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Stability of Evolving Multi-Agent Systems
Philippe De Wilde, Senior Member, IEEE, and Gerard Briscoe

Abstract—A Multi-Agent System is a distributed system where
the agents or nodes perform complex functions that cannot be
written down in analytic form. Multi-Agent Systems are highly
connected, and the information they contain is mostly stored in
the connections. When agents update their state, they take into
account the state of the other agents, and they have access to those
states via the connections. There is also external, user-generated
input into the Multi-Agent System. As so much information is
stored in the connections, agents are often memory-less. This
memory-less property, together with the randomness of the
external input, has allowed us to model Multi-Agent Systems
using Markov chains. In this paper, we look at Multi-Agent
Systems that evolve, i.e. the number of agents varies according to
the fitness of the individual agents. We extend our Markov chain
model, and define stability. This is the start of a methodology
to control Multi-Agent Systems. We then build upon this to
construct an entropy-based definition for the degree of instability
(entropy of the limit probabilities), which we used to perform
a stability analysis. We then investigated the stability of evolving
agent populations through simulation, and show that the results
are consistent with the original definition of stability in non-
evolving Multi-Agent Systems, proposed by Chli and De Wilde.
This paper forms the theoretical basis for the construction of
Digital Business Ecosystems, and applications have been reported
elsewhere.

I. INTRODUCTION

Multi-Agent Systems is a growing field primarily because
of recent developments of the Internet as a means of circulat-
ing information, goods and services. Many researchers have
contributed valuable work to the area in recent years [39].
However, despite both Evolutionary Computing and Multi-
Agent Systems being mature research areas [38], [30] their
integration, creating evolving agent populations, is a recent
development [47]. This integration is non-trivial, because
agents can be considered as state machines and Evolutionary
Computing algorithms have been developed to work on nu-
merical data and strings without memory effects. So, our aim
here is to determine, for Multi-Agent Systems which make
use of Evolutionary Computing [29], [7], [46], macroscopic
variables that characterise their stability.

While there are several definitions of stability defined for
Multi-Agent Systems [40], [1], [34], [54], [33], they are not
applicable because of the Evolutionary Computing dynamics
inherent in the context of evolving agent populations. Chli
and De Wilde [15] model Multi-Agent Systems as Markov
chains, which are an established modelling approach in Evo-
lutionary Computing [44]. They model agent evolution in time
as Markov processes, and so view a Multi-Agent System
as a discrete time Markov chain with potentially unknown
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transition probabilities, considered stable when its state has
converged to an equilibrium distribution [15]. Also, while there
is past work on modelling Evolutionary Computing algorithms
as Markov chains [43], [36], [24], [20], we have found none
including Multi-Agent Systems.

Therefore, we decided to extend the existing Chli-DeWilde
definition of agent stability to include the dynamics of Evolu-
tionary Computing, including population dynamics and macro-
states of the population state-space.

We have applied our efforts reported here to the construction
of Digital Business Ecosystems [35], [6], Digital Ecosys-
tems (distributed adaptive open socio-technical systems, with
properties of self-organisation, scalability and sustainability,
inspired by natural ecosystems) for conducting business that
enable network-based economies, levelling the playing field
for Small and Medium sized Enterprises (SMEs) [5], [10].
SMEs provide substantial employment and conduct much
innovative activity, but struggle in global markets on a far
from level playing field, where large companies have distinct
advantages [49]. So, we created Digital Ecosystems to be the
digital counterparts of natural ecosystems [12], [8], which
are considered to be robust, self-organising and scalable
architectures that can automatically solve complex, dynamic
problems [11], [5], [7]. This lead to a novel optimisation tech-
nique inspired by natural ecosystems, where the optimisation
works at two levels: a first optimisation, migration of agents
which are distributed in a decentralised peer-to-peer network,
operating continuously in time; this process feeds a second
optimisation based on evolutionary computing that operates
locally on single peers and is aimed at finding solutions to
satisfy locally relevant constraints. So, the local search is
improved through this twofold process to yield better local
optima faster, as the distributed optimisation provides prior
sampling of the search space through computations already
performed in other peers with similar constraints. Therefore,
our extended Chli-DeWilde stability was invaluable in un-
derstanding and developing the evolving agent populations in
these Ecosystem-Oriented Architectures (EOAs) [9], because
it was important for us to be able to understand, model, and
define stability, including the determination of macroscopic
variables to characterise the stability, of the order constructing
processes within, the evolving agent populations.

