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On the Transient and Steady-State Estimates
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Abstract—This paper is concerned with the transient and steady-
state estimates of a class of genetic regulatory networks (GRNs).
Some sufficient conditions, which do not only present the tran-
sient estimate but also provide the estimates of decay rate and
decay coefficient of the GRN with interval parameter uncertain-
ties (interval GRN), are established by means of linear matrix
inequality (LMI) and Lyapunov-Krasovskii functional. Moreover,
the steady-state estimate of the proposed GRN model is also
investigated. Furthermore, it is well known that gene regulation
is an intrinsically noisy process due to intracellular and extracel-
lular noise perturbations and environmental fluctuations. Then,
by utilizing stochastic differential equation theory, the obtained
results are extended to the case with noise perturbations due
to natural random fluctuations. All the conditions are expressed
within the framework of LMIs, which can easily be computed
by using standard numerical software. A three-gene network is
provided to illustrate the effectiveness of the theoretical results.

Index Terms—Exponential estimate, genetic regulatory net-
work (GRN), interval system, steady-state estimate, stochastic
perturbation.

I. INTRODUCTION

ENES are the units of heredity in living organisms and

play an important role in the control of cellular processes,
such as the response of a cell to external signals, the differ-
entiation of cells in the unfolding of developmental programs,
and the replication of the deoxyribonucleic acid preceding cell
division [1]. As systems biology emerges in the postgenomic
era, one of its main challenges has been to understand the
gene functions and regulations at the system level, e.g., how
proteins are synthesized from genes as transcription factors
binding to regulatory sites of other genes and how they interact
with each other and with other substances in the cell to perform
complicated biological functions. These molecules and their
interactions compose a complex network that is known as
genetic regulatory network (GRN).

Recent years have witnessed tremendous developments in the
research field of genetic regulatory systems, and the develop-
ment of modeling techniques has made it possible to introduce
computational and mathematical methods for investigating the
GRNSs [2]-[4]. Until now, a large variety of formalisms have
been proposed to model, analyze, and simulate GRNs, such as
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directed graphs, Bayesian networks, Boolean networks, Petri
nets, and differential equations (see [3], [4], and the references
therein for a wider categorization of gene network models).
Mathematical modeling of genetic networks as dynamic sys-
tems provides a powerful tool for studying gene regulation
processes in living organisms since genetic networks are bio-
chemically dynamic [5]. The most frequently chosen mathe-
matical models of developmental processes have been those
described by differential equations where the variables repre-
sent concentrations of messenger ribonucleic acids (mRNAs),
proteins, or small molecules, which can better show the accu-
rate status of the gene products and understand the dynamic
behavior of biological systems in detail [6]. In addition, since
GRNS are high-dimensional and nonlinear systems, it is neces-
sary to investigate the network dynamics from the viewpoint of
the nonlinear system theory [7]-[9].

On the other hand, it is well known that cells are intrin-
sically noisy biochemical reactors, and even a small number
of reactants can lead to significant statistical fluctuations in
molecule numbers and reaction rates [10], [11]. Indeed, gene
regulation is an intrinsically noisy process due to intracellular
and extracellular noise perturbations and environmental fluctua-
tions [11]-[18]. It is observed that a given gene-expression state
may generate more than one successive gene-expression state,
which implies that different cells of the same population could
follow different gene-expression paths [19]. As a result of these
considerations, a stochastic model more accurately describes
the dynamics of gene regulation than a deterministic model.
To study the origins of noise in gene expression, McAdams
and Arkin proposed a stochastic model for gene expression
in prokaryotes [14], and stochastic differential equations have
been applied in stochastic simulations based on the chemical
master equation [20]. Recently, Xu and Tao investigated the
steady-state statistics of a single-gene auto-regulatory genetic
network with additive external Gaussian white noises and
showed that the negative (positive) feedback will result in
the mRINA noise having a positive (negative) contribution to
the protein noise [18]. The fuzzy approximation method was
applied to investigate the stability and noise-filtering schemes
of gene networks under stochastic molecular noises in [21]. The
filtering problem from gene-expression time-series data with
variance constraints was investigated in [22], and the stochastic
modeling of GRNs from gene time-series data was proposed by
applying the expectation maximization algorithm in [23].

Recently, by extracting functional information from observ-
able data, significant advances on discovering the structure
of the genetic network have been made, and deeper insights
have been gained on both the static and dynamic behaviors of
genetic networks. Similar to other dynamic systems [24]-[26],
stability is a natural requirement for GRNs with clear biological
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significance [27]. On the other hand, it is also observed that
time delays are present during the slow reaction process, such
as transcription, translation, and translocation involving mul-
tistage reactions in genetic networks [28]. It has been shown
in [29], by mathematically modeling observation data, that
the oscillatory expression of three proteins is likely to be the
consequence of transcriptional delays. In fact, delay is often
the key factor to the instability of a given system and plays
an important role in the analysis of gene regulation dynamics.
The theoretical results obtained for gene networks with or
without time delays are scattered in the literature. To mention
a few, a simple gene circuit has been designed and studied for
testing the role of negative feedback in the stability analysis of
gene networks, which consists of a regulator and transcriptional
repressor modules in Escherichia coli [30]. Considering the fact
that a genetic network is composed of a number of molecules
that interact and regulate the expression of other genes by pro-
teins, the authors presented a GRN model described by a delay
differential equation and studied the local stability by using
the characteristic equation analysis in [8]. A nonlinear model
for GRNs with SUM regulatory functions was proposed in the
form of the Lur’e system, and sufficient conditions for ensuring
the stability of the gene networks were also derived in terms of
linear matrix inequalities (LMIs) in [9]. Moreover, it has been
well known in the area of cancer therapy that the increase in
drug dosage and concentration will increase the rate of expo-
nential decay of the cell population (or concentration) in [31],
which is desirable in practical applications; in addition, from
the viewpoint of potential applications, the study of exponential
stability is more important and meaningful since the dynamic
process of a gene network can more clearly be characterized
once the decay rate is determined, which could provide better
understanding of the mechanism of the interactions between
biochemical molecules. To the best of the authors’ knowledge,
this is the first time to investigate the stability of the GRN model
with exponential estimates proposed in this paper.

In addition, it is generally assumed that the numerical values
of system parameters, such as kinetic reaction rate constants,
are precisely known. However, given the fact that GRNs are
modeled from the real-world gene-expression time-series data,
as well as the current limitations of experimental techniques, it
has been well recognized that the modeling error and parameter
fluctuation are unavoidable, which may result in instability and
poor performance of the real genetic network. Specifically,
it is very likely that the parameters of the model identified
from the experimental data will vary from time to time, and
such variations may be bounded but unknown. In other words,
“parameter uncertainties” should exist in those models that are
constructed from real-time data. However, unfortunately, the
stability analysis for GRNs with interval uncertainties has not
been studied yet and still remains an open research problem.

