

=
o

dmin

Since thé minimization is performed by searching over tf€yond some certain value,= B, q is zero (although such
neighbors of each point and each point has a finite numg@¢a! limitation on the size of penalty margins is not esget
of neighbors, the computational burden for this penalized'e simplest such form fay(x), is a piecewise linear function

distance-propagating dynamic system (the time required to A(B B
update every grid point once) is proportional to the total q(z) = (B—xz), =<B,)
number of pointsM. 0, x> B,

where A > 0 is a strength factor and > 0 represents the

width of the safety margin. However, other forms are possibl
The relative degree of “safety” is specified by the user ihe simulations of Section Il illustrate that the algonith

the penalty function formation. The safety margin around aan be very sensitive to the precise penalty function being

obstacle is defined as the region in which the penalty functiosed. For (7), increasing has the effect of “hardening” the

is nonzero. The safety margins around the obstacles art “safafety margin so that the robot is less likely to get closento a

in the sense that if a route that passes into a safety margirmstacle, and increasing widens the margin.

B. Penalty Function

WILLMS & YANG: REAL-TIME ROBOT PATH PLANNING WITH OBSTACLE CLEARANCE 5

C. Robot Movement the order described above so that again the changes in the

We assume that the robot can move from any grid poiﬁpgle of the potential robot paths are minimized over time.

to any neighboring free space, that is, point robot dynamics Note that the upd:;te mtgrvac{j{}.tk = lkt1 _Itk' r!ehed not |
The robot locationy (), is specified as an index of one of the®®, constant nor predetermined. For example, with a regular

points on the grid, and is a (discontinuous) function of reg!t square grld, if the robot moves at copstant sp@eglhen

time ¢ > . Initially, r(to) = io. We assume that the robot’sAf"C \r’]\"" bhe ?herl/wf or ﬁ/vT time un'lts, de[:i?dlng on

travel path is updated at a set of real time valtes t, < W ether the distance ro_m(tk) to r(ty1) is 1 or V2. _

ty < and that the robot's actual location foE (¢, tr 1) In the case of a static environment, once the location at

is so.rﬁé,where between the grid points;) andr(tkil) +At which the robot resides has settled to its fipatalue (which

time ¢, the next update time 1, and next updaté Iocation,occurs when the number of time steps exceeds the number of

r(trs1), are determined. The latter is defined as grid steps between the target and the robot via the shortest
R ' distance path) evolution of the dynamic system can cease and

r(thp1) = pi{(f N (n(r(tk),tk)), (8) the robot can simply follow the minimum distance path to the
b target using (8).

wheren(i, t;) means the highest time stepfor which y; has

been. co_mputed up to time,. Thus, when a.robot arrives atD. Target and Obstacle Movement

locations it proceeds to the curregtparent ofi. For example, : . , ,

consider the situation shown in Figure 1 and suppose thégoin Altérations to the environment map regarding the locations

are updated in their label order and that updating each pofjti@rgets and obstacles can happen at any time. An alteratio

requires 0.1 time units. To update all six points once wouf} POt will begin to be reflected in the dynamical system as

require0.6 time units. Suppose the robot is at point 5 at tim&2°N as point or any of its neighbors is next updated. When a
t, = 2.0 (r(2.0) = 5). For this value ofty, n(i,t;) is 3 point i that was previously a free space becomes an obstacle,

all paths fromi outward (increasing distance) are no longer
yalid. To increase the speed of computing new solutions for
these descendant points, the values ofy; and p? are reset

lp D andj. This is done before the system resumes updating

for pointsi = 1 andi = 2, but is only 2 for pointsi =

3,...,6. Consequently, the next position of the robot will b
r(tgy1) = pf(zo)@) = 3. However, ift, was 2.3 or higher
thenn(5, t;) = 3 and the next robot position would have bee

(tps) = 4 points in turn. More precisely, if an obstacle newly appesrs
When computing: (n) in (3), it is possible that more than point ¢ during time stem, then the functiorErasePath(z) is
’ called where

one indexj € B; attains the minimum off = y;(n — 1) +
dij (1 + g(x;(n))). Which index to select as the parent ofirasePath(i)
yi(n) is not unique. The method we used was to select the for each neighboy of i

neighbor;j € B; such thatf was minimized and the angle if pg(n 1) =1
from i to p!(n) was as close as possible to the angle from yj(n—1)=D
i to p!(n — 1). In other words, we minimized changes over pin—1)=j
time in the direction of the optimal path throughTo achieve ErasePath(j)
this, we had each grid point, store not just a seB; of its end if

m neighbor indices, but: differently ordered versions a8;, end for

each in increasing angle magnitude starting from one of thgg

m neighbors. These orderings are determined by the geometry

of the grid and do not change, hence need only be Compute@ince obstacles can move, collisions with robots or targets
once at the beginning. 16! (n o 1) is noti (that is, if the are possible. The simulations of the next section were deslig

parent at the previous time step is one of the neighbors) tHgh that obstacles never collided with the target. (Except in
the neighborp?(n — 1) is always queried first, followed by the fourth simulation where points can be simultaneously
the other neighbors in increasing angle magnitude ordes. TRPStacles and targets.) The penalty function is designed to

value ofp? (n) only changes iff as measured through the nexkeep the robots away from the obstacles but collisions with
neighborzstrictly decreases. obstacles are still possible, for example when the only tmath

