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Abstract—This paper introduces an algorithm for direct search
of control policies in continuous-state discrete-action Markov deci-
sion processes. The algorithm looks for the best closed-loop policy
that can be represented using a given number of basis functions
(BFs), where a discrete action is assigned to each BF. The type of
the BFs and their number are specified in advance and determine
the complexity of the representation. Considerable flexibility is
achieved by optimizing the locations and shapes of the BFs, to-
gether with the action assignments. The optimization is carried
out with the cross-entropy method and evaluates the policies by
their empirical return from a representative set of initial states.
The return for each representative state is estimated using Monte
Carlo simulations. The resulting algorithm for cross-entropy pol-
icy search with adaptive BFs is extensively evaluated in problems
with two to six state variables, for which it reliably obtains good
policies with only a small number of BFs. In these experiments,
cross-entropy policy search requires vastly fewer BFs than value-
function techniques with equidistant BFs, and outperforms policy
search with a competing optimization algorithm called DIRECT.

Index Terms—Adaptive basis functions, cross-entropy optimiza-
tion, direct policy search, Markov decision processes.

I. INTRODUCTION

MARKOV decision processes (MDPs) can be used to
model important problems arising in various fields, in-

cluding automatic control, operations research, computer sci-
ence, economics, etc. Algorithms for solving general MDPs
are therefore very promising for these fields. For instance, in
automatic control, such an algorithm would provide a solution
to the nonlinear stochastic optimal control problem [1].

In an MDP, at each discrete time step, the controller measures
the state of the process and applies an action according to a
control policy.1 As a result of this action, the process transits
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1Throughout this paper, control-theoretic terms and notations will be pre-
ferred to the artificial intelligence terminology often used in the reinforcement
learning literature on MDPs. For instance, the terms “controller” and “process”
will be used instead of “agent” and “environment.”

into a new state, possibly in a nonlinear or stochastic fashion,
and a scalar reward signal is generated that indicates the quality
of the transition. The controller measures the new state, and
the whole cycle repeats. The control goal is to maximize the
cumulative reward (the return) over the course of interaction
[1], [2]. Exact solutions can only be found for MDPs with a
finite and not too large number of distinct states and actions.
In large or continuous-space MDPs, approximate solutions
must be sought. In this paper, we focus on such approximate
solutions.

The most widely used algorithms for solving MDPs rely
on (approximate) value functions, which give the returns from
every state or state–action pair [3]. Value functions are often
approximated using a linear combination of basis functions
(BFs), because this simplifies the theoretical study of the al-
gorithms [4]–[7]. Unfortunately, the value-function-based al-
gorithms suffer from significant difficulties in practice. Many
algorithms require predefined BFs [4], [6], [7], but designing
good BFs is a difficult task [5] that requires prior knowledge
about the value function. Such prior knowledge is almost never
available. Alternatively, many researchers have proposed to
automatically change the number, position, or shape of the BFs
in order to approximate the value function well, without relying
on prior knowledge [5], [8], [9]. However, changing the BFs
while estimating the value function can lead to convergence
problems.

Motivated by these shortcomings, direct policy search al-
gorithms have been proposed [10]–[13]. These algorithms pa-
rameterize the policy and search for an optimal parameter
vector that maximizes the return, without using a value func-
tion. In the literature, typically ad hoc policy approximators
are designed for specific problems, using intuition and prior
knowledge about the optimal policy [10], [12], [14]. The idea
of automatically finding good approximators, although exten-
sively explored for value-function approximation (as mentioned
above), has not often been used in policy search.

In this paper, we develop and evaluate a flexible policy
approximator for direct policy search, inspired by the work
on automatically finding BFs for value-function approxima-
tion. The flexibility of this approximator allows it to represent
policies for a large class of MDPs. The algorithm works for
continuous states and discrete (or discretized) actions. Policies
are represented using N state-dependent BFs, where the BFs
are associated with discrete actions in a many-to-one fash-
ion. The type of BFs and their number N are specified in
advance and determine the complexity of the representation.
The locations and shapes of the BFs, together with the action
assignments, are the parameters subject to optimization. The
optimization criterion is a weighted sum of the returns from
a set of representative initial states, where the return for each
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representative state is computed with Monte Carlo simulations.
Each simulated trajectory starts in the representative state con-
sidered and is controlled using the policy to be evaluated; the
resulting empirical return is one sample in the Monte Carlo
estimate. The representative states together with the weight
function can be used to focus the algorithm on important parts
of the state space.

Mainly due to the rich policy parameterization, the optimiza-
tion criterion may be a complicated function of the parameter
vector, e.g., nondifferentiable and with many local optima.
Moreover, both continuous and discrete parameters must be
optimized. We select the cross-entropy (CE) method [15] as
a powerful optimization tool that is able to solve this difficult
problem. The resulting algorithm for CE policy search with
adaptive BFs is evaluated in simulation, using three problems:
the optimal control of a double integrator, balancing a bicy-
cle riding at a constant speed, and controlling the treatment
of infection with the human immunodefficiency virus (HIV).
CE policy search is compared with two representative value-
function techniques, i.e., fuzzy Q-iteration [7] and least-squares
policy iteration (LSPI) [6], and with policy search using a
competing optimization algorithm called DIRECT [16].

The remainder of this paper is structured as follows.
Section II reviews related work. Section III formally describes
MDPs, reviews the algorithms to find MDP solutions, and
outlines CE optimization. In Section IV, the CE algorithm for
policy search is introduced. Section V reports the results of our
simulation experiments. Section VI concludes this paper and
provides several directions for future research.

II. RELATED WORK

Many policy search approaches focus on gradient-based pol-
icy optimization [10], [12], [14], [17]. Actor–critic algorithms
also rely on gradient-based policy optimization, but unlike
direct policy search, they do estimate value functions [18]–[21].
Such work is based on the assumption that the locally optimal
solution found by the gradient method is good enough, which
can be the case when the policy parameterization is simple and
well suited for the problem considered. Because of our rich pol-
icy parameterization, many local optima may exist and gradient
techniques are unsuitable. Instead, we apply the gradient-free
CE method for optimization [15] and compare it with DIRECT
optimization [16]. Another optimization method that has been
applied to policy search is evolutionary computation [22]–[24],
[13, Ch. 3].

Our policy parameterization is inspired by the techniques to
automatically find BFs for value-function approximation. These
techniques include, e.g., BF refinement [5], optimization [25],
nonparametric approximators [8], [26], and spectral analysis
of the transition function [9]. Out of these options, we choose
optimization, but we search for a policy approximator, rather
than a value-function approximator. In value-function approx-
imation, changing the BFs while estimating the value function
can lead to a loss of convergence. In our approach, the BFs
can be adapted without endangering the convergence of the
optimization method to good policy parameters.

CE policy search employs Monte Carlo simulations to eval-
uate policies, and in this sense, it is related to Monte Carlo
methods for value-function estimation [27]–[29]. Although

it converges more slowly than the more popular temporal-
difference algorithms (such as Q-learning or SARSA), Monte
Carlo value-function estimation is sometimes preferable, e.g.,
because it is more resilient to incomplete information about the
state variables [2].

Using the CE method for policy optimization was first pro-
posed in [11]. In [13, Ch. 4], a policy was found with the
model-reference adaptive search, which is closely related to CE
optimization. Both works focus on solving finite small MDPs,
although they also propose solving large MDPs with parame-
terized policies. In contrast, we focus on solving continuous-
state MDPs using highly flexible parameterizations based on
adaptive BFs. Additionally, we consider representative states
associated with weights as a tool to focus the optimization on
important initial states and as a way to circumvent the need to
estimate returns for every value of the state, which is impossible
when the states are continuous. In [13], only the return starting
from one initial state was optimized, whereas in [11], the
returns from every (discrete) initial state were optimized.

