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Trajectory Planning and Optimized Adaptive
Control for a Class of Wheeled Inverted

Pendulum Vehicle Models
Chenguang Yang, Member, IEEE, Zhijun Li, Senior Member, IEEE, and Jing Li

Abstract—In this paper, we investigate optimized adaptive con-
trol and trajectory generation for a class of wheeled inverted
pendulum (WIP) models of vehicle systems. Aiming at shaping the
controlled vehicle dynamics to be of minimized motion tracking
errors as well as angular accelerations, we employ the linear
quadratic regulation optimization technique to obtain an optimal
reference model. Adaptive control has then been developed using
variable structure method to ensure the reference model to be ex-
actly matched in a finite-time horizon, even in the presence of var-
ious internal and external uncertainties. The minimized yaw and
tilt angular accelerations help to enhance the vehicle rider’s com-
fort. In addition, due to the underactuated mechanism of WIP, the
vehicle forward velocity dynamics cannot be controlled separately
from the pendulum tilt angle dynamics. Inspired by the control
strategy of human drivers, who usually manipulate the tilt angle
to control the forward velocity, we design a neural-network-based
adaptive generator of implicit control trajectory (AGICT) of the
tilt angle which indirectly “controls” the forward velocity such
that it tracks the desired velocity asymptotically. The stability and
optimal tracking performance have been rigorously established
by theoretic analysis. In addition, simulation studies have been
carried out to demonstrate the efficiency of the developed AGICT
and optimized adaptive controller.

Index Terms—Linear quadratic regulation (LQR), model refer-
ence control, optimization, wheeled inverted pendulum (WIP).

I. INTRODUCTION

THE WHEELED inverted pendulum (WIP) systems have
been well used in modeling of a class of modern vehicles

that transport human with high safety and work capability, and
therefore, it has received increasing research interest in the
recent decade [21]–[23]. The simpler structure of this class of

Manuscript received December 8, 2011; revised March 15, 2012; accepted
April 16, 2012. Date of publication June 8, 2012; date of current version
January 11, 2013. This work was supported in part by the Marie Curie
International Incoming Fellowship H2R Project under Grant FP7-PEOPLE-
2010-IIF-275078, by the Natural Science Foundation of China under Grants
60804003, 61174045, and 61111130208, by the International Science and
Technology Cooperation Program of China under Grant 0102011DFA10950,
and by the Fundamental Research Funds for the Central Universities under
Grants 2011ZZ0104 and K50510700002.

C. Yang is with the School of Computing and Mathematics, Plymouth Uni-
versity, PL4 8AA Plymouth, U.K. (e-mail: chenguang.yang@plymouth.ac.uk).

Z. Li was with the Department of Automation, Shanghai Jiao Tong Uni-
versity, Shanghai 200240, China. He is now with the College of Automation,
South China University of Technology, Guangzhou 510641, China (e-mail:
zjli@ieee.org).

J. Li is with the Department of Mathematics, Xidian University, Xi’an
710071, China (e-mail: xidianjing@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2012.2198813

Fig. 1. WIP model scheme.

vehicles reduces the weight of the system, and the mechan-
ically small footprint (no caster) ensures high mobility such
as quick response and high traveling ability on a bump [24],
[25]. These vehicles are able to perform work that demands
high power with low power and ensure high safety against
overturn when unpredictable collision occurs, because the WIP
controller always maintains dynamic stability. For example, the
popular SEGWAY HT is able to balance a human standing on
its platform while the user traverses the terrain with it.

As shown in Fig. 1, the WIP systems are different from
the conventional cart and pendulum systems which have been
well studied in the previous years [1]. The inverted pendulum’s
motion in the WIP is not planar, and the motors that drive the
wheels are directly mounted on the pendulum body [24]. As the
WIP systems are usually used as personal transportation vehi-
cles moving in its terrain while balancing the pendulum, their
control problem is much more challenging than controlling the
cart–pendulum systems whose cart is usually constrained by a
guide rail. Therefore, in the WIP control problem, it is nec-
essary to consider the nonholonomic constraint force between
the wheels and the ground which helps the mobile platform
avoid the slipping or slippage. Traditionally, nonholonomic
systems are subject to either only kinematic constraints which
geometrically restrict the direction of mobility, e.g., wheeled
mobile robot [26], [27], or only dynamic constraints due to
dynamic balance at passive degrees of freedom (DOFs) where
no force or torque is applied, e.g., the manipulator with passive
link [28], [29]. However, the WIP systems are subject to both
kinematic constraints and dynamic constraints such that the
existing control designs for nonholonomic systems cannot be
directly applied to the WIP systems.

2168-2267/$31.00 © 2012 IEEE
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In addition, the dynamics of WIP systems is governed by
the underactuated configuration, i.e., the number of control
inputs is less than the number of DOFs to be manipulated
[2]. For WIP systems, there are only two torque inputs from
motors connected to both wheels, but there are three DOFs,
namely, the tilt angle of the pendulum and the forward and
rotation angular velocities of the platform. Generally speaking,
the underactuated systems are harder to control because many
conventional methods such as computed torque control become
not applicable. It should be mentioned that the analysis of
the dynamics of unactuated subsystem of the underactuated
system is still a challenging problem. In our previous work
[30], [31], the vehicle forward velocity dynamics is regarded as
zero dynamics, and zero-dynamics theories have been used to
analyze the stability. As the vehicle forward velocity dynamics
is directly affected by the pendulum tilt angle dynamics, in
this work, we develop a new framework to manipulate the
forward velocity by using the tilt angle reference trajectory
as an implicit control trajectory. This is also according to the
observation of a human driver’s control strategy.

It is noted that a number of the existing control designs
for the WIP systems are based on the idea of linearization.
In addition, a feedback linearization technique has also been
investigated for controlling WIP in [24], in which a two-level
velocity controller was designed for position control. Although
linear systems could be suitably applied to capture the nonlinear
dynamics at a certain operation point, they cannot perfectly
model the Lagrangian mechanical dynamics with a large op-
eration range. Therefore, we will carry out our research using
nonlinear control approach. By utilizing the unique physical
property of the WIP system, we break down the overall three-
DOF system into two subsystems, where the first subsystem
is fully actuated while the second subsystem is unactuated.
The control design of the fully actuated system is based on
the model reference approach, which shapes the system dy-
namics to follow a reference model obtained using the linear
quadratic regulation (LQR) optimization such that both the
motion tracking errors and the yaw and tilt angle accelerations
are minimized. We expect that it would greatly increase the
rider’s comfort by reducing the unnecessary acceleration while
guaranteeing the tracking of the desired motion.