It is possible that while a robot is waiting at a grid poin{arget passes adjacent to a mpving obstacle. !f such aionllis
(with y — D) for distance information to be propagated to PCCUrS then the penalty function needs to be increasedomand/

from a target, an obstacle moves toward the robot and woditf roPot speed needs to be increased to prevent collisions.

collide with it if the robot did not move. Since the dynamical

system calculates the distance to obstacles, this infasmat I1l. SIMULATION STUDIES

can be used to make the robot move away from obstacles whein this section we demonstrate the effectiveness and effi-
it does not know which way to go toward a target. This is theiency of the proposed algorithm with various simulatioins.
purpose of (5). Ifi is a free space witly;(n) = D, and the all of these simulations the system clock is used to create
penalty valueg(z;(n)) is positive, then a further computationa real-time environment. For example, if the robot begins
is performed to set the parent gf to be the neighbor that (system clock at = 0) traveling at two units per second
is furthest from an obstacle. Again, this maximum may b®ward a point; that is one unit away, the robot will arrive at
attained by several neighbors so we query the neighborstia 0.5 and the decision as to where the robot will next move

6 POSTPRINT OF: IEEE TRANS. SYST., MAN, CYBERN., B, 38(3), 200848893.

t=68.2s

t=639s

Fig. 3. The same simulation as in Fig. 2, but with= 1.95 in the penalty
function rather ther2.0. With the lower penalty for being close to obstacles,
the robot ventures inside the safety margins (again of width/2) a number

of times while chasing the target, resulting in a shorter alvgrath and an
earlier capture of the target.

t=13.1s

10

00090000

) (XX

u u (XXX XXX)

(XX XX X2 XX

> Gleesepecle

saesfecss

Fig. 2. Target Chasing. Four time snap shots of the environ@a@nshown. Mt »p

Obstacles are black points with dark grey shading arounohtfithe target olZ=* A
is a bull's eye pattern and its path is a thin solid line; itrstaat (5,5) and 0

(=S¢
=
o

zig-zags around the obstacles. The robot is a square andths gtarting at
(1,1), is shown as a thick solid line. Free spaces are shadedlight to dark,
light being smallest values for the penalized distanceo a target. The short

lines emanating from the free spaces point to the neighbougfrwhom the rig 4. Path Abandonment. Three time snap shots of the envininare

information for updatingy was obtained, that is, they point in the directiongpouwn. Symbols as in Figure 2. The target moves clockwise drthaedge

of greatest decrease in The safety margin is ++/2 and the robot remains gtarting in the south-east corner. The robot, starting énrtbrth-west corner,

outside these margins until= 71, after which it remains within the safety ipjtially moves east of the central barrier toward the targégwever, as the

margin of the third obstacle until catching the target at 19J), target moves west and the barrieriat= 2 slides east, this path to the target
becomes increasingly unsafe. Eventually, the robot turosrar and pursues
the target by going north around the barrier at a safe distanc

is made based on the valuef at time¢ = 0.5. Similarly, if

an obstacle is moving at a speed of one grid unit per second

then its presence at each subsequent point on the grid is no h"z s;)mtulaltlon also |Ilusttrt?‘tes Qotm:c penaltyhfuncttl?ns
signaled until the system clock advances another second. around obstacies can prevent the robot from reaching attarge
even if the robot travels considerably faster than the tat§e

the target continues to weave close in around obstacles, and

A. Target Chasing the penalty function is sufficiently high, the optimal satlp
I]‘I%r the robot will be substantially longer than the targetgh.
In the above simulation, the robot speed was sufficientlyear
éhat eventually the robot caught the target. However, itas n

ifficult to imagine a scenario where the speed advantage of
the robot is exactly countered by its longer path. Indeednwhe
we re-ran the above simulation, either increasihtp 3.5 orB
ép 3, the robot failed to catch the target until after it hattddh
at (25,25). If the obstacles were arranged in a closed lodp an
tge target wove tightly through them, it would be possible to
%ave the distance between the target and robot settle into a
able periodic cycle, bounded above and below.

