
1036 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

Instruction-Matrix-Based Genetic Programming
Gang Li, Student Member, IEEE, Jin Feng Wang, Kin Hong Lee, Senior Member, IEEE, and

Kwong-Sak Leung, Senior Member, IEEE

Abstract—In genetic programming (GP), evolving tree nodes
separately would reduce the huge solution space. However, tree
nodes are highly interdependent with respect to their fitness. In
this paper, we propose a new GP framework, namely, instruc-
tion-matrix (IM)-based GP (IMGP), to handle their interactions.
IMGP maintains an IM to evolve tree nodes and subtrees sep-
arately. IMGP extracts program trees from an IM and updates
the IM with the information of the extracted program trees. As
the IM actually keeps most of the information of the schemata
of GP and evolves the schemata directly, IMGP is effective and
efficient. Our experimental results on benchmark problems have
verified that IMGP is not only better than those of canonical
GP in terms of the qualities of the solutions and the number
of program evaluations, but they are also better than some of
the related GP algorithms. IMGP can also be used to evolve
programs for classification problems. The classifiers obtained have
higher classification accuracies than four other GP classification
algorithms on four benchmark classification problems. The testing
errors are also comparable to or better than those obtained with
well-known classifiers. Furthermore, an extended version, called
condition matrix for rule learning, has been used successfully to
handle multiclass classification problems.

Index Terms—Classification, condition matrix for rule learning
(CMRL), genetic programming (GP), instruction-matrix-based
genetic programming (IMGP), schema evolution.

I. INTRODUCTION

A S A BRANCH of evolutionary computation (EC), genetic
programming (GP) [1], [19] automatically constructs

computer programs by an evolutionary process. In GP, an indi-
vidual represents an executable program. The program receives
the inputs from the problem and gives the output as the answer
to the problem. The objective of GP is to evolve an optimal
solution for the problem. GP has successfully produced results
that are competitive with human solutions [2]. In canonical
GP (CGP) proposed by Koza [19], an individual is a LISP-
like program tree. The tree is composed of tree nodes of either
functions or terminals.

If tree nodes are viewed as nominal variables, CGP can be
treated as a combinatorial optimization problem. CGP has a
huge solution space, and it is NP-hard. To make things worse,
the number of the tree nodes in CGP is not fixed, so the
size of the solution space may exponentially increase during
evolution. It is thus quite common that CGP has to evaluate
a large number of individuals before it can find the optimal
program. In addition, evaluating an individual in CGP is usually

Manuscript received June 18, 2007; revised December 1, 2007. This work
was supported in part by Research Grants Council (RGC) Earmarked Project
4132/05 and 414107. This paper was recommended by Associate Editor S. Hu.

The authors are with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, NT, Hong Kong.

Digital Object Identifier 10.1109/TSMCB.2008.922054

time consuming, because it needs to run the program tree for
each training case. Therefore, the time complexity of CGP is
extremely high.

The divide-and-conquer methodology has been suggested to
reduce the complexity. Dividing the complete program tree
into tree nodes and evolving them separately would reduce
the complexity. The difficulty of this approach is that tree
nodes are interdependent on each other with respect to the
fitness. Combining fit tree nodes will not necessarily give us
the optimum of the complete program tree.

Although we cannot ignore the interrelation between tree
nodes, they can be combined into subtrees. Subtrees are the
building blocks in CGP, and they are combined into individuals
via crossover [19]. Koza have successfully divided a program
tree into subtrees and evolved the subtrees separately [20]. Our
system also takes into account the interdependencies between
tree nodes. We envisage that combining the optima of the sub-
trees will have a good chance of obtaining the optimal or close-
to-optimal complete program tree. This way, we have both the
advantages of the smaller solution space by dividing the com-
plete program tree into separate tree nodes and maintaining the
interdependencies between tree nodes in the form of subtrees.

This paper presents a new GP framework, namely,
instruction-matrix (IM)-based GP (IMGP) [22], to evolve tree
nodes and subtrees separately. There is no explicit population to
store individual program trees in IMGP. Instead, it uses an IM
to maintain the fitness of the tree nodes and the subtrees. A row
in an IM consists of the cells of all the possible instructions,
as well as their fitness and subtrees. A row in an IM is used
in the evolution of the corresponding tree node. In theory,
we can extract all the possible program trees from an IM.
IMGP extracts a tree node from the corresponding row in an
IM according to the fitness of the instructions. The extracted
tree nodes are combined into a complete program tree. IMGP
evaluates the fitness of the program tree and then updates the
fitness of the extracted tree nodes in the IM accordingly. When
the fitness of an instruction is worse than that of its subtree,
IMGP extracts the whole subtree instead of extracting the tree
nodes separately, and the fitness of the extracted subtree may
be updated. Between generations, IMGP replaces bad fitness
instructions with good fitness instructions in the same row in
an IM, and gradually, the IM is populated with instructions of
good fitness.

IMGP is similar to cooperative coevolution [29]. IMGP
evolves tree nodes and subtrees separately in the sense that
tree nodes and subtrees have their own fitness stored in an
IM. The tree nodes and subtrees are extracted separately from
the corresponding rows in an IM. The extracted components
cooperate in the form of a complete program tree. The fitness

1083-4419/$25.00 © 2008 IEEE

LI et al.: INSTRUCTION-MATRIX-BASED GENETIC PROGRAMMING 1037

Fig. 1. Trees represented in s-expression (AND OR A B NOT C) and (AND

NOT A OR B C).

of the complete program tree is also used to update the fitness
of its tree nodes and subtrees. A tree node evolves on its
own by reproducing instructions of good fitness and removing
instructions of bad fitness.

This paper is organized as follows. Section II reviews some
of the related GP algorithms. Section III describes the represen-
tation and algorithm of IMGP in detail. Section IV presents the
experiments on the benchmark GP problems. Section V gives
an application example of IMGP for classification problems and
the experimental results. Section VI provides the conclusion.

II. RELATED WORK

A. Genetic Programming

In this paper, we shall focus on general GP algorithms, which
are capable of solving the benchmark problems commonly
tested in GP research.

CGP [19] is the original standard GP. It represents a program
as a tree that is encoded in a LISP-like s-expression. Fig. 1
shows two examples. A tree is composed of tree nodes of
functions and terminals. Executing a program is recursively
traversing the tree in postorder. CGP crossover is selecting two
crossover points in two parental trees, respectively, and ex-
changing the corresponding subtrees. Similarly, CGP mutation
is selecting a mutation point in the parent and replacing the
subtree with a new randomly generated subtree.

Strongly typed GP [26] enforces data type constraints in
CGP to manipulate multiple data types. It is thus able to avoid
searching in the solution space involving inappropriate data
types. It also employs generic functions and generic data types
to make it more powerful and practical. Linear GP [1] repre-
sents the program as a sequence of machine codes executed
on a virtual register machine. The program receives the inputs
from the registers and puts the output in a specified register.
The crossover is swapping the segments of the codes between
two crossover points in the parents. Mutation is replacing an
instruction code with a new randomly generated one. Evalu-
ating the program is executing the codes sequentially on the
register machine. Stack-based GP [27] is similar to linear GP,
as it represents the program in a sequence of functions and
terminals. However, it is executed on a stack-based virtual
machine, and its instruction set includes the stack operations,
e.g., POP & PUSH. It uses simple two-point crossover and
one-point mutation. Graph GP [28] encodes the program in
a grid of functions and terminals. Some of the nodes in the
grid are connected with directed links. A link indicates the
order of execution, and a sequence of continual links forms

an execution path. There can be multiple execution paths in
a grid. Executing the program is evaluating the functions and
terminals, following the execution paths in parallel. Crossover
and mutation are performed on the level of subgraphs. Cartesian
GP [25] is based on a grid of function nodes. The program
is represented as a sequence of groups of indices. Each group
of indices corresponds to a function node in the grid, and it
consists of three indices for the inputs, and one index for the
function node. Crossover and mutation are used to modify the
index sequence. Genetic parallel programming [21] evolves
a parallel program on a multi-arithmetic-logic-unit processor.
A parallel program is a sequence of parallel instructions. A
parallel instruction consists of several subinstructions, which
are simultaneously executed. Genetic parallel programming is
observed to evolve parallel programs with less computational
effort than the equivalent sequential programs. Grammatically
based GP (GGP) [40], [41] indirectly represents programs.
It uses a set of grammar rules to generate a population of
grammar derivation trees. The sequence of the leaves of the
tree is interpreted as a program. It also employs some advanced
mechanisms, such as type control, grammar modification, merit
selection, and encapsulation.

B. Genetic Programming With Statistics

IMGP uses an IM to maintain the fitness of functions and
terminals of the tree nodes, and it extracts new program trees
out of the IM. There is some related work that also keeps the
statistical data of the individuals and generates individuals from
data structures other than populations.

