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Abstract—Forecasting the future states of a complex system is
a complicated challenge that is encountered in many industrial
applications covered in the community of Prognostics and Health
Management (PHM). Practically, states can be either continuous
or discrete: Continuous states generally represent the value
of a signal while discrete states generally depict functioning
modes reflecting the current degradation. For each case, specific
techniques exist. In this paper, we propose an approach based
on case-based reasoning that jointly estimates the future values
of the continuous signal and the future discrete modes. The
main characteristics of the proposed approach are the following:
1) It relies on the K-nearest neighbours algorithm based on
belief functions theory; 2) Belief functions allow the user to
represent his partial knowledge concerning the possible states in
the training dataset, in particular concerning transitions between
functioning modes which are imprecisely known; 3) Two distinct
strategies are proposed for states prediction and the fusion of
both strategies is also considered. Two real datasets were used in
order to assess the performance in estimating future break-down
of a real system.

I. INTRODUCTION

A. Problem statement

Forecasting the future states of a complex system is a com-

plicated challenge that arised in many industrial applications

covered in the community of Prognostics and Health Man-

agement (PHM) such as locomotive’s health prediction [1],

analysis of fleet of vehicles [2] and turbofan engine monitor-

ing [3].

Practically, states can be either continuous or discrete:

• Continuous states generally represent the value of a

signal (an observation or a feature) and its prediction

can be made by Kalman-like procedures or by neural

networks [4], [5],

• Discrete states generally depict functioning modes re-

flecting the current degradation and its prediction can

be performed by state machines such as Hidden Markov

Models [21].

In both cases, data-driven prognostics generally involves a

training procedure where statistical models of the degradation

are built. However, in real applications, one is facing lack

of knowledge on the system since many unknown factors

can not be identified, for example environmental conditions

and particular functioning modes. These factors may play a

crucial role in the data collection process and therefore in the

degradation modelling, limiting the applicability of statistical

models. In [7], this problem is underlined and tackled in the

context of neuro-fuzzy systems.

To cope with the problem of lack of knowledge, case-

based reasoning (CBR) was proposed as an efficient alternative

to perform prognostics. For example, the method described

in [3] demonstrated better performance than neural network

for continuous state prediction in a turbofan engine. For

that, historical instances of the system - with condition data

and known failure time - are used to create a library of

degradation models. Then, for a test instance of the same

system, the similarity between it and the degradation models

is evaluated generating a set of Remaining Useful Life (RUL)

estimates which are finally aggregated by a density estimation

method. Note that Section II of this paper is dedicated to the

presentation of CBR approaches.

The main problem with the approach described in [3] is

the number of parameters that has to be estimated in order

to apply it. Moreover, several parts of the algorithm rely on

statistical learning procedures requiring large amount of data.

The proposed EVIPRO-KNN algorithm requires a training

dataset composed of trajectories (historical information). It

takes as input an observation (test instance) in the form of

a piece of a trajectory and then generates the prediction as

the weighted sum of the K-nearest trajectories found in the

training dataset. This procedure is made online (as data arrive)

and is very common in most of KNN-based prognostics.

B. Contribution

Compared to previous KNN-based prognostics approaches

(see [3] and references therein), EVIPRO-KNN requires less

parameters and has the following characteristics:

1) EVIPRO-KNN is a new prognostics approach based on

belief functions: A trajectory similarity-based approach
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based on belief functions is proposed for prognostics.

Belief functions were justly proposed to cope with lack

of data in data representation, combination and decision-

making [8]–[11] and account for both variability and

incomplete knowledge by drawing benefits from both

probability theory and set-membership approaches in

one common and sound framework.

2) EVIPRO-KNN takes into account partial labelling on

states: In some applications, the training dataset is com-

posed of continuous trajectories and of a set of labels

reflecting the current system state. These labels can be

obtained by a manual annotation as it is commonly

done in supervised classification [4], by a clustering

method [12] or by a posteriori classification [6]. If these

labels are known only partially, then belief functions can

be used [13].

3) EVIPRO-KNN manages trajectories with different tem-

poral length: The weighted sum of trajectories used to

compute the prediction of observations requires trajecto-

ries with the same length, that is generally false in most

of the applications. As far as we know, this problem

of length was not treated in the past while it can have

strong influence on the final result. We described two

approaches to solve it.

4) EVIPRO-KNN is able to predict jointly continuous and

discrete states: The prediction of the future sequence of

states is performed jointly with the prediction of continu-

ous observations. As far as we know, the joint prediction

of discrete states and of continuous observations was

not considered jointly in PHM applications nor in CBR-

based prediction.

The possibility to manage prior information on possible

states in the training dataset is one of the main advantages

of EVIPRO-KNN. Indeed, in most papers, only two states are

considered: normal and faulty. But in many real cases, more

states have to be considered. When knowledge on states is not

always certain and precise then belief functions can be used

as described in this paper.

The other main asset of EVIPRO-KNN is the possibility

to predict sequence of continuous observations jointly with

discrete states. These sequences allow the user to have access

to the online segmentation of the current observed data and

may be practically useful. As shown in experiment, sequences

of states generate accurate estimate of the Remaining Useful

Life (RUL) of the system.

Finally, RUL estimation is generally based on the study of

an one-dimensional degradation signal: If this signal becomes

greater than a given threshold then the system is said to

enter in a potential dangerous mode. This system’s health

assessment [14] requires the threshold to be tuned precisely

and this can be a pratical problem, in particular when the signal

does not have a physical meaning. Moreover, the use of multi-

dimensional degradation signals is prefered to ensure reliable

RUL estimates making the use of thresholding techniques

practically difficult. In comparision, the proposed EVIPRO-

KNN algorithm is based on a classification process which

enables one to assess the discrete state (functioning mode)

of the system while allowing the use of multi-dimensional

degradation signal [6].

The remainder of this paper is organized as follows. Sec-

tion II presents the related work. Section III is dedicated to

the description of the basics of belief functions and of the

notations. The proposed algorithm is described in Section IV.

