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Combating Negative Transfer From Predictive
Distribution Differences
Chun-Wei Seah, Yew-Soon Ong, and Ivor W. Tsang

Abstract—Domain adaptation (DA), which leverages labeled
data from related source domains, comes in handy when the
label information of the target domain is scarce or unavailable.
However, as the source data do not come from the same origin
as that of the target domain, the predictive distributions of the
source and target domains are likely to differ in reality. At the
extreme, the predictive distributions of the source domains can
differ completely from that of the target domain. In such case,
using the learned source classifier to assist in the prediction of
target data can result in prediction performance that is poorer
than that with the omission of the source data. This phenomenon
is established as negative transfer with impact known to be more
severe in the multiclass context. To combat negative transfer
due to differing predictive distributions across domains, we first
introduce the notion of positive transferability for the assessment
of synergy between the source and target domains in their pre-
diction models, and we also propose a criterion to measure the
positive transferability between sample pairs of different domains
in terms of their prediction distributions. With the new measure,
a predictive distribution matching (PDM) regularizer and a PDM
framework learn the target classifier by favoring source data with
large positive transferability while inferring the labels of target
unlabeled data. Extensive experiments are conducted to validate
the performance efficacy of the proposed PDM framework using
several commonly used multidomain benchmark data sets, includ-
ing Sentiment, Reuters, and Newsgroup, in the context of both
binary-class and multiclass domains. Subsequently, the PDM
framework is put to work on a real-world scenario pertaining
to water cluster molecule identification. The experimental re-
sults illustrate the adverse impact of negative transfer on several
state-of-the-art DA methods, whereas the proposed framework
exhibits excellent and robust predictive performances.

Index Terms—Domain adaptation (DA), logistic regression
(LR), negative transfer, predictive distribution matching (PDM),
support vector machines (SVMs).
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I. INTRODUCTION

IN TRADITIONAL learning tasks, the decision function
f is typically attained by minimizing the expected risk

functional of the form

min
f

∫
L(x, y, f)dP (x, y) (1)

with respect to the joint distribution P (x, y) of the target do-
main and a loss function L, where x and y denote the input fea-
ture vector and class label, respectively, of the problem of inter-
est. The joint distribution can be further factorized as P (x, y) =
P (y|x)P (x), where P (y|x) and P (x) are the predictive distri-
bution and marginal distribution of the target domain, respec-
tively. However, when no label information is available in the
target domain, P (y|x) cannot be well estimated. To address
this, some are turning to domain adaptation (DA) techniques
which use labeled data from related source domains to aug-
ment the performance of learning tasks on the target domain.

Taking the marketing strategy of sales personnel as a mo-
tivating example, for instance, sentiment classification serves
as an important task to predict the sentiment polarity of a new
product (target domain) based on the multiway scale of user
reviews collected from other similar products. Each review is
graded based on a five-star rating, and the higher is the rating,
the better the feedback is perceived. Since the user review
feedbacks are usually described by some common words, the
annotated sentiment reviews from several other categories of
products (source domains) may benefit the prediction of the star
rating on unannotated sentiment reviews of new products (target
domain). Hence, DA methods generally assume that the source
domains share a similar predictive function with the target do-
main. Aside from sentiment classification, DA methods are also
widely studied in natural language processing [1]–[3], text cat-
egorization [4], computer vision [5]–[8], Wi-Fi localization [4],
remote sensing [9], and recommendation systems [10]. Other
applications in which DA can be useful also exist in abundance,
including gene expression data [11], cell-phenotype images
[12], and aerodynamic design [13], where labeled data in the
target domain of interest are generally scarce.