Moreover, when investigating the robust stability of the
genetic network and some other networks, such as neural
networks, the following approach is usually applied, for a given
network model, one usually shifts the equilibrium to the ori-
gin, and obtains the new model with zero point as its equi-
librium, then studies the robust stability of the transformed
system [32], [33]. However, such a methodology is not precise
due to the fact that the equilibrium of the network should
heavily be dependent on the parameter uncertainties, which

means that the parameter uncertainties of the GRN will result
in variation of the equilibrium. Thus, a natural but important
question we should ask is the following: when the perturbed
network eventually achieves the steady state, how far is it from
the steady state of the nominal network?

Motivated by the preceding discussions, in this paper, we
deal with the problem of robust stability analysis for the interval
GRN model, in which the values of the parameters are not
exactly known but bounded in given compact sets. Several
criteria are presented to ensure the robust exponential stability
of the proposed model with/without noise perturbation, and the
estimates of decay rate and decay coefficient are established for
the first time by means of LMI techniques. Furthermore, the
steady-state estimate of the GRNs with parameter uncertainties
is also analyzed. Note that the obtained results are formulated
in terms of LMIs, which can easily be checked by standard
software (such as Matlab), and no tuning of parameters is
required [34]. A numerical example is provided to show the
effectiveness of the proposed conditions.

Notations: R™ and R™*"™ denote the n-column vectors and
the set of all m x n real matrices, respectively. For any real
symmetric matrices P and @, the notation P > @ (P > Q)
means that matrix P — () is positive semidefinite (positive
definite). | - | denotes the Euclidean norm for vectors, and || - ||
denotes the spectral norm for matrices; Apax (M) and Apin (M)
denote the maximal and minimal eigenvalues of real matrix M,
respectively. Superscript “T™ represents the matrix transpose,
and the asterisk * is used to denote a matrix that can be
inferred by symmetry. C([—7,0],R™) denotes the family of
continuous functions ¢ from [—7,0] to R™ with norm |¢|, =
SUpP_,s<q |#(8)|- Matrix dimensions, if not explicitly stated,
are assumed to be compatible for algebraic operations.

II. MODEL DESCRIPTION AND PRELIMINARIES

Being arguably the most widespread formalism for modeling
dynamic systems in science and engineering, ordinary differen-
tial equations have extensively been applied to analyze genetic
regulatory systems. Cherry and Adler investigated a single-gene
auto-regulatory genetic network in the following form [35]:

= —ym(t) + £(0)
LD — —y/'p(t) + k'm(t)

where m(t) and p(t) are the concentrations of mRNA and pro-
tein at time ¢, respectively; v and +/ are the rates of degradation
of mRNA and protein, respectively; k' is the translation rate;
and function f(p) represents the feedback regulation of the pro-
tein on transcription. Considering the existence of transmission
delays in the process of biological reactions, Monk studied the
following model [36]:

d®) — —Am(t) + B (p — tm)
A — —/p(t) + K'mit — )

and numerically presented that the observed oscillatory ex-
pression and activity of the proteins was most likely to be
driven by transcriptional delays. Moreover, it is well known
that a genetic network is composed of a number of molecules
that interact and regulate the expression of other genes by
proteins; thus, in this paper, we consider the GRN model with n
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mRNAs and proteins described by delay differential equations
(1) shown at the bottom of the page, where m;(t) and p;(t)
denote the concentrations of mRNA and protein of the ¢th gene
at time t, respectively; a; and c; are the degradation rates of
mRNA and protein, respectively; d; represents the translation
rate; and f; is the feedback regulation of the protein on the
transcription, which is usually a nonlinear function but has a
form of monotonicity with each variable [2], [37]. Generally,
fi could be complicated, depending on the biological reactions
in the process of gene expression. Here, we assume that the
regulation function is of the form f;(p1(t), p2(t),...,pn(t)) =
> j=1 fij(p;(t)), which is also called the SUM logic, i.e., each
transcription factor additively acts to regulate the ¢th gene [9].

Due to the observation of rapid changes in many biochemical
networks when a threshold parameter is exceeded, regulatory
function f;;(p;(t)) can usually be described in the Hill form,
which has been found to adequately represent the experimental
results as follows [37]:

_(p(1)/B;)i

U Tip (1) /5,5 if transcription factor j
j j

is an activator of gene ¢ )
if transcription factor j

Fiipi®)=q ]
e (1)/8)"
is a repressor of gene i

where H; is the Hill coefficient, 3; > 0 is a scalar, and a;; > 0
denotes the transcriptional rate of transcription factor j to gene
1. Noting the fact

1 _ (/8"
1+ (p;(t)/8;)™ 1+ (p;(t)/B)™

then system (1) can be rewritten as (4) shown at the bottom of the

page, where g;(s)=(s/83;)"7 /(1+(s/8;)"), B= (bi;)nxn is
known as the coupling matrix of the genetic network defined by

3)

if transcription factor j

is an activator of gene ¢

b — 0, if there is no connection )
I between j and 4

if transcription factor j

is a repressor of gene ¢

Qjjy

— Q4 ,

and u; :_Zje% g = — ZjeVi b;;, where V; denotes the set
of transcription factors, which are the repressors of gene ¢ (see
[8], [9], and the references therein for details and illustrations
of the modeling mechanism of this gene network).

For simplicity, assume 74 =--- =7, =7 and 01 = --- =
oy, = o; then, system (4) can be described by the following
compact matrix form:

{ D0 — —Am(t)+ Bt —7) vus (o

@) — _Cp(t) + Dm(t — o)

where m(t) = [ml(t),m?(t), coma(O)F, pt) :'[pl(t)7
p2(t),...,pn ()Y, A=diag(ai,as,...,a,), C = diag(ci,
€2,..-,¢p)y D =diag(di,da,...,dn), g(p(t)) = [g1(p1(1)),
92(p2(t))7 e 7gn(pn(t))]T’ and up = [ulv U2, ..., u’n}T'

Remark 1: A three-gene network modeling the repressilator
in Escherichia coli has been proposed in [38], which can be
viewed as a special case of model (6). Such kind of model has
also been studied in [9], [17], and [27]. In addition, we wish
to point out that the main results of this paper can easily be
extended to the case where time delays are different from each
other.

The initial condition of the GRN in (6) is assumed to be

A
—p <t <0; p=max(c,T)
where ¢ and @ are positive continuous functions. Here, ma-

trices A, B, C, and D are unknown but bounded, which are
assumed to satisfy

Ace A BeBry CeC; DeDy 7
where
Ar={A10<a,; <a; <a, i=1,2,...,n}
Br ={B|b;; <bij <by, 4,j=1,2,...,n}
C’[Z{C\O<gi§ci§@-, i=1,2,...,n}
Dr={D|d;, <d; <d;;, i=12,...,n}.