In this simulation, the target moves at a speed of 0.35 g
units per second from the locatidn, v) = (5,5) in a zig-zag
pattern around some non-moving obstacles toward (25,28),
Figure 2. The robot starts at (1,1) and travels at a speedbof
grid units per second. The penalty function is given by (&hwi
A = 2 and a safety margin oB = 1 + /2. Notice that the
robot remains outside the safety margins around the obsta
until ¢ = 71 when it occupies the poinfu,v) = (17,14).
It enters the safety margin at that point since the target
very close by at (19,15), and all other safer paths have far
distance to the target. Thereafter, the robot remains dimse
the obstacle as it chases down the target, finally reachiag it
(20,19). B. Path Abandonment

The precise form of the penalty function can substantially In this simulation, Fig. 4, the robot’s path to the target
alter the robot’s path. For example, if the penalty functfdh becomes increasingly unsafe as the target and obstacles mov
is altered so thatd = 1.95 rather than2, the resulting robot Eventually, the robot abandons this path to the target and
path is shown in Figure 3. Note that the robot enters theysafehooses a safer path. The penalty function is again giveid)oy (
margins several times because the penalty for doing so is méth a safety margin ofB = 1+ /2, and A = 2.5. The
as great as remaining outside the margin and traveling @tontarget starts atu,v) = (9,1) and moves clockwise around
path. The robot ends up catching the target earlier at (1.8,1he exterior at a speed of 0.25 grid units per second. There is
Similar results can be achieved by decreasihg a stationary north-south barrier up the center of the gnd, gr

WILLMS & YANG: REAL-TIME ROBOT PATH PLANNING WITH OBSTACLE CLEARANCE 7

and an east-west barrier that starts by blocking u < 5, seeessssbossressssbsseee e
. . . . 15 LA X 3 SO0 OG0 O0OOCOOOS OSSO OTOOOOOSOSLTY
v = 2. This barrier moves eastward at a rate of 0.18 grid units cee :::::::':::::::I:::::::
. 00 0...0.0'0..0'0. L X N NN]
per second until it block§ < « < 8 at which point it moves jolettiessaststasesasasnesesaty
back west to its initial placement and so on. The robot starts > Y 9ot ttd bt ooer it bttt e
. . L X] (XX NN NN NN NN NN L N]

at (1,9) and moves at a speed of 0.65 grid units per second. slhese :::::::P::::::l:::::::
Initially, the robot moves to the east of the central barrier Teeeccectsceccesscsecceesns
. AN [N NN NN X NNNNNENNNNNNNNN]

toward the moving target. However, when the robot reaches ees v v

[y
o
N
o

(9,3) shortly beforet = 19, the path it has been following
toward the target now runs adjacent to the east-west barrier u
along its entire length. The penalty for being this close to
the barrier for this many points outweighs the extra distanc
needed to reach the target by going back north around the
barrier. The robot therefore turns around and pursues thetta

by going north safely around the barrier.

C. Sliding Grates

This example illustrates how our algorithm is more effi- u
cient than D in situations where the target is moving and

there are many obstacles continually moving. Simulationsy. 5. Sliding Grates. Symbols as in Figure 2. The top panaista portion

were performed on an Intel Pentium 4, 3.06 GHz machingf.the grid near the robot's initial location at= 10 seconds. At this point,
P P ; e obstacles at = 5 are moving northward, while those at= 13, and21
Qualitatively similar results were obtained on a faster S@e moving southward. The target is off the graph to the edss.grey line

Altix machine using larger grids. shows a portion of the path of the robot under our algorithmdésrboth Of

The D algorithm can determine when a point is recordin'gglforggtma;i%nsy :Lee :‘iﬁmti\zos‘g: Wf:‘iitt}i':r.? é\lléhle)hTﬂ':e f’;ﬂomgi;;'asthtzvgs
the up-to-date optimal path to_a target. In contrast, o stern egge.SULrider*De;ger (da?l?line),sthe targe(t3 is (?:pturedta& 50
algorithm as we have specified it here, does not keep tragonds while under our algorithm (grey line) it is captusedner at = 23
of whether the current recorded information at a point ggconds. Under Dpatient the rok_)ot never Iet?lves the starting poin_t. Thesstar
either optimal or up-to-date. As indicated earlier, we ptoely e 5,190t pahs are at e second nerals, to alompzmison of
this suboptimality to maintain simplicity. In most situatis
we also expect that the information will not be significantly
suboptimal since our system converges rapidly to the optima
solution [1], and will not be significantly out of date proed stationary obstacle, etc., at a speed of two units per second
the system update frequency,, is sufficiently large. Our The initial north-south location of each grate set is ranigom
algorithm could also be modified to implement a convergenselected. See Figure 5. The target starts in the south-easrc
test for optimality as described in [1], or global infornmati and moves northward with a speed of two units per second;
could be utilized to check if the information is up-to-dateif it reaches the north-east corner it begins moving south at
if it was felt necessary. In the following simulations, wehe same speed. The robot starts in the south-west corner, at
compare our algorithm with two implementations of.0’he (u,v) = (1, 1), and moves with a speed of six units per second.
first implementation requires the robot to wait at a pointluntThe penalty function is given by (7) witd = 2 and B = 4.
the information there is optimal, and the second allows thénder our algorithm, the robot safely reaches the target at
robot to move based on the current information availabléme ¢+ = 23. Using D'-eager, where the robot is permitted
We name these two implementations'-Patient and D- to move based on suboptimal information, the robot captures
eager respectively. The second implementation allowsrarfaithe target att = 50. If the robot is required to wait until
comparison with our algorithm. Further, we have incorpedat optimal information has been computed*(patient) then the
safety margins in both implementations of By modifying robot never actually leaves the starting point. The many map
the cost functions whenever the distance to an obstaclegelanalterations due to distant moving obstacles and targetsecau
for a point [11]. This “distance to an obstacle” informatisn D* to continually insert points onto its sorted open list and
itself computed with another ‘Dalgorithm which halts when to make changes to its path cost functions. The time required
correct distances from obstacles out to the edgeof the to do these alterations and the sorting slows the propagatio
safety margin are computed. of information outward to the robot. Consequently, undehbo