Finally, Section V demonstrates the performance of the ap-

proach on real data.

II. RELATED WORK

In Prognostics and Health Management (PHM) applications,

approaches generally aim at computing long-term predictions

of continuous observations followed by a thresholding in order

to detect the fault mode and to, finally, estimate the Remaining

Useful Life (RUL) of the system. Long-term prediction of

continuous observations can be made by several data-driven

techniques such as neural networks and statistical models.

These approaches require a significative amount of represen-

tative data and generally generates black boxes. However, in

PHM applications, the lack of data is an important problem

in particular for faulty states which are difficult to obtain

without degrading the system. The cost to obtain these data

may be important and solutions have thus to be proposed. K-

nearest neighbours-based approaches, which is a well known

non-parametric solution for pattern analysis [4], was shown

to be adapted because it fully exploits the training dataset

and is adapted when the latter is small. For example in [3],

KNN demonstrated high performance better than the previous

techniques with lower complexity and better interpretation.

For prognostics applications [1]–[3], the estimation of the

Remaining Useful Life (RUL) by KNN-based approaches

generally involves three tasks [3]: instance retrieval in the

training dataset (as in the usual KNN), prediction through local

models and aggregation of local predictions. The actual life

of the training instance is generally used as the prediction of

the test instance’s life. The local predictions are aggregated

to obtain the final RUL estimate using weighted sum of the

local predictions. Recent work such as [3], [15] are focused

on associating a confidence information to predictions made

by KNN, but solutions generally rely on density estimation or

require representative prior information in the training dataset.

One can note that KNN-based systems for prediction were

proposed in 90’s, such as [16], where an empirical and

comparative studies are made between Case-Based Reasoning

(CBR) and other alternative approaches. Several applications

in time-series forecasting were also developed based on KNN.

For example in telecom industry, customer churn prediction

represents a key priority. In [17], D. Ruta et al. addressed the

weakness of static churn prediction and propose new temporal

churn prediction system. It uses K-nearest sequence (kNS)

algorithm that learns from the whole available customer data

path and is capable to generate future data sequences along

with precisely timed predicted churn events. Many applications

concern finance, for example with [18] where KNN are used to

build a prediction model of the return on assets of a company,

in [19] where ensemble of KNNs are exploited for bankruptcy

prediction, and in [20] where KNN is used for forecasting the

final price of an ongoing online auction.
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Recent approaches in PHM applications focused on long-

term prediction of state sequences. In particular, in [21],

statistical models of state duration based on Hidden Markov

Models were exploited. However, this kind of solution is not

always adapted since the duration can vary a lot according

to the operational conditions. The use of states can avoid

using thresholding techniques of continuous observations as

proposed in [6] where an evidential markovian classifier was

developed for the classification of predictions performed by a

neuro-fuzzy system.

Describing the problem of PHM by using continuous states

and discrete states is recent. In the community of automatic

control, one can refer to hybrid systems which represent

dynamical systems that exhibits both continuous and discrete

behaviors. These systems are analyzed by several techniques

such as switching models [22]. In the community of PHM,

hybrid systems are generally understood differently since they

refer to the combination of data-driven and physics-of-failure

approaches [23] to improve long-term prediction.

Compared to existing work, this paper is focused on prog-

nostics based on a small amount of data with high variability

by using belief functions. EVIPRO-KNN algorithm is able

to provide both predictions of states (discrete values) and of

observations (generally continuous values), while in most of

papers on PHM, methods are generally set for state prediction

only or observations prediction only. We refer to this feature

as Joint Prediction of Observation and State (JPOS).

III. BACKGROUND

Before describing the algorithm, belief functions are first

presented followed by the formalization of the training data.

At each time t, an observation vector Xt can be extracted

from the observed system. This system can be in one of the

possible discrete states ω belonging to a set of S exhaustive

and exclusive states Ω = {ω1, . . . , ωS}. The states can be

imprecise and uncertain due to aleatory uncertainty induced

by the variability in observations and to epistemic uncertainty

induced by lack of knowledge [9]. For that, we describe the

knowledge of states at time t by a belief function.

A. Belief functions

1) History: Belief functions were developed by Demp-

ster [8], Shafer [9] and Smets [10] in the so-called Theory

of Evidence and Transferable Belief Model. They combine

probability and sets to account for both variability and in-

complete knowledge. The theory of belief functions includes

extensions of probabilistic notions such as conditioning and

marginalization, and set-theoretic notions such as intersection,

union, inclusion and so on. This theory was used successfully

in several pattern recognition applications with static data

where the main problem was to cope with the lack of data [24].

Belief functions applied to dynamical data is more recent and

was shown to be promising for data stream processing [12],

[25].

2) Representation: The basis in the theory of belief func-

tions is the basic belief assignment (BBA) defined on a frame

of discernment Ω by:

mt : 2Ω → [0, 1]
S 7→ mt(S)

(1)

with
∑

A⊆Ω mt(A) = 1. The belief mass mt(A) represents

the uncertainty (since mt(A) ∈ [0, 1]) and imprecision (since

A is a subset with cardinality |A| ≥ 1) about the possible

state of the system at time t. Subset A is composed of unions

of singletons (ω ∈ Ω) and thus represents explicitly the doubt

concerning the value of the state. If the state is precisely known

at time t, say ω, then the whole mass is assigned to ω, i.e.

mt(ω) = 1. On the contrary, if the state is fully unknown at

time t then the whole mass is assigned to the ignorance, i.e.

mt(Ω) = 1. In the latter case, the BBA is called vacuous.

3) Combination: Given two BBA, say m1 and m2 defined

on the same frame Ω, one may be interested in drawing

benefits of both BBA to improve decision-making. For that, if

the BBAs are generated by distinct bodies of evidence [26],

the classical Dempster’s rule can be used [27]:

m12(C) =
∑

A∩B=C

m1(A) ·m2(B) (2)

The mass on conflict given by m12(∅) can be cancelled out by

Dempster’s normalisation consisting in dividing all masses to

the opposite of conflict (m12(C)/(1 −m12(∅))). Other rules

have been proposed [28]. Note that the vacuous BBA is the

neutral element of Dempster’s rule, i.e. combining any BBA

m with the vacuous BBA provides m.