Probabilistic incremental program evolution (PIPE) [33]
maintains a probability tree. A tree node is a vector of the
probabilities of the functions and terminals on the tree node.
In each generation, PIPE creates a population by construct-
ing trees according to the probability tree and updates the
probability tree with the information of the best individual in
the population. However, updating the probability tree only
with the best individual may not be able to express the in-
formation of the rest of the population. In addition, it ignores
the interdependencies between the tree nodes. Competent GP
[34] combines compact genetic algorithm [17] and PIPE as a
multivariate probabilistic model of program trees. The major
contribution is that it partitions the tree into subtrees and builds
a probabilistic model for each subtree. Therefore, it is able
to calculate not only the probabilities of the tree nodes, but
also the probabilities of the subtrees. However, it incurs high
computation overhead as it calculates the complexity of each
possible subtree to identify good building blocks. Estimation of
distribution programming (EDP) [42] estimates the probability
distribution model in the form of a Bayesian network to capture
the relationship between the tree nodes in GP. It is observed
that while CGP produces deep trees, EDP is good at wide trees.
To search for more different tree topologies, it is suggested
that multi-Bayesian networks be used, though it incurs higher
computation cost. Grammar-model-based program evolution
(GMPE) [36] evolves programs with a probabilistic context-
free grammar. It associates each grammar rule with a produc-
tion probability. It uses the grammars to generate a population

1038 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

of new individuals and updates the grammars with the good
individuals in the population. A grammar generates a single
node or a subtree, so it is able to maintain the information of
subtrees as well. However, the grammar has no information of
the position in the whole tree, so the position of its derivative
(node or subtree) in the tree is not fixed. In addition, a grammar
could generate two totally different subtrees, depending on
the successive grammars applied. Estimation of distribution
algorithms for GP [6] is similar to GMPE. It employs a prob-
ability distribution over grammars to generate new programs.
Complex production rules or subfunctions can be introduced by
using transformation to expand one production rule into another
production rule so as to express a high order of dependencies.
However, learning advanced production rules with the proposed
greedy algorithm can take a lot of time. Program evolution
with explicit learning (PEEL) [35] uses search space descrip-
tion table (SSDT) to describe the solution space. Ant colony
optimization [5] is the learning method to update the stochastic
components of SSDT. Grammar refinement by splitting certain
rules in SSDT is employed to make individuals focus on the
promising solution area. Grid ant colony programming [32]
uses ant colony metaheuristic [11] to guide a population of
ants on a grid of functions or terminals. The tour of an ant is
interpreted as a program.

III. IMGP

CGP is a high-dimensional combinatorial optimization prob-
lem if tree nodes are treated as variables. To apply the divide-
and-conquer methodology, we propose a new framework called
IMGP. IMGP evolves tree nodes separately while taking into
account their interdependencies in the form of subtrees. IMGP
maintains an IM to keep the fitness of functions and terminals
in tree nodes, and it uses a new kind of fixed-length expression
to represent a program tree. IMGP extracts a program tree
from an IM by selecting a function or terminal of high good
fitness for each possible tree node. After the program tree is
evaluated, IMGP updates the fitness of corresponding functions
or terminals in the IM.

A. Representation

Rather than using an s-expression as CGP [19], IMGP uses
an hs-expression. An hs-expression is mapped to a program
tree. An hs-expression is a 2D+1 − 1 long array to store a binary
tree of depth D at most. Every possible node in the tree has a
corresponding element in the array, even if the node does not
exist. The relation between the elements in an hs-expression is
similar to that used in the array of heap sort, but the “larger-
than” relation is changed to the “parent-of” relation. The tree
root is element 0 in the hs-expression. For the kth element in
the hs-expression, its left and right children are the 2k + 1th
and 2k + 2th elements, respectively. If it has no child, the
corresponding elements are set to −1 instead. Therefore, the
elements in the first half of the array can either be functions,
terminals, or empty, while the elements in the second half of
the array must either be terminals or empty. Fig. 2 shows two
examples. Unlike the trees represented by an s-expression, the

Fig. 2. Trees represented in hs-expression (AND OR NOT A B C -1) and (AND

NOT OR A -1 B C).

trees represented by an hs-expression of the same length have
exactly the same shape if −1 is viewed as a virtual node.
Another difference is that the elements at the same locus in hs-
expressions always correspond to the nodes at the same position
in program trees. In comparison to this, genetic expression
programming [14] also uses a fixed-length string to represent
a tree, and some of its elements may not appear in the tree.
However, when the arity of a tree node changes, the positions
of its subtree and its sibling change drastically.

An hs-expression can easily be extended to represent trees
of more than two branches. To represent an m-branch tree, an
hs-expression is an mD+1 − 1 long array. For the kth element
in the hs-expression, its children are the m · k + 1th, m · k +
2th, . . . ,m · k + mth elements.

In IMGP, there is no explicit population. Instead, it maintains
an IM to store all the possible instructions used in a program
tree. While CGP generates new program trees from existing
program trees, IMGP extracts new hs-expressions from the IM,
which are mapped to program trees. The cells in the IM are data
structures consisting of instructions and related information. A
row in an IM corresponds to an element in the hs-expression,
and, hence, a tree node in a program tree. The cells in a row
stores all the possible instructions that can be used in the
corresponding tree node. The mapping between the IM and
program trees is the same as the mapping between an hs-
expression and a program tree: row 0 corresponds to the root
of the program tree. Recursively, for the kth row corresponding
to a tree node, the 2k + 1th and the 2k + 2th rows correspond
to the left and right children of the tree node, respectively. The
height of the IM is the same as the length of the hs-expression,
i.e., H = 2D+1 − 1. A row contains multiple instances of any
type of instructions, and therefore, the width W of the IM is the
number of instructions in a row. The lower part of the IM, i.e.,
the part from row H/2 to row H , contains only terminals since
they correspond to the tree leaves. Fig. 3 shows an example
of an IM and an hs-expression extracted from it. Basically, the
element at locus k in the hs-expression is extracted from row k
in the IM. The details are described in Section III-B.

In addition to an instruction of function or terminal, a cell in
the IM also keeps some auxiliary data. The pseudocode of its
internal data structure and the initial values are shown in Fig. 4.
The data structure also stores the information of its best subtree.
instruction is the operation code of the instruction. eval_num
is the number of times that the instruction has been evaluated.
best_fitness and avg_fitness are the best and the average
fitness of the instruction. best_fitness is also the fitness of the
best subtree of the instruction. left_branch and right_branch
are the left and right branches of the best subtree. These fields

LI et al.: INSTRUCTION-MATRIX-BASED GENETIC PROGRAMMING 1039

Fig. 3. IM and an hs-expression extracted from it. IM keeps multiple instructions for each element of the hs-expression. An element of the hs-expression is
extracted from the corresponding row in the IM. The cells in bold typeface are the extracted elements.

Fig. 4. Pseudocode of the internal data structure of the cell in the IM, which
shows the initial values of the fields. The field instruction can be either
a function or a terminal. MAX_FITNESS and 0 are the maximal and
minimal possible fitness, respectively. −1 means that there are no links for the
left and right children of the tree node at the beginning.

keep some information of the fitness landscape of the tree node,
and they are used in the evolution of the tree node. Their specific
usage is explained in detail in Section III-B. Please note that in
IMGP, the smaller the fitness is, the better it becomes.

B. Algorithm

Algorithm 1 is the main program of IMGP, where G is
the maximal number of generations, and P is the number of
individuals in each generation. It divides a complete tree into
separate tree nodes, calculates the fitness of the tree nodes
to evolve them separately, and combines the optima of the
tree nodes into a complete program tree. In each generation,
IMGP repeatedly runs the following steps. First, IMGP extracts
two individuals from the IM and calculates their fitness. Then,
IMGP performs crossover and mutation on them and calculates
the fitness of their offspring. After evaluating an individual,
IMGP updates the corresponding cells in the IM with the fitness
of individual. At this point, IMGP deletes all of the individuals
because their information has already been stored in the IM.
A generation finishes after IMGP evaluates P individuals.
Then, IMGP uses matrix shuffle to replace cells of bad fitness
with those of good fitness in the IM. The best individual is
reported as the optimal program after G generations.