Let (m*,p*) be an equilibrium point of system (6), i.e., they
satisfy

{ —Am* + Bg(p*) +up =0 )

—Cp* 4+ Dm* = 0.

Then, we have |@ —m*|2 =sup,_, g le(s) —m*> and
[ = P*[2 = supse_p,0) [¥(s) — p* .

If there are no parameter uncertainties in GRN model (6),
then the system in (6) will reduce to the nominal case, and the
corresponding system is called the nominal system of (6).

d";iit(t) = —a;m;(t) + fj (p1(t = 71), p2(t — 72), ..., Dt — 7)) W
D) = —eip(t) + dimi(t — 0y), i=1,2,...,n
Il = —ami(t) + 3 bijgy (pi(t — 7)) + s
J=t @
W) — ipy(t) + dimi(t — 0,), i=1.2,....n
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Definition 1: The nominal system of (6) is said to be globally
exponentially stable if there exist two constants, A > 0 and y >
1, such that

Im(t)—m" [*+Ip(t)—p*|* < pe ™ (lp—m*|2+p—p*[2)

where \ and p are called the decay rate and decay coefficient
of system (6), respectively. In addition, the nominal system of
(6) is said to be globally A-exponentially stable if it is globally
exponentially stable with a decay rate not less than \.

Definition 2: The uncertain system in (6) is said to be glob-
ally robustly A-exponentially stable if system (6) is globally
A-exponentially stable for all admissible uncertainties (7).

In the following, we will shift the equilibrium (m*,p*) to

the origin by using the transformation z(t) £ [21(t), z2(t),

o ;cﬁ(mT(tz) m(?) - m* ;nd y(t) 2 [ (1), y2(0), .-,
Yn =p — p*, then, we have

{ dmd(tt) = —Ax(t) + Bh (y(t — 7)) 9

Wit) — _Cy(t) + Dz(t — o)
where A(y(t)) = [h1(y1(t)), ha(y2(1), - -, hn(yn (1))] T, with
hi(yi(t)) = 9i(yi(t) + p7) — 9:(p7)-

Since g; is a monotonically increasing and differentiable
function with saturation, it satisfies 0 < dg;(s)/ds < k;, which
is equivalent to

0< gi(s1) — gi(s2) <k
S1 — 82

i=1,2,....n

for any different s, so € R. From the relationship between g
and h, we obtain the following condition:

hi(s)(hi(s) — k;s) <0, 1=1,2,...,n (10)
for any s € R.

Remark 2: Tt should be noted that condition (10) is more
general than those in [9] and [17], where the derivative of each
regulatory function is assumed to be bounded by a scalar k.
However, from the viewpoint of gene expression, the regulation
function of each protein g; may be different from each other;
thus, the assumption in [9] and [17] may not be valid, which
implies that the results obtained in this paper are more general.

Our goals are to present some sufficient criteria to ensure the
global robust stability and give the exponential and steady-state
estimates of the proposed GRN model in the form of LMIs.
To this end, we shall give the following notations and lemma,
which will be applied in the following:

A:dlag(glaU‘Qv 7@71) Z: dia‘g(alaEQa 7an)
Ez(b”‘)nxn B = bzg)nxn
Q :dlag(gl’g% 7Qn) 6 = diag(zlvé% vEn)
Q:dlag(dlad% adn) E:diag(dlad% '787l)
1 1 —
Ay = (A~ 4) 2 ding(ar, s, )
1 — 1
Co=5(C+C) Do=5(D+D)

1 - A 5
Bi =5(B=B) = (bij)nxn

1 — A . S~ ~
o= 5(0 — C) = diag(¢1,¢2, .-, Cn)
Dl:%(E—Q)édiag(czlad%mv‘z”)'

Obviously, each element of Ay, By, C1, and D1 is nonnegative,
then, we denote

E 4 =diag (\/a, \/a,. . \/ci)

EB: |:\/ 61161;- LS \/ Elnely- LS \/ Bnlena- LRT) \/ Bnnen:|

Fp= {\/ael,. - @en,. - \/iel,. \/ﬁen}
Ec =diag (\/a, \/g,. o \/a)
Ep =diag <\/d71, \/dfg,. - \/(i)

where e; € R™ is the column vector with the ith element 1 and
0 elsewhere. Furthermore, let

nxn?

T
n2xn

A:{AERnxn|A:diag(51,52,...,5n), |6z| S 1}
Q:{Q € R Q= diag (Wit - o, Winy- « os Wnlye - s Wrin )y

wij] < 1 Vi,j:1,2,...,n}.

Then, through simple manipulations, we deduce that
Ag Z{A = Ao+ EAAAE 4 ‘ Ay € A}
By :{B:Bo+EBQBFB|QB S Q}
Cr Z{C =Co+ EcAcEc|Ac € A}
Dy :{D =Do+ EpApEp | Ap € A}

Lemma 1 [39]: Assume that H, D, and E are real matrices
with appropriate dimensions and F'(t) is a real matrix function
satisfying F7(t)F(t) < I. Then
1) H+ DF(t)E + (DF(t)E)T < 0 holds if and only if
there exists a scalar ¢ > 0 satisfying H + eDD?T +
(1/e)ETE < 0.

2) Fore > 0, wehave DF(t)E + (DF(t)E)T <eDDT +
(1/e)ETE.

III. MAIN RESULTS

In this section, we first present the exponential estimates of
GRN model (6) by using Lyapunov functional methods and
give the estimates of the steady states between the nominal
and perturbed networks; furthermore, based on the preceding
analysis, we introduce noise perturbations to model (9) and
obtain some sufficient criteria to ensure the exponential stability
of the proposed GRN model by virtue of stochastic functional
differential equation theory.

A. Exponential and Steady-State Estimates of GRNs Without
Noise Perturbations

In this section, we shall first investigate the global expo-
nential stability of GRN model (6) and then reduce it to the
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case when there are no parameter uncertainties of system (6), a
sufficient condition is summarized in Theorem 1.