The underactuated subsystem of forward velocity cannot be
directly controlled by the torque input but is directly affected
by the tilt angle dynamics. From the observation of a human
operator riding on the WIP vehicle, we see that, by properly
adjusting the tilt angle, the human operator is able to well
manipulate the forward velocity. This inspires us to control the
forward velocity indirectly, by using the tilt angle reference
trajectory, which is regarded as implicit control trajectory in
this work.

It is noted that, either for control design or for trajectory
planning of the WIP vehicle, a critical problem lies in the
uncertainties of the system dynamics, i.e., the time-varying
external disturbances and, particularly, the uncertain system
parameters, for example, the rider’s mass can never be known
exactly beforehand. In this point of view, the development of
adaptive control methods or neural network (NN)-based/fuzzy-
set-based methods becomes an important issue. Adaptive con-

trol of nonlinear Lagrangian dynamic system has been exten-
sively investigated [32]–[34]. In this work, a novel adaptive
model reference control method combined with optimization
technique is developed such that the dynamics of the fully
actuated subsystem can exactly follow the reference model
within a finite-time horizon. The proposed controller employs
variable structure control method and requires little dynamics
information. A novel model matching error is introduced in the
controller, which is used in both controller and parameter up-
date laws, and plays a key role in the convergence and stability
analysis. On the other hand, NN and fuzzy set have been widely
applied to control nonlinear dynamic systems [47]–[49], [53],
nonlinear observer [50], [51], and multi-input–multioutput sys-
tem [52] and have also been recently employed to deal with
unknown internal interconnections and unknown time delays
[4] and [8]. In [9] and [10], novel adaptive NN controllers
have been developed for system with input saturation and
nonlinearities. In [11], NN has been used to generate trajectory
for mobile robots avoiding possible collision, while in [12], NN
has been employed to control the motion tracking of mobile
robots. In this work, NN will be used for approximation of
the underactuated subsystem to design the adaptive generator
of implicit control trajectory (AGICT). Moreover, the implicit
control trajectory, namely, the reference trajectory of tilt angle,
will turn back to manipulate the forward velocity.

The main contributions of this paper lie in the following: 1) A
reference model for the yaw and tilt angle subsystems of the
WIP system is derived using the LQR optimization approach
which guarantees motion tracking and achieves the minimized
angular accelerations for better riding comfort; 2) variable
structure method has been employed to design the adaptive
reference control in order to make the controlled dynamics
to match the reference model dynamics in finite time; and
3) instead of leaving the unactuated forward velocity dynamics
uncontrolled, we develop AGICT such that the reference tra-
jectory for the tilt angle is used to indirectly affect the forward
velocity to make sure that the desired velocity can be achieved.
High-order NN (HONN) has been employed to construct a
reference trajectory generator of the tilt angle.

The rest of this paper is organized as follows. In Section II,
notations, preliminary knowledge of NN approximation, and
LQR optimization are presented. In Section III, two subsystems
of the underactuated WIP systems are derived with the first
subsystem fully actuated while the second is unactuated. A
reference trajectory generator using HONN for the tilt an-
gle is designed in Section V such that the forward velocity
is indirectly manipulated to follow its desired trajectory. In
Section VI, simulation studies are carried out to verify the
effectiveness of the proposed method. Concluding remarks are
given in Section VII.

II. PRELIMINARIES

In this paper, we will use both the term “desired trajec-
tory” which is predefined according to the task and the term
“reference trajectory” (in Section V) which is online gener-
ated and is converging to the corresponding desired trajectory
eventually. To distinguish between these two terms, we use the
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subscripts “d” and “r” for the desired and reference trajectories,
respectively.

Notations: The notations used in this paper, particularly
those used to describe the WIP system shown in Fig. 1, are
listed in the following:
x, y the position coordinates of the midpoint of the

two driving wheels;
θ the heading angle in motion relative to the x-axis

of the fixed frame;
qv the vector of generalized coordinates for

the mobile platform with qv = [q1, q2, q3]
T =

[Θ, x, y]T ∈ R3;
α the tilt angle relative to the z-axis of the fixed

frame;
L length of the pendulum;
M mass of the mobile platform together with the

pendulum;
m mass of each wheel;
d distance between the two wheels;
τr, τl the torques of the left and right wheels;
dv(t), dα(t) the external disturbances on the mobile platform

and the inverted pendulum with dv(t) ∈ R3 and
dα(t) ∈ R1;

Iω , IM moment inertias of the wheel and mobile plat-
form together with the pendulum;

Bv a full-rank known input transformation matrix
with Bv ∈ R3×2;

0[m,n] zero matrix of m rows and n columns;
| · |, ‖ · ‖ vector’s and matrix’s L1-norm and L2-norm.

A. HONN Approximation

There are many well-developed approaches used to approx-
imate an unknown function. NN is one of the most frequently
employed approximation methods due to the fact that NN is
shown to be capable of universally approximating any unknown
continuous function to arbitrary precision [13], [37]. Similar
to biological NNs, NN consists of massive simple processing
units which correspond to biological neurons. With the highly
parallel structure, NN is of powerful computing ability and
intelligence of learning and adaptation with respect to fresh and
unknown data. HONN has been shown to have strong storage
capacity, approximation, and learning capability. HONN satis-
fies the conditions of the Stone–Weierstrass theorem and can
therefore approximate any continuous function over a compact
set [38], [39]. It is pointed in [40] that, by utilizing a priori
information, HONN is very efficient in solving problems be-
cause the order or structure of HONN can be tailored to the
order or structure of a given problem. The structure of HONN
is expressed as follows:

φ(W, z̄) =WTS(z̄), W, S(z̄) ∈ Rl

S(z̄) = [s1(z̄), s2(z̄), . . . , sl(z̄)]
T (1)

si(z̄) =
∏
j∈Ii

[s(z̄j)]
dj(i) , i = 1, 2, . . . , l (2)

where z̄∈Ωz̄⊂Rm is the input to HONN, l is the NN node
number, {I1, I2, . . . , Il} is a collection of l not-ordered subsets

of {1, 2, . . . ,m}, e.g., I1={1, 3,m} and I2={2, 4,m}, dj(i)’s
are nonnegative integers, W is an adjustable synaptic weight
vector, and s(z̄j) is a monotonically increasing and differen-
tiable sigmoidal function. In this paper, it is chosen as a hyper-
bolic tangent function, i.e., s(z̄j)=(ez̄j−e−z̄j )/(ez̄j+e−z̄j ).
For a smooth function ϕ(z̄) over a compact set Ωz̄⊂Rm, given
a small constant real number μ∗>0, if l is sufficiently large,
there exists a set of ideal bounded weights W ∗ such that

max |ϕ(z̄)− φ(W ∗, z̄)| < μ(z̄), |μ(z̄)| < μ∗. (3)

From the universal approximation results for NNs [41], it is
known that the constant μ∗ can be made arbitrarily small by
increasing the NN node number l.

Lemma 1 [42]: Consider the basis functions of HONN (1)
with z̄ being the input vector. The following properties of
HONN will be used in the proof of closed-loop system stability:

λmax

[
S(z̄)ST(z̄)

]
< 1, ST(z̄)S(z̄) < l (4)

where λmax(M) denotes the maximum eigenvalue of M .
Lemma 2 [43]: Consider a Cr function f : Rk+n →

Rn with f(a, b) = 0[n,1] and rank(Df(a, b)) = n, where
Df(a, b) = (∂f(x, y)/∂y)|(x,y)=(a,b) ∈ Rn×n. Then, there ex-
ist a neighborhood A of a in Rk and a unique Cr function g :
A → Rn such that g(a) = b and f(x, g(x)) = 0[n,1] ∀x ∈ A.

B. Finite-Time Linear Quadratic Regulator

Given a linear system with completely stabilizable pair
[A,B] [44]

ẋ = Ax+Bu x(t0) = x0, x ∈ Rn; u ∈ Rn (5)

the optimal control u∗(t), T > 0, that minimizes the following
performance index:

J =

tf∫
t0

(
(x− xd)

TQ(x− xd) + uTRu
)
dt,

R = RT > 0; Q = QT > 0 (6)

is given by

au∗ = −R−1BT(Px+ s) (7)

with P as the solution of the following Riccati equation:

− Ṗ =PA+ATP−PBR−1BTP+Q P (tf )=0[n,n] (8)

and s as the solution of

−ṡ = (A−BR−1BTP )
T
s+Qxd s(tf ) = 0[n,1]. (9)

III. DYNAMICS OF MOBILE WIPS

The dynamics model of mobile WIPs studied in this work is
described by the following Lagrangian formulation:[
Dv Dvα

Dαv Dα

] [
q̈v
α̈

]
+

[
Cv Cvα

Cαv Cα

] [
q̇v
α̇

]

+

[
Fv

Fα

]
+

[
Gv

Gα

]
+

[
dv
dα

]
=

[
Bvτv
0

]
+

[
JT
v λ
0

]
(10)
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where τv = [τl, τr] represents the torques produced by the two
wheel motors and Bv is a known matrix. In this work, we do
not consider any constraints on the input torques, but some
recent development on adaptive control with input constraints
[9], [10] can be applied in our model. The term Jv is the matrix
related to nonholonomic constraints of the mobile platform of
WIP defined as

Jv = [0, sin θ,− cos θ] (11)

and the nonholonomic constraints are described as

Jv q̇v = 0. (12)

It is always possible to find a set of smooth and linearly
independent vector fields Φ1(q) and Φ2(q) constituting the
matrix Φ = [Φ1(q),Φ2(q)] ∈ R3×2 with full rank ΦTΦ, which,
in the local coordinates, satisfy the following relation:

ΦTJT
v = 0[2,1]. (13)

Constraint equation (12) implies the existence of vector χ̇ =
[ω, v]T ∈ R2 with ω representing the component of the angular
velocity of the platform denoted in Fig. 1 and v representing the
forward velocity of the mobile platform such that

q̇v = Φ(q)χ̇. (14)

Let us define new variables

ζ̇ = [χ̇, α̇]T = [ζ̇1, ζ̇2, ζ̇3]
T = [ω, v, α̇]T (15)

and multiply diag[ΦT, I] by both sides of (10) to eliminate JT
v ;

the dynamics of WIP can be expressed as

D(ζ)ζ̈ + C(ζ, ζ̇)ζ̇ +G(ζ) + fd = τ (16)

where

D(ζ) =

[
ΦTDvΦ ΦTDvα

DαvΦ Dα

]

=

⎡
⎣ d11 0 0

0 d22 d23
0 d32 d33

⎤
⎦

C(ζ, ζ̇) =

[
ΦTDvΦ̇ + ΦTCvΦ ΦTCvα

DαvΦ̇ + CαvΦ Cα

]

=

⎡
⎣ c11 0 c13

0 0 c23
c31 0 0

⎤
⎦

fd =

[
ΦTdv
dα

]
=

⎡
⎣ d̄1
d̄2
d̄3

⎤
⎦

G(ζ) =

[
ΦTGv

Gα

]
=

⎡
⎣ 0

0
g3

⎤
⎦

τ =

[
ΦTBvτv

0

]
=

⎡
⎣ τ1
τ2
0

⎤
⎦ (17)

with d11=d2m/2+IMd2/2R2+Iω+ML2 sin2 α, d22=2m+
2IM/R2 +M , d33=ML2 + IM , and d23 = d32=ML cosα;
c11 = (1/2)ML2α̇ sin2 2α, c13 = (1/2)ωML2 sin 2α, c23 =
−MLα̇sinα, and c31=−(1/2)ωML2sin2α; and g3=−MgLsinα.

Remark 1: It should be mentioned that, due to the unknown
system parameters in the aforementioned dynamics formula-
tion, the dynamics matrices are actually unknown for control
design.

The following two properties are well known for the
Lagrange–Euler formulation of robotic dynamics.

Property 1: The matrix D(ζ) is symmetric and positive
definite.

Property 2: The matrix 2C(ζ, ζ̇)− Ḋ(ζ) is a skew-
symmetric matrix.