Algorithm 1: The Main Program of IMGP
Output: the best individual
initialize IM
for gen from 0 to G do

num ← 0;
while num < P do

extract two individuals i and j from IM;
calculate their fitness respectively;
update their cells in IM with the fitness;
if crossover i with j successfully then

evaluate the offspring and update its cells;
else if mutate i successfully then

evaluate the offspring and update its cells;

Fig. 5. Steps of extracting (AND OR NOT A B C -1) from the IM in Fig. 3.
For each tree node, IMGP selects two instructions in the corresponding row of
IM randomly, compares their average and best fitness, and extracts one of them
probabilistically. After extracting a tree node, IMGP recursively extracts its left
and right children.

end
if crossover j with i successfully then

evaluate the offspring and update its cells;
else if mutate j successfully then

evaluate the offspring and update its cells;
end
num ← num + the number of individuals evaluated;

end
shuffle IM;

end

1) Individual Extraction: IMGP extracts the tree nodes
from the IM and combines them into a complete tree.
Algorithm 2 is the function to extract an individual. First, IMGP
constructs an empty hs-expression filled with −1 and aligns it
vertically with the IM. It starts to extract the instruction of the
tree root from row 0 and puts it at locus 0 in the hs-expression.
Then, IMGP continues to extract the rest of the program tree
recursively. The instruction of a tree node is extracted from the
corresponding row using binary tournament selection, and then,
the extracted instruction is placed at the corresponding locus
in the hs-expression. Binary tournament selection is comparing
the fitness of two randomly selected instructions and selecting
one of them probabilistically. If the extracted instruction at
locus k is a function, IMGP proceeds to extract its left child
from the 2k + 1th row and its right child from the 2k + 2th
row. It does so recursively until all the branches are completed.
In Fig. 3, the words in bold italic typeface are the extracted
instructions, and the completed hs-expression is on the right.
The corresponding tree is depicted on the left in Fig. 2. The
details of extracting (AND OR NOT A B C −1) from the IM is
shown in Fig. 5.

Algorithm 2: Extract Individual
Input: individual, IM, locus, subtree
Output: individual
best← false;

1040 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

if subtree �= −1 then
individual[locus] ← subtree;
CELL ← IM [locus, individual[locus]];
best ← true;

else
individual[locus] ← Tournament(IM, locus);
CELL ← IM [locus, individual[locus]];
if Random(1) < 1 − CELL.best_fitness

CELL.avg_fitness
then

best ← true;
end

end
if best = true and CELL.instruction is function and
CELL.left_branch �= −1 and CELL.right_branch �= −1

then
Extract(individual, IM, locus∗2 + 1, CELL.left_branch);
Extract(individual, IM, locus∗2 + 2, CELL.right_branch);

else
Extract(individual, IM, locus∗2 + 1, −1);
Extract(individual, IM, locus∗2 + 2, −1);

end

The best subtree of an instruction is its subtree in the best
individual that it has ever been extracted in. After a tree node is
extracted, IMGP occasionally checks whether the best subtree
of the selected instruction should be extracted as a whole so
that the tree nodes in the best subtree are extracted directly
without further binary tournament selections. How often it
does so depends on the best and the average fitness of the
instruction. Equation (1) is the probability of extracting the best
subtree. The bigger the difference between them is, the more
likely its subtree will be selected. The reason is that if the
best fitness is much better than the average fitness, the tree
constructed with the best subtree is likely to be much better
than the tree constructed without it. Since tree nodes are highly
interdependent with respect to the fitness in GP, best subtrees
keep part of the interdependence information between the tree
nodes in the IM, i.e.,

probbest = 1 − best_fitness

avg_fitness
. (1)

In the binary tournament selection, IMGP randomly selects
two candidate instructions, compares their fitness, and selects
the better one probabilistically. An instruction is extracted
either separately or together with its best subtree. Therefore,
when we compare the fitness of two candidate instructions, we
should not only compare their average fitness, but consider their
best fitness as well. Equation (2) calculates the expected fitness
of an instruction. It considers the probability of selecting its
best subtree, and in that case, we should use the best fitness. The
traditional binary tournament selection always selects the better
one, so the worst instruction in the IM is never selected. To be
less greedy, we use roulette wheel selection [15] to select one
of the two instructions based on their expected fitness, which is
defined by

E(fitness) = probbest ∗ best_fitness

+ (1 − probbest) ∗ avg_fitness. (2)

Extracting individuals makes IMGP avoid being trapped in
a small solution area. In CGP, when an individual is changed
by crossover or mutation, it replaces only a subtree with a new
one, so the offspring is still in the neighborhood of the parent.
Therefore, the solution space that CGP searches is largely
determined by the initial population. However, IMGP does not
generate an individual from an existing parent. It extracts a
completely new individual from the IM, and thus, the new
individual bears slim similarity with the previous individuals.
Therefore, IMGP searches a relatively large solution space,
and the extracted individuals together have high diversity. In
addition, there are multiple copies of any type of instructions in
a row in an IM, and each copy has different fitness and subtrees.
Even if an instruction has a bad fitness copy, it might still be
selected due to another copy of good fitness. Therefore, IMGP
is relatively robust to local optima.
2) Instruction Evaluation: In IMGP, an individual is evalu-

ated using the postorder recursive routine. To evaluate a func-
tion node, it takes the evaluation of its left and right children
as the inputs. To evaluate a terminal node, it evaluates the
corresponding program input. Since the individual is discarded
right after evaluation and reproduction, it cannot carry along
its fitness as in CGP. Instead, the fitness is fed back to its
corresponding cells in the IM so that it can be used in extraction
later. The feedback comes in two ways.

1) In (3), the new fitness, i.e., fitness′, is averaged with
the old fitness, i.e., fitness. The evaluation number
eval_num is incremented by one. With this method, we
know how good the instruction is on the average. We have

fitness =
fitness ∗ eval_num + fitness′

eval_num + 1
. (3)

2) If the new fitness is better than the best fitness of the
instruction, its best fitness is updated, and its left and right
branches are changed to those in the current individual
accordingly. This actually keeps good subtrees in the IM
together with their fitness.

The second point is very important. As shown in [37], a new
building block is unlikely to survive in the next two generations,
even if the individual constructed with it has average fitness. In
IMGP, whenever a good subtree is identified, it is remembered
immediately.

We believe that all the individuals contain useful information
about the problem. Therefore, IMGP updates the IM not only
with the good individuals, but with all the extracted individuals
as well, regardless of their fitness. For most of the related
algorithms discussed in Section II-B, they update their models
only with good individuals and ignore bad individuals. This
would make some of the bad tree nodes spuriously good in the
models because they happen to be in the good individuals. On
the contrary, updating the IM with bad individuals decreases
the fitness of the bad tree nodes. Tree nodes and subtrees can
also be regarded as schemata, and thus, IMGP actually evolves
schemata directly [22].
3) Genetic Operators: In IMGP, crossover and mutation are

similar to those in CGP. However, as IMGP keeps the fitness
of the tree nodes in the IM, it is able to perform crossover and

LI et al.: INSTRUCTION-MATRIX-BASED GENETIC PROGRAMMING 1041

Fig. 6. Crossover in IMGP. The left subtree in the first individual is replaced with its better counterpart in the second individual.

mutation in a heuristic way. According to the building block
hypothesis [15], small good building blocks are spread among
the individuals and recombined into large good building blocks.
Therefore, we believe that combining subtrees of high good
fitness is likely to produce individuals of good fitness. When
IMGP performs crossover on individuals, it replaces a subtree
in one parent only, with a better counterpart in the other parent,
so that the offspring is likely to be better. In mutation, IMGP
selects a mutation point in the current individual and replaces
the original subtree with a new subtree extracted from the IM.

The crossover is similar to context-preserving crossover [10]
because the two subtrees of the parents must be in the same
position to reduce the macromutation effect of the standard
crossover [1]. However, unlike the crossover used in other GP
algorithms, the crossover in IMGP is asymmetric. When IMGP
tries crossover between individual i and individual j, it picks
one of the two branches on the roots in both individuals at
random and replaces the subtree of i with that of j if the latter
has better fitness than the former. Otherwise, IMGP recursively
tries crossover on the roots of the picked branches. Fig. 6 shows
an example. Please note that crossover would fail when it could
not find a better subtree to replace the original one.
4) Matrix Shuffle: CGP converges by spreading good in-

structions over the population to reproduce good individuals.
IMGP starts with extracting program trees from the IM at
random, so it samples different solutions in the huge solution
space. In the evolution, it is important for IMGP to sample
program trees that are similar to the previously extracted good
program trees.

However, there is no explicit population in IMGP since
it extracts an individual and discards it later. To ensure that
the individuals extracted in the later generations have good
instructions, the IM should be populated with good instructions.
IMGP uses matrix shuffle to propagate good instructions in the
IM and, consequently, to increase the probability of extracting
them together in the same program tree. It shuffles the IM row
by row. Algorithm 3 shows how it shuffles a row. It selects a
certain number of pairs of cells in a row, and for each pair,
it replaces the worse one with the better one in terms of both
the best and the average fitness. Consequently, while the IM
evolves, good instructions emerge to dominate the rows in the
IM, and the copies of bad instructions decrease.