In the first simulation, a grid of size 89 by 86 is usedD* implementations the robot ends up waiting at the starting
There are two stationary obstacles along the nosth=(86) location for a long time (21.3 seconds) before any infororati
and south4 = 0) boundaries from, = 5 to u = 85. There are arrives there. Under Deager, once the robot starts to move
also 11 sets of north-south “grates”,at= 5,13,21,...,85. the algorithm performs comparably to ours, with the robot
Each set has 12 grates spanning three points and separatedapyuring the target about 29 seconds later. Undepatient,
four points. All the grates in a set slide in unison northwareven though some information arrives(at 1), the continual
until the north-most grate touches the north stationaryemibs, updating of target and obstacle locations over the wholé gri
then southward until the south-most grate touches the sodites not allow D to ever complete computation of optimal

8 POSTPRINT OF: IEEE TRANS. SYST., MAN, CYBERN., B, 38(3), 200848893.

1.7 ‘
135 60— 40
E 45 m
>
30
0
-1.7 -1 0 1 17
X (m) > 20
Fig. 6. Manipulator arm specifications. The barrier andeargove left to 10
right at constant height and speed.
0
0
information at(1,1), and hence the robot never moves. In u u u

comparison, information under our algorithm first arrivés a
the robot at timet = 0.6 and the robot immediately begins tOrjg. 7. Manipulator arm configuration space at three timesgefapoints
move. which are simultaneously obstacles are indicated as largk Idack circles.
We also ran similar simulations with different height g[.idslnltlally the target is not in the arm’s fle_ld but the barrier nmay toward the
. . arm causes, through the penalty function, the arm to move theoway.
Removing one grate from each set (so the griddsx 79) By ¢ — 7.5, the target is in the arm's field but is unreachable due to the

was enough to make all three algorithms comparable. Captbagier's location. The target first becomes reachable attabe 15 and the

times were: = 23.16 for ours,¢ = 28.11 for D*-patient, and second link of the arm swings completely arougd=¢ 27) in order to reach
Lok ' ‘ ’ it, which occurs at = 22.5.
t = 23.01 for D*-eager. If one grate was added to each set (so

the grid is89x93), then under our algorithm the robot captured
the target at = 23.2 while under both implementations of D Fjgyre 7 shows four time snap shots of the environment in
the robot never moved. This is beyond'®limit of size for ¢onfiguration space. Here we have discretized the angles so
this example on our machine; the continual updates to dBstag5t there are nine degrees between successive grid points.
and target movements completely occupy the computatiofigy; is,u = 1+200/m, 0 < 6 < 7 andv = 1+
preventing information from ever reaching all the way asros, (¢ mod 2) /(2r). The pen_alty function is again given
the grid to the robot’s initial location. Our algorithm Wasyy (7) with A = 0.2, and B = 0.4. The clock starts when
successful for much larger grids also, for example it c&ur ¢ |eading edge of the barrier first enters the arm’s fiel@ Th
the target at = 46 seconds under a grid of si261 x 142 (20 {5rget does not enter the arm’s field until about 7.1, and
sets of 20 grates). We also performed similar simulations Qfhen it does so, it is unreachable since the barrier location
a faster computer (an Altix 350 with an ltanium 2 processofyacjudes arm configurations that would otherwise reach the
and found qualitatively similar results with larger grides. target. This remains the case until abdut= 14 seconds
when the target becomes reachable from the left. However,
well before the target is ever visible to the robot, the learri
has moved sufficiently far into the arm’s field to have collide