In [30], we proposed an earlier version of CE policy search
with adaptive BFs. Compared to our approach in [30], in this
paper, we simplify the policy parameterization, we enhance the
algorithm with a smoothing procedure, and we significantly
extend the experimental study: the comparisons with LSPI and
DIRECT optimization are new, and so are the results for the
deterministic bicycle and HIV control.

III. PRELIMINARIES

A. MDPs

In this section, MDPs are formally described, their optimal
solution is characterized, and some algorithms to solve MDPs
are reviewed [1], [2].

1) MDPs and Their Solution: An MDP is defined by its
state space X , its action space U , its transition probability
function f : X × U ×X → [0,∞), and its reward function
ρ : X × U ×X → R. At each discrete time step k, given the
state xk, the controller takes an action uk according to a
control policy h : X → U . The probability that the next state
xk+1 belongs to a region Xk+1 ⊂ X of the state space is
then

∫
Xk+1

f(xk, uk, x′)dx′. For any x and u, f(x, u, ·) is
assumed to define a valid density2 of the argument “·”. After the
transition to xk+1, a reward rk+1 is provided according to the
reward function ρ : rk+1 = ρ(xk, uk, xk+1). For deterministic
MDPs, the transition probability function f is replaced by a
simpler transition function, f : X × U → X , and the reward is
completely determined by the current state and action: rk+1 =
ρ(xk, uk), ρ : X × U → R.

The expected infinite-horizon discounted return for an initial
state x0 under a policy h is

Rh(x0)= lim
K→∞

Exk+1∼f(xk,h(xk),·)

{
K∑

k=0

γkρ(xk, h(xk), xk+1)

}
(1)

2For simplicity, we will abuse the terminology by using the term “density” to
refer to probability density functions (which describe probabilities of continu-
ous random variables), as well as to probability mass functions (which describe
probabilities of discrete random variables).
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where γ ∈ [0, 1) is the discount factor. The notation a ∼ p(·)
means that the random variable a is drawn from the density
p. The goal is to find an optimal policy h∗ that maximizes the
expected return (1) for every initial state. For any MDPs, there
exists at least a deterministic optimal policy. Therefore, only
deterministic policies will be considered in the sequel.

2) Algorithms for Solving MDPs: Algorithms that solve
MDPs can be organized into two classes: value-function-based
algorithms and direct policy search algorithms. Value-function-
based algorithms use value functions in order to obtain the
optimal policy. For instance, the Q-function (state–action value
function) of a policy h gives the expected return when starting
in state x, applying action u, and following h thereafter, i.e.,

Qh(x, u) = Ex′∼f(x,u,·)
{
ρ(x, u, x′) + γRh(x′)

}
. (2)

The optimal Q-function is defined as Q∗(x, u) =
maxh Qh(x, u). Any (deterministic) policy that maximizes Q∗
in every state x, i.e.,

h∗(x) = arg max
u

Q∗(x, u) (3)

is by definition optimal. A policy that maximizes a Q-function
in this way is said to be greedy in that Q-function.

The Q-function Qh satisfies the Bellman equation, i.e.,

Qh(x, u)=Ex′∼f(x,u,·)
{
ρ(x, u, x′)+γQh(x′, h (x′))

}
. (4)

Similarly, the optimal Q-function satisfies the Bellman optimal-
ity equation, i.e.,

Q∗(x, u)=Ex′∼f(x,u,·)
{

ρ(x, u, x′)+γ max
u′

Q∗(x′, u′)
}

. (5)

Value iteration algorithms iteratively solve the Bellman opti-
mality equation (5) to find the optimal Q-function and then use
(3) to compute an optimal policy. Policy iteration algorithms
start with an initial policy. At every iteration, they compute
the Q-function of the current policy using (4) and then find an
improved, greedy policy (3) in this Q-function. Some value-
function-based algorithms use a model of the MDP (the func-
tions f and ρ) [1], [31], while others are model-free and work
by only using data [2], [32].

Direct policy search algorithms do not use value functions
at all but directly represent and optimize the policy. Such algo-
rithms are most often used in combination with policy approx-
imation, so we postpone their description until Section III-A3,
where we discuss approximately solving MDPs.

3) Approximation-Based Algorithms for Large or
Continuous-Space MDPs: The algorithms above require
exactly representing value functions and policies. In general,
that is only possible when X and U contain a relatively small
number of discrete elements. When X or U is continuous or
discrete but large, approximations must be used. Consider first
value-function-based techniques. In large or continuous state
or action spaces, the Q-function cannot exactly be represented
and has to be approximated. Moreover, the Bellman equation
involves expectations that must be approximated using only a
finite number of samples. Some approximate value-function-
based algorithms derive from value iteration [4], [5], [7], [8],
[33] and others derive from policy iteration [6], [9]. Usually,

the value-function approximator is linearly parameterized,
because the theoretical study of the algorithms is easier in
this case.

Direct policy search algorithms for large or continuous-space
MDPs parameterize the policy with a parameter vector a. In
principle, policy search algorithms should look for an optimal
a∗ that maximizes the return (1) for any initial state x0 ∈ X .
When X is large or continuous, computing the return for every
initial state is not possible. A practical and commonly used
procedure to circumvent this difficulty requires choosing a finite
set X0 of representative initial states. Returns are estimated
only for states in X0, and the optimization criterion is the
average return over X0 [10], [12].

Two approximations must be made to compute the returns
for x ∈ X0. The first approximation replaces the infinite sum in
the return (1) with a finite sum over K steps. To ensure that an
error of at most εMC (a small positive constant) is introduced,
K is chosen with [11]

K =
⌈
logγ

εMC(1− γ)
‖ρ‖∞

⌉
. (6)

Here, the largest absolute reward ‖ρ‖∞ is assumed to be
finite, and 
·� gives the smallest integer larger than or equal to
the argument (ceiling). The second approximation uses Monte
Carlo simulations to estimate the expectation in (1).

B. CE Optimization

This section briefly introduces the CE method for optimiza-
tion [15]. Consider the following optimization problem:

max
a∈A

s(a) (7)

where s : A → R is the score function to maximize, and the
variable a takes values in the domain A. Let the maximum of s
be denoted by s∗. The CE method for optimization maintains a
density with support A. In each iteration, a number of samples
are drawn from this density, and the score values for these
samples are computed. A smaller number of samples that have
the largest scores are kept, and the remaining samples are dis-
carded. The density is then updated using the selected samples,
such that, at the next iteration, the probability of drawing better
samples is increased. The algorithm stops when the score of the
worst selected sample no longer significantly improves.

Formally, a family of probability densities {p(·; ν)} has to
be chosen. This family has support A and is parameterized by
ν. In each iteration τ ≥ 1, a number NCE of samples is drawn
from the density p(·; ντ−1), their scores are computed, and the
(1− ρCE) quantile3 λτ of the sample scores is determined, with
ρCE ∈ (0, 1). Then, a so-called associated stochastic problem is
defined, which involves estimating the probability that the score
of a sample drawn from p(·; ντ−1) is at least λτ , i.e.,

Pa∼p(·;ντ−1) (s(a) ≥ λτ ) = Ea∼p(·;ντ−1) {I (s(a) ≥ λτ )} (8)

where I is the indicator function, which is equal to 1 whenever
its argument is true and 0 otherwise. This is a stochastic

3If the score values of the samples are increasingly ordered and indexed such
that s1≤· · ·≤sNCE , then the (1−ρCE) quantile is: λτ =s�(1−ρCE)NCE�.
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problem because it requires estimating a probability, in contrast
to the deterministic problem (7) to which it is associated.