Theorem 1: For a prescribed A > 0, if there exist matrices
P >0,P,>0,Q1 >0, and Q2 > 0; a diagonal matrix ' =

diag(v1,72,...,7vn) > 0; and scalarse; > 0,7 =1,...,5, sat-
isfying the LMI in (11), shown at the bottom of the page, where
Oy =APy — PiAg — APy + Py + 1 ELEy (12)
(1)22 = —67A3P2 + ESELT;ED (13)
D33 =AQ1 — Q1Co — CoQ1 + e4 BLE + 2AKT  (14)
By = 2K 'TCy + Q2 +e5ELEC (15)
P55 = —e MQy + 2 Fi (16)

then the interval genetic network in (6) is globally robustly
A-exponentially stable for any o and 7 satisfying 0 < 0 <&
and0 <7 <7,

Proof: 1t can be seen from (11) and the Schur complement
in [34] that

Hyi O 0 0 P By
* @22 D(,Z;Ql DgF 0
* * * Hyy 0
* * * * D55
0
0
+| QiEp |e3' (0 0 ELQ, ELT 0)<0 (17)
T'Ep
0
where

Hiy =® +e;'PLEAELYP + ;' P EgEL P,
Hsz =33 + e, Q1EcELQ,
Hyy =¥y +e;' K 'TECELTK .
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0 P ERQpIp
(EpQpFp)" Py 0
e, PIEgEL P 0
< 2 1B L
- |: 0 52F§FB:| (21)
0 0 0 0 0
0 0 (EDADED)TQl (EDADED)TF 0
0 = 0 0 0
0 = 0 0 0
0 0 0 0 0
T
= fﬁAD&z + (fﬁAng)
< esél & + e300 (22)
where
£&1=(0 Ep 0 0 0)
02=(0 0 Eng EgF 0).
Then, it follows from (17)—(22) that
(z,7)
S11 0 0 0 P B
x —e Py DTQ, DT 0
= * * 533 0 0
* * * —2K1TC + Q- 0
* * * * —e Qs
<0 (23)
with

S11=APL — PA— AP+ P,
Sas = AQ1 — Q1C — CQy + 2\KT.

Consider the following Lyapunov—Krasovskii functional
candidate for system (9):

By Lemma 1, it is easy to have Vit x(t), y(t))
. = Vi (t,x(t),y(t)) + Va (t,y(t)) + Vs (¢, x(t),y(t)) (24
—PiEAAAEA — (EaAAAEA)" Py
< e EYEj +e7'PLEAEY P, (18) Wwhere
T
~@iEcAcEc — (EcAcEc) Q1 Vi (t,2(t), y(8) =Ml (t) Pra(t) + ey" (H)Quy(t)
< e4BLEc + e QUECELQ) (19) A0
~K 'TEcAcEc — (EcAcEc)'TK™ Va(t,y(t)) =2eM Z i / hi(s)ds
<esELEc +e5' K 'TECELTK (20) =1 3
rdqq 0 0 0 P1B0 PiEy, PEp 0 0 0 ]
*  ®y»n DFQr DFT 0 0 0 0 0 0
* * @33 0 0 0 0 QlED QlEC 0
* * * Dyy 0 0 0 I'Ep 0 K 'TEx
- * * * * P55 0 0 0 0 0
M = * * * * * —e11 0 0 0 0 <0 (1D
* * * * * * —eqol 0 0 0
* * * * * * * —esl 0 0
* * * * * * * * —eql 0
L * * * * * * * * * —es5l
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Vi (£, 2(8), y(8)) = / 2T () Pya(s)ds

+ j/e%ShT<y@>>Q2h<y@»>d&

t—7

Calculating the derivative of V (¢, 2(t), y(t)) along the trajec-
tory of system (9) with respect to ¢, one has
Vi(t) = e [2T (AP (t) 4 227 (8) Pyi(t)

y" (DAQuy(t) + 29" () Qg (1))
IT(t)(Apl - PlA - APl)l‘(t)
+ 227 (t)P.Bh (y(t — 7))

yT( JAQ1 — Q1C = CQ1)y(t)
+27(t )QlDa:(t —o)]

)\t[
=e

)\t[

(25)

m \
>
q
}ﬂ

=

\

Q

S~—

o

8

=

\

Q

S~—

+hT (y(t) Q2h (y(t))

— e MR (y(t = 7)) Qb (y(t —7))] . @7
In addition, condition (10) yields

—2h" (y(1)) TCy(t) < — 2" (y(t)) TCK "h(y(t)) (28)
2ART (y(1)) Ty(t) <2X\y" (1) KTy(t). (29)

The relations from (25) to (29) lead to

V() =Va(t) + Va(t) + Va(t)
<eM[2T(t) (AP — PLA — APy + P3) 2(t)
+ 22T (t)PyBh (y(t — 7))
YT (H)(AQ1 — Q1C — CQ1)y(t)
+2y" (@1 Dx(t — o)
+hT (y(t) (~2PCK ™ + Q2) h (y(t))
+ 207 (y(t)) TDz(t — o) + 22y” (t) KTy(t)
e 22T (t — o) Pyx(t — o)
e AT (y(t = 7)) Qb (u(t = 7)]
= e“nT( (o, 7)n(t) (30)
where
n(t) = [¢7(1), 27 (t = o),y (1), hT (y(1)), A" (y(t —7))]
and
(o, 1)
S11 0 0 0 P, B
¥ —e P, DTQ, DTT 0
= * * S33 0 0
* * * —TCK~' + Q> 0
* * * * —e Qs
(€29

Since (o, 7) < H(7,7) forany0 < 0 <gand0 < 7 < 7,
(30) and (31), together with (23), yield V(t) <0.

On the other hand, from the definition of V (¢, z(¢),y(¢)), it
is not difficult to obtain the following inequalities:

Vi (t,a(t),y()
< (1Pl 20 + [Qully(®)F)

Va (t,2(t),y(t))
< 2eMyT(Th (y(t)) < 2eM DK y(1)?

Vs (¢, 2(t),y(t))

2 / eMds

t—o

<12 |z(s)

sup
t—o<s<t

t

)l [ s

t—1

+ Q2] -

sup
t—7<s<t

\ 1— €7>\O‘ 5
= P s fa(s)
t—o<s<t

1— e—)\‘r
o e ALY

sup [y(s) 2]-
t—17<s<t
Thus, we obtain

y(t)) <V(0)
<[Pl 2(0)* + Q1| ly(0)[?
+2|TK][y(0)”
1— e—)xn 9
12l _sup_ fa(s)]

A —o<s<
1— e*/\T
A

V(t,z(t),

2
+ IQallIE[1* sup [y(s)|
—7<s<0

< pale — m* 2+ ol — p*I2 (32)

where

1—e N
MF:@HH+)\WMO

o — Q@m+mer+ @ﬂzfﬁ

Inequality (32), together with e (Apin(Py)|z(t)]? +
Amin(Q1)|y(1)[?) < V (¢, 2(t), y(t)), yields
m(t) = m** + p(t) — p'* < pe X (jo —m*[5 + [ — p’[})
where

p= — maxti, ) . (33)

min {)\min(Pl)a Amin(Ql)}

Therefore, the interval genetic network (6) is globally robustly
stable with decay rate A. This completes the proof. ]

Assume that the nominal system of (6) takes the follow-
ing form:

= —Aom(t) + Bog (p(t — 7)) + up,

o
(34)
de(tt) = —Cop(t) + Dom(t — o),
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For the nominal system in (34), according to Theorem 1, it
is easy to obtain the following sufficient condition on global
A-exponential stability.