Two BBAs coming from non-distinct bodies of evi-

dence [26] can be combined using the cautious rule. This rule

is defined as:

w12(C) = w1(C) ∧ w2(C) (3)

where ∧ is the minimum and

w(C) =
∏

C⊆B

q(B)(−1)|B|−|C|+1

(4)

and

q(B) =
∑

B⊆A

m(A) (5)

After fusion, the function w can be converted into a mass

function m using inverse formula:

q(A) =

∏

B⊆Ω w(B)

exp(
∑

A⊆D logw(D))
(6)

and

m(A) =
∑

A⊆B

(−1)|B|−|A|q(B) (7)

4) Decision-making: From a belief mass (resulting from a

fusion process), one may be interested in selecting the best

singleton. For that, the pignistic transformation [10] can be

used which computes a probability distribution on singletons

from which the decision can be made:

ω̂t = argmax
ω∈Ω

∑

A⊆Ω,ω∈A

mt(A)

|A|
(8)
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5) Implementation issues: One may use the Fast Moebius

Transforms (FMT) to compute these quantities efficiently [29].

The package TBMLAB, available at http://iridia.ulb.ac.be/
∼psmets/, implements these functions on MATLAB.

B. The training dataset

The training dataset is denoted

L = {Ti}
N
i=1 (9)

and is composed of N trajectories Ti defined by both a

sequence of Q-dimensional observation vectors Xt ∈ ℜ
Q and

the knowledge on the possible states:

Ti = {(X
i
t ,m

i
t)}

ti+|Ti|
t=ti

(10)

For one trajectory, the knowledge on states is represented by a

set of belief functions (BBAs) at each time-step. According to

the priors available, these BBAs can take various forms which

will be detailed further (next section).

The i-th trajectory begins at time ti and finishes at time

ti + |Ti| where |Ti| is the length of Ti. To each trajectory Ti

is associated a set of blocks Bi where each block Bj
i in this

set corresponds to a sub-trajectory of length W :

Bi
j = {(X

i
t ,m

i
t)}

cj+W
t=cj

(11)

where cj ∈ [ti, (ti+ |Ti|−W )] is the starting time of the j-th

block. The number of blocks (and thus the range of index j)

in the i-th trajectory depends on the length of the latter. An

illustration of blocks is given in Figure 1. Note that the blocks

may overlap. In the sequel, the overlapping was set to W/2.

A trajectory Ti is thus composed of |Ti| observation vectors

and |Ti| mass functions mt defined on the frame Ω composed

of the states in which the system can be.

Figure 1. Illustration of blocks in trajectory Ti.

C. Partially supervised training

In some applications, the training dataset is composed of

features and of a set of labels reflecting the current system’s

state. These labels can be obtained by a manual annotation

as it is commonly done in supervised classification [4], by a

clustering method [12] or by a posteriori classification [6].

If the labels are known only partially, then belief functions

can be used [13]. Managing belief functions in the training

dataset allows the user to consider three main cases:

• Supervised learning: the true state is perfectly known

for all instances in the training dataset, i.e. ∀i =
1 . . . N,mi

t(ω) = 1, ω ∈ Ω.

• Semi-supervised learning: the true state is perfectly

known for some instances only and totally unknown

for the other instances. In the latter case, a vacuous

belief mass (with full mass on ignorance) is set for these

instances, i.e. ∀i = 1 . . . N,mi
t(Ω) = 1.

• Partially-supervised learning: the state is known with

uncertainty and imprecision and thus described by a belief

mass, i.e. ∀i = 1 . . . N,mi
t(A) > 0 for some subsets

A ⊆ Ω.

Therefore, the partial labeling by using the belief functions

formalism is a way to encode general situations of knowledge.

IV. EVIPRO-KNN ALGORITHM

Let now consider that a block of data Yt ∈ ℜ
Q of length W

is measured on the system. Given the training dataset and this

observation, the goal is to predict an observation trajectory

T̂t = {(X̂t′ , m̂t′)}
t+H
t′=t where H is an horizon of prediction.

The value of H will be set automatically as shown in the

sequel. Note that the final algorithm is given in Alg. 1, and

the plot chart of the whole algorithm is provided in Figure 6.

A. Step 1 - K-best trajectories determination

In this step, the K nearest trajectories to observations Yt

are determined. Note that all distances D are measured using

the Euclidean distance.

For that, all trajectories in the training dataset L are scanned.

For each trajectory Ti, the nearest block Bi
j∗ ∈ Bi to the

observation block Yt is found. Index j∗ of the best block Bi
j∗

in the i-th trajectory is given by:

j∗ = argmin
j,Bi

j
∈Bi

D(Yt, B
i
j) (12)

When the best block in each trajectory has been found, all

best blocks are sorted by ascending order according to their

distance:

Di
j∗ ≡ D(Yt, B

i
j∗) (13)

Let D
(i)
j∗ denote one element of this partial ordering with

D
(1)
j∗ ≤ D

(2)
j∗ ≤ . . .D

(i)
j∗ ≤ . . .D

(N)
j∗ . Finally, the K best

trajectories Tk, k = 1 . . .K are simply the ones associated

to the K best and sorted blocks:

D
(1)
j∗ ≤ D

(2)
j∗ ≤ . . .D

(k)
j∗ ≤ . . .D

(K)
j∗ (14)

The K selected trajectories Tk = {(Xk
t ,m

k
t )}

|Tk|
t=ck

, k =
1 . . .K are composed of both a set of features Xt ∈ ℜ

Q

and knowledge mt about the state. The index ck is known by

means of Eq. 12 and represents the starting time of the best

block Bk
j∗ in the k-th best trajectory.

http://iridia.ulb.ac.be/~psmets/
http://iridia.ulb.ac.be/~psmets/
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Step 1 is represented in lines 1-6 of Alg. 1.