The probability (8) can be estimated by importance sam-
pling. For the associated stochastic problem, an importance
sampling density is one that increases the probability of the
interesting event s(a) ≥ λτ . The best importance sampling
density in the family {p(·; ν)}, in the sense of the smallest
CE (smallest Kullback–Leibler divergence),4 is given by the
parameter that is the solution of

arg max
ν

Ea∼p(·;ντ−1) {I (s(a) ≥ λτ ) ln p(a; ν)} . (9)

An approximate, sample-based solution of (9) is found with

ν†τ = arg max
ν

1
NCE

NCE∑
is=1

I (s(ais
) ≥ λτ ) ln p(ais

; ν). (10)

This is a Monte Carlo counterpart of (9) and is therefore called
a stochastic counterpart.

CE optimization then proceeds with the next iteration using
the new density parameter ντ = ν†τ (note that the probability
(8) is never actually computed). The updated density aims to
generate good samples with higher probability, thus bringing
λτ+1 closer to s∗. The goal is to eventually converge to a
density that generates with very high probability samples close
to the optimal value(s) of a. The algorithm can be stopped when
the variation in the (1− ρCE) quantile does not exceed εCE for
dCE successive iterations, or when a maximum number of iter-
ations τmax is reached. Here, εCE is a small positive constant,
and dCE > 1, dCE ∈ N. The largest score among the samples
generated in all the iterations is taken as the approximate
solution of the optimization problem, and the corresponding
sample as an approximate location of an optimum.

Instead of setting the new density parameter equal to the
solution ν†τ of (10), it can also incrementally be updated, i.e.,

ντ = αCEν†τ + (1− αCE)ντ−1 (11)

where αCE ∈ (0, 1]. This so-called smoothing procedure is
useful to prevent CE optimization from becoming stuck in local
optima [15].

Under certain assumptions on A and p(·; ν), the stochastic
counterpart (10) can analytically be solved. One particularly
important case when this happens is when p(·; ν) belongs to
the natural exponential family. For instance, when {p(·; ν)} is
the family of Gaussians parameterized by the mean η and the
standard deviation σ (therefore, ν = [η, σ]T), the solution ντ of
(10) consists of the mean and the standard deviation of the best
samples, i.e., of the samples ais for which s(ais) ≥ λτ .

While the convergence of CE optimization is not guaranteed
in general, the algorithm is usually convergent in practice
[15]. For combinatorial (discrete-variable) optimization, the CE
method provably converges with probability 1 to a unit mass
density, which always generates samples equal to a single point.
Furthermore, the probability that this convergence point is in
fact an optimal solution can be made arbitrarily close to 1 by
using a sufficiently small smoothing parameter αCE [34].

4In general, the Kullback–Leibler divergence between two densities q and
p is Ea∼p{ln[q(a)/p(a)]}=Ea∼p{ln q(a)}−Ea∼p{ln p(a)}. For an expla-
nation on how the Kullback–Leibler divergence is used to arrive at (9), see [15].

Fig. 1. Schematic of the policy parameterization. The vector ϑ associates the
BFs to the discrete actions. In this example, the BFs are parameterized by their
centers ci and widths bi, so that ξ = [cT1 , bT1 , . . . , cTN , bTN ]T.

IV. CE POLICY SEARCH WITH ADAPTIVE BFS

This section describes the proposed algorithm for policy op-
timization using the CE method. First, the policy parameteriza-
tion and the performance index (score function) are discussed.
Then, a general algorithm is given, followed by an instantiation
that uses Gaussian radial BFs (RBFs) [a type of BFs described
by (15) below] to parameterize policies.

A. Policy Parameterization and Score Function

Consider a stochastic or deterministic MDP. Denote by D the
number of state variables of the MDP (i.e., the dimension of X).
In the sequel, it is assumed that the action space of the MDP is
discrete and contains M distinct actions: Ud = {u1, . . . , uM}.
The set Ud can result from the discretization5 of an originally
larger (e.g., continuous) action space U .

The policy parameterization uses N BFs defined over the
state space. The BFs are parameterized by a vector ξ ∈ Ξ that
typically gives their locations and shapes. Denote these BFs by
ϕi(x; ξ) : X → R, i = 1, . . . , N , to highlight their dependence
on ξ. The BFs are associated to discrete actions by a many-to-
one mapping. This mapping can be represented as a vector ϑ ∈
{1, . . . , M}N that associates each BF ϕi to a discrete action
index ϑi or, equivalently, to a discrete action uϑi

. A schematic
of this parameterization is given in Fig. 1. The policy chooses
for any x the action associated to the BF that takes the largest
value at x, i.e.,

h(x) = uϑi∗ , i∗ = arg max
i

ϕi(x; ξ). (12)

Here, i∗ is the index of the largest BF at x, while ϑi∗ is the
index of the discrete action associated with this BF. Any ties in
the maximization should consistently be broken, e.g., always in
favor of the smallest index i.

This policy is parameterized by the vector [ξT, ϑT]T, ranging
in the set Ξ× {1, . . . , M}N . CE optimization is used to search
for an optimal parameter vector [ξ∗T, ϑ∗T] that maximizes the
following score function:

s(ξ, ϑ) =
∑

x0∈X0

w(x0)R̂h(x0) (13)

5Discretization is a standard technique for solving continuous-action MDPs.
In this paper, we assume that an appropriate discretization is available and
focus on optimizing the policy given this discretization. In general, care should
be taken when discretizing the actions, as incorrectly doing so can reduce the
performance or even prevent finding a good policy.
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where R̂h is the estimated return of the policy h determined
by ξ and ϑ, and X0 is a given finite set of representative
states, weighted by w : X0 → (0, 1] (see also Section III-A3).6

The return for each state in X0 is estimated by Monte Carlo
simulations, i.e.,

R̂h(x0) =
1

NMC

NMC∑
i0=1

K∑
k=0

γkρ (xi0,k, h(xi0,k), xi0,k+1) (14)

where xi0,0 = x0, xi0,k+1 ∼ f(xi0,k, h(xi0,k), ·), and NMC is
the number of Monte Carlo simulations to carry out. Therefore,
each simulation i0 makes use of a system trajectory that is K
steps long and generated using the policy h. The system tra-
jectories are independently generated. The length K is chosen
with (6) to guarantee that an error of at most εMC is introduced
by truncating the trajectory. The parameter εMC > 0 can be
chosen a few orders of magnitude smaller than the typical return
obtained from the states in X0. For deterministic MDPs, a
single trajectory is simulated for every initial state in X0, so
NMC = 1. For stochastic MDPs, several trajectories should be
simulated, i.e., NMC > 1, with a good value of NMC depending
on the MDP considered.

The performance of the resulting policy is determined by two
essential choices made by the user: the number of BFs, together
with their type, and the set of representative states, together
with their weight function. Next, we briefly discuss these two
choices.

The number N of BFs, in combination with the chosen type
of BFs, determines the accuracy of the policy approximator.
Given the type of BFs, in general, a good value of N for
a given problem cannot be determined in advance but must
empirically be found. Fortunately, as will become apparent in
Section V, at least for the example problems that we study,
a relatively small number of BFs is sufficient to provide a
good policy approximation. In two of the examples, we also
study the effect of varying N . Note that, in special cases, prior
knowledge about the complexity of an optimal policy may
be available, which could be exploited to choose beforehand
a reasonable type of BFs and value of N (e.g., in the aca-
demic double-integrator problem in Section V-A, an accurate
representation of an optimal policy can be found by exhaustive
search).

