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Abstract—A new hybrid particle swarm optimization (PSO) that incorporates a wavelet 

theory based mutation operation is proposed. It applies the wavelet theory to enhance PSO 

in exploring the solution space more effectively for better solution. A suite of benchmark test 

functions and three industrial applications (solving the load flow problems, modelling the 

development of fluid dispensing for electronic packaging, and designing a neural 

network-based controller) are employed to evaluate the performance and the applicability of 

the proposed method. Experimental results show empirically that the proposed method 

outperforms significantly the existing methods in terms of convergence speed, solution 

quality and solution stability. 

I. INTRODUCTION 

Particle swarm optimization (PSO) is a recently proposed population based stochastic 

optimization algorithm which is inspired by the social behaviours of animals like fish schooling 

and bird flocking [6]. Comparing with other population based stochastic optimization methods, 

such as evolutionary algorithms, PSO has comparable or even superior search performance for 

many hard optimization problems with faster and more stable convergence rates [7]. PSO has been 

used in different industrial areas such as power systems [1, 18-21], parameters learning of neural 

networks [16, 22], control [23-24], prediction [25], modelling [26-27], etc. However, observations 
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reveal that PSO converges sharply in the early stages of the searching process, but saturates or even 

terminates in the later stages. It behaves like the traditional local searching methods that trap in 

local optima.  As a result, it is hard to obtain any significant improvements by examining 

neighbouring solutions in the later stages of the search. Vaessens et al. [11] and Reeves [14] put 

these searching methods into the context of local search or neighbourhood search.  

Recently, different hybrid PSOs have been proposed to overcome the drawback of trapping 

in local optima.  The hybrid PSO has been first proposed in 1998 [43], in which a standard selection 

mechanism is integrated with PSO.  A new hybrid gradient descent PSO (HGPSO), which is 

integrated with gradient information to achieve faster convergence without getting trapped in local 

minima, is proposed by Noel and Jannett [16].  However, the computational demand of HGPSO is 

increased by the process of the gradient descent. Juang [17] proposed a hybrid PSO algorithm 

named HGAPSO, which incorporates GA’s evolutionary operations of crossover, mutation and 

reproduction. Ahmed et al. [1] proposed a hybrid PSO named HPSOM, in which a constant 

mutating space is used in mutation.  In both HGAPSO and HPSOM, the solution space can be 

explored by performing mutation operations on particles along the search, and premature 

convergence is more likely to be avoided. However, the mutating space is kept unchanged all the 

time throughout the search, and the space for the permutation of particles in PSO is also fixed. It 

can be further improved by varying the mutating space along the search. 

For genetic algorithms (GAs), the solution space is more likely to be explored in the early 

stage of the search by setting a larger mutating space, and it is more likely to be fine tuned for better 

solution in the later stage of the search by setting a smaller mutating space based on the properties 

of wavelet [2]. This idea can be applied so as to introduce the hybrid PSO with GA’s mutation. In 

this paper, a mutation with a dynamic mutating space by incorporating a wavelet function is 

proposed.  Wavelet is a tool to model seismic signals by combining dilations and translations of a 

simple, oscillatory function (mother wavelet) of a finite duration. The PSO’s mutating space is 

varying dynamically along the search based on the properties of the wavelet function. The resulting 

mutation operation aids the hybrid PSO to perform more efficiently and provides a faster 

convergence than the PSO with construction and inertia weight factor [9] and other hybrid PSOs [1, 

16-17, 28] in solving a suite benchmark test functions. In addition, it achieves a better and more 

stable solution quality.  Application examples on solving some load flow problems (the 
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multi-contingency transient stability constrained optimal power flow problem and economic load 

dispatch with valve-points loading), modelling the development of fluid dispensing for electronic 

packaging, and designing a neural network-based controller, are employed to demonstrate that 

better performance can be achieved by the proposed hybrid PSO. 

This paper is organized as follows. Section II presents the operation of the hybrid PSO with 

wavelet mutation.  Experimental studies and analysis are discussed in Section III.  Eighteen 

standard benchmark test functions are given to evaluate the performance of the proposed method. 

Also, five additional benchmark test functions are given in which the global optimal points are 

shifted and rotated.  Furthermore, the sensitivity of the shape parameter and parameter g for the 

wavelet mutation are discussed in this section.  Application examples on the load flow problems, 

modelling of fluid dispensing for electronic packaging, and the neural network-based controller are 

given in Section IV.  A conclusion will be drawn in Section V. 

II. HYBRID PSO WITH WAVELET MUTATION  

PSO is a novel optimization method developed by Kennedy et al. [6]. It models the processes 

of the sociological behaviour associated with bird flocking, and is one of the evolutionary 

computation techniques. It considers a number of particles that constitute a swarm. Each particle 

traverses the search space looking for the global optimum.  The standard PSO with constriction and 

inertia weight factors (SPSO) process is shown in Fig.1. In this paper, a hybrid PSO with wavelet 

mutation (HPSOWM) is proposed and shown in Fig. 2.  The details of both SPSO and HPSOWM 

will be discussed as follows.  

A.  Standard particle swarm optimization with constriction and inertia weight factors 

(SPSO) 

In Fig. 1(a), X(t) denotes a swarm at the t-th iteration.  Each particle ( ) ( )tXtp ∈x  contains 

κ elements ( ) ( )tt pp
jx x∈  at the t-th iteration, where p = 1, 2,... , γ  and j = 1, 2,… , κ ; γ  denotes 

the number of particles in the swarm and κ  is the dimension of a particle. First, the particles of the 

swarm are initialized and then evaluated by a defined fitness function.  The objective of PSO is to 

minimize the fitness values (cost values) of particles iteratively.  The swarm evolves from iteration 
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t to t +1 by repeating the procedure as shown in Fig. 1.  The standard PSO [6] operations are 

discussed as follows. 

The velocity ( )tv p
j  (corresponding to the flight speed in a search space) and the position 

( )tx p
j  of the j-th element of the p-th particle at the t-th iteration can be calculated using the 

following formulae: 

( ) ( ) ( )( ) ( ) ( )( )1212 −−⋅⋅+−−⋅⋅= txgbestrandtxpbestrandtv p
jj

p
j

p
j

p
j

p
j

p
j  (1) 

( ) ( ) ( )tvtxtx p
j

p
j

p
j +−= 1  (2) 

where 

ppbest = [ ]ppp pbestpbestpbest κ,...21  

gbest = [ ]κgbestgbestgbest ,...21  

j = 1,2, …, κ ; 

the best previous position of a particle so far is recorded from the previous iteration and 

represented as ppbest ; the position of the best particle among all the particles is represented as 

gbest; rand() returns a uniform random number in the range of [0,1]. In [5], an improved version of 

PSO is presented, where the constriction factor and inertia weight factor are introduced.  Here, 

when the standard particle swarm optimization with constriction factor and inertia weight factor 

(SPSO) is used, (1) will be changed to: 

( ) ( ) ( )( ) ( )( ){ }1()1()1 21 −−⋅⋅+−−⋅⋅+−⋅⋅= txgbestrandtxpbestrandtvwktv p
jj

p
j

p
j

p
j

p
j

p
j

p
j ϕϕ  (3) 

where w is an inertia weight factor; 1ϕ  and 2ϕ  are acceleration constants; k is a constriction factor 

derived from the stability analysis of equation (3) to ensure the system to be converged but not 

prematurely [5]. Mathematically, k is a function of 1ϕ  and 2ϕ  as reflected in the following 

equation: 
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ϕϕϕ 42

2
2 −−−

=k  (4) 

where  21 ϕϕϕ += and 4>ϕ . 

SPSO utilizes ppbest  and gbest to modify the current search point in order to avoid the 

particles moving in the same direction, but to converge gradually toward ppbest  and gbest. A 

suitable selection of the inertia weight w provides a balance between the global and local 

explorations. Generally, w can be dynamically set with the following equation: 

         t
T

wwww ×
−

−= minmax
max  (5) 

where t is the current iteration number, T is the total number of iteration, maxw  and minw  are the 

upper and lower limits of the inertia weight, and are set to 1.2 and 0.1 respectively, in this paper. 

In (3), the particle velocity is limited by a maximum value maxv . The parameter 

maxv determines the resolution with which regions are to be searched between the present position 

and the target position. This limit enhances the local exploration of the problem space and it 

realistically simulates the incremental changes of human learning. If maxv is too high, particles 

might fly past good solutions. If maxv is too small, particles may not explore sufficiently beyond 

local solutions. From experience, maxv  is often set at 10%–20% of the dynamic range of the 

element on each dimension. 

B.  Hybrid particle swarm optimization 

We observe that SPSO [5, 9] works well in the early stage, but usually presents problems on 

reaching the near-optimal solution. The behaviour of SPSO presents some problems with the 

velocity update. If a particle’s current position coincides with the global best position, the particle 

will only move away from this point if its inertia weight and velocity are different from zero. If 

their velocities are very close to zero, then all the particles will stop moving once they catch up 
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with the global best particle, which may lead to a premature convergence and no further 

improvement can be obtained. This phenomenon is known as stagnation [4].  

Ahmed et al. [1] proposed to integrate GAs’ mutation operation into PSO, which aids to 

break through stagnation. Here, we called this hybrid PSO as HPSOM. The mutation operation 

starts with a randomly chosen particle in the swarm, which moves to different positions inside the 

search area through the mutation.  The following mutation operation is used in HPSOM: 

( ) ,ω−= jj xxmut  r < 0 (6a) 

( ) ,ω+= jj xxmut  r ≥ 0 (6b) 

 

where jx  is a randomly chosen element of the particle from the swarm, and ω is randomly 

generated within the range ( )[ ]jj parapara minmax1.0,0 −× , representing one-tenth of the length of 

the search space. r is a random number between +1 and −1, jparamax and jparamin  are the upper and 

lower boundaries of each particle element.  The pseudo code of the hybrid PSO with mutation 

operation is shown in Fig. 1(b), in which the mutation on particles is performed after updating their 

velocities and positions. It can also be seen from Fig. 1(a) and Fig. 1(b) that the pseudo codes of 

both PSO methods are identical except the mutation operation is introduced. 