Theorem 2: For a prescribed A > 0, if there exist matri-
ces PL >0, P, >0, @, >0, and Q2 > 0, and a diagonal
matrix I' = diag(y1,y2,-..,vn) > 0, such that the following

LMI holds:
Ell 07 0 0 PlBO
x  —e NP, Dng DOTF 0
M= x% * =33 0 0 <0
* * 544 0
* * * —e T Q,
(35)

where

11 =P, —P]_A()—A0P1+P2
3 =AQ1 — Q1Co — CoQ1 + 2AKT
= —2K'TCy+ Q>

w
w

(1 [1 [1]

then the genetic network in (34) is globally A-exponentially
stable for any ¢ and 7 satisfying0 < 0 <vand0 <7 < 7.

By shifting the equilibrium of the network (34) to the origin
and choosing the same Lyapunov—Krasovskii functional can-
didate (24) for system (34), one can obtain Theorem 2 in a
way similar to Theorem 1. As the proof is straightforward, it
is omitted.

Remark 3: To the best of our knowledge, it is the first
time to investigate the global exponential stability of interval
GRNs; the condition obtained in Theorem 1 is in the form
of LMI, which can easily be checked by utilizing standard
software. In addition, for any ¢ and 7 satisfying 0 < 0 <&
and 0 < 7 < 7, the maximal decay rate \* of gene network (6)
can be estimated by using a simple bisection algorithm [40].
Furthermore, the decay rate was usually a fixed value computed
by solving a transcendental equation in previous studies of
dynamic systems, whereas the decay rate in Theorem 1 could
be a free value that is equal to a preassigned constant, which can
be selected according to different practical requirements. This
will be of importance in understanding the mechanism of the
regulatory, as well as introducing more flexibility in the analysis
of genetic network.

Remark 4: The local stability criteria of biological and ge-
netic networks have been established in [8] by the linearization
technique, which involves the solvability of some transcenden-
tal equations. It has been well known that it will become more
difficult to solve these equations with the increase in system
dimensions, not to mention the fact that a GRN is usually
a high-dimensional system and the introduction of parameter
uncertainties may make the characteristic equation unsolvable.
On the other hand, LMI is a pretty powerful and versatile tool
for system analysis and design in the area of control theory
and applications [34], and can efficiently be solved by existing
algorithms.

Remark 5: It was pointed out in [9] that one can prove the
uniqueness of equilibrium point (m*, p*) by using a contradic-
tion argument. However, in this paper, we deal with the global
exponential stability of the genetic network, which, in turn,
implies the uniqueness of the equilibrium point of the GRN.

R

(my, py)

Fig. 1. Profile of the steady-state estimate of network (6).

It should be noted that the equilibrium (m*,p*) of the
network is, in general, dependent on parameter uncertainties,
which implies that, for different uncertainties, the equilibrium
should be different from each other. Let (mg, pj)) be the equi-
librium of the nominal network (34), which represents the
concentration of mRNA and the protein in the steady state, i.e.,
—Aomg + Bog (pp) +up, =0 36)

—Copa =+ D0m6 =0.

Therefore, there must be some variations between the equilib-
riums (m*, p*) and (my), p§). An interesting question that one
may raise is the following: when the network with parameter
uncertainties achieves the steady state (m*, p*), how will it be
drifted from the steady state (mg, pj;) of the nominal genetic
network (see Fig. 1)? Note the fact that the stability of the
gene regulatory network in (6) will naturally ensure the stability
of network (34), which means that, if (m*, p*) is stable, then
(m{), p;) must also be stable. In the remaining portion of the
section, we try to establish the steady-state estimate between
the GRN (6) and (34) under condition (11).

Consider the GRN (6) and (34), let e; () = m(t) — my, and
ea(t) = p(t) — pg, then we obtain the following equation:

dedt(t) (37)
2l = —Cey(t) + Der(t — o) + J (mg, pp)

{ der () — _ Aey(t) + Bh(ex(t — 7)) + I (mi, p)

in which I(m},p) = —EaAaEam{ + EgQpFrg(p§) +
up —up,, Wwhere the ith element of wup—up, =
= jev, (biy —bY;), and  J(m§,pp) = —EcAcEcp; +
EpApEpmj. We present the steady-state estimates in
Theorem 3.

Theorem 3: If condition (11) holds, then, for ¢ and 7 satisfy-
ing 0 < o0 <7 and 0 < 7 <7, the equilibrium point (m*, p*)
of the network (6) will be located in set .S, which is defined by

s={mys| (2 )| < )

R =g NPilvs + (@] + | KT) va
A - min ()\min(Pl), /\min(Ql + 2KP))

vr = || Eall [Eamg| + | EB| [Fpg (po)]

2\ 1/2

where

+ Z Z bij ;QU

i=1 \jeV;

va =||Ecll|Ecpo| + || Ep|l [Epmg| -
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Proof: Consider the following Lyapunov—Krasovskii
functional candidate for system (37):

Vi (t,ei(t), e2(t))
= V1 (t, el(t),

where

Vi (t,e1(t), ea(t))

ea(t)) + Va (t,e2(t)) + Va (¢, e1(t), e2(t))

=ej (t)Prex(t) + e3 (£)Qrea(t)

627,(75)
Vo (t,ea(t —QZ% / h;i(s)ds
0
t
Vi (t e (), es(t)) = / 1 (5) Pyes (s)ds

t—o
t

4 [ T (eals) Qah (eals) ds.
t—r
Calculating the derivative of V(¢,e1(t),e2(t)) along the
trajectories of system (37) with respect to ¢, with the similar
techniques employed in Theorem 1, one has
V() =Vi(t) + Va(t) + Va(t)
<el'(t)(=PLA— AP; + Py)ey(t)

+2¢T () Py [Bh(ea(t — 7) + I (mj, pj)

+eg (1) (—Q1C — CQu)ex(t)

+ 261 (1)Q1 [Dea (t — o) + T (mp, pj)]

+ AT (ea(t)) (—2IC Kt + Qo)A (ea(t))

+ 20T (e(t)) T Dey (t — o)

1217 (ex(t)) TJ (i, pj)

—el'(t —o)Pyey(t — o)

— ¥ (e2(t — 7)) Q2h (ea(t — 7))

=n" (t)IL(o, T)(t)

+e1T< ) [=APrex(t) + 2P (mg, pg)]

+eg (1) [(-AQ1 — 2AKT)ea(t) +2Q1J (mg, g)]

+2h" (ea(t)) TJ (mg, 1)

0" (O)IL(o, 7)i(t)

— X+ min Ain (P1) Amin (@1 + ZKF))‘(elT,eg)T‘z
2(IPullor + (1Qul + KTl va) (e e5) | 38)
where
n(t) = [e7 (1), €T (¢t = 0), e (0,17 (e2(6)) 1T (ea(t = 7))]

and II(o, 7) is defined in (31). On the other hand, define a set
S ={(e1,e2) : |(eT,el)T| < R}. For (e1,e2) ¢ S, we have

[Prl[vr + (@1l + [IKT) ve
A . min ()\min(Pl); )\min(Ql —|— ZKF))

T
‘(elT,GQT) ’ > 2
which is equivalent to

2
7)\ ~rnin ()\min(Pl)a (6{765)71‘

)\min(Ql + 2KF))

T
2(IPyflor + (1@ + IKTI) )| (1, e8) 7| < 0.