Recent DA methods [5], [14]–[16] have been proposed for
learning from multiple source domains. In [16], for instance,
the authors proposed a multiple convex combination of support
vector machine (SVM) using the data from multiple source
domains and the target domain. Since the data do not come
from the same origin, the distributions P (x, y) of the source
and target domains are likely to differ. In such situation, target
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labeled data are often required to measure the relatedness from
the source domains [5], [14], [17]; then, source domains can
assist in learning the target task. However, when target labeled
data are unavailable, DA methods [1], [18]–[20] usually assume
that the prediction distribution P (y|x) is shared among differ-
ent domains and minimize the dissimilarities among the source
and target domains with regard to the marginal distribution
P (x) only. The dissimilarity in marginal distributions among
domains is commonly known as covariate shift [20] that adjusts
the weight of each source sample by means of P t(x)/P s(x)
as a common remedy used to resolve such an issue, with
P s(x) and P t(x) denoting the marginal distribution of the
source domain and target domain, respectively. For example,
the kernel-mean matching (KMM) method [18] estimates the
weight of each source sample by minimizing the maximum
mean discrepancy (MMD) criterion [21] between the source
samples and target unlabeled samples; then, reweighted source
samples are used for training a classifier for the target data.

As an alternative to reweighting methods, others have also
considered the extraction of useful features from the source
domains to augment the original feature space to train the
classifier [3], [22]–[26] so that the augmented feature space
leads to similar marginal distribution between the source and
target domains. For instance, an alternative to KMM that min-
imizes the MMD criterion for the purpose of minimizing the
distributions of the source and target domains, minimizing the
quadratic distance [27] and geodesic distance [25], is recently
proposed. For another instance, the feature augmentation (FA)
approach [3] augments features belonging to the same domain
by twice that of the original features to bias the classifier in
treating the data of the same domain twice as much than those
of differing domains. Furthermore, the FA approach is also
considered as a multitask learning algorithm since its model
parameters θr in the rth domain are decomposed as θc and
θ′r, where θc is shared among all domains and θ′r is for each
individual domain.

In general, multitask methods [28], [29] simultaneously learn
the models of all the tasks by sharing some common parame-
ters such that the learned model can classify each individual
task well, whereas DA methods focus on classifying well
on the target task only. Another major difference is that the
source and target tasks in DA are the same but different in
data distribution, whereas the tasks in multitask are different
but related. In particular, DA methods generally address the
marginal distribution differences between the source and target
domains, and this paper further combats negative transfer from
predictive distribution differences. In contrast, task clustering
for multitask learning discovers hidden structure within a set of
related tasks for a robust learning [29], [30].

Frankly, each domain has its own predictive distribution
P (y|x) in real applications; as a result, the phenomenon of
negative transfer [31] is known to creep in, leading to the
impediment on the performances of DA approaches [31], [32].
Thus, negative transfer can be deem to have occurred when
the DA method is observed to deteriorate over the prediction
performance of its respective non-DA counterpart. To this
end, more recent works, including domain adaptation SVM
(DASVM) [9], maximal margin target label learning (MMTLL)

[33], and TARget learning Assisted by Source Classifier Adap-
tation (TARASCA) [34], have also attempted to maintain the
consistency of the joint distributions P (x, y) across the differ-
ent domains.

In spite of the recent advancements made in DA, many
fundamental problems of negative transfer resulting from the
differences in predictive distribution have remained unresolved.
In particular, to perform well, reweighting methods require the
source and target domains to share similar predictive distri-
butions. Furthermore, a considerable large number of target
labeled data are typically required to robustly reweight the
training instances reliably. Like general DA approaches, feature
DA techniques are also plagued by the issues of predictive dis-
tribution dissimilarities among the source and target domains.
When many overlapping sources and target data with conflict-
ing class label information exist, general DA approaches such
as DASVM do not function well. Moreover, DASVM is unable
to deal with multiclass problems as the adopted progressive
transductive SVM [35] strategy in DASVM is unable to infer
multiclass pseudolabels of target unlabeled patterns. In contrast
to the proposed method, MMTLL and TARASCA consider
classifier/model-based transfer by choosing the weights of the
source classifiers (among many source classifiers with different
bias parameters) via cluster assumption that exists in the target
unlabeled data for positive transfer.

From our survey of the literature, some of the core roots
of negative transfer due to predictive distribution differences
(which generally violate the assumptions of many DA methods)
can be summarized as follows.