However, it can be noticed from (6) that the mutating space in HPSOM is limited by ω. It 

may not be the best approach in fixing the size of the mutating space all the time along the search. 

It can be further improved by a dynamic mutation operation in which the mutating space contracts 

dynamically along the search.  We propose a wavelet mutation that varies the mutating space based 

on the wavelet theory. The resulting HPSOWM (Fig. 2) is identical to HPSOM except for the 

mutation operation used. The proposed wavelet mutation is discussed in the following sub-section.  

C. Wavelet mutation 

C.1. Wavelet theory 

Certain seismic signals can be modelled by combining translations and dilations of an 
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oscillatory function within a finite duration called a “wavelet”.  A continuous-time function )(xψ  

is called a “mother wavelet” or “wavelet” if it satisfies the following properties: 

Property 1: 

0)( =∫
+∞

∞−
dxxψ . (7)  

In other words, the total positive momentum of )(xψ is equal to the total negative momentum of 

)(xψ . 

On the other hand, it is possible to show that the admissibility condition implies that ( ) 00ˆ =ψ , so 

that a wavelet must integrate to zero. Notice that ψ̂  is the Fourier transform of wavelet ψ  and the 

admissibility condition is defined as follows: 

+∞<< ψC0  (8) 

where 

( )
∫

∞+

∞−
= ν

ν
νψ

ψ dC
2ˆ

. (9) 

Property 2: 

∞<∫
+∞

∞−
dxx 2)(ψ  (10) 

where most of the energy in )(xψ  is confined to a finite duration and bounded.  The Morlet 

wavelet (as shown in Fig. 3) [2] is an example mother wavelet: 

( ) ( )xex x 5cos2/2−=ψ . (11) 

The Morlet wavelet integrates to zero (Property 1).  Over 99% of the total energy of the function is 

contained in the interval of 5.25.2 ≤≤− x  (Property 2).   

In order to control the magnitude and the position of )(xψ , a function )(, xbaψ  is defined as 

follows: 
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⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

bx
a

xba ψψ 1)(,  (12) 

where a is the dilation parameter and b is the translation parameter.  Notice that 

( )xx ψψ =)(0,1  . (13) 

As 

⎟
⎠
⎞

⎜
⎝
⎛=

a
x

a
xa ψψ 1)(0, , (14) 

it follows that )(0, xaψ  is an amplitude-scaled version of )(xψ .  Fig. 4 shows different dilations of 

the Morlet wavelet.  The amplitude of )(0, xaψ  will be scaled down as the dilation parameter a 

increases.  This property is used to do the mutation operation in order to enhance the searching 

performance.   

There are two reasons that wavelet theory is applied to the mutation operation: 

1) Improve the solution stability: From (8) and (9) (Property 1), the mother wavelet must satisfy an 

admissibility criterion (which is a kind of half-differentiability.)  As a result of this admissibility 

criterion, the stability of the operation is improved.  The solution stability is reflected by the 

standard deviation of the solutions and can be proved by a set of empirical results.  The empirical 

results will be given in the next section to demonstrate the performance of the solution stability. 

2) Fine-tuning ability: By controlling the dilation parameter of the wavelet function, the amplitude 

of the function can be adjusted.  We can use this property to realize a fine-tuning effect to the 

mutation operation by decreasing the amplitude of the wavelet function to constrain the searching 

space when the number of iteration increases. Thus, the solution quality can be improved. 

C.2. Operation of wavelet mutation 

The mutation operation is used to mutate the elements of particles.  In general, various 

methods like uniform mutation or non-uniform mutation [8, 10] can be employed to realize the 
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mutation operation.  The proposed wavelet mutation (WM) operation, however, exhibits a 

fine-tuning ability.  The details of the operation are as follows.  Every particle element of the 

swarm will have a chance to mutate governed by a probability of mutation, [ ]10∈mp , which is 

defined by the user.  For each particle element, a random number between 0 and 1 will be generated 

such that if it is less than or equal to mp , the mutation will take place on that element.  For instance, 

if ( ) ( ) ( ) ( )[ ]txtxtxt pppp
κ,,,

21
K=x  is the selected p-th particle and the element of particle 

( )tx p
j  is randomly selected for mutation (the value of ( )tx p

j  is inside the particle element’s 

boundaries [ ]jj parapara maxmin , ), the resulting particle is given by ( ) =tpx  

( ) ( ) ( )[ ]txtxtx ppp
κ,,,

21
K  

( )
( ) ( )( )
( ) ( )( )⎪⎩

⎪
⎨
⎧

≤−×+

>−×+
=

0 if  

0 if  

min

max

σσ

σσ
jp

j
p
j

p
j

jp
jp

j paratxtx

txparatx
tx , (15) 

where j ∈ 1, 2, … κ ; κ  denotes the dimension of  particle and  

)(0, ϕψσ a=   (16) 

⎟
⎠
⎞

⎜
⎝
⎛=

aa
ϕψ1 . (17) 

Different kinds of mother wavelets have been considered during the development of the algorithm, 

e.g. Mexican hat wavelet (normalized), Mexican hat wavelet, Morlet wavelet, Gaussian wavelet, 

and Meyer wavelet.  By trial and error through experiments for good performance, various wavelet 

functions have been investigated in terms of cost values. Finally, we choose Morlet wavelet as the 

mother wavelet in the wavelet mutation operation because the selected wavelet function offers the 

best performance. 

By using the Morlet wavelet in (11) as the mother wavelet, 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛−

a
e

a
a ϕσ
ϕ

5cos1 2
2

. (18) 
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If σ  is positive approaching 1, the mutated element of the particle will tend to the maximum value 

of ( )tx p
j .  Conversely, when σ  is negative ( 0≤σ ) approaching −1, the mutated element of the 

particle will tend to the minimum value of ( )tx p
j .  A larger value of σ  gives a larger searching 

space for ( )tx p
j .  When σ  is small, it gives a smaller searching space for fine-tuning.  Referring to 

Property 1 of the wavelet, the sum of the positive σ  is equal to the sum of the negative σ  when 

the number of samples is large and ϕ  is randomly generated.  That is, 

01
=∑

NN
σ  for ∞→N ,  (19) 

where N is the number of samples.  

Hence, the overall positive mutation and the overall negative mutation throughout the evolution are 

nearly the same.  This property gives better solution stability (smaller standard deviation of the 

solution values upon many trials).  As over 99% of the total energy of the mother wavelet function 

is contained in the interval [−2.5, 2.5], ϕ  can be generated from [−2.5a, 2.5a] randomly.  The 

value of the dilation parameter a is set to vary with the value of Tt  in order to meet the 

fine-tuning purpose, where T is the total number of iteration and t  is the current number of 

iteration.  In order to perform a local search when t is large, the value of a  should increase as Tt  

increases so as to reduce the significance of the mutation.  Hence, a monotonic increasing function 

governing a  and Tt  is proposed as follows. 

( ) ( )g
T
tg

wm

ea
ln1ln +⎟

⎠
⎞

⎜
⎝
⎛ −×−

=

ζ

 (20) 

where wmζ  is the shape parameter of the monotonic increasing function, g is the upper limit of the 

parameter a. The effects of the various values of the shape parameter wmζ  and the parameter g to a 

with respect to Tt  are shown in Fig. 5 and Fig. 6, respectively. In this figure, g  is set as 10000. 

Thus, the value of a  is between 1 and 10000.  Referring to (18), the maximum value of σ  is 1 

when the random number of ϕ =0 and 1=a ( Tt = 0).  Then referring to (15), the resulting particle 

( ) =tx p
j  ( ) ( )( )txparatx p

j
jp

j −×+ max1  = jparamax . It ensures that a large search space for the 
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mutated element is given.  When the value Tt  is near to 1, the value of a  is so large that the 

maximum value of σ  will become very small.  For example, at Tt =0.9 and 1=wmζ , the dilation 

parameter a = 4000; if the random value of ϕ  is zero, the value of σ  will be equal to 0.0158. With 

( ) =tx p
j ( ) ( )( )txparatx p

j
jp

j −×+ max0158.0 , a smaller searching space for the mutated element is 

given for fine-tuning.  Changing the parameter wmζ  will change the characteristics of the 

monotonic increasing function of the wavelet mutation.  The dilation parameter a will take a value 

so as to perform fine-tuning faster as wmζ  is increasing.  It is chosen by trial and error, which 

depends on the kind of the optimization problem.  When wmζ  becomes larger, the decreasing speed 

of the step size (σ) of the mutation becomes faster.  In general, if the optimization problem is 

smooth and symmetric, the searching algorithm is easier to find the solution and the fine-tuning can 

be done in the early stage.  Thus, a larger value of wmζ  can be used to increase the step size of the 

early mutation.  More details about the sensitivity of wmζ  to the wavelet mutation will be discussed 

in the next section. 

 After the operation of wavelet mutation, an updated swarm is generated.  This swarm will 

repeat the same process.  Such an iterative process will be terminated when a defined number of 

iteration is met. 