This, together with (38), gives V(t) < 0 for any (e, es) ¢
S ; then, we can conclude that there exists 7' > 0 such that
(e1,e2) € S forany t > T'. According to condition (11), it can
easily be obtained that the steady state (m*, p*) of the network
(6) will be located in set .S. This completes the proof. |

Remark 6: Theorem 3 shows that the steady state of mRNAs
and proteins in the genetic network varies under the condi-
tion that there exist uncertainties on system parameters. The
minimization of R can be achieved via the following convex
optimization:

rr}sinR

(11) holds

0<II <P <pil
st 0<@Qi<ql
o 0< KT < gl

9 < Q1+ 2KT

2 (prv1 + (1 + g2)v2) < MR

where S={P;>0,P,>0,Q1>0,Q2>0,T=diag(y1,y2,

ey V) > 0,8, >0,0=1,...,5,9>0,p; >0,q1 >0,q2 >
0}. In fact, we convert the original “feasible solution” condition
to a generalized eigenvalue minimization problem, which paves
a way to estimate the range of concentrations of the variables.
Due to the page length restriction, here we only present a
rough estimate of the steady state, and one may use some other
techniques, such as the introduction of free matrices and the
optimization theory in [41], to reduce the conservatism of this
estimate.

B. Exponential Estimates of GRNs With Noise Perturbations

Genetically identical cells and organisms exhibit remarkable
diversity even when they have identical histories of environ-
mental exposure. Noise, in the process of gene expression, may
contribute to this phenotypic variability [16]. It is suggested
that this noise has multiple sources, including the stochastic
or inherently random nature of the biochemical reactions of
gene expression, and undoubtedly affects the kinetics of the
networks [15], [17]. Since we often know little about the noise
in the genetic network, different from the method in [13] and
[42], where the stochastic properties are supposed to be known
or the external noise are used to control a single gene auto-
regulatory network in the concentration of protein, we assume
here that the noise perturbations are unknown and additively
perturb the network. By means of the stochastic functional
differential equation theory, we study the exponential stability
of the randomized genetic network and investigate the impact
on both parameter uncertainties and noise perturbations.

In the following, we consider genetic networks with both
parameter uncertainties and noise perturbation described by

W = —Aa(t) + Bh (y(t — 7))
it + Gy (t, x(t), y(t - T)) f(t) (39)
W) — _Cy(t) + Da(t — o)
+ G2 (t7 .’I,‘(t - 0)7 y(t)> E(t)
where G1, G : R x R”® x R® — R™*/ are called the noise in-

tensity function, which are both Borel measurable and assumed
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to satisfy
trace (G (t,z(t),y(t — 7)) G1 (£, z(t), y(t — 7))

< pr|a(®)* + pa [y(t —7)|” (40)
trace (Gg (ta ‘T(t - U)v y(t)) Go (ta l’(t - U)a y(t)))
< psfa(t = 0)* + paly(®)] S

&(t) is the I-dimensional Gaussian white noise, and the other
system parameters are defined to be the same as those in (9).

Recall that [-dimensional Gaussian white noise can be
viewed as the derivative (in the generalized function sense) of
the [-dimensional Wiener process (or Brown motion); then, we
can rewrite (39) in the form of

da(t) = [-Ax(t) + Bh (y(t — 7))] dt
+ Gl (ta (E(t), y(t - T)) (t) (42)
dy(t) = [-Cy(t) + Dx(t — o)) dt
+ G (t,2(t = 0),y(t) AW (1)
where W (t) = (w1 (t), wa(t),...,wi(t)) is an [-dimensional

Brown motion defined on a complete probability space
(Q, F,{F}i>0, P). The initial condition associated with the
network (42) is given in the following form:

a(t)= y(t) = 1y (1),

for any ¢, 1, € L%([—p,0],R™), where L%([—p,0],R") is
the family of all Fy-measurable C([ ,0], R™)-valued ran-
|2 = sup_ p<s<0E“Pﬂ:( )|2 <
00, Elthy ( )|2 = sup_,<,<o El1y(s)|? < 0o. For the stochas-
tic functlonal differential equation, we discuss the global expo-
nential stability of the proposed model (42) in the mean square.
Theorem 4: For a prescribed A > 0, if there exist matri-
ces P >0, P, >0,Q1>0,Q2 >0, and R > 0; a diagonal
matrix T' = diag(v1,72,.-.,7vn) > 0; and scalars ; > 0,i =
., 8, satisfying the LMIs in (43) and (44), shown at the
bottom of the page, where

P (t) —p <t <0; p 2 max(o,7)

dom variables satisfying E|o.(s)

Uiy =AP — PiAg — AoPy + Py +e1 EAEa + g6p1l

Way = —e Py +e3ELED + (67 +8)ps]

P33 =AQ1 — Q1Cy — Cp@Q1 + R+ 20AKT
+esEEEc + (g7 + e8)pal

Uy =Py = 2K 'TCy+ Q2 + esELEc
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then the interval genetic network (42) is globally robustly
A-exponentially stable in the mean square for any o and 7
satisfying0 < o <cgand0 < 7 < 7.