Expanding (16), we obtain three equations in which the first
one can be regarded as ζ1 subsystem described as follows:

Σζ1 : d11ζ̈1 + c11ζ̇1 + c13ζ̇3 + d̄1 = τ1. (18)

The second and the third equations are

d22ζ̈2 + d23ζ̈3 + c23ζ̇3 + d̄2 = τ2

d32ζ̈2 + d33ζ̈3 + c31ζ̇1 + d̄3 + g3 =0 (19)

from which we could clearly see the underactuated configura-
tion, i.e., it is not possible to control ζ2 and ζ3 independently.

By substituting the third equation into the second one, we
obtain the ζ2 subsystem and ζ3 subsystem as follows:

Σζ2 :
d22d33 − d223

d33
ζ̈2 −

d23
d33

(c31ζ̇1 + g3 + d̄3(ζ̇3))

+ c23ζ̇3 + d̄2 = τ2 (20)

Σζ3 :
d22d33 − d223

d23
ζ̈3 +

d22
d23

(c31ζ̇1 + g3 + d̄3)

− c23ζ̇3 − d̄2 = −τ2. (21)

Remark 2: Note that an implicit assumption that the pen-
dulum tilt angle ζ3 = α ∈ (−(π/2), π/2) such that d23 �= 0 is
made to derive (21). This assumption is very reasonable as the
dynamics when the tilt angle is beyond −(π/2) or π/2 is out of
the research interest.

IV. CONTROL OF ζ1 AND ζ3 SUBSYSTEMS

A. Subsystem Dynamics

For convenience, let us combine the dynamics of subsystems
Σζ1 and Σζ3 as follows:

Mξ̈ + Cξ̇ + h = τ (22)

where

M =

[
d11 0

0
d22d33−d2

23

d23

]

C =

[
c11 c13
c31

1
2

d
dt

d22d33−d2
23

d23

]

h =

[
d̄1

d22

d23
(g3 + d̄3)− d̄2

]

+

[
0 0

d22−d23

d23
c31 −c23 − 1

2
d
dt

d22d33−d2
23

d23

] [
ξ̇1
ξ̇2

]
τ = [τ1 − τ2]

T ξ = [ζ1 ζ3]
T.
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Fig. 2. Mass–spring–damper impedance model.

Recall that the inertia matrix D(ζ) is positive definite and
symmetric, so we know that the terms d11 and d22d33 − d223
are positive. Furthermore, according to Remark 2, we know
that (d22d33 − d223)/d23 is also positive. In addition, due to the
fact that Ḋ − 2C is skew-symmetric, we have the following
properties.

Property 3 [45]: The inertia matrix M is positive definite
and symmetric.

Property 4 [45]: The matrix Ṁ − 2C is skew-symmetric
such that xT(Ṁ − 2C)x = 0 ∀x ∈ R2.

In addition, it is well known in the robotics literature that the
following property holds.

Property 5 [45]: There exist unknown positive scalars θM ,
θC , θh1, and θh2 such that ‖M(ξ)‖ ≤ θM , ‖C‖ ≤ θC‖ξ̇‖, and
‖h‖ ≤ θh1‖ξ‖‖ξ̇‖+ θh2.

B. Optimal Reference Model

To design the model reference control of subsystem dynam-
ics (22), we need to construct a reference model for the ζ1 and
ζ3 subsystems. We consider an impedance model with virtual
force as follows:

Mr ξ̈ + Cr ξ̇ +Krξ = −Fη(ξd, ξ̇d) (23)

where Mr, Cr, and Kr are the desired inertia, damping, and
stiffness matrices, respectively, and Fη can be regarded as a
virtual force. This reference model can be illustrated by a
mass–spring–damper system shown in Fig. 2, where the virtual
force Fη is a term introduced to drive the position ξ and velocity
ξ̇ of the mass to track the desired position ξd and desired
velocity ξ̇d. It should be emphasized that this force term Fη only
exists virtually but not physically. As the control objective is
to make the closed-loop dynamics of the controlled subsystem
(22) match the dynamics of the reference model (23), we should
suitably choose the parameters of the reference model such that
it not only guarantees the motion tracking but also takes care of
the rider’s comfort, e.g., it must be overdamped to guarantee no
overshooting and no oscillation. The virtual impedance model
provides a kind of cushion effect for better riding experience,
and when there is no artificial force Fη (e.g., the rider lets go
the wheel and pedal), the yaw and tilt angles ζ1 and ζ3 will tend
to rest on the zero position.

In order to choose the optimal values of the reference model
parameters, we introduce the following performance index:

IP =

tf∫
t0

(eTQe+ ξ̈TMdξ̈) dt (24)

which minimizes both the motion tracking error

e = ξ − ξd (25)

and the yaw and tilt angular accelerations. From (24), we
see that the performance index minimizes both the tracking
error and angular accelerations. From the rider’s experience,
we know that, the less the angular acceleration is, the better
the feeling is, so we aim to enhance the rider’s comfort by
reducing any unnecessary angular accelerations and to reduce
the torques that wheel motors produce, while ensuring motion
tracking performance. Now, let us consider how to minimize the
performance index IP by suitably designing Cd, Kr, and Fη . In
order to apply the LQR optimization technique, we rewrite the
reference model (23) as

˙̄ξ = Aξ̄ +Bu (26)

with

ξ̄ = [ξT, ξ̇T]
T

ξ̄d =
[
ξTd , ξ̇

T
d

]T
Q =

[
q1 0
0 q2

]
(27)

A =

[
0[2,2] I[2,2]
0[2,2] 0[2,2]

]
B =

[
0[2,2], I[2,2]

]T
(28)

u = −M−1
d [Kr, Cd]ξ̄ −M−1

d Fη(ξd, ξ̇d). (29)

Noting that u = ξ̈ and introducing Q̄ defined as

Q̄ =

[
Q 0[2,2]

0[2,2] 0[2,2]

]
(30)

we can then rewrite the performance index (24) as

PĪ =

tf∫
t0

(
(ξ̄ − ξ̄d)

TQ̄(ξ̄ − ξ̄d) + uTMdu
)
dt. (31)

If we regard u as the control input to system (26), then the min-
imization of (31) subject to dynamics constraint (26) becomes
a typical LQR control design problem. According to the LQR
optimal control technique reviewed in Section II-C, the solution
of u that minimizes (31) is

u = −M−1
d BTP ξ̄ −M−1

r BTs (32)

where P is the solution of the following differential equation:

− Ṗ =PA+ATP−PBM−1
d BTP+Q̄ P (tf )=0[4,4] (33)

and s is the solution of the following differential equation:

−ṡ =
(
A−BM−1

d BTP
)T

g + Q̄ξ̄d s(tf ) = 0[4,1]. (34)
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Comparing (29) and (32), we can see that the matrices Kr and
Cd can be calculated in the following manner:

[Kr, Cd] = BTP Fη = BTs. (35)

Remark 3: To obtain a reference model with minimizing
(24), we first need to choose values of q1 and q2 for the
weighting matrix Q as well as the desired mass Mr; then, we
can calculate Kr and Cd according to (33)–(35).