C.3. Choosing the HPSOWM parameters 

HPSOWM is seeking a balance between the exploration of new regions and the exploitation 

of the already sampled regions in the search spaces.  This balance, which critically affects the 

performance of HPSOWM, is governed by the right choices of the control parameters: Swarm size 

(γ ), the probability of mutation (pm), the shape parameter ( wmζ ) and the parameter g of the wavelet 

mutation.  Some views about these parameters are given as follows: 

i) Increasing swarm size ( γ ) will increase the diversity of the search space, and reduce the 

probability that HPSOWM prematurely converges to a local optimum.  However, it also increases 

the time required for the population to converge to the optimal region in the search space. 
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ii) Increasing the probability of mutation (pm) tends to transform the search into a random search 

such that when pm = 1, all element of particles will mutate.  This probability gives us an expected 

number (pm ×γ × κ ) of element of particles that undergo the mutation operation.  In other words, 

the value of pm depends on the desired number of element of particles that undergo the mutation 

operation.  Normally, when the dimension is very low (number of elements in a particle is less than 

5), pm is set at 0.5 to 0.8. When the dimension is around 5-10, pm is set at 0.3 to 0.4. When the 

dimension is in the range of 11 to 100, pm is set at 0.1 to 0.2.  When the dimension is in the range of 

101 to 1000, normally pm is set at 0.05 to 0.1.  Lastly, when the dimension is very high (number of 

elements in a particle is larger than 1000), pm is set at <0.05.  In principle, when the dimension is 

high, pm should be set to a smaller value.  It is because if the dimension is high and pm is set to a 

larger value, the number of elements of particles undergoing the mutation operation will be large.  

It will increase the searching time and more importantly destroy the current information about the 

application in each time of iteration, as all elements of particles are randomly assigned. Generally, 

by properly choosing the value of pm, the ratio of the number of elements of particles undergoing 

mutation operation to the population size can be maintained to prevent the searching process from 

turning to a random searching one. Thus, the choices of the values of pm for all the following 

benchmark functions and application examples are based on this selection criterion, and set by trial 

and error through experiments for good performance for all functions. 

iii) The dilation parameter a is governed by the monotonic increasing function (20), and this 

monotonic increasing function is controlled by two parameters.  They are the shape parameter 

wmζ and the parameter g.  Changing the parameter wmζ  will change the characteristics of the 

monotonic increasing function of the wavelet mutation.  The dilation parameter a will take a value 

so as to perform fine-tuning faster as wmζ  is increasing.  It is chosen by trial and error, which 

depends on the kind of the optimization problem.  When wmζ  becomes larger, the decreasing speed 

of the step size (σ) of the mutation becomes faster.  In general, if the optimization problem is 

smooth and symmetric, it is easier to find the solution and the fine-tuning can be done in early 

iteration.  Thus, a larger value of wmζ  can be used to increase the step size of the early mutation.  

Parameter g is the value of the upper limit of dilation parameter a.  A larger value of g implies that 

the maximum value of a is larger.  In other words, the maximum value of min( σ ) will be smaller 
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(i.e. a smaller searching limit is given).  Conversely, a smaller value of g implies that the maximum 

value of a is smaller.  In other words, the maximum value of min( σ ) will be larger (i.e. a larger 

searching limit is given).  From our point of view, fixing one parameter and adjusting the other 

parameter to control the monotonic increasing function is more convenient to find a good setting.  

In Section III, part D and E, the sensitivity of wmζ  and g to the wavelet mutation with experimental 

results will be discussed.  Based on the results, we suggest fixing the parameter g to 10000 and 

tuning the parameter wmζ  to optimize the monotonic increasing function for different applications. 

III. BENCHMARK TEST FUNCTIONS: RESULTS AND ANALYSIS 

A. Benchmark test functions  

A suite of eighteen standard benchmark test functions [8, 13] are used to test the 

performance of HPSOWM.  Many different kinds of optimization problems are covered by these 

benchmark test functions.  They can be divided into three categories.  The first one is the category 

of unimodal functions, which is a symmetric model with a single minimum; f1 to f7 are unimodal 

functions. The second one is the category of multimodal functions with a few local minima; f8 and 

f13 belong to this type. The last one is the category of multimodal functions with many local minima; 

f14 to f18 belong to this type.  The expressions of these functions are tabulated in Table I.  (The 

details about the parameter a, b, c and function u(⋅) for function f8 - f9 and f12 - f14 are given in [13]). 

A.1. Experimental setup 

The performance of HPSOM [1], HGAPSO [17], HGPSO [16], SPSO [9], and the proposed 

HPSOWM on solving the benchmark test functions is evaluated. 

The following simulation conditions are used: 

• Shape parameter of the wavelet mutation ( wmζ ): it is chosen by trial and error through 

experiments for good performance for all functions. (A discussion for the value of wmζ  will 

be given in Section III D.) 

• Parameter g of the wavelet mutation: 10000. (A discussion for the value of g will be given 

in Section III E.) 
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• Acceleration constant 1ϕ : 2.05 [9] 

• Acceleration constant 2ϕ : 2.05 [9] 

• Maximum velocity maxv : 0.2 [9] 

• Swarm size: 50 

• Number of runs: 50 

• Probability of mutation for HPSOWM, HPSOM, and HGAPSO ( mp ): it is chosen by trial 

and error through experiments for good performance for all functions. ( mp = 0.1 for f2 - 

f7; mp = 0.2 for f1, f14 - f18; mp = 0.3 for f13; mp = 0.5 for f8 - f9 and f11 - f12; mp = 0.8 for f10.) 

• Probability of crossover for HGAPSO ( cp ): 0.8 

• Initial population: it is generated uniformly at random 

• The learning rate of HGPSO is chosen by trial and error through experiments for good 

performance for all functions 

A.2. Results and analysis 

In this section, the results for the 18 benchmark test functions are given to show the merits of 

HPSOWM. The experimental results in terms of the mean cost value, best cost value, standard 

deviation and convergence rate are summarized in Table II to Table IV and Figs. 7 - 9. 

Category 1: Unimodal function 

Function f1 is a sphere model, which is smooth and symmetric.  The main purpose of testing 

this function is to measure the convergence rate of searching.  It is probably the most widely used 

test function.  For this function, the results in terms of the mean cost value and the best cost value of 

HPSOWM are much better than those of the other methods; the mean cost value of HPSOWM is 

about 180 to 1.2×107 times better. Also, the standard deviation is much better, which means the 

searched solutions are more stable. In Fig. 7(a), HPSOWM displays a faster convergence rate than 

other methods thanks to its better searching ability.  It reaches approximately 1×10−3 in around 500 

times of iteration, while the other optimization methods offer about 1×10−1.  Function f2 is a 

generalized Rosenbrock’s function, which is strongly non-separable and the optimum is located in 

a very narrow ridge.  The tip of the ridge is very sharp, and it runs around a parabola.  HPSOWM 
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performs better than the other methods in terms of the mean value and the standard deviation.  Also, 

a good convergence rate for HPSOWM is shown in Fig. 7(b).  Function f3 is a function that is a 

representation of flat surfaces.  Flat surfaces are obstacles for optimization algorithms because they 

do not give any information about the search direction.  Unless the algorithm has a variable step 

size, it can get stuck in one of the flat surfaces.  All hybrid PSOs that involve the mutation 

operation are good for this function because it can generate a long jump by using mutation 

operations in the PSO.  Function f4 is a quadratic function padded with noise, which increases the 

difficulty for searching the minimum value, since the function would not return the same value at 

the same point every time. Comparing with the other optimization methods, HPSOWM gives the 

best mean cost value.  Function f5 is the Schwefel’s problem 2.21. From Table II, although the best 

cost value of HPSOWM is a little bit worse than that of HPSOM, the mean cost value and the 

standard derivation of the HPSOWM are the best. Thus, HPSOWM gives a better solution quality 

and stability.  Function f6  is the Schwefel’s problem 2.22 and function f7  is the Eason’s function.  

For these problems, the performance of HPSOWM is better than that of the other methods.  The 

rapid convergence of HPSOWM as shown in Fig. 7(c)-7(d) supports our argument.  In short, 

HPSOWM is the best to tackle unimodal functions comparing with the other methods.   

Category 2: Mulitmodal function with a few local minima 

For functions f8 - f13, which are multimodal functions with only a few local minima, different 

results from the proposed methods are obtained. The experimental results for these functions are 

tabulated in Table III.  Among these functions, four of them (f8, f10 - f12) do not show significant 

differences among the different optimization methods.  They all reach or get near to the global 

optima, but HPSOWM still provides the smallest standard deviation in most cases.  For functions f9 

and f13, different results from HPSOWM and the other methods are obtained.  HPSOWM gives 

better results in terms of mean cost value and standard deviation.  Thus, the solution’s stability and 

quality are good. According to Figs. 8(a) - (b), the convergence rate of HPSOWM is faster than 

those of the others. 

Category 3: Multimodal function with many local minima 

Functions f14 to f18 are multimodal functions with many local minima.  The experimental 

results for these functions are tabulated in Table IV.  Functions f14 and f16 are the Generalized 
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Penalized function and the Generalized Rastrigin’s function respectively. It can be seen clearly 

from Figs. 9(a) - (b) that if the PSO does not involve any mutation operation (HGPSO and SPSO), 

it will be easily trapped at some local minimum. From the results obtained, the mean cost value, the 

best cost value and the standard deviation of HPSOWM are better than those of the other methods. 

The HPSOWM can provide more stable and high-quality results.  Functions f17 and f18 are the 

Ackley’s and the Schwefel’s functions respectively.  From Table IV, we can see that HPSOWM 

gives better results than the others.  In general, HPSOWM is good for handling multimodal 

functions with many local minima.   

In conclusion, HPSOWM gives the best performance for all kinds of optimization problems, 

especially unimodal functions and multimodal functions with many local minima.  It generally 

outperforms other hybrid PSOs and SPSO. 

B. T-test 

The t-test is a statistical method to evaluate the significant difference between two 

algorithms.  The t-value will be positive if the first algorithm is better than the second, and negative 

if it is poorer.  The t-value is defined as follows. 
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where 1α and 2α are the mean value of the first method and the second method respectively, 1σ  

and 2σ  are the standard deviations of the first method and the second method respectively, ξ  is 

the degree of freedom. 