The second choice that must be made concerns the set X0

and the weight function w. The set X0 should consist of (a rep-
resentative selection of) the initial states from which the system
must near-optimally be controlled. For instance, some problems
only require to control the system well from a restricted set of
initial states; X0 should then be equal to this set or included
in it when the set is too large. Initial states that are deemed
more important can be assigned larger weights. When all initial
states are equally important, the elements of X0 should uni-
formly be spread over the state space, e.g., equidistantly, and
identical weights equal to (1/|X0|) should be assigned to every

6More generally, a density w over the initial states can be considered, and
the score function is then Ex0∼w(·){Rh(x0)}, i.e., the expected return when
x0 ∼ w(·). Such a score function can be estimated by Monte Carlo methods.
In this paper, we only use finite sets X0 associated with weighting functions w
as in (13).

element of X0 (| · | denotes set cardinality). Since not all of
the interesting initial states can always be included in X0, an
important question is how the resulting policy performs when
applied from initial states that do not necessarily belong to X0,
i.e., how it generalizes to unseen initial states. We study the
influence of X0, as well as policy generalization, for the bicycle
problem in Section V-B.

Note that the policy representation can associate multiple
BFs to a single action and also allows actions that are not as-
signed to any BF. The former mechanism is needed to represent
the (potentially complicated) regions of the state space where
an action is optimal. The latter mechanism can remove from the
policy representation any discrete actions that are not needed to
near-optimally control the system.

B. General Algorithm for CE Policy Search

In order to apply the CE method to the problem of finding
optimal parameters ξ∗ and ϑ∗ that maximize (13), an associated
stochastic problem (8) must be defined. To this end, it is
necessary to choose a family of densities with support Ξ×
{1, . . . , M}N . This paper focuses on continuous-state MDPs,
for which the BFs typically have continuous parameters. This
means that Ξ is a continuous set, whereas {1, . . . , M}N is dis-
crete. Rather than using a density with mixed (partly continuous
and partly discrete) support, it is convenient to employ separate
densities for the two parts ξ and ϑ of the parameter vector: a
density pξ(·; νξ) for ξ, parameterized by νξ and with continuous
support Ξ, and a density pϑ(·; νϑ) for ϑ, parameterized by νϑ

and with discrete support {1, . . . , M}N . Let Nνξ
be the number

of elements in the vector νξ and Nνϑ
be the number of elements

in νϑ.
The CE algorithm for policy search is given as Algorithm 1.

For easy reference, Table I collects the meaning of the parame-
ters and variables of CE policy search. The score computation
at line 6 of Algorithm 1 involves the Monte Carlo estimation
(14) of the return for every representative initial state, using
the dynamics f to generate the necessary trajectories. The sto-
chastic counterparts in lines 9 and 10 were simplified, using the
fact that the samples are already sorted in the ascending order
of their scores. The algorithm terminates when the variation
of λ is at most εCE for dCE consecutive iterations or when
a maximum number τmax of iterations has been reached. The
integer dCE > 1 ensures that the performance variation does
not accidentally decrease below εCE but that it remains steady
for dCE iterations.

Many times, it is convenient to use densities with unbounded
support (e.g., Gaussians) when the BF parameters are con-
tinuous. However, the set Ξ must typically be bounded, e.g.,
when ξ contains centers of RBFs, which must remain inside a
bounded state space. Whenever this situation arises, samples
can be generated from the density with larger support, and
those samples that do not belong to Ξ can be rejected. The
procedure continues until NCE valid samples are generated,
and the rest of the algorithm remains unchanged. The situation
is entirely similar for the discrete action assignments ϑ when
it is convenient to use a family of densities pϑ(·; νϑ) with
a support larger than {1, . . . , M}N . An equivalent algorithm
that uses all the samples can always be given by extending
the score function to give samples falling outside the domain
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TABLE I
PARAMETERS AND VARIABLES FOR CE POLICY SEARCH

of very large negative scores (larger in magnitude than for
any valid sample). Additionally, for this equivalent algorithm,
NCE and ρCE have to be adapted at each iteration such that
a constant number of valid samples is generated and that a
constant number of best samples is used for the parameter
updates. The theoretical basis of CE optimization is therefore
not affected by sample rejection.

Algorithm 1 CE policy search.
Input: transition & reward functions f , ρ, discount factor γ,

representative states X0, weight function w,
density families {pξ(·; νξ)}, {pϑ(·; νϑ)},
number of density parameters Nνξ

, Nνϑ
,

initial density parameters νξ,0, νϑ,0,
parameters N , ρCE, cCE, αCE, dCE, εCE, εMC, NMC, τmax

1: NCE ← cCE(Nνξ
+ Nνϑ

); τ ← 0
2: repeat
3: τ ← τ + 1
4: Generate samples ξ1, . . . , ξNCE from pϑ(·; νξ,τ−1)
5: Generate samples ϑ1, . . . , ϑNCE from pϑ(·; νϑ,τ−1)
6: Compute s(ξis , ϑis) with (13), is = 1, . . . , NCE

7: Reorder and reindex s.t. s1 ≤ · · · ≤ sNCE

8: λτ ← s
(1−ρCE)NCE�
9: ν†ξ,τ ← arg maxνξ

∑NCE
is=
(1−ρCE)NCE� ln pξ(ξis ; νξ)

10: ν†ϑ,τ ← arg maxνϑ

∑NCE
is=
(1−ρCE)NCE� ln pϑ(ϑis ; νϑ)

11: νξ,τ ← αCEν†ξ,τ + (1− αCE)νξ,τ−1

12: νϑ,τ ← αCEν†ϑ,τ + (1− αCE)νϑ,τ−1

13: until (τ > dCE and |λτ−τ ′ − λτ−τ ′−1| ≤ εCE, for τ ′ =
0, . . . , dCE − 1) or τ = τmax

Output: ξ̂∗, ϑ̂∗, the best sample; and ŝ∗ = s(ξ̂∗, ϑ̂∗)

The most important parameters in CE policy search are,
like in CE optimization, the number of samples NCE and the
proportion ρCE of best samples used to update the density.
The parameter cCE is taken greater than or equal to 2, so
that the number of samples is a multiple of the number of
density parameters [15]. The parameter ρCE can be taken to
be around 0.01 for large numbers of samples or larger, around
(ln NCE)/NCE, if there are only a few samples (NCE < 100)
[15]. Since it does not make sense to impose a convergence
threshold smaller than the precision of the score function, εCE

should be chosen to be larger than or equal to εMC. A good
value is εCE = εMC.

C. CE Policy Search With RBFs

In this section, we describe an instantiation of CE policy
search that uses state-dependent Gaussian RBFs and a binary
representation of the action assignments. We choose Gaussian
RBFs because they are commonly used to represent approx-
imate MDP solutions [4], [6], [25], [33]. Many other types
of BFs could be used instead, including, e.g., splines and
polynomials. We assume that the state space is a hyperbox cen-
tered in the origin: X = {x ∈ R

D| |x| ≤ xmax}, where xmax ∈
(0,∞)D, and the absolute value and relational operators are ap-
plied element-wise. This assumption is made here for simplicity
and can easily be relaxed.7

A special case arises when the problem has terminal states,
i.e., states that terminate process trajectories. Formally, apply-
ing any action from a terminal state returns the process to the
same state with zero reward, so that the remaining subtrajectory
is irrelevant in the return (1); see [2, Sec. 3.4]. In this case, we
assume that the set of nonterminal states is a hyperbox and, by
a slight abuse of notation, denote this nonterminal state space
by X . Since action choices need not be made in terminal states,
ignoring them in the policy parameterization does not limit the
algorithm.