II. MULTI-AGENT SYSTEMS

A software agent is a piece of software that acts, for
a user in a relationship of agency, autonomously in an
environment to meet its designed objectives [57]. So, a Multi-
Agent System is a system composed of several software
agents, collectively capable of reaching goals that are difficult
to achieve by an individual agent or monolithic system
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[57]. Examples of problems which are appropriate to Multi-
Agent Systems research include online trading [42], disaster
response [45], and modelling social structures [50]. Multi-
agent systems are applied in the real world to graphical
applications such as computer games and films. They are also
used for coordinated defence systems, with other applications
including transportation, logistics, as well as in many other
fields. It is widely being advocated for use in networking and
mobile technologies, to achieve automatic and dynamic load
balancing, high scalability, and self-healing networks.

The systems studied by Wiener [56] model information flow
between an actor and the environment. Input, state and output
and defined, and consequently an evolution equation can be
established. In such a system it is possible to distinguish
an observational sequence (of the inputs), followed by a
decisional sequence of outputs [53].

III. CHLI-DEWILDE STABILITY

We will now briefly introduce Chli-DeWilde stability for
Multi-Agent System and Evolutionary Computing, sufficiently
to allow for the derivation of our extensions to Chli-DeWilde
stability to include Multi-Agent Systems with Evolutionary
Computing. Chli-DeWilde stability was created to provide a
clear notion of stability in Multi-Agent Systems [15], because
while computer scientists often talk about stable or unstable
systems [52], [4], they did so without having a concrete or
uniform definition of stability. So, the Chli-DeWilde definition
of stability for Multi-Agent Systems was created [15], derived
[14] from the notion of stability defined by De Wilde [19],
[28], based on the stationary distribution of a stochastic
system, making use of discrete-time Markov chains, which
we will now introduce1.

If we let I be a countable set, in which each i ∈ I is called
a state and I is called the state-space. We can then say that
λ = (λi : i ∈ I) is a measure on I if 0 ≤ λi < ∞ for all
i ∈ I , and additionally a distribution if

∑
i∈I λi = 1 [14]. So,

if X is a random variable taking values in I and we have
λi = Pr(X = i), then λ is the distribution of X , and we can
say that a matrix P = (pij : i, j ∈ I) is stochastic if every row
(pij : j ∈ I) is a distribution [14], [37]. We can then extend
familiar notions of matrix and vector multiplication to cover
a general index set I of potentially infinite size, by defining
the multiplication of a matrix by a measure as λP , which is
given by

(λP )i =
∑
j∈I

λjpij . (1)

We can now describe the rules for a Markov chain by a
definition in terms of the corresponding matrix P [14], [37].

Definition 1. We say that (Xt)t≥0 is a Markov chain with
initial distribution λ = (λi : i ∈ I) and transition matrix
P = (pij : i, j ∈ I) if:

1A more comprehensive introduction to Markov chain theory and stochastic
processes is available in [37] and [16].

1) Pr(X0 = i0) = λi0 and
2) Pr(Xt+1 = it+1 | X0 = i0, . . . , X

t = it) = pitit+1
.

We abbreviate these two conditions by saying that (Xt)t≥0 is
Markov(λ, P ).

From this first definition the Markov process is
memoryless2, resulting in only the current state of the
system being required to describe its subsequent behaviour.
We say that a Markov process X0, X1, . . . , Xt has a
stationary distribution if the probability distribution of Xt

becomes independent of the time t [15]. So, the following
theorem is an easy consequence of the second condition from
the first definition.

Theorem 1. A discrete-time random process (Xt)t≥0 is
Markov(λ, P ), if and only if for all t and i0, . . . , it we have

Pr(X0 = i0, . . . , X
t = it) = λi0pi0i1 · · · pit−1it . (2)

This first theorem depicts the structure of a Markov chain
[14], [37], [16], illustrating the relation with the stochastic
matrix P . The next Theorem shows how the Markov chain
evolves in time, again showing the role of the matrix P .

Theorem 2. Let (Xt)t≥0 be Markov(λ, P ), then for all
t, s ≥ 0:

1) Pr(Xt = j) = (λP t)j and
2) Pr(Xt = j | X0 = i) = Pr(Xt+s = j | Xs = i) =

(P t)ij .

For convenience (P t)ij can be denoted as p(t)ij .