In this simulation we consider a two-hinged manipulatqgiih the arm had the arm not moved. In the first panel of
arm as shOV_/n in Figure 6. A barri_er of Iength_ 45 cm mMoVESigure 7 we see that at = 5.7 the robot arm has already
from left to right across the arm’s field at a height of 110 ¢ oved up and to the left a short distance. (Movement began at
and a speed of 10 cm per second. At its trailing edge agfout: — 2.6.) This movement is in response to the obstacle’s
25 cm higher, a target moves with the same velocity. Thenalty function becoming nonzero at the robot’s locaticene
first_link of the arm has length 1 m and is ir_litia_lly pointingthough the value of is everywhere stillD on the grid. The
straight upwardd = 90 degrees). The second link is 0.7 m ang,pot movement algorithm has the robot moving in a direction
initial_ly the angle betvyeen the two arms,is 243 degrees. The e greatest distance from an obstacle if the valug &f D
task is to make the tip of the arm reach the target. The arygq the penalty function is nonzero. Once the robot’s locati
speed is set at 30 degrees per second, that#8,+ ¢2 = 30. receives the information about the reachability of the egrg
Rather than physical space, the optimal path is determimediti moves, increasing through 2z so that the manipulator’s
the arm’s configuration spacéd, ¢). In this space, the bar second link passes over the first. The movement of the arm in
shaped barrier becomes an irregularly shaped obstacle sipbysical space is shown in Figure 8.
no part of the arm is allowed to contact the barrier. Also,
the mapping from configuration space to physical space is
two to F;Fr)]eg(except whegmﬁ is a mSItipIe of?r),)/hencepthe E. Hall and Rooms
single target has two representations in configurationespac In this final simulation there is a hallway connecting four
Also, since there are manipulator arm configurations whicboms, each of size 6 m by 11 m. The grid is rectangular but
reach the target but which also intersect the barrier, atoin not uniform. In the center of the rooms the grid spacing is 1 m
configuration space can be both an obstacle and a targetblt in the hallway, around the edges of each room, and near the
this case, to avoid moving toward such a point, the obstadeorways the grid spacing is 0.5 m, as shown in Figure 9. Each
takes precedence in (3) so thatvill have a valueD there. room contains one target moving to random points in the room

D. Manipulator Arm

WILLMS & YANG: REAL-TIME ROBOT PATH PLANNING WITH OBSTACLE CLEARANCE 9

t=160.0s

t=20.0s

e cov0000
eeecov 0000
0606006000
@0 0000000
e e eo 0000
00000000

® 6 6 o 000

Fig. 9. Hall and Rooms. Three time snap shots of the environnrensliown. Symbols as in Figure 2. Moving obstacles are shovsolas black circles
and move up and down the hall randomly visiting two locations iroom. Initially each room contains one target and the rotmtssat the south end of
the hall. The previous 15 seconds of target, robot and destmths are shown in each plot as solid lines.tAt 20 the robot has entered the south-east
room and is chasing down the target there. #By 90 the robot has captured the target in the south-west room asddiurned to the hall heading to the
north-east room. By = 160 the target in the north-east room has been captured and blo¢ isoentering the north-west room to capture the final targe

0.0<=t<10.6 10.6 <=t < 16.6 obstacles tend to move along the sides of the halk At160

the robot has captured the target in the north-east room and
successfully crossed a very crowded hallway and entered the
north-west room. The final target is capturedt at 170.7. A
video (avi file) of this simulation is attached.

15

—0
| —
0.5
0 IV. SUFFICIENT CONDITIONS FORCAPTURE

16.6 <=t<19.8 19.8<=1t<225 In [1] it was proved in the case where obstacles are static,
that the algorithm always results in the robot catching getar
provided the system update frequengy, (the number of
times the entire grid system is updated in each unit of real
time) satisfies

Y (m)

Y (m)
o
o o»

3
Ju> ———— ()]
Ao (L _ L)
-1 0 1 min \ ¢, [
X (m) X (m) whered,,i, is the minimum distance between any two neigh-

boring grid points, and»; and v, are the target and robot
Fig. 8. Manipulator arm physical space showing the arm, eaend target SPe€eds respectively. The sufficient condition (9) can be ex-
movement through time. tended to the dynamic obstacle situation with some refgtrist

on the obstacle movement. In an unrestricted moving olestacl

situation, no matter how fast the robot speed and the system
at a speed of 0.25 m/s. In addition to the permanent wallsg thejpdate frequency, and no matter how slow the obstacles move,
are moving obstacles (“people”) which primarily move up anil is always possible to construct an environment where the
down the hallway randomly visiting several points in a roortarget cannot be captured [1]. As an obstacle moves (or
before returning to the hall and moving on. These obstaclestends) from one grid point to a neighbor which is on the
move at a speed of 0.5 m/s. The robot starts at the south en@d@frent optimal path from the robot to the target, the lengjth
the hall and moves at a speed of 0.375 m/s. The robot’s gtlaé path that the robot is taking toward the target may irsgrea
is to capture all four targets while avoiding all obstaclEse (either because the optimal path is displaced one grid moint
penalty function is given by (7) withi = 10 and B = 2v/2. the optimal path is completely occluded and a new optimal