The Gaussian RBFs are defined by

ϕi(x; ξ) = exp

[
−

D∑
d=1

(xd − ci,d)2

b2
i,d

]
(15)

where D is the number of state variables, ci = [ci,1, . . . , ci,D]T
is the D-dimensional center, and bi = [bi,1, . . . , bi,D]T is the
D-dimensional radius of the ith RBF. Denote the vector of
centers by c = [cT

1 , . . . , cT
N ]T and the vector of radii by b =

[bT
1 , . . . , bT

N ]T. Therefore, ci,d and bi,d are scalars, ci and bi

are D-dimensional vectors that collect the scalars for all D
dimensions, and c and b are DN -dimensional vectors that
collect the D-dimensional vectors for all N RBFs. The centers
of the RBFs must lie within the bounded state space X , and the
radii must strictly be positive, i.e., c ∈ XN and b ∈ (0,∞)DN .
The BFs parameter vector is therefore ξ = [cT, bT]T and takes
values in Ξ = XN × (0,∞)DN .

To define the associate stochastic problem for CE optimiza-
tion, independent univariate Gaussian densities are selected for
each element of the parameter vector ξ. Gaussian densities are
commonly used in continuous-variable CE optimization; see,
e.g., [15, Ch. 5]. They allow the CE procedure to converge
to a precise optimum location, by letting the standard devia-
tion of each univariate density converge to zero. The density
for each center ci,d is parameterized by the mean ηc

i,d and
standard deviation σc

i,d, and the density for each radius bi,d

is parameterized by the mean ηb
i,d and the standard deviation

σb
i,d. Similar to the centers and radii themselves, we denote

the DN -dimensional vectors of means and standard devia-
tions, respectively, by ηc and σc for the RBF centers and by
ηb and σb for the RBF radii. The parameter for the density
pξ(·; νξ) is then νξ = [(ηc)T, (σc)T, (ηb)T, (σb)T]T ∈ R

4DN .
Since the support of this density is R

2DN instead of the required

7It will be relaxed, e.g., when CE policy search is applied to the HIV
infection control problem in Section V-C.
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Ξ = XN × (0,∞)DN , samples that do not belong to Ξ are
rejected and generated again.

The means and standard deviations for the RBF centers and
radii are initialized for all i as follows:

ηc
i = 0D σc

i = xmax ηb
i =

1
2(N + 1)

· xmax σb
i = ηb

i

where 0D is a vector of D zeros. The density parameters for
the RBF centers are initialized to ensure a good coverage of
the state space, while the parameters for the RBF radii are
heuristically initialized to have a similar overlap between RBFs
as N varies. At the end of each iteration τ of Algorithm 1,
the means and standard deviations are updated element-wise
as the means and standard deviations of the best samples (see
Section III-B).

The vector ϑ, which contains the assignments of discrete
actions to BFs, is represented in binary code. Each element ϑi

is represented using Nbin = 
log2 M� bits, so that the binary
representation of ϑ has NNbin bits. Every bit is drawn from a
Bernoulli distribution parameterized by its mean ηbin ∈ [0, 1]
(ηbin gives the probability of selecting 1; the probability of
selecting 0 is 1− ηbin). Similar to the Gaussian densities above,
such a concatenation of Bernoulli distributions can converge to
a degenerate distribution that always generates samples equal
to a precise optimum. Note that if M is not a power of 2, bit
combinations corresponding to invalid indices are rejected and
generated again. Because every bit has its own Bernoulli param-
eter, the total number of Bernoulli parameters νϑ is NNbin. The
Bernoulli distribution belongs to the natural exponential family,
so the updated density parameters νϑ,τ in line 10 of Algorithm
1 can analytically be computed as the mean of the best samples
in their binary representation.

Now, we briefly examine the complexity of CE policy search
with RBFs. The number of density parameters is Nνξ

= 4DN

for the RBF centers and radii and Nνϑ
= NNbin for the

action assignments. Therefore, the total number of samples
used is NCE = cCE(4DN + NNbin). The largest amount of
computation is spent by the algorithm in the simulations used
to estimate the score of each sample. Neglecting, therefore, the
other computations, the complexity of one CE iteration is at
most

tstep
[
cCEN(4D + Nbin) · |X0| ·NMCK

]
(16)

where K is the maximum length of each trajectory, and tstep is
an upper bound on the time needed to compute h(x) for a fixed
x and to simulate the controlled system for one time step.

V. EXPERIMENTAL STUDIES

In the sequel, the performance of CE policy search is as-
sessed using extensive numerical experiments for three prob-
lems that gradually increase in dimensionality: optimal control
of a double integrator (two dimensions, Section V-A), balancing
a bicycle that rides at a constant speed (four dimensions,
Section V-B), and controlling the treatment of infection with
the HIV (six dimensions, Section V-C). Using the lower dimen-
sional problems, we investigate the influence of the number of
BFs and of the choice of representative states, and we compare
CE policy search with alternative algorithms. HIV infection

Fig. 2. Optimal policy for the double integrator. Black corresponds to the
action −0.1, and white corresponds to +0.1.

control illustrates that CE policy search also works in a realistic
highly challenging problem.

A. Discrete-Time Double Integrator

In this section, a double-integrator optimal control problem
is used to evaluate CE policy search. This problem is stated
such that (near-)optimal trajectories from any state terminate
in a small number of steps. This property allows extensive
simulation experiments to be run and an optimal solution to be
found without excessive computational costs.

1) Model and an Optimal Policy: The double integrator
has the (nonterminal) state space X = [−1, 1]× [−0.5, 0.5], a
binary action space Ud = {−0.1, 0.1}, and the deterministic
dynamics

xk+1 =f(xk, uk)=
[

x1,k+x2,k

min (max(x2,k+uk,−0.5), 0.5)

]
(17)

where xd,k denotes the dth state variable at time k, and the
operators “min” and “max” are applied to restrict the evolution
of the velocity x2 to [−0.5, 0.5]. The states for which |x1| > 1
are terminal. The goal is to drive the position x1 beyond either
boundary of the interval [−1, 1] (i.e., to a terminal state), so
that when x1 crosses the boundary, x2 is as small as possible in
magnitude. This goal is expressed by the reward function

rk+1 = ρ(xk, uk) = −(1− x̃1,k+1)2 − x2
2,k+1x̃

2
1,k+1 (18)

where x̃1,k+1 = min(|x1,k+1|, 1) so that terminal states are
equally rewarded regardless of how far beyond the interval
[−1, 1] they are. The discount factor γ is set to 0.95.

Fig. 2 gives an accurate representation of an optimal policy
for this problem, consisting of the optimal actions for a regular
grid of 101 × 101 points covering the (nonterminal) state
space. The optimal actions were obtained using the following
brute-force procedure, made possible because the problem has
terminal states, and the optimal trajectories from any initial
state terminate in a small number of steps. All the possible
sequences of actions of a sufficient length were generated, and
the system was controlled with all these sequences starting
from every state on the grid. The length is sufficient if it is
larger than the lengths of optimal trajectories from any initial
state and is empirically determined. For every state on the
grid, a sequence that produced the best discounted return is,
by definition, optimal, and the first action in this sequence is an
optimal action.
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Fig. 3. Performance of CE policy search.