When the t-value is higher than 1.645 (ξ  = 49), there is a significant difference between the 

two algorithms with a 95% confidence level.  The t-values between HPSOWM and the other 

optimization methods are shown in Table V.  We see that most t-values in this table are higher than 

1.645.  Therefore, the performance of HPSOWM is significantly better than the other optimization 

methods with a 95% confidence level. 
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C. Additional benchmark test functions with shift 

In addition, a suite of five benchmark test functions [44] with shift are used.  In order to 

avoid the problems existing in some benchmark functions [45] that they have the same values 

among all independent variables at the global optima and there is no linking among these variables, 

we shift the global optimum points and rotate the test functions.  That means in order to make the 

variables to have different numerical values at the optimum point, we randomly generate the global 

optimum point within a given search space. The search ranges of the variables are also adjusted 

according to the randomly generated global optimum point in order to avoid different variables to 

have the same numerical value after normalization at the global optimum point. We test five 

additional functions with shift: Shifted sphere function (f1-shift), Shifted Schwefel's problem 1.2 

(f2-shift), Shifted rotated high conditioned elliptic function (f3-shift), Shifted Rosenbrock's  function 

(f4-shift), and Shifted Rastrigin's  function (f5-shift).  The first three functions are unimodal functions 

and the last two are multi-modal functions.  The equations, dimension and the range of the 

variables are given in Table VI.  The experimental result in terms of the mean cost value, best cost 

value, standard deviation, t-value and convergence rate are summarized in Table VII and Fig. 10.  

The basic experimental setup is the same as that mentioned in Section III, A.1.  The shape 

parameters of the wavelet mutation for f1-shift to f4-shift are set at 5, and that for f5-shift is set at 2.  The 

probability of mutation for HPSOWM, HPSOM, and HGAPSO is set at 0.2 for all functions, which 

is chosen by trial and error through experiments for good performance.  From the table and the 

figure, we can see that HPSOWM, HPSOM, and HGAPSO show better performance in terms of 

the mean cost value and standard deviation than HSPSO and SPSO.  Based on this observation, we 

can see that when the PSO is without mutation operation (HSPSO and PSO), it is hard to solve the 

optimization problems with the global optimum points shifted and rotated.  Comparing with the 

PSO with mutation operation (HPSOWM, HPSOM, and HGAPSO), the performance of 

HPSOWM is the best in terms of the mean value, standard deviation and convergence rate. 

D. Sensitivity of the shape parameter for wavelet mutation 

The mean cost values offered by HPSOWM with different values of the wavelet mutation’s 

shape parameter wmζ  for all test functions in part A are tabulated in Table VIII.  The functions are 

tested by using wmζ = 0.2, 0.5, 1, 2, and 5.  In this experiment, the parameter g is fixed at 10000. If 
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the optimization problem needs a more significant mutation to reach the optimal point, a smaller 

wmζ  should be used.  Conversely, if HPSOWM needs to perform the fine-tuning faster, a larger 

wmζ  should be used.  For example, the function f1 is a sphere model which is smooth and 

symmetric.  Searching algorithms should be fast to jump to the area near the global optimum and 

then perform fine-tuning.  Therefore, a larger wmζ  can be set ( wmζ =5) so that HPSOWM will 

perform fine-tuning faster.  On the other hand, wmζ  can be set as 0.2 for f3 (step function problem) 

where the mutation operation is playing a significant role at the later stage.  In some cases, wmζ ’s 

value is not very critical, e.g. in f7 and f11.  For f7, the mean cost value for different values of wmζ  is 

nearly the same.  (The best performance is obtained when wmζ =0.5 because the standard deviation 

of the HPSOWM for wmζ = 0.5 is the smallest.)  However, in some cases, the value of the parameter 

wmζ  is sensitive to the performance of the searching, e.g. in f1 and f16.  In conclusion, no formal 

method is available to choose the value of the parameter wmζ , it depends on the characteristics of 

the optimization problems. 

E. Sensitivity of the parameter “g” for wavelet mutation 

The mean cost values offered by HPSOWM with different values of the wavelet mutation’s 

parameter g for all test functions are tabulated in Table IX.  The functions are tested by using g = 

100, 1000, 10000, and 100000.  In this experiment, the parameter wmζ  is fixed at 5.  If we want a 

smaller value of the upper limit (searching limit) of the particle σ’s mutated element, a larger value 

of g should be used.  In some case, the parameter g is not very sensitive, such as f1-f3, f5-f8, f10-f14, 

and f16-f18.  The mean cost values with different value of g have no significant difference.  However, 

in some case, such as f9, the value of the parameter g is sensitive to the performance of  HPSOWM.  

In f9, the mean cost value is 5.1478×10−3 when g = 100 and the mean cost value is 1.3275×10−3 

when g = 100000.  The difference of them is around 4 times.  In conclusion, similar to the 

parameter wmζ , no formal method is available to choose the value of the parameter g, and it 

depends on the characteristics of the optimization method.  Comparing with the sensitivity of the 

shape parameter wmζ , the parameter g is less sensitive to the performance of the searching.  With 

the results in Table IX, we can see that g = 10000 give a better performance in general.  As mention 
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in section II, we suggest fixing one parameter and adjusting another parameter to control the 

monotonic increasing function.  By doing so, it is more convenient to find a good setting.  Thus, we 

fix the parameter g to 10000 and adjust the shape parameters wmζ  to obtain an optimal monotonic 

increasing function for the wavelet mutation operation. 

IV. INDUSTRIAL APPLICATIONS OF HYBRID PSO 

In this section, three industrial application examples on solving some load flow problems 

(multi-contingency transient stability constrained optimal power flow problem and economic load 

dispatch with valve-points loading problem), modelling development of fluid dispensing process 

for electronic packaging, and design of a neural network based controller, are used to illustrate the 

performance and applicability of the proposed hybrid PSO. 

A. Application I: Load flow problems  

In this section, two application examples on load flow problems are given to show the 

performance of HPSOWM.  The problems are multi-contingency transient stability constrained 

optimal power flow (MC-TSCOPF) and economic load dispatch with valve-points loading 

(ELD-VPL).  Load flow problem is a multi-modal problem, which is suitable to be solved by PSO. 

A.1. Multi-contingency transient stability constrained optimal power flow (MC-TSCOPF) 

It aims to achieve an optimal solution of a specific objective function, such as fuel cost, 

network loss, etc. by setting some system control variables, while ensuring the system to withstand 

specified contingencies (disturbances) and reach an acceptable steady-state operating condition 

[29]. On solving the MC-TSCOPF problem, the difficulty mainly comes from the non-convexity 

nature of OPF and the nonlinear differential-algebraic equations which describe the transient 

stability constraints of the power system. Nonlinear and semi-definite programming [30-31] 

techniques have been proposed to solve the MC-TSCOPF problem. However, not only their 

formulation is complex and heavily tied to the system models, but also they rely on convexity to 

obtain the global optimum solution and as such are forced to simplify some conditions in order to 

ensure convexity [32].  Similar to MC-TSCOPF problems, reactive power and voltage control 

problems, that are also mixed-integer nonlinear optimization problems, can be solved by 
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MC-TSCOPF with more promising results than the tested methods [47]. Here, a global 

optimization method, such as PSO, is a good tool for handling the MC-TSCOPF problem. 

A.1.1 Mathematical model for MC-TSCOPF 

The problem of MC-TSCOPF is mathematically defined as follows. 

min ( )yx,f  (22) 
such that 
      ( ) 0, =yxg  (23a) 

( ) 0, ≤yxH  (23b) 
( )( ) Ttt ∈≤ ,0,yxU  (23c) 

where ( )tx  is a dependent vector which includes active and reactive power of the swing bus, 

voltage angle and reactive power of the generator buses, and voltage angle and magnitude of the 

load buses; [ ) ( ]eclcl ttttT ,,0 ∪=  is the transient period from the occurrence of the disturbance at 

time 0t  to the clearing time clt  and then to the ending time et ; x represents the initial value of ( )tx  

at t = 0. y is a control which includes the active power and voltage magnitude of the generator buses, 

the voltage angle and magnitude of the swing bus, and the tap position of load tap changers (LTCs). 

( )⋅f  can be expressed as the total generation cost, total network loss, corridor transfer power, total 

cost of compensation, etc. g is the set of equality constraints which are usually the power flow 

constraints for a specified operating condition. H is the set inequality constraints for the 

steady-state security limits like bus voltage magnitude limits, generator power limits, thermal 

limits for transmission lines, etc. The dynamic security constraints set U is infinite in the functional 

space. For more details, readers are referred to Mo et al. [33]. 

 Since the equality constraints g are imposed implicitly by the power flow calculation 

incorporated within the algorithm, and the inequality constraints H is directly satisfied by the PSO, 

the MC-TSCOPF can be formulated as a penalty function problem: 

( ) ( ) ( )( )[ ]{ }2,max,min~ yxUyxx tfF β+= . (24) 

 Generally, transient stability constraints can be considered as hard constraints that should 

not be violated whilst the static constraints are soft in nature that slight violation could be tolerated. 

Comparing with other constraint handling approaches [34-35], the penalty function offers a simple 
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and flexible strategy to effectively deal with mixed hard and soft constraints. In addition, there is 

no need to have separate penalty factors for each type of constraints. In (24), any transient 

instability would introduce a huge angle deviation and thus produce a large violation and 

discrimination even though the same penalty factor is used for all type of violations. Typically, 

1000=β works very well in most power systems [33]. 

A.1.2. Case study 

As a case study of solving the optimal power flow problems with stability constraints, the 

New England 39-bus system is used to demonstrate the effectiveness and robustness of the 

proposed hybrid PSO based approach for solving the MC-TSCOPF problems. For comparison 

purpose, HPSOM [1], HGAPSO [17], HGPSO [16], and SPSO [9] are also used in this case study. 

The system data of the power system are collected in [36-37]. The New England 39-bus test system 

comprises 10-generator, 39-bus, and 46-line. The Power System Toolbox [36] is employed to 

perform time-domain transient stability simulations for determining the generator rotor trajectories. 