Remark 4: It should be emphasized that the performance
index (31) is a finite-time integration such that, when the
minimization of (31) is achieved using (32), we always have
e = 0[2,1] ∀t > tf .

C. Model Matching Errors

By using e = ξ − ξd, the reference model (23) can be rewrit-
ten as

Mr ë+ Cr ė+Kre = −η (36)

with

η = Fη +Mr ξ̈d + Cr ξ̇d +Krξd. (37)

We can see that the objective of the control design becomes
to look for a proper control input torque τ in (22) such that
the dynamics (22) match the desired reference model dynamics
(36). In order to measure the difference between the subsystem
dynamics (22) and the reference model dynamics (36), we
introduce the following matching error defined as:

w = Mr ë+ Cr ė+Kre+ η (38)

such that, when the following condition is achieved:

w(t) = 0[2,1], t > tf (39)

the subsystem dynamics (22) would exactly match the desired
reference model dynamics (36).

For convenience of the following analysis, we define an
augmented matching error as

w̄ = Kηw = ë+ Cmė+Kme+Kηη (40)

where Cm = M−1
r Cr, Km = M−1

r Kr, and Kη = M−1
d .

Remark 5: The virtual mass matrix Mr is always chosen to
be positive definite such that it is invertible and w̄ in (40) is well
defined.

By choosing two positive definite matrices Λ and Γ such that
Λ + Γ = Cm and ΓΛ + Λ̇ = Km, we could further rewrite the
augmented matching error w̄ as

w̄ = ë+ (Λ + Γ)ė+ (ΓΛ + Λ̇)e+ η̇l + Γηl (41)

where ηl satisfies

η̇l + Γηl = Kηη. (42)

By defining a filtered matching error

z = ė+ Λe+ ηl (43)

we see that the augmented matching error w̄ can be written as

w̄ = ż + Γz (44)

which implies that z could be obtained by passing w̄ through
a filter. From (44) and (40), we see that z = 0[2,1] and, subse-
quently, ż = 0[2,1] will lead to w = 0[2,1], i.e., matching error
diminished. Then, the yaw and tilt angle subsystem dynamics
(22) would exactly match the reference model (23). According
to Remark 4, after a finite time tf , we will have ξ = ξd. In
the next section, we will design an adaptive controller which
guarantees that there exists a finite time tz 
 tf such that
z = 0[2,1] for t > tz .

D. Adaptive Control Design

1) Controller Structure: In this section, we are ready to
discuss the details of the adaptive control design. We propose
the control input of the subsystem (22) as

τ = τct + τfb (45)

where τct and τfb are the computed torque control input and
the feedback torque control input, respectively. The feedback
torque control input is given by

τfb = −K sgn(z) (46)

where K is a diagonal positive definite matrix with kmin

denoting the minimal element on the diagonal and sgn(·) is the
sign function.

The computed torque control input is designed as

τct = −Y (ξ̈r, ξ̇r, z)Θ̂ (47)

where the trajectories ξr and ξ̇r are defined as follows:

ξ̇r = ξ̇d − Λe− ηl

ξ̈r = ξ̈d − Λė− η̇l (48)

and Θ̂ is the estimate of Θ = [θD, θC , θh1, θh2]
T (refer to

Property 5) and

Y (ξ̈r, ξ̇r, z)

=

[
‖ξ̈r‖sgn(z1) ‖ξ̇‖‖ξ̇r‖sgn(z1) ‖ξ̇‖‖ξ‖sgn(z1) sgn(z1)
‖ξ̈r‖sgn(z2) ‖ξ̇‖‖ξ̇r‖sgn(z2) ‖ξ̇‖‖ξ‖sgn(z2) sgn(z2)

]
.

(49)

In the following, for convenience, we use Y instead of
Y (ξ̈r, ξ̇r, z), where it does not result in any confusion.

Remark 6: The potential drawback caused by the sgn(·)
function used in (46) and (49), such as chattering problems, can
be avoided by replacing sgn(·) with hyperbolic tangent function
tanh(·) or saturation function sat(·) [46]. For convenience of
our analysis, we keep using sgn(·) in the following theoretic
analysis. It is trivial but tedious to use tanh(·) or sat(·) for
theoretic analysis.
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To obtain Θ̂, we develop the following parameter update law:

˙̂
Θ = Γ−1

Θ Y Tz (50)

where ΓΘ is a diagonal positive definite matrix.
2) Control Performance Analysis:

Lemma 3: Consider the closed-loop control system con-
sisting of the yaw and tilt angle subsystem (22) and the con-
troller (45). The following results hold: 1) All the signals in the
closed loop are uniformly bounded, and 2) the filtered matching
error z will converge to zero, i.e., limt→0 z = 0[2,1].