Algorithm 3: Matrix Shuffle
Input: IM, the current row to be shuffled
Data: F ∩ T is the function and terminal set
for instruction ∈ F ∩ T do

Count[instruction] ←
the number of instruction in IM[row];

end
while si < SUCCESS and ti < TRIAL do

ti ← ti + 1;
i, j ← Random(W);
Ci ← IM [row, i];
Cj ← IM [row, j];
if Ci.avg_fitness < Cj.avg_fitness and
Ci.best_fitness < Cj.best_fitness and
Count[Ci.instruction] < CONV ERGENCY and
Count[Cj.instruction] > DIV ERSITY then

IM [row, j] ← IM [row, i];
si ← si + 1;

end
if Cj.avg_fitness < Ci.avg_fitness and
Cj.best_fitness < Ci.best_fitness and
Count[Cj.instruction] < CONV ERGENCY and
Count[Ci.instruction] > DIV ERSITY then

IM [row, i] ← IM [row, j];
si ← si + 1;

end
end

In CGP, as the population converges, the majority of the
individuals have more or less the same instructions, while the
other instructions die out. It is also hard to maintain the diversity
of the population because measuring the distance between
individuals is difficult. However, IMGP evolves on the level of
instructions, so it is possible to maintain the diversity of the
instructions. In matrix shuffle, when a good instruction
IM [row, i] replaces a bad instruction IM [row, j], where i and
j are the indices for the two instructions, IMGP needs to check
two constraints: Count[IM [row, i]] < CONV ERGENCY
and Count[IM [row, j]] > DIV ERSITY . To discourage
convergence, CONV ERGENCY should not be too high, and
to enhance diversity, DIV ERSITY should not be too low.
In the current implementation, we use CONV ERGENCY =
W/2 and DIV ERSITY = 2.

As shown in [7], the edit distance, i.e., the difference between
a program tree and the best program tree, generally decreases
after the early generations in CGP. It is thus good to keep
the edit distance not too small to enhance the diversity of the
population. Basically, matrix shuffle prohibits good instructions
from reproducing themselves too many times and reserves a
minimum number of bad instructions. This thus maintains the
diversity of the instructions in the IM easily and effectively.

1042 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

TABLE I
EXPERIMENT SETTINGS OF IMGP AND LILGP ON THE BENCHMARK PROBLEMS

C. Algorithm Complexity

In addition to the normal genetic operators and fitness evalua-
tion in CGP, IMGP introduces additional overhead of extracting
individuals, updating the IM, and shuffling the IM. First, the
time complexity of genetic operators is O(H), where H is the
height of the IM, i.e., the size of the program tree. Second,
extracting individuals and updating the IM need to go through
all the instructions in the program trees, so the complexity is
also O(H). Third, the complexity of shuffling the IM is of
the size of the IM, i.e., O(WH), where W is the width of
the IM. Fourth, the time complexity of evaluating the fitness
is O(NH), where N is the number of times to traverse tree
programs. For some problems, N is the number of training
cases. Suppose IMGP runs for G generations and extracts P
program trees in each generation, then the overall time com-
plexity is O(GPH + GWH + GPNH). The time complexity
of CGP is O(GPH + GPNH). In fact, for both IMGP and
CGP, most of the computation cost is spent in evaluating the
fitness, whose complexity is O(GPNH). For program tress
with similar sizes, the time complexity of IMGP is only slightly
larger than that of CGP. However, the space complexity of
IMGP is smaller than that of CGP. The major part of the space
complexity of CGP comes from the population of individuals,
i.e., O(PH), while the major part of the space complexity of
IMGP comes from the IM, i.e., O(WH). Usually, W is on the
order of hundreds, while P is on the order of thousands.

IV. EXPERIMENT

This section describes the experiments and the results of
IMGP. First, we ran IMGP and CGP on the benchmark GP
problems and compared the results. Second, we applied IMGP
on the problems tested in the related algorithms in Section II-B
and compared the results.

A. Comparison With Canonical Genetic Programming

This section compares the performance of IMGP and CGP
on four benchmark problems [19].

The first problem is the symbol regression problem that
searches for a mathematical expression y = x4 + x3 + x2 + x,
where x is an integer uniformly and randomly generated from
the range [0, 20). The fitness used is the hit count, which is
incremented by one if the difference between the program out-
put and the correct result is larger than a predefined threshold.
The second problem is to discover the even-5-parity expression
¬(a ⊕ b ⊕ c ⊕ d ⊕ e). The training cases are all the 25 combi-
nations of the five binary variables. The fitness is calculated

as the sum of the wrong results produced by the individual
program. The third problem is the artificial ant on Santa Fe
Trail. Executing the optimal program repeatedly enables the ant
to eat all the 89 food pellets on the trail within 400 steps. The
number of the food not eaten by the ant is used as the fitness.
The fourth problem is Boolean 11-multiplexer. Among the
11 variables, three are used as the address to select the output
from one of the other eight variables. However, GP has no idea
of which variables are the address. The training cases are all the
211 combinations of the 11 binary variables, and the fitness is
the number of incorrect output.

Table I lists the parameter settings used in the experiments.
IMGP has no population, but for convenient comparison with
CGP, we refer to the number of the individuals evaluated
between matrix shuffles (generations) as the population size,
i.e., P in Algorithm 1. Please note that in Artificial Ant and
11-Multiplexer, some functions require three arguments, which
means that the maximum branches of a node is three instead
of two. Therefore, the IM height and the hs-expression length
is increased to (3D+1 − 1)/2, where D is the maximal level
of a program tree. To determine an acceptable size of the IM,
we executed IMGP of different sizes on a small number of the
training cases for a few generations. By observing the fitness
of the best program trees, we could determine which size was
likely to produce a good solution.

We used lilgp [44] as CGP. For fair comparison, the
ephemeral random constant (ERC) was removed from lilgp.
The tournament size was two. The population size and the num-
ber of generations were set as in Table I. The other parameters
were the same as in [19]. Both lilgp and IMGP used the same
random seeds, which themselves were randomly generated. For
each problem, we ran IMGP and lilgp 20 times with 20 different
random seeds. Fig. 7 shows the plots of the average fitness of
the best individuals from generation 1 to generation 100 for
the four problems. Table II shows the numerical experimental
results of IMGP, including the success rate, the fitness of the
best program tree, the number of fitness evaluations, and the
size of the best program tree.

In symbol regression, IMGP found the solution in all the
20 runs compared with 17 successful runs in lilgp. In terms of
the average fitness of the best individuals, IMGP also converged
faster than lilgp. In even-5-parity, IMGP found the solution
in three runs, however, lilgp failed to find the solution in any
of the 20 runs. Regarding the convergence speed, IMGP also
outperformed lilgp significantly, as its average best fitness was
2.4, while lilgp’s was nearly twice of that. In 20 artificial ants,
IMGP found 12 ants eating up all the food pellets. lilgp could
not find any successful ant, and the average fitness of its best
individuals was 31.8, which is far from 0. In an 11-multiplexer,

LI et al.: INSTRUCTION-MATRIX-BASED GENETIC PROGRAMMING 1043

Fig. 7. Average fitness of the best individuals of IMGP and lilgp through generations on the four testing problems.

TABLE II
NUMERICAL EXPERIMENTAL RESULT OF IMGP ON THE BENCHMARK PROBLEMS. IT SHOWS THE SUCCESS RATE, THE FITNESS

OF THE BEST INDIVIDUALS, THE NUMBER OF PROGRAM EVALUATIONS, AND THE NUMBER OF TREE NODES

TABLE III
COMPARISON OF THE RUNNING TIMES OF IMGP AND CGP ON THE

FOUR BENCHMARK PROBLEMS. THE TIME UNIT IS SECONDS

IMGP found the perfect multiplexer for 13 times out of 20 runs,
while lilgp failed all the time. The average best fitness of IMGP
was also much better than that of lilgp, although their fitness in
the first generation were almost the same.

We have also compared the running times of IMGP and CGP
in Table III. They were executed on a Linux workstation of
Pentium 2.2 GHz. Except for the even-5-parity problem, the
running time of IMGP is shorter than that of CGP. This is
expected, since IMGP has much larger success rates than CGP.
IMGP stops early before the final generation 100 when it finds
a perfect solution. For the difficult even-5-parity problem, the
IM has many rows so that the tree programs have many levels.
Therefore, IMGP is slower than lilgp on even-5-parity.

B. Comparison With Related Algorithms

We had also run IMGP on the problems tested by the related
algorithm and compared the results. However, it is difficult to
compare the results precisely, as some of the papers gave the
results only in the figures without the exact numerical values.
Therefore, we will have to resort to the problems whose results
were reported in numbers in other papers. The experiment
settings were the same as in the related algorithms described
in Section II-B.