The next steps of the algorithm consists in aggregating

trajectories Tk, k = 1 . . .K where two problems arised:

• How to aggregate the features {Xk
t }

|Tk|
t=ck

, k = 1 . . .K to

obtain a predicted set of features X̂t? (Step 2)

• How to aggregate the knowledge about states

{mk
t }

|Tk|
t=ck

, k = 1 . . .K to obtain a predicted knowledge

m̂t? (Step 3)

B. Step 2 - Predicted observation trajectory

A simple and usual way (common in KNN-based ap-

proaches) to define a predicted observation trajectory X̂t

linked to the observation block Yt is to compute the weighted

average of the K sets of features:

X̂t+h =

K
∑

k=1

F k ·Xk
l , l = ck . . . |Tk|, h = 1 . . .P (15)

where

P = |Tk| − ck + 1 (16)

defines the set of instants of prediction. The normalized

weights F k are obtained by the softmax function of the sorted

distances (Eq. 13):

F k =
exp (−D

(k)
j∗ )

∑K

k
′=1 exp (−D

(k′ )
j∗ )

, k = 1 . . .K (17)

The use of the softmax transformation is interesting for several

reasons: it generates (as expected) weights which decrease

as the distances (potentially not bounded) increase, and the

exponential ensures a better constrast between the generated

values. The softmax transformation was used in several appli-

cations, in particular with classifiers such as Support Vector

Machines and Neural Networks in order to generate (posterior)

probability distributions [30].

An illustration of the prediction process for observations is

given in Fig. 2: given a block, the prediction is computed by

Eq. 15, and the horizon depends on the length of the predic-

tion. Each point of the prediction is a real value representing

an observation.

For K > 1, equations 15 and 17 are directly used if

the length of trajectories Tk, k = 1 . . .K is identical. If it

is not the case (and generally it is not), one can use two

different strategies: cautious and bold1. The former consists

in truncating the trajectories to the length of the shortest one,

while the latter keeps all trajectories as such. These process

are depicted in Figure 3, and are described in the sequel.

1) Cautious strategy: This strategy consists in selecting

an horizon of prediction equal to the length of the smallest

trajectory. For that, first, the trajectory with the smallest size

is found:

Ht =
K

min
k=1
|Tk| (18)

where Ht is the horizon of prediction at time t. Then, for

all trajectories, only samples from ck to Ht are kept. After

1We get inspired from the work of T. Denoeux on combination rules of
belief functions [26] to choose these terms.

Figure 2. Illustration of the observation prediction process. Each data point
is a value in the space of reals.

Figure 3. Illustration of the bold and cautious strategies.

removal of samples located beyond Ht, Equations 15 and 17

can be directly used:

X̂CS
t+h =

K
∑

k=1

F k ·Xk
l , l = ck . . . Ht, h = 1 . . . Ht (19)

where CS stands for “Cautious Strategy” and Xk
h is the value

of features in trajectory Tk taken at time h. The value of F k

is given by Eq. 17.

The main advantage of this strategy is its simplicity and

also its efficiency because, the horizon being shortened (to

the smallest trajectory), it generally provides more reliable

predictions. The main drawback is that the horizon of predic-

tion is justly made shorter and therefore reducing forecasting

capability.

2) Bold strategy: Let consider that the k-th best trajectory

Tk starts from ck (time instant corresponding to the beginning

of the best block in Tk). Therefore, trajectories in L are

truncated (from ck) before computing the prediction and thus,

length of trajectories |T(k)| is reduced to |T(k)| − ck + 1.

Trajectories (truncated) are then sorted according to their

length: |T(1)| < |T(2)| < . . . |T(k)| < · · · < |T(K)|. The
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average (similar process to Eq. 15 but adapted for the bold

strategy in Eq. 20) is then taken on the K trajectories from

their beginning to |T(1)|, ∀k = 1 . . .K, then it is taken on

K − 1 trajectories (T(2) . . . T(k) . . . T(K)) from |T(1)| + 1 to

|T(2)|, ∀k = 2 . . .K, and so on, until the last trajectory T(K)

for which the average equals T(K) from |T(K−1)|+1 to |T(K)|.
The predicted features at time t+h are thus formally given

by:

X̂BS
t+hi

=
∑K

k=i F
k
i ·X

k
li
, i = 1 . . .K

hi = |T(i−1)|+ 1 . . . |T(i)|
li = ck . . . |T(i)|

(20)

where BS stands for “Bold Strategy” and |T(0)| = 0. The

value of weight F k
i is given by:

F k
i =

exp (−D
(k)
j∗ )

∑K

k
′=i exp (−D

(k′ )
j∗ )

, k = 1 . . .K (21)

where D
(k)
j∗ is the distance between block B

(k)
j∗ and Yt after

sorting distances as detailed in the previous step.

The main advantage of this strategy is to provide long

term predictions (as long as the length of the largest selected

trajectories), while the main drawback is the possible lack of

reliability according to the horizon.

At the end of step 2 (represented in lines 7-13 of Alg. 1),

the prediction of observation trajectory X̂t is known according

to the observation block Yt and to the training dataset L. Note

that exponential smoothing using past prediction (X̂t−1) can

be performed to improve temporal consistency [1] (not used

in this paper).

C. Step 3 - Predicted sequence of states

While step 2 computes the predicted sequence of observa-

tions, step 3 is concerned by the prediction of future states.

Two strategies are proposed:

• Classification of predictions (CPS): the predicted obser-

vations given by step 2 are classified into states.

• Direct projection of future state sequence (DPS): an

algorithm is developed to project directly the future states

using current observations Yt.

1) Classification of predictions strategy (CPS): This strat-

egy consists in classifying the predicted observations given by

step 2 into states. It requires the training of classifiers able to

discriminate the different states. For the sake of simplicity, we

consider the multiclass classifier called Evidential K-nearest

neighbours (EvKNN) [31] which is able to generate a belief

mass on the possible states in Ω given an observation. The

main feature of this classifier is the possibility to manage belief

functions mi
t provided in the training dataset L (partially-

supervised classification). Moreover, it is a model-free clas-

sifier which is a well-suited approach for PHM applications

where we generally face imbalanced data [32].