The policy in Fig. 2 should be representable with a mod-
erate number of RBFs. In particular, if the small-scale varia-
tions in the top-left and bottom-right corners of the graph are
disregarded, the policy consists of only four constant-action
“stripes.” Since the RBFs are axis aligned while the stripes
are diagonally oriented, one RBF is insufficient to approximate
each stripe; a few RBFs should, however, suffice.

2) Results of CE Policy Search: To apply CE policy search,
the following set of representative initial states was used to
compute the score (13):

X0 ={−1,−0.9, . . . , 1}×{−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5}.
This set contains 21× 7 = 147 states, fewer than the grid
in Fig. 2. The states were equally weighted using w(x0) =
1/|X0| for any x0. The parameter settings for the algorithm
were cCE = 10, ρCE = 0.01, αCE = 0.7, εCE = εMC = 0.001,
dCE = 5, and τmax = 100. Little or no tuning was necessary
to choose these values. Because the system is deterministic,
NMC = 1. With these parameter settings, CE policy search was
run while gradually increasing the number N of BFs from 4 to
18. For every value of N , 20 independent runs were performed.
The algorithm always converged before reaching the maximum
number of iterations.

Fig. 3 presents the performance of the policies obtained by
CE policy search. The mean values across the 20 runs are
shown, together with their 95% confidence intervals. For com-
parison, the figure also shows the exact optimal score for X0,
computed by looking for optimal open-loop action sequences
with the procedure explained in Section V-A1. Fig. 4 shows the
execution time of the algorithm.8

CE policy search reliably obtains near-optimal performance
for N ≥ 9. This shows that, as intuition indicated, the optimal
policy can indeed be represented well using only a small
number of (optimized) RBFs. The execution time is roughly
affine in N , as expected from (16).

3) Comparison With Value-Function-Based Algorithms: In
this section, CE policy search is compared with fuzzy Q-
iteration [7], which is a representative value iteration algorithm,
and with LSPI [6], which is a representative policy iteration
algorithm (see Section III-A). Fuzzy Q-iteration relies on a
linearly parameterized Q-function approximator with N state-

8All the computation times reported in this paper were recorded while
running the algorithms in MATLAB 7 on a PC with an Intel Core 2 Duo E6550
2.33-GHz processor and with 3-GB random access memory.

Fig. 4. Execution time of CE policy search.

dependent BFs φ1, . . . , φN : X → R, which are replicated for
each discrete action uj ∈ Ud. Approximate Q-values are com-
puted with

Q̂(x, uj) =
N∑

i=1

φi(x)θi,j (19)

where θ ∈ R
N×M is a matrix of parameters. Fuzzy Q-iteration

computes an approximately optimal Q-function using an ap-
proximation of the Bellman optimality equation (5) and then
outputs the greedy policy (3) in this Q-function. It converges
to a solution with a bounded suboptimality. For the double-
integrator example, we defined triangular BFs distributed on an
equidistant grid with N ′ points along each dimension of X;
this led to a total number of N = (N ′)2 state-dependent BFs
and 2(N ′)2 BFs for both discrete actions. In the lack of prior
knowledge, such a regular placement of BFs is a good choice,
because it provides a uniform resolution over the state space.

From the class of policy iteration algorithms, LSPI is selected
[6]. This algorithm uses (19) to approximate the Q-function
of the current policy (rather than the optimal Q-function, as
fuzzy Q-iteration did). To find the Q-function parameters θ,
LSPI solves a projected version of the Bellman equation (4).
The coefficients of this equation are estimated from transition
samples. Once an approximate Q-function is available, LSPI
improves the policy using (3). Then, it estimates the Q-function
of the improved policy, and so on. The sequence of policies
produced by LSPI eventually converges to a subsequence along
which all the policies have a bounded suboptimality [6]. For
the double-integrator example, we defined normalized Gaussian
RBFs. Like for fuzzy Q-iteration above, the centers of the
RBFs were placed on an equidistant grid with N ′ points along
each dimension of X . The radii of the RBFs along each
dimension were taken to be identical to the grid spacing along
that dimension. A total number of 2(N ′)2 state–action BFs was
obtained.

For both fuzzy Q-iteration and LSPI, the number N ′ of BFs
for each state variable was gradually increased from 4 to 18.
Fuzzy Q-iteration is a deterministic algorithm; hence, it was
run once for every N ′. LSPI requires a set of random samples,
so each LSPI experiment was run 20 times with independent
sets of samples. For N ′ = 4, 1000 samples were used, and for a
larger N ′, the number of samples was proportionally increased
with the number 2(N ′)2 of parameters; thus, 
((N ′)2/42) ·
1000� samples were used for each N ′. The performance of the
policies computed by fuzzy Q-iteration and LSPI is shown in
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Fig. 5. Performance of fuzzy Q-iteration and LSPI (values below −0.85 are
not shown).

Fig. 6. Execution time of fuzzy Q-iteration and LSPI.

Fig. 5 (compare with Fig. 3), and the execution time of the
algorithms is shown in Fig. 6 (compare with Fig. 4).

Whereas CE policy search reliably obtained near-optimal
performance starting from N = 9 BFs in total, fuzzy
Q-iteration and LSPI obtain good performance starting from
around N ′ = 11 BFs on each axis; the total number of BFs is
2(N ′)2 (much larger). This difference is mainly due to the fact
that the BFs used by fuzzy Q-iteration and LSPI are equidistant
and identically shaped, whereas the CE algorithm optimizes the
shapes and locations of the BFs.

The computational cost of the value-function algorithms is
smaller (for fuzzy Q-iteration, by several orders of magni-
tude) than the cost of CE policy search. This indicates that,
in low-dimensional problems such as the double integrator,
CE policy search should preferably be used when a flexible
policy approximator having a fixed complexity has to be found
and the computational costs to optimize this fixed-complexity
approximator are not a concern.

4) Comparison of CE and DIRECT Optimization: In our
policy search approach, a global mixed-integer gradient-free
optimization problem must be solved. One algorithm that can
address this difficult optimization problem is DIRECT [16]. In
this section, we compare CE optimization with DIRECT in the
context of policy search. DIRECT works in hyperbox parameter
spaces such as those considered in this paper, by recursively
splitting promising hyperboxes in three and sampling the center
of each resulting hyperbox. The hyperbox selection procedure
leads to both a global exploration of the parameter space and
a local search in the most promising regions discovered so
far. The algorithm is particularly aimed at solving problems in

Fig. 7. Performance of DIRECT—comparison with CE optimization.

Fig. 8. Execution time of DIRECT—comparison with CE optimization.

which evaluating the score function is computationally costly
[16], as is the case in policy search.9

We used DIRECT to optimize the parameters of the policy
(12) while increasing N from 4 to 18, like for CE optimization
above. DIRECT stops when the score function (13) has been
evaluated a given number of times; this stopping parameter was
set to 2000 · 5N for every N , i.e., 2000 times the number of
parameters to optimize. Since DIRECT is a deterministic algo-
rithm, each experiment was run only once. The performance of
the policies computed by DIRECT is shown in Fig. 7, and the
execution time of the algorithm is shown in Fig. 8. For an easy
comparison, the CE policy search results from Figs. 3 and 4 are
also repeated.

DIRECT performs worse than CE optimization for most
values of N , while requiring more computations for all values
of N . Furthermore, unlike CE optimization, DIRECT does not
reliably improve the performance as N increases. Increasing
the allowed number of score evaluations may possibly improve
the performance of DIRECT but would also make it even more
computationally expensive and, therefore, less competitive with
CE optimization. The poor results of DIRECT, including the
high variability of its performance with increasing N , may be
due to its reliance on splitting the parameter space into hyper-
boxes: this approach can poorly perform when the parameter
space is high-dimensional, as is the case for policy search.