The 6-bit parity problem is similar to even-5-parity. It has
six Boolean arguments, and it returns true if the number of true
arguments (1s) is odd and false otherwise. However, other than
using the Boolean function set, it uses a real-valued function set

{+,−,×,%, sin, cos, exp, r log}, where r log is the protected
log that returns the log of the absolute value of the argument.
The output of the program is mapped to true if it is larger than 0
and false otherwise. We executed IMGP for this problem in 20
independent runs. The result is compared to that of PIPE [33]
and CGP in Table IV. As can been seen, IMGP achieves 100%
success rate, and it requires a much smaller number of program
evaluations.

The max problem has a single input with a value of 0.5
and two functions + and ×. The purpose is to find a tree with
maximum fitness under the tree size constraint. Obviously, the
optimal tree is a full tree, whose nodes on the two levels right
above the terminals are + to produce the value of 2, and the
other nodes on the top are × to multiply all of the 2’s. In this
experiment, the maximum tree depth is 7, so the maximum
fitness is 65 536. The result compared to GMPE [36] and CGP
is reported in Table V. With approximately the same number
of evaluations, when GMPE converges, it has a higher success
rate than IMGP. However, if IMGP keeps running until 100
generations, its success rate increases to 95%. Both IMGP and
GMPE outperform CGP.

Function regression is used to search for the function shown
in (4). The fitness cases were sampled at 101 equidistant points
in the interval [0, 10]. The fitness is not the hit count but the sum
of the differences between the outputs and the correct answers.
The fitness of the best individuals of IMGP are compared to
those of PEEL [35] and GGP [40] in Table VI. IMGP gets a
smaller error and a smaller standard deviation. Although the
minimum errors of PEEL and GGP are smaller than that of
IMGP, their median and maximum errors are much larger than
those of IMGP. Therefore, if we run IMGP, PEEL, and GGP
ten times, the results of IMGP will be less variant than those of
PEEL and GGP. If we run the programs only once, the result
of IMGP is expected to be better than that of GGP and PEEL.
We have

f(x) = x3× e−x × cos x× sin x× (sin2 x× cos x − 1). (4)

1044 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

TABLE IV
EXPERIMENTAL RESULTS OF IMGP, PIPE, AND CGP ON THE SIX-BIT PARITY PROBLEM. IT SHOWS THE SUCCESS RATE,

THE NUMBER OF PROGRAM EVALUATIONS, AND THE NUMBER OF TREE NODES

TABLE V
EXPERIMENTAL RESULTS OF IMGP, GMPE, AND CGP ON THE

MAX PROBLEM. IT SHOWS THE SUCCESS RATE AND

THE NUMBER OF PROGRAM EVALUATIONS

TABLE VI
EXPERIMENTAL RESULTS OF IMGP, PEEL, AND GGP ON FUNCTION

REGRESSION. IT SHOWS THE FITNESS OF THE BEST INDIVIDUAL

V. APPLICATION FOR CLASSIFICATION

The problem of classification has been a major task of ma-
chine learning and data mining. Basically, given a set of training
data, we learn a classifier so that it can be used to classify
new data. Typical classifiers include decision trees (DTs) [31],
neural networks [3], and support vector machines (SVMs) [8],
etc. GP can also be used to evolve classifiers in the form of
programs. GP has a few favorable features for classification,
such as the variable-length representation and the population
of different solutions [12], [23], [38]. First, the structures of
many traditional classification models are fixed: the major task
of learning is to find the proper parameters of the models.
Because a variable representation of classifiers is adopted in GP,
it bears more freedom to find appropriate model structures than
fixed representations. Second, the results of some traditional
learning algorithms depend on the initial parameters of the
models. In GP, the population contains many individuals, so GP
has a better chance of finding the appropriate structures and the
parameters of the models.

In this section, we will first describe a direct implementation
of IMGP for binary class classification problems. Then, we
will present an extension of IMGP for multiclass classification
problems. The experimental results are also reported.

A. IMGP for Classification

In a binary classification problem, we are given a training
data set X that consists of N samples {xi|i = 1, . . . , N}.
A sample xi has M attributes {xi

j |j = 1, . . . ,M}. For each
sample xi, there is a target class ti. Given a sample xi, a
classifier predicts its class as yi. The task of the classifier
learning algorithm is to find a classifier of minimal error. In

this paper, the sum of squared error function is only applied on
the misclassified data as follows:

E =
1
2

N ′∑

i=1

(ti − yi)2 (5)

where N ′ is the number of misclassified data.
Suppose the instruction set in CGP is {x1, . . . , xm,

+,−,×, /}, the program tree is actually a mathematical for-
mula. The class boundary can be represented by a mathematical
formula. For a binary class problem, the program tree receives
the attributes of a sample as the inputs. If the output of the pro-
gram tree is positive, the sample is assigned class 1; otherwise,
it is assigned class 2. The classification error on the training
data is used as the fitness. As a variant of CGP, IMGP can also
be used for classification problems. As described in Sections III
and IV, we envisage that IMGP will be more efficient and more
effective than CGP.

We introduce constant instruction (CI) in the instruction set
of IMGP. A CI is used as a terminal of constants, which is
similar to the adjustable parameters in other kinds of classifiers.
CGP uses the ERC as a constant. ERC is instantiated to a
random number in the initialization of CGP, and the number
is fixed in later generations. In IMGP, because a CI will be
extracted into different individuals, it should change the con-
stant during evolution. A CI has two constants, i.e., the random
constant (RC) and the best constant (BC), corresponding to its
average and best fitness, respectively. BC is used when the CI is
used in the best program tree for testing on unknown data. RC
is assigned a new random number whenever it is extracted in a
new individual. The new value of RC replaces the value of BC
if the new individual has better fitness than the best fitness of
the CI.

In contrast to CI in IMGP, ERC does not change during
evolution, even if the change will lead to a better constant,
given the structure of the program tree. As mentioned in [9],
various approaches have been proposed to change a constant in
the evolution. However, they are only mutation on the constant
disregarding the current individual. In neural networks [3] and
SVMs [8], the structure of the model is given beforehand,
and the learning process is adjusting the model parameters to
minimize the error function. GP can be viewed as searching
for the structure of the model and the parameters of the model
simultaneously. It is thus possible to change the parameters
without changing the structure to achieve better fitness. If the
error in (5) is used as the fitness and the structure of the program
tree is fixed, the fitness is actually a continuous function of
constants. Therefore, IMGP can modify the constants of a
program tree to obtain a lower classification error. As in neural
networks, IMGP uses gradient descent [3] to find the optimal

LI et al.: INSTRUCTION-MATRIX-BASED GENETIC PROGRAMMING 1045

TABLE VII
COMPARISON OF IMGP AND G3P ON THE FOUR UCI BENCHMARK CLASSIFICATION PROBLEMS. DT, FRBS, ANN, AND

PETRI ARE THE FOUR GP APPROACHES. WE COMPARE THE TRAINING AND TESTING ERRORS IN THEIR

BEST AND AVERAGE RESULTS. THE ERRORS ARE REPORTED IN PERCENTAGES

constants. In the method of gradient descent, a constant is
changed according to the following partial derivative of MSE:

c′ = c − η

2
∂E

∂c
= c + η

N ′∑

i=1

(ti − yi)
∂yi

∂c
(6)

where η is the learning rate, c is the vector of the constants,
and yi is the output of the program tree, given the sample xi.
Given a mathematical formula represented by a program tree,
we can calculate its partial derivative with respect to the
constant. Suppose the formula is a composite function y =
(f ◦ (g, h))(c), where the function f takes two arguments
of the functions g and h. The derivative of f with re-
spect to c is ∂y/∂c = (∂f/∂g)(∂g/∂c) + (∂f/∂h)(∂h/∂c). A
simple example is (a/b)′ = (∂/∂a)(a/b)a′ + (∂/∂b)(a/b)b′ =
(1/b)a′ − (a/b2)b′. Therefore, we can calculate ∂y/∂c by tra-
versing the program tree in postorder. However, we need to
calculate both the outputs and the partial derivatives of the tree
nodes, so the computation cost is multiplied by the number of
constants. To save computation, gradient descent is not used on
every program tree. It is used only when IMGP finds a new best
program tree. Gradient descent for GP was also used in [43]. It
used gradient descent for all the individuals that would be quite
time consuming.

One of the major concerns of classification problems is
generalization [18]. Due to the noise in the training and the
testing data, a classifier that works well on the training data
may not be so accurate on the testing data. A reason for the
performance degradation is that the classifier is so complex that
it classifies noisy data unnecessarily. A common approach to
enhance generalization is to trade the classification accuracy for
the model complexity. In IMGP, we add a penalty of the tree
size with the original classification error as the fitness shown in
the following:

fitness = error + w
tree size

M_ROW
(7)

where w is a small positive constant that controls the weighting
of the tree size. Because the classification error is always less
than 1, the tree size is normalized with the maximum tree size,
i.e., M_ROW . In calculating the tree size, IMGP does not
count the terminal nodes, since only the functions contribute
to the complexity of the program. The linear functions of
+ and − represent linear models that are simple enough, so

they are not counted either. Therefore, in the instruction set
{x1, . . . , xm, c,+,−,×, /}, only the nonlinear functions ×
and / are counted in the tree size.