Proof: Consider the following Lyapunov—Krasovskii
functional candidate for system (9):

V(& 2(t),y(t) = Vi (¢, 2(1),y(1))

+Va (,y(8) + Va (£, 2(1),y(t)  (45)

where

Vi (t,2(t),y(1) = eMa™ (8) Pra(t)

+ My (H)Quy(1)
yi(t)

_QZGM'% / i

(s)ds

+ [ N (u(9) Qah (o) ds
t—7
The weak infinitesimal operator LV along (42) is given
by [43]

LV (t,x(t),y(t) = LV1 (t,2(t), y(t))

+ LVa (t,y(t) + LV5 (¢, z(t), y(t))

where

LV (t,x(t), y(t))
=M [T (OAPiz(t) +yT (HAQuy(t)
+ 22T (t) Py (—Az(t) + Bh (y(t — 7))
+ 2" (1)Q1 (—Cy(t) + Dx(t — 0))]
+ et [trace(GlT (t,z(t),y(t — 1))
x PGy (t,2(t),y(t — 7))
+ trace(Gg (t,z(t —o),y(t))

s = Bsg = —7Qy + 2 FL Py X QiGa (ta(t = o), y(1))]
Ty 0 0 0 P By P Ey, P Ep 0 0 0 7]
* * \1133 0 0 0 0 QlED QlEC 0
* * * Wyy 0 0 0 T'Ep 0 K- 'TEx
_ * * * * Wy 0 0 0 0 0
M = 3 3 3 3 . e 0 0 0 0 <0 43)
* * * * * * —eol 0 0 0
* * * * * * * —e3l 0 0
* * * * * * * * —eql 0
L * * * * * * * * —esl
Pr<esl Qi<erl eoppl <e ™R TK <esl (44)
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LV (t,y(t))
n y7(t)
:2)\26’\1“% / hi(s
i=1

0
+eM [2hT (y(1)) T (~Cy(t) + Da(t - 0))

+trace (G5 (t,z(t — o), y(t))
X dlag ('Ylh/h 72h/2) s a’ynh{n)
x Gy (t,x(t —0),y(t))]

LV (t,2(t), y(t))
At E T()Pyx(t) — e 22T (t — o) Pax(t — o)
+ 07 (y(t) Q2h (y(1))
—e MR (y(t - ))
y" (t)Ry(t) —

On the other hand, it follows from (40) and (41) that

z(t),y(t — 7)) PGy (t,(t),y(t — 7))
< trace (GlT (t,z(t),y(t — 7)) ecIGy (t,x(t), y(t — 7’)))

= e

2h (y(t — 7))
AT T(t —7)Ry(t — ’7')] .

trace (G7 (t,

< <6 [ (O + p2 ly(t ~ )P
trace (G (t,2(t — ). y(t) Q1 Ca (t.2(t — o), y(1)))
< trace (G5 (t,2(t — ), y(t)) e71Ga (t,z(t — o), y(t))
<7 [psfolt = )P + paly(®)?] .
By (10), it is clear that
trace (G5 (t,z(t — 0),y(t)) diag (v R}, y2hs, . ..
x G (ta(t = 0).y(1)))

0),y(t))
77nkn)G2 (t7 J?(t - U)a y(t))

<es |psfz(t = o) + paly(®)?].

,nhl)

< trace (G5 (t,z(t —

X diag(’}/lkla’hk% s

Then, following a similar process as that in the proofs of
Theorem 1, we have

LV (t,2(t), y(t))
< My ()2 (o, T)n(t)
+y"(t—7) [~ MR +espal| y(t — 1)
<0

' (t— o),y (t), R (y(t), " (y(t — 7))]

1 O 0 0 P B
* T22 DTQl DTF 0
Ho,7)=| * * Ts3 0 0 <0
* * * Ty 0
* * * * —eQy

with
Ty =AP, — PPA— AP, + Py +egp1 ]
Tog = —€ N Py + (e7 +e8)psl

T33 =2Q1 — Q1C —CQ1+ R+ 2)\KT + (87 + Eg)p4l
Ty = —2CK ! + Q..
It is noted that =(o, 7) < 0 because of (43) with the similar

method used in Theorem 1. By taking the mathematical expec-
tation, it can easily be obtained that

EV (t,x(t),y(t)) <EV(0) —|—/£V (s,z(s),y(s))ds
0

< mElgz|; + n2Ely |7 (46)
where
1— e—)\o
= (170 =1
1— e—)\T )
= (llQull + 2P K| + ——— - [IQ[l K1 + 1R[] )
Inequality (46) implies that
E |z(t)]* + Bly(t)|* < pe ™ (Elpo|] + Eliy[7)
where
o max( )
min {)\min(Pl)7 )\min(Ql)} ’
This completes the proof. ]

Remark 7: Theorems 1-4 can easily be extended to the
GRNs with time-varying delays. For the lucidity of exposition,
we only discuss the GRN with time-invariant delays and focus
more on the impact of parameter uncertainties and noise pertur-
bations.

Remark 8: Although the asymptotic stability of GRNs has
been investigated in [9], the exponential stability and its esti-
mates, which provide a more accurate characterization on the
transient process of GRNs, have not been well considered.
Moreover, parameter uncertainties when modeling the GRNs
are fully neglected in [9]. In contrast, the result in Theorem 4
provides the exponential stability condition of GRNs where
both parameter uncertainties and random noise are taken into
account. It will be shown in the subsequent example that the
GRNs, under certain conditions, can withstand a certain level
of uncertainties and noises, which provides a further step for
understanding signal fidelity in gene networks and designing
robust noise-tolerant gene circuits.

According to Theorem 4, we can easily obtain Theorem 5.
(To avoid unnecessary duplication, the proof is omitted here.)

Theorem 5: For a prescribed A > 0, if there exist matri-
ces P, >0, P, >0,Q1 >0, Qs >0, and R > 0; a diagonal
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,—> Transcription

----9»  Translation
,,,gl Repression
@ ———# Activation
O Gene
<:> Protein

Fig. 2.

Gene regulation network comprising three genes (6).

matrix I' = diag(y1,72,. .. ,7vn) > 0; and scalars &1 > 0,9 >
0, €3 > 0, such that the following LMIs holds:

011 0 0 0 P, By
* @22 Dng DgF 0
M = * * O33 0 0 <0
* * * Oy4 0
* * * x  —eNQs

P <el @Qi<ed eipl <e MR TK <esl
where
011 =AP, — PLAg — AgPL + Py +e1p1 1
O = —e M Py + (9 +€3)p3l
O33 =AQ1 — Q1Co — CoQ1 + R+ 2AKT + (2 + £3)pal
O = —2K'T'Cy+ Q2

then the nominal system of network (42) is globally robustly
A-exponentially stable in the mean square for any o and 7
satisfying0 < o <gand 0 < 7 < 7.

IV. THREE-GENE NETWORK

To show the effectiveness of the theoretical results obtained,
we employ a synthetic oscillatory network of transcriptional
regulators in Escherichia coli, which has been presented as
the mathematical model of the repressilator and experimentally
investigated in [38]. In this section, we generalize the model
proposed in [38] by introducing time delays and random noises,
and consider the GRN shown in Fig. 2, which describes the
gene, mRNA, and protein interactions. These genes are regu-
lated by other genes; they are then expressed through transcrip-
tion to obtain mRNA (which is not shown for simplicity) and
then through translation to produce their products, i.e., proteins.
These proteins could then act as the transcription factors of
other genes to regulate the expressions of others. From the
structure of the network in Fig. 2, one can obtain the adjacency
matrix as

In addition, we assume that regulatory function g;(s) is g;(s) =
((s2/i)/(1 + s%/i)) = (s?/i + s?) (i = 1,2, 3) in network (6),
i.e., the Hill coefficient is 2, with the derivative of g(s) satisfy-
ing K = diag(0.65, 0.46, 0.38). Two cases will be discussed to
investigate the dynamics of the genetic network.