Given this second theorem we can define p(t)ij as the t-step
transition probability from the state i to j [14], and we can
now introduce the concept of an invariant distribution [14], in
which we say that λ is invariant if

λP = λ. (3)

The next theorem will link the existence of an invariant
distribution, which is an algebraic property of the matrix P ,
with the probabilistic concept of an equilibrium distribution.
This only applies to a restricted class of Markov chains,
namely, those with irreducible and aperiodic stochastic
matrices. However, there is a multitude of analogous results
for other types of Markov chains which we can refer [37],
[16], and the following theorem is provided as an indication,
of the family of theorems that apply. An irreducible matrix
P is one for which, for all i, j ∈ I there exist a sufficiently
large t such that p(t)ij > 0. I matrix P and is aperiodic if for

2Markov systems with probabilities is a very powerful modelling technique,
applicable in large variety of scenarios, and it is common to start memoryless,
in which the output probability distribution only depends on the current input.
However, there are scenarios in which alternative modelling techniques, like
queueing systems, are more suitable, such as when there is asynchronous
communications, and to fully characterise the system state at time (t), the
history of states at (t-1), (t-2), ... might also need to be considered.
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all states i ∈ I we have p(t)ii > 0 for all sufficiently large t
[14], [37], [16]. The meaning of these properties can broadly
be explained as follows. An irreducible Markov chain is a
chain where all states intercommunicate. For this to happen,
there needs to be a non-zero probability to go from any
state to any other state. This communication can happen
in any number t of time steps. This leads to the condition
p
(t)
ij > 0 for all i and j. An aperiodic Markov chain is a chain

where all states are aperiodic. A state is aperiodic if it is not
periodic. Finally, a state is periodic if subsequent occupations
of this state occur at regular multiples of a time interval.
For this to happen, p(t)ii has to be zero for t an integral
multiple of a number. This leads to the condition p

(t)
ii > 0

for a-periodicity. For further explanations, please refer to [16].

Theorem 3. Let P be irreducible, aperiodic and have an
invariant distribution, λ an arbitrary distribution, and suppose
that (Xt)t≥0 is Markov(λ, P ) [14], then

Pr(Xt = j)→ p∞j as t→∞ for all j ∈ I (4)
and

p
(t)
ij → p∞j as t→∞ for all i, j ∈ I. (5)

We can now view a system S as a countable set of states I
with implicitly defined transitions between them, and at time
t the state of the system is the random variable Xt, with the
key assumption that (Xt)t≥0 is Markov(λ, P ) [14], [37], [16].

Definition 2. The system S is said to be stable when
the distribution of its states converge to an equilibrium
distribution,

Pr(Xt = j)→ p∞j as t→∞ for allj ∈ I. (6)

More intuitively, the system S, a stochastic process X0,
X1, X2, ... is stable if the probability distribution of Xt

becomes independent of the time index t for large t [15].
Most Markov chains with a finite state-space and positive
transition probabilities are examples of controllable stable
systems, because after an initialisation period they reach a
stationary distribution [14].

A Multi-Agent System can be viewed as a system S, with
the system state represented by a finite vector X, having
dimensions large enough to represent the states of the agents
in the system. The state vector will consist of one or more
elements for each agent, and a number of elements to define
general properties3 of the system state. Hence there are many
more states of the system (different state vectors) than there
are agents. We can then model agent death, i.e. not being
present in the system, by setting the vector elements for that
agent to a fixed value that is shared by no other agent, called
d [14].

3These general properties are intended to represent properties that are
external to the agents, and as such could include the coupling between the
agents. However, we would expect such properties, as the coupling between
the agents, to be stored within the agents themselves, and so be part of the
elements defining the agents.

IV. INCLUDING EVOLUTION

Having now introduced Chli-DeWilde stability, we will
now briefly introduce Evolutionary Computing, sufficiently to
allow for the derivation of our extensions to Chli-DeWilde
stability to include Multi-Agent Systems with Evolutionary
Computing. Evolution is the source of many diverse and
creative solutions to problems in nature [17], [22]. However,
it can also be useful as a problem-solving tool in artificial
systems. Computer scientists and other theoreticians realised
that the selection and mutation mechanisms that appear so
effective in biological evolution could be abstracted to a
computational algorithm [30]. This Evolutionary Computing
is now recognised as a sub-field of artificial intelligence
(more particularly computational intelligence) that involves
combinatorial optimisation problems [3].