Proof: To prove the aforementioned lemma, let us con-
sider the following Lyapunov-like composite energy function:

V1(t) = U1(t) + U2(t) (51)

where

U1(t) =
1

2
zTM(ξ)z U2(t) =

1

2
Θ̃T(t)ΓT

ΘΘ̃(t) (52)

with Θ̃(t) = Θ(t)− Θ̂(t).
According to Property 5 and the definitions of Y in (49), we

have

− zT
(
M(ξ)ξ̈r + C(ξ, ξ̇)ξ̇r + h(ξ, ξ̇)

)
≤ ‖z‖

(∥∥∥M(ξ)ξ̈r

∥∥∥+
∥∥∥C(ξ, ξ̇)ξ̇r∥∥∥+

∥∥∥h(ξ, ξ̇)∥∥∥)
≤ ‖z‖

(
‖M(ξ)‖ ‖ξ̈r‖+

∥∥∥C(ξ, ξ̇)∥∥∥ ‖ξ̇r‖+ ∥∥∥h(ξ, ξ̇)∥∥∥)
≤ ‖z‖

(
θM‖ξ̈r‖+ θC‖ξ̇‖‖ξ̇r‖+ θh1‖ξ‖‖ξ̇‖+ θh2

)
= zTsgn(z)

(
θM‖ξ̈r‖+ θC‖ξ̇‖‖ξ̇r‖+ θh1‖ξ‖‖ξ̇‖+ θh2

)
= zTYΘ. (53)

Then, by considering the closed-loop dynamics (43) and the
controller (45), we obtain

U̇1 = zTM(ξ)ż +
1

2
zTṀ(ξ)z

= zTM(ξ)ż + zTC(ξ, ξ̇)z

= zT
(
−M(ξ)ξ̈r − C(ξ, ξ̇)ξ̇r − h(ξ, ξ̇) + u

)
≤ zT

(
YΘ− Y Θ̂−K sgn(z)

)
= zT

(
Y Θ̃−K sgn(z)

)
(54)

where we have used Property 4 in the second equality.
On the other hand, we have

U̇2 = − ˙̃Θ
T

ΓT
ΘΘ̃ = −zTY Θ̃. (55)

According to (51), (54), and (55), we obtain the boundedness
of V1(t) according to the following derivation:

V̇1 = U̇1 + U̇2 ≤ −zTK sgn(z) ≤ 0. (56)

This implies that both U1 and U2 are bounded, and conse-
quently, z and Θ̃ are bounded. Integrating both sides of (56)
and noting the fact that

− zTK sgn(z)=−K|z|≤−‖K‖‖z‖≤−kmin‖z‖≤0 (57)

we see that

∞∫
0

kmin‖z‖ dt ≤ V1(0) (58)

from which one can immediately obtain limt→0 ‖z‖ = 0, which
is equivalent to limt→0 z = 0[2,1]. This completes the proof. �

Theorem 1: There exists a finite time tz such that z = 0[2,1]
for t > tz 
 tf .

Proof: This proof uses a contradiction argument. Assume
that ‖z‖ > 0 for t > 0.

There exist two constants m̄min and m̄max such that m̄min ≤
‖M‖ ≤ m̄max, and consequently, the following inequalities
can be obtained from (52)

1

2
m̄min‖z‖2 ≤ U1 ≤ 1

2
m̄max‖z‖2. (59)

At the same time, we also have that

d

dt

U1

‖z‖ =
U̇1

‖z‖ − U1

‖z‖2
d‖z‖
dt

. (60)

Integrating both sides of the aforementioned equation, we
arrive at

t∫
0

U̇1

‖z‖dt =
U1

‖z‖

∣∣∣∣
t

0

+

t∫
0

U1

‖z‖2 d‖z‖. (61)

Combining the aforementioned equation with (59), we have

m̄min‖z‖ − m̄min‖z(0)‖ ≤
t∫

0

U̇1

‖z‖ dt

≤ m̄max‖z‖ − m̄max‖z(0)‖. (62)

Recalling the boundedness of ‖z‖ and the fact that
limt→0 ‖z‖ = 0, we obtain the boundedness of

∫∞
0 (U̇1/‖z‖)dt,

which implies that

lim
t→∞

U̇1

‖z‖ = 0. (63)

On the other hand, according to (54) and (58), we can prove that

U̇1 ≤ −
(
kmin − ‖Y ‖‖Θ̃‖

)
‖z‖. (64)

In addition, if kmin is sufficiently large, then there exists a
constant k′ such that k′ = kmin − ‖Y ‖‖Θ̃‖ > 0. If ‖z‖ > 0
∀t > 0, then we would have U̇1/‖z‖ ≤ −k′ < 0. This
obviously conflicts with (63), such that we see that there must
exist a finite tz such that z = 0[2,1] for t > tz . Further analysis
shows that, the larger the kmin chosen, the smaller the tz will be.
Therefore, we could always be able to properly choose tf and
kmin to guarantee that tz 
 tf . This completes the proof. �
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V. AGICT FOR ζ2 SUBSYSTEM

According to the observation of WIP vehicle riders, it can
be concluded that human riders are usually able to adjust the
tilt angle suitable to maintain the forward velocity at a desired
value. However, until now, to our best knowledge, there has
been very less study to discuss the automatic control of the
forward velocity for the underactuated WIP vehicles. In this
work, we attempt to set up a framework to design an AGICT
such that the tilt angle reference trajectory can be used to
manipulate the forward velocity to track the desired trajectory.
As previously discussed, after finite time, ζ1 and ζ3 will exactly
track ζ1d and ζ3d, such that the forward velocity dynamics in the
second equation of (19) becomes a double integrator system as
follows:

ζ̈2 = − 1

ML cos ζ3d
(ML2 + IM )ζ̈3d +

1

ML cos ζ3d

×
(
1

2
ζ̇1dML2 sin 2ζ3d +MgL sin ζ3d − d̄3

)
. (65)

Let ϕ = [ϕ1, ϕ2] = [ζ2, ζ̇2], φ = [φ1, φ2] = [ζ3d, ζ̇3d], and v =
ζ̈3d. Then, (65) can be rewritten as

ϕ̇1 =ϕ2

ϕ̇2 = f(ϕ, φ, v) (66)

with

f(ϕ, φ, v)=b(φ1)v+
1

ML cosφ1

×
(
1

2
ω̇dML2 sin 2φ1+MgL sinφ1−d̄3

)
(67)

b(φ1)=− 1

ML cosφ1
(ML2+IM ) (68)

φ̇1 =φ2

φ̇2 = v. (69)

Remark 7: Considering Remark 2, we can see that
∂f(ϕ, φ, v)/∂v = b(φ1) < 0.