The CPS thus applies the classifier on the predicted obser-

vations X̂t+h, ∀h given the training dataset L and provides a

belief mass on the possible states:

mCPS
t+h ← EvKNN classifier(L, X̂t+h) (22)

where CPS stands for “classification of prediction strategy”.

From this belief mass, a hard decision can be made to estimate

the state of the current block by using the pignistic trans-

form [10] which computes a probability distribution (suited

for decision-making) from the belief mass mCPS
t+h (Eq. 8).

Repeating this process on blocks composing the predicted

observation X̂t, one simply obtains a sequence of states.

2) Direct projection of future state sequence (DPS): The

previous strategy for state sequence prediction is efficient if the

prediction of observations X̂t are sufficiently reliable. Indeed,

if predictions X̂t are far from the true trend then the estimated

states will be far from the truth too. However, even if in

some cases the reliability can be questioned, the state sequence

predicted by the first strategy allows the user to have a rough

trend of the future states.

In order to avoid the dependency between state sequence

prediction to observation prediction, we propose to exploit

another strategy that is the direct projection of future state

sequence. This second strategy draws benefits directly from the

training dataset. The main idea is to apply a similar reasoning

as for features Xt but now for belief mass mt.

To go further in details, let consider the set of belief masses

for the K nearest neighbours (gray-filled squares in Fig. 4, i.e.

mk
t , k = 1 . . .K, t = ck . . . |Tk|. These K belief masses can

be considered as coming from distinct pieces of evidence so

that the conjunctive rule of combination ⊕ (Eq. 2) can be used:

m̂DPS
t+h = ⊕K

k=1 mk
l , l = ck . . . |Tk|

h = 1 . . .P
(23)

where DPS stands for “direct projection strategy” and P is

given by Eq. 16.

As an illustration, Figure 4 depicts a part of the CPS process.

To apply Eq. 23, two problems have to be solved:

• How to manage different number of BBAs in the fusion

process?

• How to manage the conflict appearing in the fusion

process?

a) Managing the number of BBAs: In the case where

the bold strategy is exploited, we propose to use a vacuous

padding process as represented in Figure 4. It simply consists

in artificially adding new BBAs at the end for all trajectories

except the longest one so that all sets of BBAs have equal

length. This process enables one to compute easily the fusion

(Eq. 23) since the vacuous BBA is the neutral element of the

conjunctive rule ⊕ (section III-A3).

b) Managing the conflict: The amount of conflict may

increase when the BBAs presents contradiction, e.g. when two

BBA give important mass to subsets with empty intersection.

Moreover, the conflict is potentially higher when the BBAs

are focused on singletons.

To decrease the amount of conflict during the fusion process,

we propose to use a process called discounting [9], [33], which

interest is to transfer a part of all masses onto the set Ω. By

doing so, Dempster’s rule generates less conflict. The part is

proportional to the weights (Eq. 17), so that the discounting

becomes:

mk
t
′ (A) ← F k ×mk

t
′ (A), ∀A ⊂ Ω

mk
t
′ (Ω) ← (1− F k) + F k ×mk

t
′ (Ω)

(24)
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Figure 4. Illustration of the vacuous padding: A vacuous belief mass,
representing ignorance about the states, is assumed for all cases where the
BBA is not available (black-filled squares), e.g. in the bold strategy.

The highest the weight, the less the discount, meaning that the

related BBA is trusted. Once the BBAs have been discounted,

the estimated belief mass at time t in DPS is given by Eq. 23.

Figure 5 is an illustration of a particular DPS proposal where

the belief masses have only categorical assignments (i.e. all

masses are focused on only one singleton at each time-step).

The state is precisely known for each data in the training set

and therefore, the states at each time step of the prediction

(t + h) can be estimated by direct projection of their values

using a similar process as for the CPS (Figure 2). The dashed

line represents the sequence obtained after fusion (Step 4) and

the continuous bold line depicts the sequence obtained after

fusion at the current iteration of the algorithm. The median

value and the standard deviation of time instants of transitions

from states q to r within the set of sequences computed at

each iteration can be computed to locate transitions. In this

case, the direct propagation seems like a projection of possible

sequences of states.

Step 3 is represented in lines 14-15 of Alg. 1.

Figure 5. Illustration of the state prediction process for the case where the
belief masses distribution are focused only on a singletons.

D. Step 4 - Remaining Useful Life (RUL) estimation

Step 4 is the final step of the EVIPRO-KNN algorithm. The

goal of this step is to estimate the transition to a potential

“faulty” state indicating a potential damage of the system

monitored.

1) CPS and DPS fusion: To draw benefits from both CPS

and DPS approaches, the BBAs mCPS
t+h (Eq. 22) and mDPS

t+h

(Eq. 23) are combined and the resulting BBA is converted

into a probability distribution from which a decision can be

made [34]. Dempster’s rule is not adapted for the fusion of

CPS and DPS’s BBAs because mCPS
t+h and mDPS

t+h can not be

considered as coming from distinct bodies of evidence. Indeed:

• CPS is a classification of predictions resulting from the

weighted combination of continuous predictions,

• DPS generates belief masses discounted by the weights,

and therefore, both approaches depend on the weights. More-

over, both rely on the BBAs in the training dataset L.

Thus, the fusion may be performed using the cautious rule

(Eq. 3). The main disadvantage of the cautious rule comes

from the fact that the neutral element is not always the vacuous

BBA [26]. For EVIPRO-KNN, this can be a problem in prac-

tice if the belief masses are not available in the training dataset

(for DPS). Indeed, in this case, the fusion process between

CPS and DPS does not lead to CPS. However, for particular

BBA called separable BBA [26], [35], the neutral element

is the vacuous BBA, thus leading to an expected behavior.