B. Bicycle Balancing

Next, CE policy search is applied to a more involved problem
than the double integrator: balancing a bicycle that rides at

9We use the DIRECT implementation from the TOMLAB optimization
toolbox for MATLAB.
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Fig. 9. Schematic of the bicycle seen (left) from behind and (right) from
the top.

a constant speed on a horizontal surface (Fig. 9). This is a
variant of the bicycle balancing and riding problem, a popular
benchmark for algorithms that solve MDPs [6], [8], [35]. The
steering column of the bicycle is vertical, which means that the
bicycle is not self-stabilizing but must be actively stabilized to
prevent it from falling. The state vector is [ω, ω̇, α, α̇]T, where
ω (in rad) is the roll angle of the bicycle measured from the
vertical axis, α (in rad) is the angle of the handlebar, which
is equal to 0 when the handlebar is in its neutral position, and
ω̇ and α̇ (in rad/s) are the respective angular velocities. The
control variables are the displacement δ ∈ [−0.02, 0.02] m of
the bicycle–rider common center of mass perpendicular to the
plane of the bicycle and the torque τ ∈ [−2, 2] Nm applied to
the handlebar. The displacement δ can be affected by additive
noise ν drawn from a uniform density over the interval [−0.02,
0.02] m. For more details about the bicycle problem and its
(nonlinear) dynamical model, see [8] and [35].10

The bicycle is considered to have fallen when the roll angle
is larger than 12π/180 in either direction, in which case a
terminal failure state is reached and a reward of−1 is generated.
All other rewards are 0. The discount factor is γ = 0.98. The
rider displacement is discretized into {−0.02, 0, 0.02}, and the
torque on the handlebar is discretized into {−2, 0, 2}, leading
to a discrete action space with nine elements. This action space
is sufficient to balance the bicycle.

In order to study the influence of the set of representative
states on the performance of the resulting policies, two different
sets of representative states are considered. The first set contains
a few evenly spaced values for the roll of the bicycle, and the
rest of the state variables are zero, i.e.,

X0,1 =
{−10π

180
,
−5π

180
, . . . ,

10π

180

}
× {0} × {0} × {0}.

The second set is the cross product of a finer roll grid and a few
values of the roll velocity, i.e.,

X0,2 =
{−10π

180
,
−8π

180
, . . . ,

10π

180

}
×

{−30π

180
,
−15π

180
, . . . ,

30π

180

}
× {0} × {0}.

For both sets, the initial states are uniformly weighted (e.g.,
when X0,1 is used, w(x0) = 1/|X0,1| = 1/5 for any x0 ∈

10For the bicycle and HIV examples, the measurement units of variables are
mentioned only once in the text, i.e., when the variables are introduced, after
which the units are omitted.

Fig. 10. Performance of CE policy search for the deterministic bicycle, using
(top) X0,1 and (bottom) X0,2. Note the very small scale of the top figure.

X0,1). Because we are mainly interested in the behavior of the
bicycle starting from different initial rolls and roll velocities,
the initial steering angle α0 and velocity α̇0 are always taken to
be equal to zero; this also prevents an excessive computational
cost for the CE policy search. Since a good policy can always
prevent the bicycle from falling for any state in X0,1, the
optimal score (13) for this set is 0. This is no longer true for
X0,2: when ω and ω̇ have the same sign and are too large in
magnitude, the bicycle cannot be prevented from falling by any
control policy. Therefore, the optimal score for X0,2 is strictly
negative. To prevent including in X0,2 too many such states
from which falling is unavoidable, the initial roll velocities are
not taken to be too large in magnitude.

1) Balancing a Deterministic Bicycle: For the first set of
experiments with the bicycle, the noise was eliminated from the
simulations. The parameters of CE policy search were the same
as those for the double integrator, i.e., cCE = 10, ρCE = 0.01,
αCE = 0.7, εCE = εMC = 0.001, dCE = 5, and τmax = 100.
Because the system is deterministic, a single trajectory was
simulated from every representative state, i.e., NMC = 1. CE
policy search was run while gradually increasing the number
of RBFs from 3 to 8. For each set of representative states
(X0,1 and X0,2) and every value of N , ten independent runs
were performed. The maximum number of iterations was never
reached before convergence. Fig. 10 presents the performance
of CE policy search, and Fig. 11 presents its execution time.
The mean values across the ten runs are shown, together with
their 95% confidence intervals.

For X0,1 and N ≥ 4, all the experiments reached the optimal
score of 0; the scores for N = 3 are all extremely close to
0. For X0,2, the performance obtained is around −0.21 and
does not improve as N grows. This suggests that the optimal
score cannot be much larger than this value. It is remarkable
that CE policy search obtains good results with as few as three
RBFs. The execution times in Fig. 11 are comparable with
those for the double integrator (Fig. 4) for X0,1 and larger
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Fig. 11. Execution time of CE policy search for the deterministic bicycle.

TABLE II
RESULTS OF CE POLICY SEARCH FOR THE STOCHASTIC

BICYCLE—COMPARISON WITH THE DETERMINISTIC CASE

for X0,2, even though both sets contain fewer states than were
considered for the double integrator. This is because simulating
transitions for the bicycle requires the numerical integration of
its nonlinear dynamics, which is more costly than computing
the linear transitions of the double integrator.

For comparison, fuzzy Q-iteration (see Section V-A) was
applied, using an equidistant grid of triangular BFs and the
same nine discrete actions. The number N ′ of BFs on each axis
was gradually increased from 3 to 18. The resulting solutions
never reached a performance comparable to CE policy search;
e.g., when N ′ = 18, the score was −0.1933 for X0,1 and
−0.2383 for X0,2. Note that N ′ = 18 led to a total of 9 · 184 =
944 784 BFs, vastly more than the number of BFs required
by CE policy search. The execution time of fuzzy Q-iteration
with N ′ = 18 was 37 487 s, similar to the execution time of the
most computationally expensive CE policy search experiments
(see Fig. 11). This shows that, as the dimension of the problem
increases and also depending on the selection of representative
states, CE policy search can also become preferable to value-
function techniques from a computational point of view.

2) Balancing a Stochastic Bicycle: The second set of ex-
periments with bicycle balancing included the effects of noise.
A number of N = 7 RBFs were selected, and NMC = 10
trajectories were simulated from every initial state to compute
the score (in order to prevent excessive computational costs,
this number was not selected to be too large). The rest of the
parameters remained the same as in the deterministic case. For
each set of representative states (X0,1 and X0,2), ten indepen-
dent runs were performed. The performance of the resulting
policies, together with the execution time of the algorithm,
is reported in Table II. The mean values across the ten runs
are shown, together with their 95% confidence intervals (in
square brackets). For an easy comparison, the results in the
deterministic case with N = 7 are also repeated.

Fig. 12. Generalization of typical policies computed using (top) X0,1 and
(bottom) X0,2. White markers indicate that the bicycle was never balanced
starting from that initial state; the size of the gray markers is proportional with
the number of times the bicycle was properly balanced out of ten experiments.
Black crosses mark the representative states.

All the scores for X0,1 are optimal, and the scores for
X0,2 are similar to those obtained in the deterministic case.
This shows that the policies computed have a good quality.
The execution times are one order of magnitude larger than
those for the deterministic bicycle, which is expected because
NMC = 10, rather than 1 as in the deterministic case.