The time step adopted is 0.01s and the integration time interval is fixed at 1.5s. The total load for 

the operating condition considered is 6,098 MW and 1,409 MVAR. There are three on load tap 

changers connecting buses 11-12, 12-13 and 19-20.  

After a complete scan of all possible single line fault contingencies, the following two 

conflicting contingencies were identified. 

Contingency 1: A three phase fault occurred at the end of line 26-27 near bus 26. The fault was 

cleared by tripping the line at bus 26 after 110 ms and at bus 27 after 120 ms. 

Contingency 2: A three phase fault occurred at the end of line 16-17 near bus 16. The fault was 

cleared by tripping the line at bus 16 after 80 ms and at bus 17 after 100 ms.   

The case of the transient stability constrained OPF with contingency 1 and 2 is considered.  

The basic settings of the parameters of the PSOs are the same as those in Section III.  The number 

of iteration is set at 150.  The dimension of this case is 22.  The probability of mutation ( mp ) and 

the shape parameter of the wavelet mutation ( wmζ ) are set at 0.1 and 0.5 respectively.  The shape 

parameter of the wavelet mutation wmζ  is chosen by trial and error through experiments for good 
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performance.  In this case, wmζ  = 0.2, 0.5, 1, 2, and 5 are tried.  Among them, wmζ  = 0.5 gives the 

best result.  The experimental results are tabulated in Table X, and the comparison between 

different PSOs is shown in Fig. 11.  The table shows that the mean cost value, the best cost value 

and the standard deviation offered by HPSOWM are the smallest. The small standard deviation of 

HPSOWM implies it provides a stable and quality solution (solution is robust). Also the t-values 

between HPSOWM and other optimization methods are higher than 2.06, and thus HPSOWM is 

significantly better with a 98% confidence level.  From these results, we can see that the proposed 

HPSOWM provides a stable and quality solution for the multi-contingency transient stability 

constrained optimal power flow problem. 

A.2. Economic load dispatch with valve-points loading (ELD-VPL) 

Economic load dispatch (ELD) is a method to schedule power generator outputs with respect 

to the load demands and to operate a power system economically, so as to minimize the operation 

cost of the power system.  The input-output characteristics of modern generators are nonlinear by 

nature because of the valve-point loadings and rate limits.  Thus the characteristics of ELD-VPL 

problems are multimodal, discontinuous and highly nonlinear.  PSO has been employed to solve 

the ELD-VPL problem. 

A.2.1 Mathematical model for ELD-VPL 

The ELD-VPL problem can be formulated into the following objective function: 

( )∑
=

n

i
Li i

PCMin
1

, (25) 

where ( )
iLi PC  is the operation fuel cost of generator i, and n denotes the number of generators.  The 

problem is subject to balance constraint and generating capacity constraints as follows:  

∑
=

−=
n

i
LossL PPD

i
1

,  (26) 

max,min, iii LLL PPP ≤≤ , i = 1, 2,… , n (27) 

where D is the load demand, 
iLP is the output power of the i-th generator, LossP  is the transmission 

loss, 
max,iLP  and 

min,iLP  are the maximum and minimum output powers of the i-th generator 
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respectively. 

The operation fuel cost function with valve-point loadings of the generators is given by, 

( ) ( )( )
iiiii LLiiiLiLiLi PPfecPbPaPC −××+++=

min,
sin2 , (28) 

where ia , ib , and ic , are coefficients of the cost curve of the i-th generator, ie  and if  are 

coefficients of the valve-point loadings.  (The generating units with multivalve steam turbines 

exhibit a greater variation in the fuel-cost functions.  The valve-point effects introduce ripples in 

the heat-rate curves.) 

A.2.2 PSO for ELD-VPL 

In this section, PSO is used to solve the ELD problem.   The particle (solution representation) 

is defined as follows:  

[ ]
1321 −

=
nLLLL PPPP Lp ,             (29) 

where n denotes the number of generators and 
,min ,maxi i iL L LP P P≤ ≤ , i = 1, 2, …, n.  From (26), we 

have, 

1

1
n i

n

L L Loss
i

P D P P
−

=

= − +∑ .             (30) 

In this paper, the power loss is not considered. So, 

1

1
n i

n

L L
i

P D P
−

=

= −∑ .            (31) 

To ensure 
nLP  falls within the range [ ]

mann LL PP
,min,

, , the following conditions are considered: 

if 
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It should be noted from (32) and (33) that if the value of 
nLP is outside the constraint boundary.  The 

exceeding portion of the power will be shared by other generators in order to make sure that the 

output powers of all generators are within the safety range.  The objective is to minimize the cost 
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function of (28) by using PSO. 

A.2.3. Case study 

In this section, different hybrid PSO methods are applied to a 40-generator system, which is 

adopted as an example in [46].  The system is a very large one with nonlinearities. The load 

demands (D) is 10500MW.  HPSOWM, HPSOM [1], HGAPSO [17], HGPSO [16], and SPSO [9] 

are used to solve the ELD-VPL problem.  The basic settings of the parameters of the PSOs are the 

same as those in Section III.  All the simulation results are averaged ones out of 50 runs.  The 

dimension of this case is 39.  The probability of mutation ( mp ) and the shape parameter of the 

wavelet mutation ( wmζ ) are set at 0.1 and 0.5 respectively.  Similar to the example MC-TSCOPF, 

the shape parameter of the wavelet mutation wmζ  is chosen by trial and error through experiments 

for good performance.  In this case, wmζ  = 0.2, 0.5, 1, 2, and 5 are tried.   For all approaches, the 

number of iterations is 2000.  The statistical results in terms of the mean cost value, best cost value, 

standard deviation and the t-test value, the running time and the ranking are shown in Table XI.  

The convergence rates of different PSOs are shown in Fig. 12.  From Table XI, we can see that 

HPSOWM is the best in terms of costs, t values, and standard deviations.  The average cost for the 

40-generator system is $122844.4 and the best (minimum) cost is $121915.3.  All t values are 

higher than 2.06, implying that HPSOWM is significantly better, with a 98% confidence level, than 

the other hybrid PSOs.  Thanks to the wavelet properties, the stability of the optimization is 

improved and the smallest standard deviation is obtained by using HPSOWM. To conclude, both 

the solution quality and stability of HPSOWM are better.  

B. Application II: Modelling the fluid dispensing for electronic packaging (MFD-EP) 

Fluid dispensing is a manufacturing process by which fluid materials are delivered to 

substrates, boards or work-pieces in a controllable manner. This process is widely used in various 

packaging processes in the electronics and semiconductor manufacturing industry such as 

integrated circuit encapsulation, die bonding and surface mount technology. In the competitive 

market of today, this manufacturing process needs to be well controlled at each of the many 

processing steps in the manufacturing line. The process directly affects the overall quality of the 

finished product, as well as the throughput of the production line. All the variables controlling the 
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desired outputs in a given process need to be understood and optimized for tight control. To 

achieve this, it is necessary to develop an accurate model for describing the process. 

Neural networks have been used to develop the process models for various manufacturing 

processes such as abrasive flow machining [38], grinding [39] and die casting [40]. They have the 

capability to transform a nonlinear mathematical model into a simplified black-box structure. The 

advantages of using the neural network approach to process modelling are that it can provide 

learning and generalization abilities for nonlinearities.  In this paper, a feed-forward neural 

network trained by the hybrid PSOs for modelling fluid dispensing for electronic packaging is 

given to illustrate the merits of the proposed PSO. 

B.1. Fluid dispensing process for electronic packaging 

Fluid dispensing is an important and popular process for electronics packaging. In this paper, 

modelling the fluid dispensing for microchip encapsulation is studied. Normally, silicon chips are 

covered using an X-Y numerically controlled dispensing system that delivers fluid encapsulant 

through a needle. The material is commonly dispensed in a pattern, working from the centre out. A 

fluid dam around the die site and second wire bond points can be made to contain the flow material 

and make a uniform shape as shown in Fig. 13. 

Modelling the fluid dispensing process is critical for understanding the process behaviour 

and achieving the process optimization. To develop a model for relating the process parameters to 

the quality characteristics of the fluid dispensing, significant process parameters and quality 

characteristics have to be identified first. With the assistance from the supporting company of this 

research, three significant process parameters and their normal operating ranges were identified as 

follows. 

♦ The compressed air pressure (1 bar to 4 bar), 1x  

♦ The pump motor speed (400 rpm to 1000 rpm), 2x  

♦ The height between the substrate and the needle (250 to 2000 steps of stepping motor), 3x . 

Two quality characteristics were studied, which are the encapsulation weight (mg), y, and the 

encapsulation thickness (mm), z. 
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B.2. Modelling with neural network 

A three-layer feed-forward neural network is used to model the fluid dispensing process. Its 

structure, as shown in Fig. 14, consists of an input layer in which the input vectors (including 

process parameters 1x , 2x  and 3x ) are fed, the output layer which produces the output response 

(either one of the quality characteristics y or z), and one hidden layer in between. The hidden layer 

links the input and output layers together and allow for complex, nonlinear interactions among the 

inputs to produce the desired output. 

 Referring to Fig. 14, the input-output relationship of the proposed three-layer neural 

networks for the encapsulation weight y and the encapsulation thickness z can be written as 

follows: 

( ) 2
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where ( )'or  hh nn  denotes the number of the hidden nodes; ( )'or  jj ww , j = 1, 2, …, ( )'or  hh nn , 

denotes the weight of the link between the j-th hidden node and the output node; ( )'or  jiji vv ,  i = 1, 

2, 3 and j = 1, 2, …, ( )'or  hh nn , denotes the weight between the i-th input node and the j-th hidden 

node; ( )'11
jj b or b  and ( )'22 b or b  denote the biases for the j-th hidden node and output node 

respectively; logsig(.) denotes the logarithmic sigmoid function: 

( ) .,
1

1
ℜ∈

+
= − αα αe

logsig  (36) 

 To develop the neural network based model for the fluid dispensing process, values of the 

neural network parameters (i.e.: jw , jiv , 1
jb  and 2b  with i = 1, 2, 3 and j = 1, 2, …, hn ) and the 

number of hidden-nodes ( hn ) used in the hidden layer need to be determined. These two settings 

are important because they affect the prediction accuracy of the neural network based process 

model. 