Besides, when using the EvKNN classifier as proposed in this

paper, the BBAs generated are separable, and this is also the

case for other commonly used classifier [24], [26].

Conclusively, the fusion process relies on the cautious rule

and leads to a predicted BBA (Eq. 5, 4 and 3, followed by 6

and 7):

m̂t+h = mCPS
t+h ∧©mDPS

t+h (25)

from which a decison concerning the state at time t+h can be

made using Eq. 8. The result of this phase is the estimation of

a sequence of states ω̂t+h. An illustration of such sequences

is depicted in Figure 5.

2) RUL estimates: Let now consider this sequence of states

but also all previous predicted sequences (Figure 5). Based on

this set of sequences, we propose to compute some expected

sufficient statistics of time instants of transition between states.

Since each sequence is composed of possible transitions be-

tween some states q and r, the set of time instants of transitions

between both states is:

Iq→r = {t : ω̂t−1 = q and ω̂t = r} (26)

To estimate the Remaining Useful Life (RUL) of the system, it

is sufficient to determine the location of the critical transition

from state q = “degrading state” to state r = q + 1 = “fault

state”:

transition q → r critical ⇒ RUL = µq,r − t (27)

where µq,r is the estimated time from t to the transition

between the degrading state q and the faulty state r that can

be computed by a median. It can be associated to a dispersion
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Figure 6. The sequence of operations involved in EVIPRO-KNN.

σq→r that we computed using the interquartile range:

µq→r = median (Iq→r)
σq→r = Q3 −Q1

(28)

where Qi is the i-th quartile and nI = |Iq→r| is the number

of elements in the set of time instants of transition Iq→r. The

step 4 is represented in lines 16-19 of Alg. 1.

Therefore, both methods for sequence prediction, CPS

(classification) and DPS (direct projection), assume that each

trajectory in the training dataset is made of at least two states,

say “normal state” and “abnormal state”, and knowledge on

these states can be uncertain and imprecise and represented

by belief functions.

The final algorithm is given in Alg. 1, and the plot chart of

the whole algorithm is depicted in Figure 6.

V. EXPERIMENTS

The goal is to illustrate the capability of EVIPRO-KNN

algorithm to provide reliable health assessment and long term

predictions.

We considered the challenge dataset concerning diagnostic

and prognostics of machine faults from the first Int. Conf.

on Prognostics and Health Management [36]. The dataset is

a multiple multivariate time-series (26 variables) with sensor

noise. Each time series was from a different engine of the

same fleet and each engine started with different degrees of

initial wear and manufacturing variation unknown to the user

and considered normal. The engine was operating normally at

the start and developed a fault at some point. The fault grew

in magnitude until system failure.

In this paper, we used the first experiment found in the

text file train FD001.txt that is composed of 100 time-

series and we considered only 5 features among 26 (columns

Algorithm 1 EVIPRO-KNN

Require: Training dataset L {Set of trajectories with obser-

vations and belief masses, Eq. 9 and 10}
Require: Current window Yt {W ∈ [20 40], overlap: W/2}
Require: Number of nearest neighbours {K = 3}
Require: Labels of critical states {if S = 4, then ω3 and ω4}
Require: Averaging strategy {Cautious or Bold}
Require: A classifier of states {For CPS}

Ensure: Prediction of observations X̂
Ensure: Remaining Useful Life (RUL) estimation

{Step 1 - Find nearest neighbours}
1: for all all trajectories i do

2: Find the closest block to Yt {Eq. 11 and Eq. 12}
3: Store distances {Eq. 13}
4: end for

5: Keep the K best trajectories {Eq. 14}
6: Compute weights {Eq. 17}
{Step 2 - Compute prediction of observations}

7: if Tk have same length ∀k = 1 . . .K then

8: X̂ ← Apply Eq. 15

9: else if Cautious strategy then

10: X̂ ← Apply Eq. 19 (and Eq. 18, 17)

11: else if Bold strategy then

12: X̂ ← Apply Eq. 20 (and Eq. 21)

13: end if

{Step 3 - Prediction of states}
14: mCPS

t+h ← Apply the classifier {Step 3-1, Eq. 22}
15: mDPS

t+h ← Apply direct projection {Step 3-2, Eq. 23, 24}
{Step 4 - RUL estimation}

16: m̂t+h ← Eq. 25 {Fusion of mCPS
t+h and mDPS

t+h }
17: Iq→r ← Find transitions between critical states and store

time instants {Eq. 26, 8}
18: Find median and standard deviation {Eq. 28}
19: RUL← Apply Eq. 27

7, 8, 9, 13, 16 in the text file, as proposed by [37] for the first

5 features2).

Figure 7(a) pictorially described the evolution of the first

feature for the 100 training data. This figure emphasizes the

difficulty to build statistical models based on duration since a

high variability is present.

A. First test: segmented data with 4 states

The goal of this first set of experiments is to evaluate the

proposed algorithm. We particular aim at:

• Comparing the bold and the cautious strategies.

• Studying the sensitivity on K (number of neighbours)

and W (window size).

1) Protocol:

2In [37], the authors proposed to use sensor measurements 2, 3, 4, 7, 11,
12, 15 corresponding to columns 7, 8, 9, 12, 16, 17, 20, and we believe that
12 should be replaced by 13 because 12 is almost flat and does not bring
information.
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Figure 7. (Top) Evolution of the first feature for all trajectories in the training
dataset, and (Bottom) evolution of the state sequences in the training dataset
(after decision-making based on the belief masses).

a) Presentation of the data: In the first test, each time-

series was manually segmented into 4 functioning states3:

normal mode (ω1, label state 1), transition mode (ω2, label

state 2), degrading mode (ω3, label state 3) and faulty mode

(ω4, label state 4). Thus Ω = {ω1, ω2, ω3, ω4} is the set of

states.