Figure 9 shows three snapshots of this simulation. Thmath to the target which goes around the obstacle is fouhd). |

locations of the robot, targets, and moving obstacles inlfhe the number of times that obstacle movements cause increases
seconds prior to the indicated time are shown as solid linés.the length of the optimal path is finite, then (9) will also
At t = 20 the robot has entered the southeast room andhs a sufficient condition for capture of the target in theyfull
chasing down the first target. By= 90 it has captured the dynamic environment.
target in the southwest room and is returning to the hall. TheAs noted in Section llI-A, the new algorithm with obstacle
robot moves down the center of the hall since the movirdearance via the local penalty function, can result inagitins

10 POSTPRINT OF: IEEE TRANS. SYST., MAN, CYBERN., B, 38(3), 200848893.

n(i,t) n(j, t) and in this time, the target can have moved at most a distance
l . v At further away from the robot. In the worst case, all of
37 = this extra distance is alongside obstacles incurring masim
= : penalty, so thay; cannot have increased in value more than
:P 2F < vtAt (]- + Qmax) .
& 1 . . .
% I Here we have ignored the time taken for the propagation of the
.05) 1 —1/fu R signal back from the new target location, which, if included
* k-1/f,) would reduce this upper bound. Thus a sufficient condition fo
I y;(n(j, tk+1)) to be smaller thany; (n (s, tx)) is
0 ! ' ' 0e(3+ [disfu/vr)) (L + max) / fu < diy
17Ju T max u (R
1/ fu 2/ fu 3/ fu o _ o
time which, since|d;; fu./vr] < d;j; fu/v-, Will be satisfied if
3 1 1
Fig. 10. The time step for all grid points as a function of timbéeTshaded JT < dij v (1 +q) - 17 :
areas are where(i,t) lies for all i. Two particular curves (thick solid and v ¢ max T
dashed lines) are also plotted. If the target speed is faster than the robot speed of.if; is

too large then the term in parantheses above will be negative
and consequently the inequality cannot be met. This does not
where, despite moving significantly faster than the tare, mean the robot will fail to reach the target, only that this
penalty function may force the robot to take a longer “safeficient condition is not applicable to the situation. fiet
path and thus never catch the target. Here we re-derive {8)m in parantheses is positive, a sufficient conditionyfdo
to show how the penalty function is incorporated into thge strictly decreasing along the robot’s path is

sufficient condition for capture. 3
First considet.(z, t) as defined in Section II-C, the highest fu > (15)
time step for whichy; has been computed by timg. If f, Arin (m - %)

is the system update frequency, thefi,t) is as shown in
Figure 10. As can be seen from this figure, for @lln(7,t)
satisfies

n(i, t +k/ fu)

Since the grid is finitey can only take on a finite number
of values, hence strict decreasing along the path impjies
eventually reaches zero or the vatye)d,.in, and thus reaches
n(i,t)+k VkeZ (10) the target.
n(iyt + g/ fa) < nli Comparing (15) with (9) we see that the addition of penal-
. . . ties for being close to obstacles effectively causes a asere
n(j,) <n(i,t) +1, Vi, j. A2) in the target speed by a factor Of + guayx). This represents
Consider now a robot moving along an optimal pattihe worst case scenario where the target travels through a
leaving from pointi at time ¢, and arriving at a neighbor Maximum penalty area, directly away from the robot, and
j at time ty1 = tx + di;/v,. We have at departure, sincethe robot is traveling outside the obstacle safety margives.
7 =pY(nli,ty)), emphasize that this is just a sufficient condition, and weldou
expect the robot to capture the target in many situationgavhe
. _ . . this condition is not met, including many situations whegrie
vt te)) =y (i 1) = 1) + dij (1 + q(xi (n G, tk”)) not strictly decreasing along the r%bot’sypath. Indeedafbof

(4,
(i,t)+1, 0<g<1, (11)

> y;(n(i,tr) — 1) + di (13) simulations in Section Il this condition is not met sin¢e t
dmax Values are quite large, yet in all cases the robots capture
and at arrival, by (10)—(12), the targets.
i (0 ti)) = 95 (n (j:’tk + /7)) V. CONCLUSION

=y;(n (j, tr + rem[di; fu/vr] / fu The distance-propagating dynamic system algorithm for
+ Ldij fu/ve] [fu)) robot path planning in dynamic environments has been ex-

=y;(n (j, tr + rem[d;; fu/vr] / fu) tended to the situation where the optimal paths are not gimpl

+ Ldijfu/vrj) the shortest path from a robot to a target, but paths which

<y (nGot) + 1+ |dij fufvr]) minimize a cost function based on both distance to a targkt an

- ’ R proximity to obstacles. The algorithm works in real time and

<y;(n(ite) + 2+ [dijfu/vr]) (14) requires no prior knowledge of target or obstacle movements

whererem[w] = w — [w]. Comparing (13) and (14) we seeUpdating the distance values at each grid point is done witho

that we must consider at mostt 2+ |d;; f./v.| updates of anY global knowledge, neither of distances at non-neighgor
y;. This corresponds to a real time of points nor the update history of any point. Thus each point
Jr

could be implemented as an independent processor with only
At = (34 [dijfu/vr])/ fus local connections to its neighbors. This feature makessiy éa