Consider the desired forward position and forward velocity
of the vehicle as ζ2d and ζ̇2d, respectively. Then, our design
objective is to construct a v (subsequently, φ1 and φ2) such that
ϕ1 and ϕ2 of system (66) follow ϕ1r and ϕ2r generated from
the following reference model:

ϕ̇1r =ϕ2r

ϕ̇2r = fd(ζ2d, ζ̇2d, ϕr) (70)

where ϕr = [ϕ1r, ϕ2r] and fd(ζ2d, ζ̇2d, ϕr) = −k1(ϕ1r −
ζ2d)− k2(ϕ2r − ζ̇2d) + ζ̈2d. It can be easily checked that the
reference model (70) ensures that ϕ1r → ζ2d and ϕ2r → ζ̇2d,
with positive k1 and k2 to be specified by the designer. It should
be mentioned that optimization has also been widely applied
in robotic trajectory planning [54], and the LQR-based opti-
mization method used in Section IV-B can also be used here to

choose optimal values for k1 and k2, but for simplicity, we omit
further discussion here. According to implicit function theorem
(refer to Lemma 2)-based NN design [55], there must exist a
function fv

v∗ = fv(ζ2d, ζ̇2d, ϕ, φ) (71)

such that

f(ϕ, φ, v∗) = fd(ζ2d, ζ̇2d, ϕ). (72)

Referring to Section II-B, we can see that there exists an ideal
HONN weight such that

v∗ = W ∗TS(z) + ε, z = [ζ2d, ζ̇2d, ϕ, φ]
T (73)

where ε is the NN approximation error. Let us employ a HONN
to approximate v∗ as follows:

v̂ = ŴT(k)S(z). (74)

Substituting v̂ into (66) and using f(φ, ϕ, v∗) = fd(ζ2d, ζ̇2d, φ),
we have

ϕ̇1 =ϕ2

ϕ̇2 = fd(ζ2d, ζ̇2d, φ) + b(v′)
(
W̃TS(z)− ε

)
(75)

where mean value theorem is used to obtain f(φ, ϕ, v̂)−
f(φ, ϕ, v∗) = b(v′)(v̂ − v∗) = b(v′)(W̃TS(z)− ε), where
W̃ = Ŵ −W ∗ and v′ ∈ [min{v∗, v̂},max{v∗, v̂}].

Define ϕ̃1 = ϕ1 − ϕ1r and ϕ̃2 = ϕ2 − ϕ2r such that ϕ̃ =
ϕ̂− ϕ. Then, the comparison between (70) and (75) yields

˙̃ϕ1 = ϕ̃2

˙̃ϕ2 = fd(ζ2d, ζ̇2d, φ)− fd(ζ2d, ζ̇2d, φd)

+ b(v′)
(
W̃TS(z)− ε

)
= − k1ϕ̃1 − k2ϕ̃2 + b(v′)

(
W̃TS(z)− ε

)
. (76)

Theorem 2: Consider the following weight adaptation law
for HONN employed in (74)

˙̂
W = ΓWSϕ̃TPW [0, 1]T − σΓW Ŵ (77)

where ΓW and σ are suitably chosen positive definite matrix
and positive scalar. Then, the tracking errors ϕ̃1 and ϕ̃2 in (76)
will be eventually bounded into a small neighborhood around
zero.

Proof: Let us rewrite the error dynamics (76) as

˙̃ϕ = Amϕ̃+ b(v′)[0, 1]T
(
W̃TS(z)− ε

)
(78)

where Am =

[
0 1

−k1 −k2

]
satisfies the Lyapunov equation

AT
mPW + PWAm = −QW (79)

i.e., for any symmetric positive definite matrix QW , there exists
a symmetric positive definite PW satisfying the aforementioned
equation.
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Considering the following Lyapunov function:

V2(t) = ϕ̃TPW ϕ̃+ |b(v′)| W̃TΓ−1
W W̃ (80)

and the closed-loop dynamics (78) with the update law (77) and
noticing that b(v′) < 0, we obtain

V̇2(t)=2ϕ̃TPW
˙̃ϕ+2 |b(v′)| W̃TΓ−1

W
˙̃W

=2ϕ̃TPWAmϕ̃+2ϕ̃TPW b(v′)[0, 1]T
(
W̃TS(z)−ε

)

+2 |b(v′)| W̃TΓ−1
W ΓWSϕ̃TP [0, 1]T

−2 |b(v′)| W̃TΓ−1
W ΓWσŴ

=ϕ̃T
(
AT

mPW +PWAm

)
ϕ̃+2 |b(v′)| ϕ̃TPW [0, 1]Tε

−2σ |b(v′)| W̃T(W̃+W ∗)

≤− ϕ̃TQW ϕ̃−2σ |b(v′)| ‖W̃‖2−2σ |b(v′)| W̃TW ∗

+2 |b(v′)| ‖ϕ̃TPW [0, 1]T‖ε0

≤− λQW
‖ϕ̃‖2−2σ |b(v′)| ‖W̃‖2+ε2‖ϕ̃‖2+ε2‖W̃‖2

+
1

ε2
ε20 |b(v′)|

2 ∥∥PW [0, 1]T
∥∥2

+
1

ε2
σ2 |b(v′)|2 ‖W ∗‖2 (81)

where |ε| ≤ ε0, λQW
is the minimum eigenvalue of QW , and

ε is any given positive constant which we can choose to be
sufficiently small. Furthermore, we can choose the suitable QW

and σ making λQW
≥ ε2 and σ|b(v′)| ≥ ε2, and it follows that

V̇2(t) ≤ 0 in the complementary set of a set Sb defined as

Sb :=

{
(ϕ̃, W̃ )

∣∣∣∣∣‖W̃‖2
ā2

+
‖ϕ̃‖2
b̄2

− 1 ≤ 0

}
(82)

with

ā =

1
ε |b(v′)|

√
ε20 ‖PW [0, 1]T‖2 + σ2‖W ∗‖2√

λQW
− ε2

b̄ =

1
ε |b(v′)|

√
ε20 ‖PW [0, 1]T‖2 + σ2‖W ∗‖2√

2σ |b(v′)| − ε2
.

Obviously, the set Sb defined previously is compact. Hence, by
LaSalle’s theorem, it follows that all the solutions of (78) are
bounded. The set Sb is shown in Fig. 3 and consists of the closed
region bounded by the closed oval arc defined by (‖W̃‖2/ā2) +
(‖ϕ̃‖2/b̄2) = 1. Thus, the proof is completed. �

Fig. 3. Bounding set of W̃ and ‖ϕ̃‖.