A. Evolutionary Algorithms

Evolutionary algorithms are based upon several fundamental
principles from biological evolution, including reproduction,
mutation, recombination (crossover), natural selection, and
survival of the fittest. As in biological populations, evolution
occurs by the repeated application of the above operators
[2]. An evolutionary algorithm operates on the collection
of individuals making up a population. An individual, in
the natural world, is an organism with an associated fitness
[27]. So, candidate solutions to an optimisation problem
play the role of individuals in a population, and a cost
(fitness) function determines the environment within which
the solutions live, analogous to the way the environment
selects for the fittest individuals. The number of individuals
varies between different implementations and may also vary
during the use of an evolutionary algorithm. Each individual
possesses some characteristics that are defined through its
genotype, its genetic composition, which will be passed
onto the descendants of that individual [2]. Processes of
mutation (small random changes) and crossover (generation
of a new genotype by the combination of components from
two individuals) may occur, resulting in new individuals with
genotypes differing from the ancestors they will come to
replace. These processes iterate, modifying the characteristics
of the population [2]. Which members of the population
are kept, and used as parents for offspring, depends on
the fitness (cost) function of the population. This enables
improvement to occur [2], and corresponds to the fitness of
an organism in the natural world [27]. Recombination and
mutation create the necessary diversity and thereby facilitate
novelty, while selection acts as a force increasing quality.
Changed pieces of information resulting from recombination
and mutation are randomly chosen. Selection operators can be
either deterministic, or stochastic. In the latter case, individuals
with a higher fitness have a higher chance to be selected than
individuals with a lower fitness [2].

B. Evolving Agent Populations

While the construction of Multi-Agent Systems that make
use of Evolutionary Computing differs [47], [7], they uni-
versally include populations of agents evolving to provide
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desired functionality, i.e. evolving agent populations. So,
extending Chli-DeWilde stability to the class of Multi-Agent
Systems that make use of Evolutionary Computing requires
understanding population dynamics and macro-states.

1) Population Dynamics: Change of notation. Section III
has defined the main properties of Markov chains that we use
to model Multi-Agent Systems. We have used the standard
notation, as used in [37] and many other textbooks on
stochastic processes. This notion uses integers to denote states.
These integers are easily used to label the rows and columns
of the transition matrix. At the end of Section II, we made
the step from Markov chain to multi-agent system. There are
many more states than agents, and both ought to be labeled by
integers. This turns out to be confusing, and therefore we make
a change of notation here. We will now label the agents with
integers i, and the states by vectors. Each agent i is in a scalar
state ξi. All n agents together are in an n-dimensional vector
state ξ. (An agent can be described by multiple numbers, but
we group these here into a single scalar ξi, just as multiple
binary digits can be read as a single integer.)

The states of the agents are random variables. The actual
values of the random variable ξi will be denoted by numbers
Xi or Yi. The actual values of the vector of random variables
ξ will be denoted by vectors X or Y. All the states can vary
in time, and time will be denoted by the superscript t. The
symbol for t is the same as in Section II, but the symbols i
and X have a new meaning. The symbol i now denotes the
agent, and Xi is a number describing the state of the agent i.

The change of notation is essential because each agent is
described by a random variable that has the Markov property.
The multi-agent system is a network of interacting Markov
chains. Without our change of notation, one would need
multiple subscripts counting different things.

A Multi-Agent System that makes use of Evolutionary
Computing, an evolving agent population, is composed of
n agents, with each agent i in a state ξti at time t, where
i = 1, 2, . . . , n. The states of the agents are random variables,
and so the state vector for the Multi-Agent System is a
vector of random variables ξt, with the time being discrete,
t = 0, 1, . . . . The interactions among the agents are noisy, and
are given by the probability distributions

Pr(Xi|Y) = Pr(ξt+1
i = Xi|ξt = Y), i = 1, . . . , n, (7)

where Xi is a value for the state of agent i, and Y is a value for
the state vector of the Multi-Agent System. The probabilities
implement a Markov process [51], with the noise caused by
mutations. Furthermore, the agents are individually subjected
to a selection pressure from the environment of the system,
which is applied equally to all the agents of the population.
So, the probability distributions are statistically independent,
and

Pr(X|Y) = Πn
i=1 Pr(ξt+1

i = Xi|ξt = Y). (8)

If the occupation probability of state X at time t is denoted
by ptX, then

ptX =
∑
Y

Pr(X|Y)pt−1Y . (9)

This is a discrete time equation used to calculate the evolution
of the state occupation probabilities from t = 0, while equation
(8) is the probability of moving from one state to another. The
Multi-Agent System is self-stabilising if the limit distribution
of the occupation probabilities exists and is non-uniform, i.e.

p∞X = limt→∞p
t
X (10)

exists for all states X, and there are states X and Y such that

p∞X 6= p∞Y . (11)

These equations imply that some configurations of the system
after an extended time will be more likely than others, because
the likelihood of their occurrence no longer changes. Such a
system is stable, because the likelihood of states occurring
no longer changes with time, and this is the definition of
stability developed in [15]. This is stability in the stochastic
sense, because there is some indeterminacy in the future
evolution described by the probability distributions. So, even
with knowing the initial conditions, there are many directions
in which the process might evolve, but still some paths will be
more probable than others. Equation (10) is the probabilistic
equivalent of an attractor4 in a system with deterministic
interactions, which we had to extend to a stochastic process
because mutation is inherent in Evolutionary Computing.