WILLMS & YANG: REAL-TIME ROBOT PATH PLANNING WITH OBSTACLE CLEARANCE 11

implement the algorithm on a parallel architecture. Theotobalgorithm without safety considerations but with the targe
path is determined in real-time completely from informatiospeed effectively increased by a factor (@f+ ¢max), Where
obtained from the robot’s current grid point location. They. is the maximum value for the penalty function, that is,
computational effort to update each point is minimal allogvi the value of the penalty function at points that are a digtanc
for rapid propagation of the distance information outward,,;, away from obstacles. Although for high penalty functions
along the grid from target locations. the sufficient condition is not likely to be met, we still expe
The algorithm can cope well with situations where there athe target to be captured in many of these situations.
many distant obstacles moving and this information is talee i The computationally local nature of our algorithm distin-
corporated into the path-determination algorithm. Thadee guishes it from most algorithms. For examplé, &nd D" sort
distinguishes it from the Dalgorithm which is most efficient their open lists using knowledge of the function values ht al
when alterations to the environment are primarily localtte t grid points, and focusedDuses global information to estimate
robot’s current location. Indeed, the simulation in Setlid-C the distance to the robot. Thus global information is usedwh
showed that in a very highly cluttered environment, the Dupdating each point, or determining the order of updating.
algorithm may fail to propagate any information to the robah contrast, our algorithm uses only local information when
at all, whereas our algorithm will always bring informatiorcomputing an update at each point, and the order of updating
and direct the robot toward the target. is pre-determined. This makes our algorithm exceedingby ea
The Hall and Rooms simulation (Section IlI-E) suggeststa parallelize by simply assigning a subset of points to each
modification of the penalty function based on directioyalitprocessor. Neural network approaches are also local in this
of the moving obstacles. Clearly, when people navigatesanse, however, our algorithm is faster than most of these
crowded hallway, they anticipate where others are going aagproaches which generally require numerical integratibn
avoid stepping in front of others but do not hesitate to paasnonlinear differential equation.
behind them, often at very close quarters. Such behavionvany robot path-planning algorithms do not easily extend to
requires an estimation of the moving obstacle’s velocity athe dynamic situation and become computationally expensiv
not just its position. Work along these lines has been done R¥ien the environment is complex. Our algorithm in contrast
Shiller and others [21], [22]. Fraichard and others [23}][2 js designed for the dynamic situation and is not at all aéféct

have used obstacle velocity information to define “inevéabpy the complexity of the environment as far as computational
collision states” which must be avoided by the robot. Suchgpeed is concerned.
behavior could possibly be mimicked with our algorithm by
modifying the penalty function to take into account both the
distance to the nearest obstacle and whether this distance i REFERENCES
increasing or decreasing. In the decreasing case, thetpenal
should be larger. This would effectively make paths cuttingl]l A. R. Willms and S. X. Yang, "An efficient dynamic system foead-
in front of moving obstacles more costly than those going Sg;e?fgbﬁgpjthpg'a;‘ggf]iZEGEgJégns' Syst, Man, Cybern. B, Cybern.
behind them- HOV_’evera SUC_h a simple m0d|f_|cat|0n W0U_|d NOP)] A. Zelinsky, “Using path transforms to guide the search ffadpath in
be effective for points near fixed obstacles, since thetadie 2D,” Intl. J. of Robotics Researchol. 13, no. 4, pp. 315-325, 1994.
to an obstacle is unaffected by other moving obstacles.,AIsi?] G. Borgefors, “Distance transformations in digital imageComput.
h is th ti to h | hould ider b Vision, Graphics, Image Procvol. 34, pp. 344-371, 1986.
.t ere IS the ques !On as o how Ong_ one should consider bagg ¢ v.c. shih and O. R. Mitchell, “A mathematical morphologgproach
in time to determine whether the distance to an obstacle has to Euclidean distance transformatiotZEE Trans. on Image Process-
increased or decreased. It would not make sense to base tPisg‘gbVOF')- 1 ”E-erﬁphlw—zolj 3992-h mal drvingtpaf

: : - - .-C. Pei and J.-H. Horng, “Finding the optimal drivingtipaf a car
S|m_ply on the last updaFe'_Smce the system Is updat_lng at g using the modified constrained distance transformatitB2E Trans.
rapid rate and hence this information would very rapidly be Robot. Automat.vol. 14, no. 5, pp. 663-670, Oct. 1998.
lost. In order to base this on the speed of the obstacles, eal6h E. V. Denardo,Dynamic Programming: Models and ApplicationsEn-