VI. SIMULATION STUDIES

The overall control system scheme combining both adaptive
controller and NN-based AGICT is shown in Fig. 4. The
simulation study is carried out to verify the efficiency of both
the controller and the trajectory generator. In the simulation
study, the parameters of the WIP system (as shown in Fig. 1)
are specified as follows: M = 15.0 kg, Iw = 1.0 kg · m2,
IM = 20 kg · m2, m = 2.0 kg, L = 1 m, d = 1.0 m, and R =
0.5 m. The simulation is carried out in 5 s, and the horizon
tf for LQR performance index is chosen as 3 s. The distur-
bances from environments on the system are introduced as
dα = 0.5 sin(t) and dv = [0.3 cos(2t), 0.3 sin(t/2), 0.3 sin(t)]
in the simulation model. The desired trajectory for yaw an-
gle is ζ1d = −0.05t rad, and the initial yaw angle is set as
ζ1 = −3 rad; the desired forward velocity is set as ζ2d = 0
while the initial velocity is 0.084 m/s. The design param-
eters of the LQR optimization performance index are Q =
diag[5, 10] and Md = diag[15, 15]. The initial value of Θ̂ is
Θ̂ = [0.27, 0.28, 0.16, 0.25], and the tuning gain matrix ΓΘ =
diag[2, 2]. The control gain matrix K = diag[40, 50]. The
HONN is constructed with l = 65 neurons, and for the initial
weight estimate Ŵ ∈ Rl, each element is selected as a random
variable with a magnitude of 0.05. The tuning gain matrix and
the forgetting factor of NN weight estimator are chosen as
ΓW = diag[0.5, 1] and σ = 0.05, respectively.

To demonstrate the efficiency of the proposed controller,
we compare it with the model-based controller under the
same operation condition and using the same NN reference
trajectory generator for ξ3d. The model-based controller is
presented as τ1=D11ζ̈1d + C11ζ̇1 + C13ζ̇3 − k11(ζ̇1 − ζ̇1d)−
k12(ζ1 − ζ1d) and τ2 = −((D22D33 −D2

23(ζ3))/d23)ζ̈3d −
k31(ζ̇3 − ζ̇3d)− k32(ζ3 − ζ3d)− C23ζ̇3+(D22/d23)(C31ζ̇1 +
f3 + g3 + d3)− (f2 + g2 + d2)) with k11 = k12 = k31 =
k32 = 12.0, and it is assumed that there is 10% model
uncertainty.

The tracking performance of the desired yaw angle is shown
in Fig. 5, from which we see that, although the proposed
controller response is less quicker, the controlled yaw trajectory
exactly tracks the desired trajectory and there is no steady-
state error, while the model-based controller could only track
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Fig. 4. Scheme of overall system: Controller and trajectory generator.

Fig. 5. Comparison for the WIP yaw angle trajectories.

the controlled yaw trajectory oscillating around the desired
trajectory. The slightly slower response is due to the learning
process of the adaptive controller, e.g., the estimated parameters
need enough time to be adapted to suitable values. The tilt angle

Fig. 6. Comparison for the WIP tilt angle trajectories.

trajectories are shown in Fig. 6, which shows that the reference
trajectory of the tilt angle generated by the HONN will even-
tually be around zero in order to maintain the forward velocity
at zero. Similar to the response of the yaw angle, the proposed
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Fig. 7. Trajectories of forward velocity.

Fig. 8. Control parameter estimation.

controller response is a little bit slower, but exact tracking is
guaranteed. Fig. 7 shows that, under the effect of the reference
tilt angle, the forward velocity will eventually converge to zero
as we desire. The convergence of the forward velocity is slower
than the convergence of tilt and yaw angles because, in addition
to the adaptive controller parameter estimator adaptation, there
is also the HONN weight adaptation. The boundedness of both
controller parameter adaptation and HONN weight adaptation
is shown in Fig. 8. The control torque inputs τ1 and τ2 are
shown in Fig. 9, and the ground floor trajectory of the center
of WIP is shown in Fig. 10.

As clearly shown by the simulation results, in the presence of
totally unknown system parameters and external disturbance,
the proposed adaptive variable structure controller is able to
guarantee exact tracking of the tilt and yaw subsystem, while
the HONN-generated tilt angle reference trajectory is able to
maintain the forward velocity at the desired level. Therefore, the
proposed controller is efficient in the presence of unknown non-

Fig. 9. Control torque inputs.

Fig. 10. Trajectory of WIP center projected unto the ground.

linear dynamic systems and environments. On the other hand,
the model-based approach is sensitive to the accuracy of the
dynamic model, as shown in Figs. 5 and 6, and more than 10%
model parameter uncertainty will tend to make the closed-loop
system unstable. In contrast, our proposed adaptive controller is
able to tolerate complete unknown parameter uncertainty. This
is one of the key advantages over the model-based controller.
The controlled conditions in the test facility under which the
parameters are identified are often very different from actual
conditions, thus rendering the parameter inaccuracy for real
operating conditions. In addition, the controlled closed-loop
dynamics of the yaw and tilt subsystem are shaped through
the LQR technique such that the optimization in terms of the
performance index is achieved. It is also worth to mention that,
in the “learning” mechanism of both the adaptive controller
parameter and the HONN weight adaptation, once the estimates
converge, they do not need to be “relearned” as long as there
are significant changes of system dynamics and external
conditions.
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VII. CONCLUSION

In this paper, adaptive model reference control and NN-
based trajectory planner have been designed on WIP systems
for dynamic balance and motion tracking of desired trajectories.
The dynamics of the subsystem consisting of the pendulum tilt
angle and the mobile platform yaw angle has been shaped to
follow a reference model, which is derived by using the LQR
optimization technique to minimize both the motion tracking
error and the transient acceleration for the best driving comfort.
The forward velocity of the unactuated subsystem is made
to track the desired motion by suitably designing a reference
trajectory for the tilt angle, which directly affects the forward
velocity. The proposed control method considers the presence
of various uncertainties, including both parametric and func-
tional uncertainties. The simulation results have demonstrated
the efficiency of the proposed method.
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