We ran IMGP on four benchmark binary classification prob-
lems in the University of California, Irvine (UCI) repository [4],
i.e., breast cancer Wisconsin (Cancer), heart disease (Heart),
Pima Indians diabetes (Pima), and horse colic (Horse). We
adopted a fivefold method, and for each fold, IMGP was run for
20 times of different random seeds, so there were altogether 100
independent runs. We quote the results of grammar-guided GP
(G3P) [38] for comparison. G3P was used to evolve four kinds
of classifiers: 1) decision tree (G3P-DT); 2) fuzzy-rule-based
system (G3P-FRBS); 3) artificial neural network (G3P-ANN);
and 4) fuzzy Petri net (G3P-FPN). Both G3P and IMGP used
populations of 2000 individuals, and the maximum generations
are 100. Table VII shows the results of the training and testing
errors, which are reported in their best and average. For the
average training errors, the results of IMGP are comparable
to the four other algorithms. This verifies the effectiveness of
IMGP on the training data. The testing error is a more important
measure of performance than the training error. IMGP general-
izes very well compared to the four other algorithms. IMGP
is robust to different random seeds, because it gets the lowest
average testing errors on the four problems. For the best testing
error, IMGP gets the second lowest best testing error on the
Cancer problem, and its best testing errors are the lowest on the
three other problems.

We have also compared IMGP to some traditional classifiers
other than GP, including DTs, neural networks, and SVMs.
The DT that we used was C5.0 [30], which is the state of
the art of DTs for classification. The SVM that we used was
LIBSVM [13]. We activated its cross validation on the training
data to determine the parameters of the kernel function. An
SVM is a deterministic algorithm, so we need to run it only
once. We have implemented the neural network based on the
functions provided by Matlab. We used cross validation on
the training data to choose the number of hidden neurons, and
then an automated weight decay learning was used to train the
neural network on the whole training data. A neural network is
sensitive to the initial weights, so we ran the program ten times
with different random seeds. A DT is a deterministic algorithm,
but C5.0 uses random fivefold for training and testing, so we
executed C5.0 ten times as well. The testing errors are reported
in Table VIII. For the convenience of comparison, the result of
the SVM is treated as both the best and the average results.

1046 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

TABLE VIII
COMPARISON OF IMGP, DT, NEURAL NETWORKS, AND SVM ON THE FOUR UCI BENCHMARK PROBLEMS. THE BEST AND

AVERAGE TESTING ERRORS IN PERCENTAGES ARE REPORTED. FOR THE DETERMINISTIC ALGORITHMS, i.e., DT
AND SVM, THE BEST AND AVERAGE RESULTS ARE THE SAME. DT WAS NOT RUN FOR HORSE SINCE THE

PROGRAM C5.0 WAS UNABLE TO HANDLE THE TRAINING AND TESTING DATA SETS SEPARATELY

As can be seen, IMGP has the smallest errors on the Horse
problem among all the algorithms, in which C5.0 is the best.
However, the best testing errors of C5.0 are worse than the other
three algorithms. This implies that we can run IMGP for a few
times on a practical problem and choose the program tree of the
smallest training error, which is expected to be a good classifier
for unknown data.

B. Condition Matrix for Rule Learning

The architecture of IMGP is flexible. It is easy to adapt IMGP
to evolve classifiers in forms other than program trees. The
original IMGP cannot be used for multiclass problems directly,
as it is difficult to interpret the single numerical output as one
of the multiclasses [23]. However, we can modify IMGP to
learn a rule-based system in which the rules tell the classes of
data directly. As an extension of IMGP for multiclass problems,
condition matrix for rule learning (CMRL) [39] was proposed.
CRML replaces the IM with a condition matrix (CM). CMRL
extracts rules from CM and groups them as a rule set. The rule
set is then used to predict the classes of data.
1) Representation: Suppose we are given a training data set

S of n samples {s1, s2, . . . , sn}. A sample has m predictive
attributes a1, a2, . . . , am, and each attribute ai takes one of qi

values, i.e., a1
i , a

1
i , . . . , a

qi

i . There is also a class attribute c,
which takes one of k classes, i.e., c1, c2, . . . , ck. A condition
is an expression that an attribute equals a certain value, e.g.,
ai = al

i. We denote an attribute a of a sample s as s.a, so a
condition applied on the sample s can be written as s.ai = s.al

i.
A rule set R contains a set of rules {ri}. A rule r consists of

two parts: 1) the antecedent r.antecedent, which is a conjunc-
tion of conditions, and 2) the consequent r.consequent, which
is an assignment of the class attribute. Given a sample s, if it
matches the antecedent of the rule, then the rule is fired, and
the consequent becomes true. We denote the set of data firing
the rule r as FS(r) and the set of data correctly classified by the
rule r as CS(r). We use a rule r to classify the data set and refer
to the ratio ca(r) = ‖CS(r)‖/‖FS(r)‖ as the classification
accuracy, where the operator ‖ · ‖ is the cardinality of the set.
In addition, according to the theory of Occam’s razor [24],
a simpler model is preferred if two models have the same
accuracy. The complexity of a rule r can be measured as the
length of the antecedent. Therefore, we have the penalized
accuracy, pa(r) = ca(r)/‖r.antecedent‖, which scales ca(r)
down by ‖r.antecedent‖. This is similar to the fitness (7) in
IMGP for classification, which penalizes the fitness by the tree
size. As for the rule set R, its classification accuracy ca(R) is
the ratio between the number of the data correctly classified

Fig. 8. Example of rule set used in the “Saturday Morning’s Weather”
problem. The if part is the antecedent, and the then part is the consequent.

by the rules to the total number of the data in the data set
S, i.e., ca(R) = ‖CS(R)‖/‖S‖. The complexity of the rule
set R is the number of rules in it, i.e., ‖R‖. A sample s can
fire several rules in the rule set, and their consequents could
be contradictory, predicting different classes. In this case, s
is assigned the class predicted by the rule of the highest ca,
i.e., s.c = r.consequent, where r = arg maxri∈R ca(ri), and
ri ∈ R is one of the rules fired by s. Fig. 8 gives an example of
the rule set used in the “Saturday Morning’s Weather” problem.
The problem has four predictive attributes and one binary class
attribute. The if part is the antecedent, and the then part is the
consequent.

While IMGP extracts program trees from the IM, CMRL
extracts rules from CM. As the name implies, CM is composed
of cells of conditions. The fitness of a condition is used as the
criterion to determine whether it is selected as a part of a rule.
Information entropy (IE) [16] is frequently used in DTs [13]
because it measures how well an attribute classifies the data.
CMRL uses IE as the fitness of a condition to measure the
degree to which the condition classifies the data. Equation (8)
computes the IE of a condition con, with respect to the current
data, where p(ci|con) is the conditional probability of the class
ci, given the condition con. The conditional probability is
calculated based on the data matching the conditions already
extracted in the antecedent, so it may change if the previously
extracted conditions change. We have

iecon = −
m∑

i=1

p(ci|con) log2 p(ci|con). (8)

CM has fixed numbers of rows and columns. An attribute can
appear only once in a rule; otherwise, multiple conditions of
the same attribute would be either redundant or contradictory.
Therefore, the height of CM is the number of attributes, i.e.,
m + 1. Because CMRL uses the entropy of a condition as its
fitness, and multiple copies of the same condition would have
the same entropy, each row of CM has a single copy of a
type of condition. The width of CM is therefore the number of
all possible conditions, i.e.,

∑n
i=1 qi + k. Table IX shows the

CM of “Saturday Morning’s Weather” problem, which has four
predictive attributes and one binary class attribute.

LI et al.: INSTRUCTION-MATRIX-BASED GENETIC PROGRAMMING 1047

TABLE IX
CMOF SATURDAY MORNING’S WEATHER. EACH CELL IS A CONDITION THAT ASSIGNS A VALUE TO AN ATTRIBUTE

2) Algorithm: The overall algorithm of CMRL in
Algorithm 4 is similar to IMGP. CMRL keeps extracting
rules, grouping them into rule sets, and evaluating the
classification accuracies of the rule sets. For each rule set, it
puts the best rule aside in a separate persistent rule set, whose
reduct is output as the optimal rule set. However, there are a
few differences from IMGP.