An illustration of this manual segmentation is depicted in

Figure 7(b). This figure clearly emphasizes that approaches

based on state duration [38] are not reliable here. Variability

concerning time instant of transition from one state to another

points out that the first states are generally similar (all normal

modes are almost the same) while faulty modes are very

different (a fault state can appear at time t = 120 or at

t = 280). This variability is generally encountered in many

real systems where the degradation is mainly mechanical with

many complex interactions between the components.

b) Meaning of belief functions: Since the transitions

between modes are not known precisely, belief functions are

used as follows: let ti→j denote the time instant of a transition

between state ωi (before) and ωj (after), both in Ω, then

the belief masses around this time instant are simply set to

mt({ωi, ωj}) = 1, ∀t ∈ [ti→j − 5, ti→j +5]. With such belief

masses, doubt between both states ωi and ωj is made explicit

3The segmentation is available at http://www.femto-st.fr/∼emmanuel.
ramasso/PEPS INSIS 2011 PHM by belief functions.html.

in the transitions.

c) Building the classifier: For the CPS process, we used

the Evidential K-nearest neighbours (EvKNN). This algorithm

requires a training dataset made of feature vectors (here made

of data points of trajectories) and of belief masses (provided

in the training dataset), where a belief mass reflects how the

corresponding feature vector belongs to each subset of states.

d) Evaluation process: A leave-one-out evaluation was

performed: 99 time-series were used as the training dataset

and the remaining time-series was used as the testing data.

The testing data is analysed block by block by EVIPRO-KNN

algorithm until the end of the time-series. Given a block, the

algorithm may propose a value for the Remaining Useful Life

(RUL). The estimate of the RUL can be either early (before

than expected) or late, but early predictions are generally

preferred [39] (Figure 8). To assess the predictions, we first

define the prediction error at a given time by [39]:

E = actual ToF− predicted ToF (29)

where ToF stands for Time-of-Failure. In [39], the authors also

distinguished between:

• False Negatives (FN) cases corresponding to late predic-

tions such as E < −tFN where tFN is a user-defined

FN threshold:

FN =

{

1 if E < −tFN

0 otherwise
(30)

• False Positives (FP) cases corresponding to early predic-

tions such as E > tFP where tFP is a user-defined FP

threshold:

FP =

{

1 if E > tFP

0 otherwise
(31)

The meaning of thresholds is represented in Figure 8. In the

sequel interval [tFN , tFP ] is denoted I.

We considered I = [10,+13] which is a severe condition on

the prediction compared to the literature [3], [39]. These con-

ditions are similar to the ones considered in the PHM’08 data

challenge [37] as well as in the PHM’12 data challenge [40]

except that, in both papers, a particular parametrized function

was used which decreases with report to the bounds of I.

Figure 8. Metric of performance assessment, here I = [−10,+13].

The performance of the algorithm is quantified by the

percentage of predictions provided at the so-called critical

tc and falling in I. The critical time sets the difficulty of

the prediction task by specifying how far the prediction has

to start [39]. For example, given a trajectory T with a total

length equal to |T | (on which the algorithm is applied), setting

tc = 20 means that the RUL estimated at |T |−20 is evaluated.

http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
http://www.femto-st.fr/~emmanuel.ramasso/PEPS_INSIS_2011_PHM_by_belief_functions.html
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Therefore the greater the value of tc the more difficult is the

task. However, tc is generally set arbitrarily.

Since the variability of the length of the trajectories in the

dataset is important (as shown in Fig. 7(b)), we proposed to

set tc = |T |/4, meaning that the value of the critical time tc
is adapted according the trajectory’s length (e.g. if |T | = 240
then tc = 60). The distribution of the critical times will be

given in the sequel (Fig. 10) and we will show that tc > 22
which corresponds to mid/long-term predictions.

This way of evaluating the predictions is of practical interest

because, in a real-world application, one does not know a

priori the length of the current trajectory (which is under anal-

ysis). For example, for the second application (next section),

only pieces of trajectories with different length are available

for testing, and nothing is known about the associated system’s

status. In this second application, the evaluation of the RUL

proposals made by the EVIPRO-KNN algorithm will thus

inherently consist in setting tc equal to the length of the current

piece of trajectory.

2) Sensitivity of K and W : Figure 9 depicts the perfor-

mance of EVIPRO-KNN with report to K = [1 3 5 9] (number

of neighbours) and W = [10 20 30 40] (window’s size), with

the bold strategy. The algorithm is robust to both parameters,

with a performance close to 92% for K > 9,W > 30. For

low values of W , the performances are the lowest (around

68%), however, these cases correspond to greedy ones since

the algorithm requires more iterations and, therefore, are not

practically interesting. Increasing W makes EVIPRO-KNN

less sensitive to K (e.g. W = 40) because the window’s

size provides the best choice of the nearest neighbours. This

effect is emphasized when studying the effect of the number

of neighbours. Indeed, low values of W (say < 25) requires

low values for K (say < 3). For high values of W (say ≥ 25),

K = 3 or K = 5 yields satisfying performances. Practically,

W should not be too high to avoid missing changes in the

trajectories, and therefore its settings is application-dependent.

In the considered application, the fastest changes took between

20 and 30 time-units as illustrated in Figure 7(a) (see the

shortest trajectories).
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Figure 9. Performance with report to K and W for mid-term prediction for
the bold strategy.

As mentioned previously, the distribution of the critical

times is given in Figure 10 which shows that tc > 22. These

critical times can be considered as difficult ones compared to

the literature on PHM.
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Figure 10. Distribution of the critical times.

3) Cautious or bold strategy?: Figure 11 pictorially rep-

resents the evolution of the performance of EVIPRO-KNN

with report to K = [1 3 5 9] and W = [10 20 30 40],
with the cautious strategy. Remembering that both strategies

differ from the way the farthest predictions are computed,

the small differences with Fig. 9 can be explained by the

relatively small values taken by the critical times. Even though

these critical times correspond to quite difficult cases (mid-

term predictions), they do not enable one to discriminate the

prediction capability of both strategies.