While the number of agents in the Chli-DeWilde formalism
can vary, we require it to vary according to the selection
pressure acting upon the evolving agent population. We must
therefore formally define and extend the definition of dead
agents, by introducing a new state d for each agent. If an
agent is in this state, ξti = d, then it is dead and does not
affect the state of other agents in the population. If an agent
i has low fitness then that agent will likely die, because

Pr(d|Y) = Pr(ξt+1
i = d|ξt = Y) (12)

will be high for all Y. Conversely, if an agent has high fitness,
then it will likely replicate, becoming a similarly successful
agent (mutant), or crossover might occur changing the state of
the successful agent and another agent.

2) Population Macro-States: The state of the system, an
evolving agent population, S is determined by the collection
of agents of which it consists at a specific time t, which
potentially changes as the time increases, t+1. This collection
of agents will have varying fitness values, and so the one with
the highest fitness at the current time t is the current maximum
fitness individual. For example, an evolving agent population
with individuals ranging in fitness between 36.2% and 45.8%,
the current maximum fitness individual (agent) is the one with
a fitness of 45.8%. So, we can define a macro-state M as
a set of states (evolving agent populations) with a common
property, here possessing at least one copy of the current
maximum fitness individual. Therefore, by its definition, each
macro-state M must also have a maximal state composed
entirely of copies of the current maximum fitness individual.
If the population size is not fixed (not in nature, can be in
evolutionary computing), the state space of the evolving agent

4An attractor is a set of states, invariant under the dynamics, towards which
neighbouring states asymptotically approach during evolution [55].
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macrostate

maximal state

evolutionary path
state

maximum macro-state Mmax

Fig. 1. State-Space of an Evolving Agent Population: A possible
evolutionary path through the state-space is shown, with the selection pressure
of the evolutionary process driving it towards the maximal state of the
maximum macro-state Mmax.

population is infinite, but in practise would be bounded by
resource availability. So, there is also an infinite number of
configurations for an evolving agent population that has the
same current maximum fitness individual.

So, the state-space I of the system (evolving agent pop-
ulation) S can be grouped to a set macro-states {M}. For
one macro-state, which we will call the maximum macro-
state Mmax, the current maximum fitness individual will be
the global maximum fitness individual, which is the optimal
solution (fittest individual) that the evolutionary computing
process can reach through the evolving agent population
(system) S. For example, an evolving agent population at
its maximum macro-state Mmax, with individuals ranging in
fitness between 88.8% and 96.8%, the global maximum fitness
individual (agent) is the one with a fitness of 96.8% and there
will be no fitter agent. Also, we can therefore refer to all other
macro-states of the system S as sub-optimal macro-states, as
there can be only one maximum macro-state Mmax.

We can consider the macro-states of an evolving agent
population visually through the representation of the state-
space I of the system S shown in Figure 1, which includes a
possible evolutionary path through the state-space. Traversal
through the state-space I is directed by the selection pressure
of the evolutionary process acting upon the population S,
driving it towards the maximal state of the maximum macro-
state Mmax, consisting entirely of copies of the optimal
solution. It is the equilibrium state that the system S is forever
falling towards without ever quite reaching, because of the
noise (mutation) within the system. Yet, the maximum macro-
state Mmax, in which this maximal state is located, will be
reached, provided the system does not get trapped at local
optima, i.e. the probability of being in the maximum macro-
state Mmax at infinite time is one, p∞Mmax

= 1.
Furthermore, we can define quantitatively the probability

distribution of the macro-states that the system occupies at
infinite time. For a stable system, as defined by equation (11),
the degree of instability, δ, is the entropy of its probability
distribution at infinite time,

δ = H(p∞) = −
∑
X

p∞X logN (p∞X ), (13)

where N is the number of possible states, and taking log to
the base N normalises the degree of instability. The degree
of instability will range between zero (inclusive) and one
(exclusive), because a maximum instability of one would
only occur in the theoretical extreme scenario of a non-
discriminating selection pressure [25].