: : lewood Cliffs, NJ: Prentice Hall Inc., 1982.
grid point would also have to have access to a clock. Mor%] g_ M. Haralick, S. R. Sternberg, and X. Zhuang, “Image gsial using

Worl_(in thi_S direCtion is required. _ mathematical morphologylEEE Trans. Pattern Anal. Mach. Intellvol.
Kinematic constraints of the robot have not been considered PAMI-9, pp. 532-550, July, 1987.

here. Combining this path planning algorithm with measuref! €. R. Giardina and E. R. Doughertyorphological Methods in Image

hich add the Ki . traints | . and Signal Processing Englewood Cliffs, NJ: Prentice Hall, 1988.
which address € kKinematc constraints IS a requ”emeW] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basistfe heuristic

before appropriate implementation on a real robot can ace ~ determination of minimum cost path4EEE Trans. on Systems, Science
The same statement is true for thé& Bigorithm. In addition, | anSCyberne(;lcs_vol.l 833-4,ﬁ PP 100—1:7,|196_8- f ik
: e : : . Stentz, “Optimal and efficient path planning for paffy-known

as with all grid-based approgc_:hes, the resulting path is q environments,” inProc. of the IEEE Internat. Conf. on Robotics and
smooth. Recent work by Philippsen [14] has extended the automation 1994, pp. 3310-3317.
D* algorithm to E using interpolation schemes to generatBl] ——, “Optimal and efficient path planning for unknown angndmic
smooth paths. As our algorithm is computing the same infor- E’;‘grogmsr_‘sl'_ Tgf‘gg_egc')e A“{"Jg”olggg”“’ers“y Robotics Ingt, Tech.
mation as D but ina d|ﬁer?nt way, interpolation schemegi] — “The focused B algorithm for real-time replanning,” ifProc.
could also be applied to this algorithm to generate smooth of the 1995 Internat. Joint Conf. on Artificial Intelligenc&995, pp.
trajecmries' 3] éGSKf);i?gszﬁd M. Likhacheyv, “Fast replanning for naviga in unknown

A sufficient condition for the robot to capture the targe[tl terrain,” in IEEE Transactio'ns on Roboticsol. 21, no. 3, 2005, pp.

was derived and was shown to be the same as for the 354-363.

12 POSTPRINT OF: IEEE TRANS. SYST., MAN, CYBERN., B, 38(3), 200848893.

[14] R. Philippsen, “Motion planning and obstacle avoidanfor mo-
bile robots in highly cluttered dynamic environments,” Ph.D.
dissertation, Ecole Polytechnique &terale de Lausanne, 2004,
http://1ibrary.epfl.ch/en/theses/ ?nr=3146.

[15] R. Glasius, A. Komoda, and S. C. A. M. Gielen, “Neural netiw
dynamics for path planning and obstacle avoidanbietral Networks
vol. 8, no. 1, pp. 125-133, 1995.

[16] E. Zalama, P. Gaudiano, and J. L. Coronado, “A real-tinmsupervised
neural network for the low-level control of a mobile robot imansta-
tionary environment,'Neural Networksvol. 8, pp. 103—-123, 1995.

[17] S. X. Yang and M. Meng, “An efficient neural network methémt
real-time motion planning with safety consideratioiRbbotics and
Autonomous Systemel. 32, no. 2-3, pp. 115-128, 2000.

[18] ——, “Neural network approaches to dynamic collisioadr robot
trajectory generation,JEEE Trans. on Systems, Man, and Cybernetics,
Part B, vol. 31, no. 3, pp. 302-318, June, 2001.

[19] A. Adamatzky, P. Arena, A. Basile, R. Carmona-&al B. D. L.
Costello, L. Fortuna, M. Frasca, and A. Raglrez-Vazquez, “Reaction-
diffusion navigation robot control: From chemical to VLS| aogic
processors,1EEE Trans. on Circuits and Systems |: Regular Papers
vol. 51, no. 5, pp. 926-938, 2004.

[20] D. V. Lebedev, J. J. Steil, and H. J. Ritter, “The dynamiave/
expansion neural network model for robot motion planning meti
varying environments,Neural Networksvol. 18, pp. 267-285, 2005.

[21] z. Shiller, F. Large, and S. Sekhavat, “Motion planniimy dynamic
environments: Obstacles moving along arbitrary trajecsgriem Proc.
of the IEEE Int. Conf. on Robotics and Automation, Vql2801, pp.
3716-3721.

[22] F. Large, S. Sekhavat, Z. Shiller, and C. Laugier, “Toigareal-time
global motion planning in a dynamic environment using the nlvo
concept,” inIEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Vol. 1, 2002, pp. 607-612.

[23] T. Fraichard and H. Asama, “Inevitable collision statasstep towards
safer robots?” irProc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Vol., 2003, pp. 388-393.

[24] S. Petti and T. Fraichard, “Safe motion planning in dyramnviron-
ments,” inProc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems2005, pp. 2210-2215.