To have a better illustration of which strategy one may

choose, let consider the distribution of the time-instant of

the five farthest and correct predictions (falling in I) for

each testing data. A similar idea was suggested in [39]

(where the authors considered only the farthest prediction) and

enables one to assess very-long term predictions. Figures 12(a)

and 12(b) represent the distribution of these farthest critical

times for W = 30 and K = 3. The bold strategy provides the

shortest critical times compared to the cautious strategy which

was not expected. And the differences are significant: one
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Figure 11. Performance with report to K and W for mid-term prediction
for the cautious strategy.



11

may expect an horizon less than 50 (most probable cases) for

efficient predictions by the bold strategy, whereas an horizon

between 100 and 200 can be expected using the cautious

strategy. Therefore, the cautious strategy is the best one on this

dataset. An explanation can be found in the way the predictions

are computed in the bold strategy (Eq. 20) which induces

some discontinuities in the predictions. This side-effect is an

inherent behavior of the proposed approach.
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(b) Cautious strategy

Figure 12. Expected horizon for long-term prediction with the bold and
cautious strategies.

4) Error between true and estimated rul: Figure 13 il-

lustrates the evolution of the differences at each time-step

between the estimated RUL and the real RUL for W = 30
and K = 3. A convergence towards the real value is observed

as expected. For this example, a good estimate of the RUL (in

interval [−10, 13]) is obtained at t = 90, so 180 time-units in

advance.

5) Error between truth and predictions of observations:

Figure 14 depicts both the mean-squared error between the

prediction of observations and the ground truth (subfigure 1)

and the length of the prediction (horizon) proposed by the

algorithm (subfigure 2). As expected, both quantities decrease

as the end of the time-series approaches (with W = 30 and

K = 3).

6) Online segmentation: An interesting characteristic of

EVIPRO-KNN algorithm is the possibility to predict tran-

sitions of all states. For instance, in Figure 15, an online

segmentation of the signal is proposed at a critical time
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Figure 13. Differences between estimated RUL and real RUL for each
window.
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Figure 14. Error between predictions and real observations (top) and the
length of the predictions (bottom).

tc = 40 for W = 30 and K = 3. The signal takes continuous

values but here it was rescaled for the sake of interpretation.

This segmentation can be useful to detect the future state

sequences.
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Figure 15. In dashed-line is represented the true segmentation of the signal,
the segmentation proposed by the algorithm appears with the continuous line
(dicrete values).

7) Trajectories hits: Figure 16 represents the index of the

trajectory chosen for each block (first neighbour) for W = 30
and K = 3. This figure allows the user to assess the number

of times a trajectory was chosen for the prediction. For

example trajectory i = 82 is used for blocks 4, 5 and 6. In

this application, one can observe that different trajectories

are used, demonstrating that the training dataset contains
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complementary information. In practice, these information can

be useful for condensing the training dataset by removing the

trajectories which are not often used.
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Figure 16. Trajectory hits describing which trajectory is chosen at each
window.

B. PHM 2008 dataset: Pieces of trajectories

1) Presentation of the data: For the second test, we consid-

ered again the challenge dataset of machine faults prediction

from the first Int. Conf. on Prognostics and Health Manage-

ment [36]. The training dataset is the same as in the previous

set of experiments (100 trajectories) but the testing dataset

(available on the website of the conference in the text file

test FD001.txt and composed of 100 trajectories) is composed

only of pieces of trajectories (the remaining is unknown).

Besides, the length of the testing trajectories is not the same

for the whole dataset (Fig. 17).
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Figure 17. Distribution of the length of the trajectories in the second dataset.

Given one of these 100 pieces of trajectory, the goal is

to predict the Remaining Useful Life (RUL). The predicted

RUL are compared with the true RUL provided in the text file

rul FD001.txt. The RULs are spread in [14, 138] as depicted

in Figure 18, with more than the half greater than 80 (very

long-term prediction).

2) Belief functions, classifier and EVIPRO-KNN’s settings:

The belief masses were the same as in the previous section.

Besides, the same procedure as in the previous test is applied to

build the classifier. Concerning the EVIPRO-KNN algorithm,

and regarding the previous results, we selected K = 3, W =
30 and the cautious strategy.
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Figure 18. Distribution of the RULs in the second dataset.

3) Evaluation process: To assess the results, we com-

pare the estimated RUL with the RUL provided in the file

rul FD001.txt using interval I = [−10, 13]. For a given tested

trajectory, the critical time tc is given by the length of this

trajectory.

4) Results: Figure 19 depicts the histogram of errors made

by the EVIPRO-KNN algorithm on the second dataset. The

number of satisfying cases, i.e. falling in I = [−10 13], is

about 53%. The amount of late predictions (corresponding to

negative errors) is about 11% and 36% of early predictions.

Early predictions are practically preferred to late ones because

the algorithm does not miss potential breakdowns.
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Figure 19. Distribution of errors of the RUL’s estimates for the second
dataset.

VI. CONCLUSION

EVIPRO-KNN is an online algorithm for prognostics and

health detection that takes as input an observation (test in-

stance) in the form of a piece of a trajectory and then

generates the prediction as the weighted sum of the K-nearest

trajectories found in the training dataset. Compared to previous

approaches, EVIPRO-KNN is based on belief functions which

allow the user to manage labels that can possibly be assigned

imprecisely to the training data.

The possibility to manage prior information on possible

states in the training dataset is one of the main advantages

of EVIPRO-KNN. Indeed, in most papers, only two states are

considered: normal and faulty, while in many real cases, more

states have to be considered. The other main asset of EVIPRO-

KNN is the possibility to predict sequence of continuous

observations jointly with discrete states. These sequences
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allow the user to have access to the online segmentation of

the current observed data and may be practically useful. The

joint prediction is made by two strategies which finally provide

an estimate of the Remaining Useful Life: the classification

of predictions (CPS) and the direct projection of future state

sequence (DPS).

To increase accuracy of the predictions, in particular made

by CPS, we are currently studying classifiers and fusion

rules [41]. However, to perform online detection and prediction

as considered in this paper, it is required to develop online

classifiers and online fusion tools.
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