Fig. 12 illustrates the quality of two representative policies
found by CE policy search. In particular, the top part of the
figure shows how a policy computed using X0,1 generalizes
to initial states that do not belong to X0,1. The bottom part
similarly illustrates how a policy computed using X0,2 gen-
eralizes. The initial states from which the policies are tested
consist of a grid of values in the (ω, ω̇) plane; α0 and α̇0 are
always 0. The length of each trajectory is 50 s. This length was
chosen to verify whether the bicycle is robustly balanced for
a long time: it is roughly ten times longer than the length of
the trajectory used to evaluate the score during the optimization
procedure, which was 5.36 s (corresponding to K = 536, which
was computed with (6) for εMC = 0.001). Using the larger
set X0,2 of initial states is beneficial: it leads to a policy that
balances the bicycle for a much larger portion of the (ω, ω̇)
plane. Recall that the bicycle cannot be balanced at all from
some of the states for which ω and ω̇ are large in magnitude
and have the same sign.

C. Structured Treatment Interruptions for HIV Infection

In this section, CE policy search is used (again in simu-
lation) to control the treatment of HIV infection. Prevalent
HIV treatment strategies involve two types of drugs, called
reverse transcriptase inhibitors (RTIs) and protease inhibitors
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Fig. 13. Trajectories from xu. Black, continuous: policy computed with CE policy search. Gray: no treatment. Black, dashed: fully effective treatment. The
states and rewards are shown on a logarithmic scale, and negative values of the reward are ignored.

(PIs). The negative side effects of these drugs in the long term
motivate the investigation of optimal strategies for their use.
One such strategy involves structured treatment interruptions
(STIs), where the patient is cycled on and off RTI and PI
therapy; see, e.g., [36].

The HIV infection dynamics are described by a six-
dimensional nonlinear model with the state vector x =
[T1, T2, T

t
1 , T t

2 , V, E]T, where:

1) T1 ≥ 0 and T2 ≥ 0 are the counts of healthy type-1 and
type-2 target cells (in cells/ml);

2) T t
1 ≥ 0 and T t

2 ≥ 0 are the counts of infected type-1 and
type-2 target cells (in cells/ml);

3) V ≥ 0 is the number of free virus copies (in copies/ml);
4) E ≥ 0 is the number of immune response cells (in

cells/ml).

The control inputs are ε1, the effectiveness of the RTI drug,
and ε2, the effectiveness of the PI drug. In STI, drugs are either
fully administered (they are “on”) or not at all (they are “off”).
A fully administered RTI drug corresponds to ε1 = 0.7, while a
fully administered PI drug corresponds to ε2 = 0.3. This leads
to the discrete action space Ud = {0, 0.7} × {0, 0.3}. Because
it is not clinically feasible to change the treatment daily, the
state is measured and the drugs are switched on or off once
every five days [36]. Therefore, the system is controlled in
discrete time with a sampling time of five days. For the model
equations and parameters, see [36].

The system has three uncontrolled equilibria. The un-
infected equilibrium xn = [1 000 000, 3198, 0, 0, 0, 10]T is
unstable: as soon as V becomes nonzero due to the intro-
duction of virus copies, the patient becomes infected, and the
state drifts away from xn. The unhealthy equilibrium xu =
[163 573, 5, 11 945, 46, 63 919, 24]T is stable and represents a
patient with a very low immune response, for whom the in-

fection has reached dangerous levels. The healthy equilibrium
xh = [967 839, 621, 76, 6, 415, 353 108]T is stable and repre-
sents a patient whose immune system controls the infection
without the need of drugs.

We consider the problem of using STI from the initial state
xu such that the immune response of the patient is maximized
and the number of virus copies is minimized, while also pe-
nalizing the quantity of drugs administered to account for their
side effects. The reward function is [36]

ρ(x, u) = −QV −R1ε
2
1 −R2ε

2
2 + SE (20)

where Q = 0.1, R1 = R2 = 20 000, and S = 1000. The term
SE rewards the amount of immune response, −QV penalizes
the amount of virus copies, and −R1ε

2
1 and −R2ε

2
2 penalize

drug use.
In order to apply CE policy search, a discount factor of

γ = 0.99 was used. To compute the score, the number of
simulation steps was set to K = Tf/Ts, where Tf = 800 days is
a sufficiently long time horizon for a good policy to control the
infection [36], [37]. This leads to K = 160. The state variables
span several orders of magnitude; to limit the effects of this
large variation, a transformed state vector was used, computed
as the base-10 logarithm of the original state vector. The policy
was represented using N = 8 RBFs, and only the unhealthy
initial state was used to compute the score X0 = {xu}. The
other parameters remained unchanged from the experiments on
the other problems: cCE = 10, ρCE = 0.01, αCE = 0.7, εCE =
0.001, dCE = 5, and τmax = 100.

Fig. 13 shows the trajectory of the HIV system, controlled
from the unhealthy initial state with the policy obtained by
CE policy search. The execution time to obtain this policy
was 137 864 s. For comparison, trajectories obtained with no
treatment and with a fully effective treatment are also shown.
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The CE solution switches the PI drug off after approximately
300 days, but the RTI drug is left on in steady state, which
means that the healthy equilibrium xh is not reached. Neverthe-
less, the infection is handled much better than the case without
STI, and the immune response E in steady state is very strong.

In the literature, xh is reached by driving the state into
the basin of attraction of this equilibrium using STI and then
switching off both drugs [36], [37]. The algorithm used in [37]
automatically derives a decision-tree Q-function approximator
for value iteration. This derivation produces a large number
of BFs, on the order of tens of thousands or more. While
our solution does not reach xh, it still performs remarkably
well. Note that, because of the high dimensionality of the HIV
problem, using a value-function technique with equidistant BFs
is out of the question.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a novel algorithm for direct
policy search in continuous-state discrete-action MDPs. This
algorithm uses a flexible policy parameterization, inspired by
the work on automatic construction of BFs for value-function
approximation. CE optimization is used to search for policy
parameters that maximize the empirical return from a repre-
sentative set of initial states. CE policy search has been eval-
uated in a double-integrator example and in two more difficult
problems: balancing an unstable bicycle and the control of HIV
infection. The algorithm reliably offered good performance,
using only a small number of BFs to represent the policy.
Compared to value-function techniques with equidistant BFs,
CE policy search required vastly fewer BFs to provide good
performance, and it required a larger execution time for the
2-D double integrator but a comparable execution time for the
four-dimensional (deterministic) bicycle. As illustrated for HIV
infection control, CE policy search can be applied to high-
dimensional problems, for which value-function techniques
with equidistant BFs are impractical due to excessive compu-
tational costs.

The theoretical study of CE policy search is an important
opportunity for further research. Convergence results for the CE
method are unfortunately only available for combinatorial opti-
mization [15], [34], whereas CE policy search also involves the
optimization of continuous variables. The convergence results
for the related model-reference adaptive search [13] require
the restrictive assumption that the optimal policy parameter is
unique.

We have applied CE policy search to optimize deterministic
policies that choose among discretized actions. Nevertheless,
the algorithm can be extended to stochastic or continuous-
action policies, by adopting a suitable policy parameterization.
For instance, the current policy parameterization can naturally
be extended to continuous actions by interpolating the actions
assigned to the BFs, using the BF values as weights.

In this paper, CE optimization has been employed, and it
has been shown to outperform DIRECT optimization in the
double-integrator problem. It would be useful to compare CE
optimization with other algorithms that are able to solve the
global mixed-integer gradient-free optimization problem that
arises in policy search, such as genetic algorithms, simulated
annealing, and tabu search.
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