(I) There are parameter uncertainties in GRN model (6) with
parameters as

285 0 0 ]
A=A=| 0 273 0
0 0 2.81]
211 0 0 ]
C=C=| 0 247 0
| 0 0 207
0 091 —1.187
B=|-1.10 0 0.96
0 —0.92 0 |
- 0 0.95 —1.08]
B=|-1.10 0 1.17
|0 —0.88 0
[0.88 0 0 ]
D=1] 0 095 0
0 0 0.92]
o9 0 0 ]
D=| 0 103 0
| 0 0 1.00

For A = 0.8 and maximal delays 7 = 1.8 and & = 2, by
using standard software, it can be verified that there exists a
feasible solution to the LMI in (11), and the estimate of y can
be calculated by (33), with ¢ = 16.5848. Therefore, according
to Theorem 1, the GRN is globally 0.8-exponentially robustly
stable for any ¢ and 7 satisfying 0 < 7 <18 and 0 < o < 2,
denote p = max(7, o), and the solutions of the network satisfy

Im(t) —m*[* + [p(t) — p"[*
< 16.5848¢ % (| —m* 2 + |y — p*|?) .

Figs. 3 and 4 are numerical illustrations of the trajecto-
ries of network with B = By + EgQgFpg and D = Dgy +
EpApFEp, where the diagonal elements of Q1 and Ap
are generated by uniformly distributed random numbers from
the interval [—1,1]. The time delays are 0 = 1.8 and 7 = 2,
respectively. The initial state is chosen to be ¢(t) = [0.4 +
0.05cost,0.4 — 0.05cost,0.4 + 0.05sint]”,+(t) =[0.2 —
0.05cost,0.2 + 0.05cost,0.2 — 0.05sint]T for t € [-2,0],
and the simulation results indicate that the equilibrium of
the genetic network is (m* = [0.3820,0.3948,0.3122]7, p* =
[0.1664,0.1575,0.1466]), which is globally robustly expo-
nentially stable.

For the steady-state estimate, it can be checked that the
unique equilibrium of the nominal network (34) is (m{ =
[0.3977, 0.3939, 0.3163]T, pj; = [0.1634, 0.1579, 0.1467]7);
here, we focus on the variation of (m*, p*) in the network (6).
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Fig. 3. State response of m(t) of the genetic network (6).
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Fig. 4. State response of p(t) of the genetic network (6).

From Theorem 3, the steady state of the mRNAs and proteins
in the network (m*, p*) satisfies

‘(m - ’20)‘ < 0.1773.

47
R “7)

Fig. 5 shows the trajectories of state variable m (¢), where the
red dashed line represents the state trajectory of the nominal
network and the ten blue real lines denote the state trajectories
of the perturbed network. Here, all the blue trajectories are gen-
erated by randomly choosing the system matrices B and D of
the perturbed network in the same way previously mentioned,
and the initial conditions of the gene network (6) are chosen to
be constant, which are all randomly produced from the interval
[0, 1]. The simulation result in Fig. 5 indicates that all the steady
states of the perturbed network are within the range between
the upper and lower bounds, which was calculated according
to (47).

(IT) There are random noises incorporated to the genetic net-

work with parameter uncertainties.

Since we are interested in the stability of the equilibrium
(m* = [0.3820, 0.3948, 0.3122]", p* = [0.1664, 0.1575,
0.1466]7) under both parameter and noise perturbations, the
equilibrium should be shifted to the origin, and the GRN
should be rewritten under coordinate shift (see (42)). We
assume the noise intensity functions as G (¢, z(t),y(t — 7)) =
(V2/4)[x(t) + V3y(t — 7),V3x(t) —y(t = 7)] and Gt
z(t—0o),y(t)=(1/2)[z(t—0o)+y(t),x(t—0o)—y(t)]. Then,
it can easily be obtained that p1 = pa = p3 = ps = 1/2, and

1.6

14

~ = = Steady state of the nominal network
Responses of the network with parameter uncertainties

12}

0.8
Upper Bound
0.6 T

mRNA Concentration: m,(t)

Lower Bound.

Fig. 5. Steady-state estimate of the genetic network (6).

0.6 T T . T . T . T :

X0
0.5 - -x01

S

0.4

0.3

0.2

0.1 |

System State: x(t)
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Time (1)
Fig. 6. State response of x(t) of the genetic network (42).

W (t) is a 2-D Brown motion. The other system parameters
are chosen to be the same as those in Case 1. For the maximal
time delays o = 0.9 and 7 = 1.2, we compute the maximal
decay rate A with bisection method proposed in Remark 3 and
obtain A = 0.6677. By referring to standard software, one can
easily find the feasible solution of the LMIs (43) and (44) in
Theorem 4, which implies that the uncertain system (42)
is globally robustly 0.6677-exponentially stable in the mean
square for any o and 7 satisfying 0 < 0 < 0.9and 0 < 7 < 1.2.

For the numerical simulation, we set ¢ = 0.9 and 7 =
1.2, and take the initial condition of system (42) as @, (t) =
[0.5,0.4,0.3]7, 1, (t) = [0.4,0.3,0.2]T for ¢t € [~1.2,0], and
apply the well-known Euler—Maruyama scheme with step size
107, The trajectories of variables z(¢) and y(t) are shown in
Figs. 6 and 7, respectively, which imply that the network is
globally robustly stable in the mean square with the incorpo-
ration of noises.

V. CONCLUSION

In this paper, we have proposed and dealt with the transient
and steady-state estimate problem of a class of interval genetic
network models. Based on the Lyapunov functional method and
matrix inequality techniques, some criteria have been estab-
lished to ensure the global robust stability of the network model
with the estimate of decay rate and decay coefficient given.
Furthermore, the steady-state estimate of the proposed gene
network model has been analyzed. The obtained results have
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Fig. 7. State response of y(¢) of the genetic network (42).

also been extended to the case with noise perturbations based
on the stochastic functional differential equation theory. These
results, which are in terms of LMIs, can easily be solved by
standard software. A simple three-gene network model has been
used to demonstrate the usefulness of the theoretical results. As
we stated in this paper, how to more accurately establish the
steady-state estimate of GRNs is an interesting problem for our
further exploration in the future.
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