 
 

 

 

27

 To tune the parameter values of the network, we use the hybrid PSO to minimize the mean 

square error (MSE) by setting the swarm particle to be [ ]21 bbwv jjji  for all i and j. The MSE 

for the encapsulation weight y and for the encapsulation thickness z are defined as follows: 

MSEy

( )
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n

k
k

y
k

n

yd
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∑
=

−
= 1

2

 (37) 

MSEz
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where y
kd and z

kd  denotes the desired value of the encapsulation weight y and the encapsulation 

thickness z respectively; patn  denotes the number of patterns.  After training, the values of these 

network parameters will be fixed during the operation.  The total number of tuned parameters 

( paran ) of the neural network is the sum of the number of parameters between the input and hidden 

layers, and the number of parameters between the hidden and output layers.  Hence, 

( ) ( ) outhhinpara nnnnn 11 +++=  (39) 

where inn and outn  denote the number of input nodes and number of output nodes respectively.  For 

this application, 3=inn , 1=outn . Thus, paran  = 15 +hn . 

B.3. Case study 

 MFD-EP is a multimodal system.  To train the neural network of the MFD-EP system, 87 

experimental data of encapsulation weight and encapsulation thickness are used.  The training 

patterns consist of the input vectors and their corresponding expected outputs.  In order to test the 

learning ability of the neural network trained by the proposed HPSOWM, a set of 9 testing patterns 

is used.  For comparison purpose, the neural network models are also trained by HPSOM [1], 

HGAPSO [17], HGPSO [16], and SPSO [9].  The basic settings of the parameters of the PSOs are 

the same as those in Section III. The initial ranges of the weights of the neural networks for the 
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encapsulation weight and the encapsulation thickness are bounded between −4 and 4.  The number 

of iteration is set at 2000.  The probability of mutation ( mp ) and the shape parameter of the wavelet 

mutation ( wmζ ) are set at 0.1 and 1 respectively.  The number of hidden nodes ( hn ) of the neural 

network for the encapsulation weight and the neural network for the encapsulation thickness are set 

at 5 and 7 respectively.  In other words, the total numbers of parameters (dimension) are 26 and 36 

respectively.  The training results are tabulated in Table XII, and the comparisons between 

different PSOs are shown in Fig. 15 and Fig. 16.  The table shows that the mean value, best cost 

value and standard deviation offered by HPSOWM are the smallest.  Also the t-values between 

HPSOWM and the other optimization methods are higher than 2.06, and thus HPSOWM is 

significantly better than the other methods with a 98% confidence level.  The computational time 

of HPSOWM is near to that of the other PSOs. (HGPSO needs much more time than others).  Nine 

validation tests are carried out to evaluate the generalization ability of the neural networks with 

different PSO methods.  Table XIII (a) and (b) show the validation results yielded by the neural 

network models for the encapsulation weight and the encapsulation thickness respectively.  From 

these tables, HPSOWM gives the smallest mean error and standard deviation.  The proposed 

HPSOWM indeed provides a quality and stable solution for tuning the neural network model for 

the fluid dispensing process in electronic packaging.  

C. Application III: Neural network-based controller (NN-BC) 

 In this application, a neural network-based controller realized by a three-layer feed-forward 

fully-connected neural network is proposed to stabilize a mass-spring-damper system [41].  The 

open-loop system can be described as follows. 

( ) )()(13.05387.1)(1.0)(1.0)(27.1)( 23 tutxtxtxtxtx &&&& −+−−−=  (40) 

where u is the force, x(t) and )(tx&  are the displacement and velocity of the mass respectively.  This 

problem is considered as a multi-modal optimization problem.  A two-input-two-output neural 

network with 4 hidden nodes is employed to close the feedback loop.  The total number of network 

parameter is 22.  Denoting the outputs of the neural network as y1(t) and y2(t), the neural 

network-based controller takes x(t) and )(tx&  as the inputs and a scalar s as the gain to produce the 

control signal u(t).  Hence, the neural-network-based controller is defined as follows. 
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( ))()()()()( 21 txtytxtystu &+=  (41) 

The control objective is to stabilize the mass-spring-damper system of (40), i.e. x(t) → 0 and )(tx&  

→ 0 as t → ∞.  To measure the system performance, we consider the following scalar performance 

index [42]. 

tttJ d)()(
5

0

T∫= Wxx  (42) 

where [ ]T)()()( txtxt &=x  and ⎥
⎦

⎤
⎢
⎣

⎡
=

10
0500

W .  It can be seen that the performance index J is 

contributed by the integral of the energy of the system state vector of x(t).  A smaller value of J 

indicates a better system performance.  By employing different weighting matrix W, the 

contribution of the system states to the performance index can be changed to meet different system 

performance specification.  In this example, the weight for x(t) is 500 times higher than that of )(tx&  

as the response of x(t) is more concerned.  The proposed HPSOWM is employed to minimize the 

values of J by searching the best values of the connection weights of the neural network and the 

scalar of s under the initial system state 
T

0
45

22)0( ⎥⎦
⎤

⎢⎣
⎡=

πx . 

 For comparison purpose, the neural-network-based controller is also trained by HPSOM [1], 

HGAPSO [17], HGPSO [16], and SPSO [9].  The basic settings of the parameters of the PSOs are 

the same as those in Section III.  The initial values of the connection weights and the scalar s are 

generated randomly in the ranges of −1 to 1 and −200 to 200 respectively.  The number of iteration 

is set at 50.  The probability of mutation ( mp ) and the shape parameter of the wavelet mutation 

( wmζ ) are set at 0.05 and 0.2 respectively.  50 runs of training for each learning method are 

conducted.  The training results for various learning methods are tabulated in Table XIV, which 

shows the mean cost values, best cost values and standard deviations offered by various learning 

methods.  It can be seen that HPSOWM offers the best performance.  Also the t-values between 

HPSOWM and other optimization methods are higher than 2.06, and thus HPSOWM is 

significantly better than other methods with a 98% confidence level. 
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V. CONCLUSION 

In this paper, we have proposed a hybrid PSO incorporated with wavelet mutation 

(HPSOWM). Our objective is to apply the properties of the wavelet theory to enhance PSO, so that 

it can explore the solution space more effectively on reaching the solution. Simulation results have 

shown that the proposed wavelet mutation based hybrid PSO is a useful tool to solve optimization 

problems. Thanks to the properties of the wavelet, the solution stability and quality of the hybrid 

PSO are improved.  On solving a suite of benchmark test functions, HPSOWM gives better results 

than the methods of HPSOM, HGAPSO, HGPSO and SPSO. Also, a faster convergence speed can 

be achieved by HPSOWM.  Comparing their run time (computation time), HGPSO consumes more 

time because of the process of the gradient descent.  The other methods, including HPSOWM, 

consume almost the same amount of time.  To illustrate the applicability of the proposed hybrid 

PSO, three industrial applications are studied.  From the obtained results, HPSOWM shows better 

performance than other existing PSO methods. 
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(a) 

 

(b) 

Fig. 1.  Pseudo code for (a) SPSO and (b) HPSOM (Hybrid PSO with mutation operation) 

begin 
         t→0                    // iteration number 
         Initialize X(t)     // X(t): Swarm for iteration t 
         Evaluate f(X(t)) // f(⋅): fitness function 
while (not termination condition) do 
           begin 

t→t+1 
Perform the process of SPSO (shown in Fig. 1a) 
Perform mutation operation (6) with pm  // pm  : probability of mutation 
Reproduce a new X(t) 
Evaluate f(X(t)) 

            end 
end  

begin 
         t→0                    // iteration number 
         Initialize X(t)     // X(t): Swarm for iteration t 
         Evaluate f(X(t)) // f(⋅): fitness function 
while (not termination condition) do 
           begin 

t→t+1 
// Process of SPSO // 

Update velocity v(t) and position of each particle x(t) based on (2) − (5) respectively 
if v(t)>vmax 
v(t)= vmax 
end 
if v(t)<−vmax 
v(t)= − vmax 
end 

// End of the process of SPSO // 
Reproduce a new X(t) 
Evaluate f(X(t)) 

            end 
end  
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Fig. 2.  Pseudo code for HPSOWM. 
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Fig. 3.  Morlet wavelet. 

begin 
         t→0                    // iteration number 
         Initialize X(t)     // X(t): Swarm for iteration t 
         Evaluate f(X(t)) // f(⋅): fitness function 
while (not termination condition) do 
           begin 

t→t+1 
Perform the process of SPSO (shown in Fig. 1) 
// Process of Wavelet mutation operation 
Perform mutation operation with pm 

Update ( )tx p
j  based on (15)-(18) and (20) 

//End of the process of wavelet mutation operation
Reproduce a new X(t) 
Evaluate f(X(t)) 

            end 
end 
  

( )xψ
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Fig. 4.  Morlet wavelet dilated by different values of the parameter a (x-axis: x, y-axis: )(0, xaψ .) 
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 Fig. 5. Effect of the shape parameter wmζ  to a with respect to Tt . 
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 Fig. 6. Effect of the parameter g to a with respect to Tt . 
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Fig. 7.  Comparisons between different PSO methods for unimodal functions. 
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Fig. 8.  Comparisons between different PSO methods for multimodal functions with a few local 

minima. 
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Fig. 9.  Comparisons between different PSO methods for multimodal functions with many local 

minima. 
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Fig. 10.  Comparisons between different PSO methods for benchmark functions with shift. 
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Fig. 11.  Comparisons between different PSO methods for MC-TSCOPF. 
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Fig. 12.  Comparisons between different PSO methods for ELD-VPL. 
 