V. SIMULATION AND RESULTS

A. Evolutionary Dynamics

A simulated agent population was evolved relative to an arti-
ficial selection pressure created by a fitness function generated
from a user request R. An individual (agent) of the population
consisted of a set of attributes, a1, a2, ..., and a user request
consisted of a set of required attributes, r1, r2, .... The fitness
function for evaluating an individual agent A, relative to a user
request R, was

fitness(A,R) =
1

1 +
∑

r∈R |r − a|
, (14)

where a is an attribute of the agent A such that the differ-
ence to the required attribute r of R was minimised. The
abstract agent descriptions was based on existing and emerg-
ing technologies for semantically capable Service-Oriented
Architectures [41], such as the OWL-S semantic markup
for web services [31]. We simulated an agent’s semantic
description with an abstract representation consisting of a
set of attributes, to simulate the properties of a semantic
description. Each attribute representing a property of the se-
mantic description, ranging between one and a hundred. Each
simulated agent was initialised with a semantic description of
between three and six attributes, which would then evolve in
number and content.

Equation 14 was used to assign fitness values between 0.0
and 1.0 to each individual of the current generation of the
population, directly affecting their ability to replicate into the
next generation. The Evolutionary Computing process was
encoded with a low mutation rate, a fixed selection pressure
and a non-trapping fitness function (i.e. did not get trapped at
local optima5).

The type of selection used was fitness-proportional and non-
elitist, with fitness-proportional meaning that the fitter the
individual the higher its probability of surviving to the next
generation. Non-elitist means that the best individual from
one generation was not guaranteed to survive to the next
generation; it had a high probability of surviving into the next
generation, but it was not guaranteed as it might have been
mutated [21]. These initial parameters where chosen to focus

5These constraints can be considered in abstract using the metaphor of
the fitness landscape, in which individuals are represented as solutions to
the problem of survival and reproduction [58]. All possible solutions are
distributed in a space whose dimensions are the possible properties of
individuals. An additional dimension, height, indicates the relative fitness (in
terms of survival and reproduction) of each solution. The fitness landscape is
envisaged as a rugged, multidimensional landscape of hills, mountains, and
valleys, because individuals with certain sets of properties are fitter than others
[58]. Here the ruggedness of the fitness landscape is not so severe, relative
to the population diversity (population size and mutation rate), to prevent
the evolving population from progressing to the global optima of the fitness
landscape.
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Fig. 2. Graph of Evolutionary Dynamics: This shows both the maximum
and average fitness increasing over the generations of a typical evolving agent
population, and as expected the average fitness remains below the maximum
fitness because of variation in the evolving agent population [23].

on studying our extended Chli-DeWilde stability, rather than
the evolutionary computing process itself.

Crossover (recombination) was then applied to a randomly
chosen 10% of the surviving population. Mutations were then
applied to a randomly chosen 10% of the surviving population;
point mutations were randomly located, consisting of inser-
tions (an attribute was inserted into an agent), replacements
(an attribute was replaced in an agent), and deletions (an
attribute was deleted from an agent). Rates of 10% where
chosen, because they would provide the necessary behaviour to
a sufficient degree. A dynamic population size was used, with
an initial population size of 300, to ensure exploration of the
available agent attribute combination space, which increased
with the average size of the population’s agents, because
fixed population sizes can sometimes fail to sufficient search
available combination spaces.

The issue of bloat [26] was controlled by augmenting
the fitness function with a parsimony pressure [48], which
biased the search to smaller agents, evaluating larger than
average agents with a reduced fitness, and thereby providing
a dynamic control limit which adapted to the average size of
the individuals of the evolving agent population.

We first plotted the fitness of the evolutionary process for
a typical evolving agent population to elucidate its inherent
evolutionary dynamics. The graph in Figure 2 shows both the
maximum and average fitness increasing over the generations
of a typical evolving agent population, and as expected the
average fitness remains below the maximum fitness because of
variation in the evolving agent population [23], showing that
the inherent dynamism of evolutionary processes applies to
evolving agent populations.

B. Stability

1) Initial Parameters: An evolving agent population was
called stable if the distribution of the limit probabilities existed
and was non-uniform, as defined by equations (10) and (11).
The simplest case was a typical evolving agent population with
a global optimum, which was stable if there were at least two
macro-states with different limit occupation probabilities. So,
we considered the maximum macro-state Mmax and one of
the sub-optimal macro-states, Mhalf . Where the states of the
macro-state Mmax each possessed at least one individual with

global maximum fitness,

p∞Mmax
= limt→∞p

(t)
Mmax

= 1,

while the states of the macro-state Mhalf each possessed at
least one individual with fitness equal to half of the global
maximum fitness,

p∞Mhalf
= limt→∞p

(t)
Mhalf

= 0,

thereby fulfilling the requirements of equations (10) and
(11). A value of t = 1000 was chosen to represent t =
∞ experimentally, because the simulation has often been
observed to reach the maximum macro-state Mmax within
500 generations. Therefore, the probability of the system S
being in the maximum macro-state Mmax at the thousandth
generation is expected to be one, p1000Mmax