Algorithm 4: The Main Program of CMRL
Output: the REDUCT of the elitist rule set}
initialize CM;
Elitist ← ∅;
for gen from 0 to G do

for num from 0 to P do
R ← ∅;
CA ← inf ;
while ca(R) < CA do

CA ← ca(R);
extract a rule r from CM;
R ← R ∪ {r};
ca(R) ← evaluate(R);

end
r ← best ∈ R;
if ca(r ∪ Elitist) > ca(Elitist) then

Elitist ← Elitist ∪ r;
end

end
REDUCT ← reduct(Elitist)

Extraction: CMRL keeps extracting rules from CM until
the rule set of the extracted rules satisfies a predefined classifi-
cation accuracy. To extract a rule, it starts extracting the first
condition from the first row of CM and continues to extract
other possible conditions from the following rows until a condi-
tion of the class attribute is extracted. The conditions extracted
before the class attribute constitute the antecedent of the rule,
and the condition of the class attribute is the consequent of
the rule. To extract a condition, CMRL randomly selects two
conditions on the same row, compares their entropies, and
extracts the one with lower entropy. Note that the entropy is
not stored with the condition, because the entropy is calculated
online with respect to the data matching the conditions already
extracted.

Elitism: In a rule set, the best rule achieves the highest
penalized classification accuracy among all the rules. Such a
rule is called an elitist, and it should be reserved in a separate
elitist rule set for future use. Before it is put in the elitist
rule set, it is checked whether it correctly classifies some data
that the other elitist rules classify incorrectly. If not, the best
rule is not reserved. The checking avoids keeping redundant
rules unnecessarily and reduces the number of elitist rules

TABLE X
COMPARISON OF THE RESULTS OF CMRL WITH

AND WITHOUT RULE-REDUCT

significantly. While all the extracted rule sets are discarded after
evaluation, their best rules are reserved in the elitist rule set.
At the end of evolution, the elitist rule set is output for further
processing of reduct.

Rule-reduct: According to the theory of Occam’s razor,
the more complex the model is, the worse the model gener-
alizes. Therefore, not only does the large rule set causes long
classification time, but it also may not perform well on the
testing data. To reduce the size of the elitist rule set without
sacrificing its classification accuracy, we introduce rule-reduct
as in Definition 5.1. A rule set can have more than one rule-
reduct, but we are most interested in the smallest size rule-
reduct because its generalization is likely to be the best.
Definition 5.1: The rule set R′ is the rule-reduct of the rule

set R if and only if ca(R′) = ca(R) and for any R′′ ⊂ R′,
ca(R′′) ≤ ca(R′).

After evolution, CMRL uses a greedy approach to find a
small rule-reduct of the elitist rule set. CMRL selects the rules
from the elitist rule set one after another in the descending
order of their classification accuracies and puts them in an
initially empty rule set. CMRL stops selecting rules when the
classification accuracy of the new rule set is equal to that of
the original elitist rule set. This new rule set is thus the rule-
reduct of the original elitist rule set. Because the rules of high
classification accuracies are selected first, the new rule set is
likely to be the smallest rule-reduct.
3) Result: To evaluate the performance of CMRL on classi-

fication problems, we applied it to four classification problems
from the UCI repository [4]. Pima and Horse are the binary
class problems already tested by IMGP. Flare has six classes,
and Zoo has seven classes. Table X reports the average results
over ten runs, where classification error is the ratio of the num-
ber of the data misclassified to the size of the whole data set.
It also compares the testing errors and the sizes of the rule
sets with or without reduct. The generalization of CMRL was
acceptable. Except for the Flare problem, the testing errors are
only slightly larger than the training errors. The testing error on
Pima is even better than that of IMGP, and the testing error on
Horse is also better than those of G3P.

Our experiments also show that the differences between
the testing errors with or without reduct are only marginal.
This implies that reduct does not affect the generalization.

1048 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 4, AUGUST 2008

However, the number of rules in the rule set is decreased signif-
icantly, and thus, reduct has saved a lot of computation time in
testing.

VI. CONCLUSION

We have proposed a new IMGP paradigm. It maintains an
IM to store the fitness of the instructions and the links between
the instructions and their best subtrees. IMGP extracts program
trees from the IM, updates the IM with the fitness of the
extracted program trees, performs crossover and mutation on
the extracted program trees, and shuffles the IM to propagate
good instructions. The experimental results have verified its
effectiveness and efficiency on the benchmark problems. It
is not only superior to CGP in terms of the qualities of the
solutions and the number of program evaluations, but it also
outperforms the related GP algorithms on the tested problems.

The reason behind why IMGP works can be explained in
three perspectives. First, by evolving instructions separately,
IMGP actually decomposes a high-dimensional problem into
small problems of only one dimension. Therefore, both the
size of the solution space and the search time is reduced
significantly. At the same time, it also maintains the interde-
pendencies between instructions in the form of the links of
best subtrees, and thus, it is likely that the combination of
the optimal instructions is the optimal program tree to the
original problem. Second, IMGP can be viewed as evolving
schemata directly [22]. The schema theory originally explained
why GA works. It was extended to explain the mechanism of
GP later. By maintaining the average and the best fitness of the
instructions and the subtrees, IMGP is able to maintain most of
the information of the schemata and to make use of the infor-
mation to evolve schemata directly. Third, from the cooperative
coevolution perspective, the IM is a set of subpopulations of
instructions and subtrees. The selected instructions or subtrees
from the subpopulations cooperate to form a complete program
tree. While the fitness of the tree nodes and the subtrees is
evaluated as a whole, they evolve on their own.

IMGP can also be used for classification problems. To enhance
its performance, IMGP uses gradient descent to find the optimal
constants in program trees and incorporates the penalty of program tree
complexity in the fitness. In most of the tested problems, IMGP is able
to find classifiers of higher classification accuracies than four other GP
classifiers. The results of IMGP are also comparable to or better than
those of a DT, a neural network, and an SVM. IMGP has a flexible
architecture. To solve multiclass classification problems, we have ex-
tended IMGP to CMRL. CMRL extracts rules from a CM and groups
them as a rule set. The rule-reduct decreases the number of rules in
the elitist rule set while maintaining its classification accuracy. In the
experiments, CMRL finds effective classifiers on the two multiclass
classification problems. For the two binary classification problems, it
is also comparable to other GP-based binary classifiers with respect to
the testing error.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions.

REFERENCES

[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Ge-
netic Programming—An Introduction: On the Automatic Evolution of
Computer Programs and Its Applications. San Mateo, CA: Morgan
Kaufmann, Jan. 1998.

[2] F. H. Bennett, III, J. R. Koza, J. Shipman, and O. Stiffelman, “Building
a parallel computer system for $18,000 that performs a half peta-flop per
day,” in Proc. GECCO, W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, Eds., San Francisco, CA, 1999,
pp. 1484–1490.

[3] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Clarendon, 1995.

[4] E. K. C. Blake and C. J. Merz, UCI Repository of Machine Learning
Databases, 1998. [Online]. Available: http://www.ics.uci.edu/~mlearn/
MLRepository.html

[5] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence:
From Natural to Artificial Systems. New York: Oxford Univ. Press,
1999.

[6] P. A. N. Bosman and E. D. de Jong, “Grammar transformations in an
EDA for genetic programming,” in Proc. GECCOWorkshop, Seattle, WA,
Jun. 2004.

[7] E. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic program-
ming: An analysis of measures and correlation with fitness,” IEEE Trans.
Evol. Comput., vol. 8, no. 1, pp. 47–62, Feb. 2004.

[8] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995.

[9] I. Dempsey, M. O’Neill, and A. Brabazon, “Constant creation in gram-
matical evolution,” Int. J. Innov. Comput. Appl., vol. 1, no. 1, pp. 23–38,
Apr. 2007.

[10] P. D’haeseleer, “Context preserving crossover in genetic programming,”
in Proc. IEEEWorld Congr. Comput. Intell., Orlando, FL. Piscataway, NJ:
IEEE Press, Jun. 1994, vol. 1, pp. 256–261.

[11] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization
by a colony of cooperating agents,” IEEE Trans. Syst., Man Cybern. B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[12] J. Eggermont, A. E. Eiben, and J. I. van Hemert, “A comparison of genetic
programming variants for data classification,” in Proc. 11th BNAIC, E.
Postma and M. Gyssens, Eds., Maastricht, The Netherlands, Nov. 1999,
pp. 253–254.

[13] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using second
order information for training support vector machines,” J. Mach. Learn.
Res., vol. 6, pp. 1889–1918, Dec. 2005.

[14] C. Ferreira, “Gene expression programming: A new adaptive algorithm
for solving problems,” Complex Syst., vol. 13, no. 2, pp. 87–129,
Feb. 2001.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[16] R. M. Gray, Entropy and Information Theory. New York: Springer-
Verlag, 1990.