 

Fig. 13.  Encapsulation of microchip. 
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Fig. 14.  Structure of the feed-forward neural network. 
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Fig. 15.  Comparisons between different PSO methods for MFD-EP (encapsulation weight). 
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Fig. 16.  Comparisons between different PSO methods for MFD-EP (encapsulation thickness).
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TABLE I  BENCHMARK TEST FUNCTIONS  

Test function Domain range Optimal point 
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TABLE II  COMPARISON BETWEEN DIFFERENT PSO METHODS FOR BENCHMARK TEST FUNCTIONS 

(CATEGORY 1). ALL RESULTS ARE AVERAGED ONES OVER 50 RUNS (RANK: 1-BEST, 5-WORST) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean 0.0015 0.2732 10834.8084 1586.8234 18217.2796
Best 0.0004 0.0724 121.1258 59.7069 15.8949 
Std Dev 0.0010 0.1493 18020.5712 1368.0663 26642.2440

f1 

(×10−5) 
T=1000 Rank 1 2 4 3 5 

Mean 1.0030 1.4095 1.8935 3.0879 3.3426 
Best 0.5441 0.8952 1.1761 0.1428 2.1794 
Std Dev 0.2155 0.2653 0.3300 2.8497 0.4905 

f2 

(×100) 
T=1000 Rank 1 2 3 4 5 

Mean 0.8400 3.2000 5.0200 1140.22 32.0800 
Best 0.0000 0.0000 0.0000 933.000 13.0000 
Std Dev 0.9116 2.6186 11.7603 87.6000 24.1313 

f3 

(×100) 
T=500 Rank 1 2 3 5 4 

Mean 0.5126 0.7845 0.5496 44.9282 0.7065 
Best 0.1783 0.2405 0.2934 16.0263 0.2758 
Std Dev 0.1687 0.2162 0.1341 17.2645 0.2295 

f4 

(×10−2) 
T=1000 Rank 1 4 2 5 3 

Mean 0.2587 0.2684 1.9689 9.1558 2.6777 
Best 0.1057 0.0504 1.0284 0.5074 1.5338 
Std Dev 0.1070 0.1129 0.4418 14.6778 0.6149 

f5 

(×100) 
T=1000 Rank 1 2 3 5 4 

Mean 0.0872 0.9139 19560.3257 121.66×105 18189.8149
Best 0.0224 0.2745 2067.5365 91.52×105 775.5302 
Std Dev 0.0440 0.5361 16787.6184 11.21×105 18356.8947

f6 

(×10−5) 
T=1000 

Rank 1 2 4 5 3 
Mean −1.0000 −0.9949 −0.9999 −0.3060 −0.9999 
Best −1.0000 −1.0000 −1.0000 −1.0000 −1.0000 
Std Dev 1.00×10−9 0.0364 1.36×10−5 0.4609 4.02×10−5 

f7 

(×100) 
T=100 

Rank 1 4 2 5 3 
Overall Ranking 
(Average ranking number) 

1 (1.0) 2 (2.57) 3 (3.0) 5 (4.57) 4 (3.86) 
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TABLE III  COMPARISON BETWEEN DIFFERENT PSO METHODS FOR BENCHMARK TEST FUNCTIONS 

(CATEGORY 2). ALL RESULTS ARE AVERAGED ONES OVER 50 RUNS (RANK: 1-BEST, 5-WORST) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean 0.9980 0.9980 0.9980 0.9980 0.9980 
Best 0.9980 0.9980 0.9980 0.9980 0.9980 
Std Dev 0.0000 0.0000 0.0000 0.0000 0.0000 

f8 

(×100) 
T=100 Rank 1 1 1 1 1 

Mean 1.0829 4.3140 3.0503 3.1956 1.4730 
Best 0.5844 0.6486 0.4209 0.3091 0.4041 
Std Dev 2.1739 9.8862 6.4610 9.8017 3.9022 

f9 

(×10−3) 
T=500 Rank 1 5 3 4 2 

Mean 245.5877 245.5961 245.5878 249.7721 245.5879 
Best 245.5858 245.5858 245.5858 245.5858 245.5858 
Std Dev 0.0039 0.0179 0.0060 25.2583 0.0070 

f10 

(×10−5) 
T=100 Rank 1 4 2 5 3 

Mean −10316.284 −10316.266 −10316.285 −10316.280 −10316.285
Best −10316.285 −10316.284 −10316.285 −10316.285 −10316.285
Std Dev 0.00008 0.02982 0.00000 0.01093 0.00000 

f11 

(×10−4) 
T=100 

Rank 3 5 1 4 1 
Mean −38627.822 −38627.819 −38627.822 −38609.629 −38627.822
Best −38627.822 −38627.821 −38627.822 −38627.822 −38627.822
Std Dev 0.00000 0.00259 0.00000 17.02938 0.00000 

f12 

(×10−4) 
T=100 

Rank 1 4 1 5 1 
Mean −32934.608 −32577.928 −32744.379 −31597.339 −32818.652
Best −33219.952 −33219.952 −33219.952 −33219.952 −33219.952
Std Dev 512.9276 598.5759 588.3683 1563.1222 577.3916 

f13 

(×10−4) 
T=100 

Rank 1 5 3 4 2 
Overall Ranking  
(Average ranking 
number) 

1 (1.33) 5 (4.00) 3 (1.83) 4 (3.83) 2 (1.67) 
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TABLE IV  COMPARISON BETWEEN DIFFERENT PSO METHODS FOR BENCHMARK TEST FUNCTIONS 

(CATEGORY 3). ALL RESULTS ARE AVERAGED ONES OVER 50 RUNS (RANK: 1-BEST, 5-WORST) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean 0.0001 0.0097 5717.5165 29541.424 73998389.7 
Best 0.0000 0.0033 70.3882 1448.468 242.9188 
Std Dev 0.0001 0.0089 6526.1476 18996.139 224284238.1 

f14 

(×10−5) 
T=1000 Rank 1 2 3 4 5 

Mean 10.2854 16.5169 19.3510 253.4083 20.7363 
Best 3.9828 5.9698 10.1299 174.0025 12.6420 
Std Dev 3.3522 5.8398 5.5421 26.1654 5.3895 

f15 

(×100) 
T=500 Rank 1 2 3 4 5 

Mean 0.0001 0.0028 462.4819 13500.614 4404.184 
Best 0.0000 0.0004 15.6250 495.7651 0.8262 
Std Dev 0.0001 0.0032 482.2762 12956.985 10251.732 

f16 

(×10−5) 
T=1000 Rank 1 2 3 5 4 

Mean 1.0607 13.8681 22884.375 1784083.03 49893.949 
Best 0.4919 6.6542 1022.202 1637571.42 153.683 
Std Dev 0.3120 3.8260 39045.653 62021.418 62724.315 

f17 

(×10−5) 
T=1500 Rank 1 2 3 5 4 

Mean −3928.83 −3561.22 −3495.37 −3136.51 −3586.37 
Best −4189.83 −4071.39 −3854.25 −3951.43 −4071.39 
Std Dev 176.65 231.14 239.78 368.55 240.56 

f18 

(×100) 
T=500 

Rank 1 3 4 5 2 
Overall Ranking 
(Average ranking 
number) 

1 (1) 2 (2.2) 3 (3.2) 5 (4.6) 4 (4.0) 
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TABLE V  T-VALUE BETWEEN HPSOWM AND THE OTHER PSO METHODS 

Function
s 

t-value between 
HPSOWM and 
HPSOM 

t-value between 
HPSOWM and 
HGAPSO 

t-value between 
HPSOWM and 
HGPSO 

t-value between 
HPSOWM and 
SPSO 

f1  12.87  4.25  8.20  4.84  
f2 8.41 15.98  5.16 30.88  
f3 6.02  2.51  91.97  9.15  
f4 7.01  1.21  18.19  4.81  
f5 0.44  26.60  4.29  27.41  
f6 10.87  8.24  77.78  7.01  
f7 0.99  51.99  10.65  17.59  
f8 N/A N/A N/A N/A 
f9 2.26  2.04  1.49  0.62  
f10 N/A N/A 1.17  N/A  
f11 N/A N/A N/A N/A 
f12 N/A N/A 7.55 N/A 
f13 3.20  1.72  5.75  1.06  
f14 7.63  6.19  11.00  2.33  
f15 6.54  9.90  65.17  11.64  
f16 5.96  6.78  7.37  3.04  
f17 23.59  4.14  203.40  5.62  
f18 8.94  10.29  13.71  8.11  
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TABLE VII COMPARISON BETWEEN DIFFERENT PSO METHODS FOR BENCHMARK TEST FUNCTIONS 

WITH SHIFT. ALL RESULTS ARE AVERAGED ONES OVER 50 RUNS (RANK: 1-BEST, 5-WORST) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean (×10−5) 0.0009 0.2461 4.7214 89099×105 3400×105 
Best (×10−5) 0.0003 0.0644 1.7769 21440×105 103.3×105 
Std Dev (×10−5) 0.0008 0.1572 2.1647 23878×105 2958×105 
t-value N/A 11.03  15.42  26.39  8.13  

f1-shift 

Rank 1 2 3 5 4 
Mean 0.8682 4.5085 7.9399 174402.9 495.75 
Best 0.1281 0.9981 2.9045 84910.9 57.91 
Std Dev 0.5374 2.4111 3.5604 55237.5 1142.94 
t-value N/A 10.42  13.89  22.33  3.06  

f2-shift 

Rank 1 2 3 5 4 
Mean (×105) 1.0099 1.8167 1.2154 3.4240 1.9047 
Best (×105) 0.0814 0.0805 0.1793 0.8244 0.3108 
Std Dev (×105) 0.7752 1.4424 0.8864 1.5210 1.4428 
t-value N/A 3.48  1.23  10.00  3.86  

f3-shift 

Rank 1 3 2 5 4 
Mean 40.9443 185.1716 467.6383 21.38×109 54.32×107 
Best 6.5265 12.7814 20.2429 9.42×106 2007.13 
Std Dev 28.9749 295.5604 1087.14 20.19×109 60.77×107 
t-value N/A 3.43  2.77  7.49  6.32  

f4-shift 

Rank 1 2 3 5 4 
Mean 20.5177 98.3374 145.7935 493.3936 125.3497 
Best 15.9857 17.8212 23.4791 408.0382 34.7785 
Std Dev 2.8576 59.2000 47.7815 52.0081 45.3456 
t-value N/A 9.28  18.51  64.20  16.31  

f5-shift 

Rank 1 2 3 5 4 
Overall Ranking 
(Average ranking 
number) 