= 1. Furthermore,
the probability of the system being in the sub-optimal macro-
state Mhalf at the thousandth generation is expected to be
zero, p1000Mhalf

= 0.
2) Predictions: The sub-optimal macro-state Mhalf , having

a lower fitness, is predicted to be seen earlier in the evolu-
tionary process before disappearing as higher fitness macro-
states are reached. The system S will take longer to reach
the maximum macro-state Mmax, but once it does will likely
remain, leaving only briefly depending on the strength of the
mutation rate, as the selection pressure was non-elitist.

3) Results: Figure 3 shows, for a typical evolving agent
population, a graph of the probability as defined by equation
(9) of the maximum macro-state Mmax and the sub-optimal
macro-state Mhalf at each generation, averaged from ten thou-
sand simulation runs for statistical significance. The behaviour
of the simulated system S was as expected, being in the
maximum macro-state Mmax only after generation 178 and
always after generation 482. It was also observed being in the
sub-optimal macro-state Mhalf only between generations 37
and 113, with a maximum probability of 0.053 at generation
61. This is because the evolutionary path (state transitions)
could avoid visiting the macro-state.

4) Conclusions: As expected the probability of being in
the maximum macro-state Mmax at the thousandth generation
was one, p1000Mmax

= 1, and so the probability of being in
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Fig. 3. Graph of the Probabilities of the Macro-States Mmax and Mhalf

at each Generation: The system S, a typical evolving agent population, was in
the maximum macro-state Mmax only after generation 178 and always after
generation 482. It was also observed being in the sub-optimal macro-state
Mhalf only between generations 37 and 113.
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any other macro-state, including the sub-optimal macro-state
Mhalf , at the thousandth generation was zero, p1000Mhalf

= 0.
We can therefore conclude that our extended Chli-DeWilde
stability accurately models the stability over time of evolving
agent populations (Multi-Agent Systems with Evolutionary
Computing).

C. Visualisation
1) Results: A visualisation for the state of a typical evolv-

ing agent population, from the experiment of previous subsec-
tion, at the thousandth generation is shown in Figure 4, with
each line representing an agent and each shade representing
an agent attribute, with the identical agents grouped for
clarity. It shows that the evolving agent population reached
the maximum macro-state Mmax and remained there, but as
expected never reached its maximal state, where all the agents
are identical and have maximum fitness, which is indicated by
the lack of total uniformity in the visualisation.
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Fig. 4. Visualisation of an Evolving Agent Population at the 1000th
Generation: The population consists of 323 agents, with each line representing
an agent, and each shade representing an agent attribute. So, we see a
population consisting of multiple agents, many of which are identical, having
the same maximum global fitness. The identical agents were grouped for
clarity, and as expected the system S reached the maximum macro-state
Mmax.

2) Conclusions: The result was as expected, a lack of total
uniformity in the visualisation, because of the mutation (noise)
within the evolutionary process, which is necessary to create
the opportunity to find fitter (better) sequences and potentially
avoid getting trapped at any local optima that may be present.
We can therefore conclude that the macro-state interpretation
of our extended Chli-DeWilde stability accurately models
the state-space of evolving agent populations (Multi-Agent
Systems with Evolutionary Computing).

D. Degree of Instability
1) Results: Given that our simulated evolving agent pop-

ulation is stable as defined by equations (10) and (11), we
can determine the degree of instability as defined by equation
(13). So, calculated from its limit probabilities, the degree of
instability was

δ = H(p1000) = −
∑
X

p1000X logN (p1000X )

= −1logN (1)

= 0,

where t = 1000 was an effective estimate for t = ∞. This
result was expected because the maximum macro-state Mmax

at the thousandth generation was one, p1000Mmax
= 1, and so the

probability of being in any other macro-state at the thousandth
generation was zero.

2) Conclusions: The system therefore showed no instabil-
ity, as there is no entropy in the occupied macro-states at
infinite time. We can therefore conclude that the degree of
instability of our extended Chli-DeWilde stability can provide
a macroscopic value to characterise the level of stability
of evolving agent populations (Multi-Agent Systems with
Evolutionary Computing).