[17] G. Harik, “Linkage learning via probabilistic modeling in the ECGA,”
Univ. Illinois Urbana-Champaign, Urbana, IL, Tech. Rep. IlliGAL
No. 99 010, 1999.

[18] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning. New York: Springer-Verlag, Jul. 2001.

[19] J. R. Koza, Genetic Programming: On the Programming of Computers by
Natural Selection. Cambridge, MA: MIT Press, 1992.

[20] J. R. Koza, Genetic Programming—Part II: Automatic Discovery of
Reusable Programs. Cambridge, MA: MIT Press, May 1994.

[21] K. S. Leung, K. H. Lee, and S. M. Cheang, “Parallel programs are
more evolvable than sequential programs,” in Proc. 6th EuroGP, Essex,
U.K., E. C. C. Ryan, T. Soule, M. Keijzer, E. Tsang, and R. Poli, Eds.
New York: Springer-Verlag, 2003, vol. 2610, pp. 107–118.

[22] G. Li, K.-H. Lee, and K.-S. Leung, “Evolve schema directly using instruc-
tion matrix based genetic programming,” in Proc. 8th Eur. Conf. Genetic
Program., Lausanne, Switzerland, M. Keijzer, A. Tettamanzi, P. Collet,
J. I. van Hemert, and M. Tomassini, Eds. New York: Springer-Verlag,
Mar. 2005, vol. 3447, pp. 271–280.

[23] T. Loveard and V. Ciesielski, “Representing classification problems in
genetic programming,” in Proc. Congr. Evol. Comput., COEX, Seoul,
Korea. Piscataway, NJ: IEEE Press, May 2001, vol. 2, pp. 1070–1077.

[24] D. MacKay, Information Theory, Inference, and Learning Algorithms,
Sep. 2003.

[25] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proc.
3rd EuroGP, Edinburgh, U.K., R. Poli, W. Banzhaf, W. B. Langdon,
J. Miller, P. Nordin, and T. C. Fogarty, Eds. New York: Springer-Verlag,
2000, vol. 1802, pp. 121–132.

LI et al.: INSTRUCTION-MATRIX-BASED GENETIC PROGRAMMING 1049

[26] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, no. 2, pp. 199–230, 1995.

[27] T. Perkis, “Stack-based genetic programming,” in Proc. IEEE World
Congr. Comput. Intell., Orlando, FL. Piscataway, NJ: IEEE Press,
Jun. 1994, vol. 1, pp. 148–153.

[28] R. Poli, “Evolution of graph-like programs with parallel distributed ge-
netic programming,” in Proc. 7th ICGA, T. Bäck, Ed., 1997, pp. 346–353.

[29] M. Potter and K. De Jong, “Cooperative coevolution: An architecture for
evolving coadapted subcomponents,” Evol. Comput., vol. 8, no. 1, pp. 1–
29, Mar. 2000.

[30] J. Quinlan, Data Mining Tools See5 and C5.0, 2007. [Online]. Available:
http://www.rulequest.com/see5-info.html

[31] R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[32] S. A. Rojas and P. J. Bentley, “A grid-based ant colony system for
automatic program synthesis,” in Proc. Genetic Evol. Comput. Conf.,
M Keijzer, Ed., Seattle, WA, Jul. 2004. Late Breaking Papers.

[33] R. Salustowicz and J. Schmidhuber, “Probabilistic incremental program
evolution,” Evol. Comput., vol. 5, no. 2, pp. 123–141, 1997.

[34] K. Sastry and D. E. Goldberg, “Probabilistic model building and com-
petent genetic programming,” in Genetic Programming Theory and
Practice, R. L. Riolo and B. Worzel, Eds. Norwell, MA: Kluwer, 2003,
ch. 13, pp. 205–220.

[35] Y. Shan, R. I. McKay, H. A. Abbass, and D. Essam, “Program evolution
with explicit learning: A new framework for program automatic syn-
thesis,” in Proc. CEC, R. Sarker, R. Reynolds, H. Abbass, K. C. Tan,
B. McKay, D. Essam, and T. Gedeon, Eds., Canberra, Australia,
Dec. 2003, pp. 1639–1646.

[36] Y. Shan, R. I. McKay, R. Baxter, H. Abbass, D. Essam, and H. Nguyen,
“Grammar model-based program evolution,” in Proc. IEEE Congr. Evol.
Comput., Portland, OR, Jun. 20–23, 2004, pp. 478–485.

[37] D. Thierens and D. E. Goldberg, “Mixing in genetic algorithms,” in Proc.
5th Int. Conf. Genetic Algorithms, S. Forrest, Ed., San Mateo, CA, 1993,
pp. 38–45.

[38] A. Tsakonas, “A comparison of classification accuracy of four genetic
programming-evolved intelligent structures,” Inf. Sci., vol. 176, no. 6,
pp. 691–724, Mar. 2006.

[39] J. F. Wang, K. H. Lee, and K. S. Leung, “Condition matrix based genetic
programming for rule learning,” in Proc. 18th IEEE ICTAI, Washington,
DC, Nov. 2006, pp. 315–322.

[40] P. A. Whigham, “Grammatically-based genetic programming,” in Proc.
Workshop Genetic Program: From Theory Real-World Appl., J. Rosca,
Ed., San Mateo, CA, Jul. 1995, pp. 33–41.

[41] M. L. Wong and K. S. Leung, “Data mining using grammar based ge-
netic programming and applications,” in Genetic Programming, vol. 3.
Norwell, MA: Kluwer, Jan. 2000.

[42] K. Yanai and H. Iba, “Estimation of distribution programming based on
Bayesian network,” in Proc. CEC, R. Sarker, R. Reynolds, H. Abbass, K.
C. Tan, B. McKay, D. Essam, and T. Gedeon, Eds., Canberra, Australia,
Dec. 2003, pp. 1618–1625.

[43] M. Zhang and W. Smart, “Genetic programming with gradient de-
scent search for multiclass object classification,” in Proc. 7th EuroGP,
Coimbra, Portugal, M. Keijzer, U.-M. O’Reilly, S. M. Lucas, E. Costa,
and T. Soule, Eds. New York: Springer-Verlag, Apr. 2004, vol. 3003,
pp. 399–408.

[44] D. Zongker and B. Punch, “lilgp 1.01 User’s Manual,” Michigan State
Univ., East Lansing, MI, Tech. Rep., Mar. 1996.

Gang Li (S’07) was born in China in 1979. He
received the B.E. degree in computer science from
Wuhan University, Wuhan, China, in 2002. He is
currently working toward the Ph.D. degree at The
Chinese University of Hong Kong, Shatin.

His current research interests include evolutionary
computation, independent component analysis, and
bioinformatics.

Jin Feng Wang was born in Hebei, China, in 1978.
She received the B.S. degree in computer science
from the Hebei Science and Technology University,
Hebei, China, in 1999, and the M.S. degree in com-
puter science from Hebei University in 2003. She
is currently working toward the Ph.D. degree at the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin.

Kin Hong Lee (SM’90) received the B.Sc. and
M.Sc. degrees in computer science from the Univer-
sity of Manchester, Manchester, U.K.

Prior to joining the Chinese University of Hong
Kong, Shatin, in 1984, he had worked for Bur-
roughs Machines, Cumbernauld, U.K., and Interna-
tional Computers, Ltd., Manchester. He is currently
an Associate Professor with the Department of Com-
puter Science and Engineering, The Chinese Univer-
sity of Hong Kong, Shatin. His current interests are
computer hardware and bioinformatics. He has over

60 published papers in these fields.

Kwong-Sak Leung (M’77–SM’89) received the
B.Sc. degree in electronic engineering and the Ph.D.
degree in 1977 and 1980, respectively, from the
University of London, London, U.K.

He was a Senior Engineer on contract R&D with
ERA Technology. He later joined the Central Elec-
tricity Generating Board to work on nuclear power
station simulators in the U.K. He joined the De-
partment of Computer Science and Engineering, The
Chinese University of Hong Kong, Shatin, in 1985,
where he is currently a Professor of computer science

and engineering. He is on the Editorial Board of Fuzzy Sets and Systems and
is an Associate Editor for the International Journal of Intelligent Automation
and Soft Computing. His research interests are in soft computing and bioinfor-
matics, including evolutionary computation, parallel computation, probabilistic
search, information fusion and data mining, and fuzzy data and knowledge
engineering. He has authored and coauthored over 200 papers and two books in
fuzzy logic and evolutionary computation.

Dr. Leung is a Chartered Engineer, a member of the Institution of Engineer-
ing and Technology and the Association for Computing Machinery, a Fellow
of the Hong Kong Institution of Engineers, and a Distinguished Fellow of the
Hong Kong Computer Society. He has been the Chair and a member of many
program and organizing committees of international conferences.