1 (1.0) 2 (2.2) 3 (2.8) 5 (5.0) 4 (4.0) 



 
 

 

 

50

TABLE VIII  SENSITIVITY OF THE SHAPE PARAMTER FOR WAVELET MUTATION wmζ  
Functions 2.0=wmζ  5.0=wmζ  0.1=wmζ  0.2=wmζ  0.5=wmζ  
f1 (×10−5) 0.9124 0.0752 0.0098 0.0027 0.0015 
f2 (×100) 4.7345 4.2675 3.6765 3.0992 1.0728 
f3 (×100) 0.8400 5.6400 17.22 30.30 31.88 
f4 (×10−3) 5.2763 5.5626 5.5987 5.7988 5.1260 
f5 (×100) 0.3560 0.2768 0.2587 0.7753 1.1901 
f6 (×10−5) 2.3139 0.8078 0.3044 0.1290 0.0872 
f7 (×100) −0.9999 −1.0000 −1.0000 −0.9600 −0.9949 
f8 (×100) 0.9980 0.9980 0.9980 0.9980 0.9980 
f9 (×10−3) 1.0829 1.1684 2.1727 1.4457 2.3767 
f10 (×10−3) 2.4562 2.4559 2.4559 2.4559 2.4559 
f11 (×10−4) −10316.1667 −10316.2804 −10316.2839 −10316.2844 −10316.2845 
f12 (×10−4) −38627.8173 −38627.8211 −38627.8215 −38627.8215 −38627.8215 
f13 (×100) −3.2863 −3.2863 −3.2744 −3.2720 −3.2935 
f14 (×10−5) 0.0397 0.0025 0.0003 0.0001 0.0001 
f15 (×100) 10.2854 16.8148 17.1133 18.1878 18.0486 
f16 (×10−5) 0.0078 0.0009 0.0001 0.1166 0.1257 
f17 (×10−4) 2.3264 0.6486 0.2504 0.1347 0.1061 
f18 (×100) −3928.83 −3578.69 −3574.68 −3582.24 −3572.67 

TABLE IX  SENSITIVITY OF THE PARAMTER G IN WAVELET MUTATION OPERATION 

Functions g = 100 g = 1000 g = 10000 g = 100000 
f1 (×10−5) 0.0019 0.0017 0.0015 0.0016 
f2 (×100) 1.1677 0.9651 1.0728 0.9844 
f3 (×100) 35.70 34.30 31.88 35.00 
f4 (×10−3) 8.4967 7.5472 5.1260 8.4817 
f5 (×100) 1.3872 1.7286 1.1901 1.2979 
f6 (×10−5) 0.1056 0.1270 0.0872 0.0983 
f7 (×100) −0.9999 −0.9999 −0.9949 −0.9999 
f8 (×100) 0.9980 0.9980 0.9980 0.9980 
f9 (×10−3) 5.1478 2.6208 2.3767 1.3275 
f10 (×10−3) 2.4559 2.4559 2.4559 2.4558 
f11 (×10−4) −10316.2844 −10316.2844 −10316.2845 −10316.2844 
f12 (×10−4) −38627.8215 −38627.8215 −38627.8215 −38627.8215 
f13 (×100) −3.2625 −3.2507 −3.2935 −3.2744 
f14 (×10−6) 0.0015 0.0005 0.0010 0.0003 
f15 (×100) 24.2803 23.3822 18.0486 26.8642 
f16 (×10−5) 0.1332 0.1301 0.1257 0.1183 
f17 (×10−4) 0.1130 0.1086 0.1061 0.9867 
f18 (×100) −3532.81 −3479.04 −3572.67 −3589.74 
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TABLE X  COMPARISON BETWEEN DIFFERENT PSO METHODS FOR MC-TSCOPF. ALL RESULTS ARE 

AVERAGED ONES OVER 50 RUNS (RANK: 1-BEST, 5-WORST) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean 36452.97 36464.20 36474.90 36877.66 36675.48 
Best 36435.61 36439.66 36442.08 36512.71 36459.85 
Std Dev 8.91 42.81 33.60 245.17 241.33 
t-value N/A 4.46  12.24  6.52  8.73  
Run Time (s) 4814.4 4885.47 4878.11 9766.48 4878.36 

T=150 

Rank 1 2 3 5 4 

 

TABLE XI: COMPARISON BETWEEN DIFFERENT PSO METHODS FOR 40-generator system. ALL 

RESULTS ARE AVERAGED ONES OVER 50 RUNS (RANK: 1-BEST, 5-WORST) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean 122844.4 124350.87 124575.7 126855.7 126074.4 
Best 121915.3 122112.4 122780.0 124797.13 124350.4 
Std Dev 497.44 978.75 906.04 1160.91 1153.11 
t-value N/A 9.70  11.84  22.46  18.19  
Run Time (s) 25.39 23.91 24.22 48.47 23.92 

T=1000 

Rank 1 2 3 5 4 



 
 

 

 

52

 

 

TABLE XII  COMPARISON BETWEEN DIFFERENT PSO METHODS FOR MFD-EP (TRAINING): (A) 

ENCAPSULATION WEIGHT, (B) ENCAPSULATION THICKNESS. ALL RESULTS ARE AVERAGED ONES OVER 50 

RUNS (RANK: 1-BEST, 5-WORST) 

(a) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean (×10−2) 0.1026 0.3521 0.3142 1.6621 0.3724 
Best (×10−2) 0.0426 0.0946 0.0994 0.1462 0.0777 
Std Dev (×10−2) 0.0665 0.2000 0.2152 0.8827 0.3556 
t-value N/A 8.37  6.64  12.46  5.27  
Run Time (s) 99.43 96.19 97.02 191.36 96.20 

T=2000 

Rank 1 3 2 5 4 

 

(b) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean (×10−3) 0.8499 2.7997 2.3234 10.0607 2.2238 
Best (×10−3) 0.5109 1.2551 1.3271 2.6584 0.6843 
Std Dev (×10−3) 0.3068 0.7156 0.5593 6.5832 0.9099 
t-value N/A 17.71  16.33  9.88  10.12  
Run Time (s) 122.23 115.77 116.20 241.80 114.63 

T=2000 

Rank 1 4 3 5 2 
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TABLE XIII  COMPARISON BETWEEN DIFFERENT PSO METHODS FOR MFD-EP (TESTING): (A) 

ENCAPSULATION WEIGHT, (B) ENCAPSULATION THICKNESS. ALL RESULTS ARE AVERAGED ONES OVER 50 

RUNS. 

(a) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Order True value (mg) Predicted value (mg) 
1 72.3 76.84 74.96 76.68 71.75 75.62 
2 43.2 44.87 47.74 44.44 46.47 46.57 
3 87.4 85.36 81.76 84.36 77.56 81.74 
4 37.2 36.57 37.64 36.83 39.91 37.10 
5 75.1 76.21 75.09 75.49 72.85 75.09 
6 59.3 62.16 63.13 62.94 63.74 63.55 
7 115 113.83 111.00 112.67 96.30 111.01 
8 62.4 66.63 68.19 67.11 67.57 68.20 
9 53.1 51.91 53.18 52.45 55.68 54.03 
Mean error (×10−2) 0.1029 0.3035 0.2713 1.7036 0.3909 
Std Dev (×10−2) 0.0553 0.2265 0.2060 0.9546 0.4679 

 

(b) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Order True value (mm) Predicted value (mm) 
1 0.58 0.6146 0.5834 0.5975 0.5638 0.5925 
2 0.48 0.4999 0.5196 0.5104 0.5394 0.5076 
3 0.67 0.6462 0.6068 0.6299 0.5937 0.6198 
4 0.46 0.4686 0.4968 0.4901 0.5244 0.4907 
5 0.62 0.6067 0.5978 0.6038 0.5875 0.6001 
6 0.57 0.5714 0.5768 0.5614 0.5665 0.5642 
7 0.71 0.7372 0.7234 0.7452 0.6213 0.7233 
8 0.53 0.5679 0.5916 0.5840 0.5860 0.5885 
9 0.53 0.5423 0.5595 0.5451 0.5743 0.5538 
Mean error (×10−2) 0.7323 2.5255 2.0302 7.0928 1.9249 
Variance of mse (×10−2) 0.3030 0.8276 0.7395 4.4626 0.7893 
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TABLE XIV  COMPARISON BETWEEN DIFFERENT PSO METHODS FOR NN-BC. ALL RESULTS ARE AVERAGED 

ONES OVER 50 RUNS (RANK: 1-BEST, 5-WORST) 

  HPSOWM HPSOM HGAPSO HGPSO SPSO 
Mean 186.7021 187.8136 188.1021 191.2301 187.9021 
Best 186.2866 186.4617 186.4721 186.9712 186.4704 
Std Dev 0.4781 0.9722 0.8652 2.3138 1.1023 
t-value N/A 7.25  10.01  13.55  7.06  
Run Time (s) 663.14 665.12 657.82 1198.71 651.33 

T=50 

Rank 1 2 4 5 3 
 