E. Stability Analysis

1) Initial Parameters: We then performed a stability analy-
sis (similar to a sensitivity analysis [13]) of a typical evolving
agent population, by varying its key parameters while mea-
suring its stability. We varied the mutation and crossover rates
from 0% to 100% in 10% increments to provide a sufficient
density of measurements to identify any trends that might be
present, calculating the degree of instability, δ from (13), at
the thousandth generation. These degree of instability values
were averaged over 10 000 simulation runs to ensure statistical
significance, and graphed against the mutation and crossover
rates in Figure 5.

2) Results: It shows that the crossover rate had little effect
on the stability of the evolving agent population, whereas
the mutation rate did significantly affect stability. With the
mutation rate under or equal to 60%, the evolving agent
population showed no instability, with δ values equal to zero as
the system S was always in the same macro-state M at infinite
time, independent of the crossover rate. With the mutation
rate above 60% the instability increased significantly, with the
system being in one of several different macro-states at infinite
time; with a mutation rate of 70% the system was still very
stable, having low δ values ranging between 0.08 and 0.16, but

0 20 40 60 80 100
20

40
60

80
100

0.1

0.2

0.3

0.4

0.5

Degree of Instability

Crossover Rate Mutation Rate

Degree of Instability

Fig. 5. Graph of Stability with Different Mutation and Crossover Rates:
With the mutation rate under or equal to 60%, the evolving agent population
showed no instability, with δ values equal to zero as the system S was always
in the same macro-state M at infinite time, independent of the crossover rate.
With the mutation rate above 60% the instability increased significantly.
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once the mutation rate was 80% or greater the system became
quite unstable, shown by high δ values nearing 0.5.

3) Conclusions: As one would have expected, an extremely
high mutation rate had a destabilising affect on the sta-
bility of evolving agent populations. Also, as expected the
crossover rate had only a minimal effect, because variation
from crossover was limited once the population matured,
consisting of agents identical or very similar to one another. It
should also be noted that the stability of the system is different
to its performance at optimising, because while showing
no instability with mutation rates below 60% (inclusive),
it reached the maximum macro-state Mmax only with a
mutation rate of 10% or above, while at 0% it was stable
at sub-optimal macro-states between Mtenth (inclusive) and
Mtwentieth (inclusive), i.e. with at least one individual with
a fitness between twentieth (inclusive) to a tenth (inclusive)
of the global maximum fitness, as indicated by all of the 0%
Mutation Rate experiments have degree of instability, δ, values
of zero in Figure 5. This is because there was no mutation
(mutate rate = 0%), and so the evolving agent populations
always remained near the sub-optimal macro-state to which
they where initialised (seeded), with any crossover rate having
little effect.

We can therefore conclude that the degree of instability
of our extended Chli-DeWilde stability can used of perform
stability analyses (similar to a sensitivity analyses [13]) of
evolving agent populations (Multi-Agent Systems with Evolu-
tionary Computing).

VI. CONCLUSIONS

Our extension of Chli-DeWilde stability was developed
to provide a greater understanding of stability in Multi-
Agent Systems that make use of Evolutionary Computing,
i.e. evolving agent populations. We then built upon this
to construct an entropy-based definition for the degree of
instability, which provides information about the level of
stability, applicable to Multi-Agent Systems with or without
Evolutionary Computing. Furthermore, it can be used to
perform a stability analysis, similar to a sensitivity analysis,
of Multi-Agent Systems.

Collectively, the experimental results confirm that Chli-
DeWilde stability has been successfully extended to evolving
agent populations, while our definition for the degree of insta-
bility provides a macroscopic value to characterise the level of
stability. These findings also support the proposition that Chli-
DeWilde stability can be widely applied to different classes of
Multi-Agent Systems. So, our extended Chli-DeWilde stability
is a useful tool for analysing Multi-Agent Systems, with
or without Evolutionary Computing, providing an effective
understanding and quantification to help better understand the
stability of such systems.

Overall, an insight has been achieved into the stability of
Multi-Agent Systems that make use of Evolutionary Comput-
ing, which is a first step in being able to control such systems.
For example, say one wanted to avoid a number of bad states.
If the probability of being in those states kept changing with
time, it would be difficult to devise a strategy to avoid these

states. However, if the probability converges in time, while one
could not guarantee to avoid those states, one could at least
calculate the expected damage, i.e. the probability of being in
a state times by the penalty for being in it, summed over all the
states one wishes to avoid. Stochastic control of multi-agent
systems will be the subject of further work.

Our future work will also consider include more experi-
mental scenarios to further consolidate the conclusions, with
a range of different fitness landscapes [58], including flat ones
(from the neutral theory of molecular evolution [25]) and ones
with multiple global optima.
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