1) Conflicting class labels between related source domains:
The domains contain sample data or clustered data with
conflicting class labels. For instance, a domain with a
class label which differs from the majority of related
domains having a common class label, in some localized
region of the vector space, is established as an outlier.

2) Sample selection bias due to imbalanced class distri-
bution: The sparsity of labeled data does not serve as
good representations of the general population [9], par-
ticularly for the imbalance problem where bias exists
when estimating the target predictive distribution (e.g.,
by logistic regression (LR) or naïve Bayes classifier); this
bias is generally known as the sample selection bias.1

In most cases, the source domains have differing class
distributions from the target domain, and these class dis-
tribution differences can easily lead to predictive distribu-
tion dissimilarities among the domains. Without sufficient
label information on the target domain, the true class
distribution of the target domain is generally unknown,
and resampling strategies (e.g., Synthetic Minority Over-
sampling Technique [37]) that are designed to adapt
the class distributions of the source domains to match
with the target domain do not apply well in this setting.
Even in the event of high similarity in the feature space,
any class distribution differences between the target and
source domains can still mislead the learning of the target

1Recently, a work [36] considers that the class distribution of the training set
differs from the testing set while both sets are from the same domains.
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predictive distribution due to the learning biases toward
that of the source domains.

Taking these cues, in this paper, we propose a novel DA
method, namely, predictive distribution matching (PDM), to
address the challenges that arise from the predictive distribution
differences. The main contributions and core ingredients of the
proposed framework are outlined in what follows.

1) A criterion of positive transferability is proposed to mea-
sure the differing predictive distributions of the target
domain and the related source domains. Using this cri-
terion, a PDM regularized classifier is introduced to infer
target pseudolabeled data which subsequently assists in
identifying the relevant source data in a manner that the
predictive distributions of both source and target data are
maximally aligned.

2) To our knowledge, the proposed framework serves as the
first attempt to combat negative transfer in multiclass
problems, where target labeled data are unavailable or
scarce. In particular, a new form of LR, established here
as the PDM-LR, is proposed for handling the multiclass
DA problem.

This paper extends from the preliminary work [38] and is
organized as follows. Section II introduces the proposed PDM
framework to match the predictive distributions of the source
and target domains in the context of multiclass problems.
Instantiations of the PDM framework on LR and SVM are
subsequently showcased in Section III. Extensive experimental
studies of the PDM framework, pitted against several state-of-
the-art DA and traditional algorithms on multiclass and mul-
tidomain data sets, including the real-world Sentiment data set,
are reported in Section IV. Analysis and discussion pertaining
to the experimental results are then provided in Section V.
In addition, a novel real-world water-molecule application is
showcased in Section VI. The brief conclusions of this paper
are then drawn in Section VII. In contrast to this paper, the
initial work [38] of this paper focuses on only binary problems
and SVM context. The core symbols used throughout the rest
of this paper are listed in Table I.

II. PDM FRAMEWORK

In this section, we present a detailed description of the
proposed PDM framework for matching the predictive distri-
butions of the source and target domains, with the work flow
of the framework shown in Fig. 1. The work flow presents an
iterative process of inferring the target unlabeled data where ir-
relevant source data are removed such that the target and source
data are maximally aligned based on the criterion of positive
transferability upon convergence (defined in Section II-A). In
particular, the framework begins with the training of a PDM
regularized classifier (see Section II-A). Instantiations of the
PDM regularized classifier in SVM and LR are subsequently
presented in Section III. The PDM regularized classifiers are
used to infer the pseudolabeled data (see Section II-B) from the
set of target unlabeled data. Source data that do not align with
the predictive distribution of the inferred pseudolabeled data
are then removed (see Section II-C). The entire process iterates

TABLE I
SYMBOL DEFINITION

until the stopping criterion is reached. Upon convergence, the
SVM classifier or LR classifier is trained using the identified
relevant source labeled data and the acquired pseudolabeled
data of the target domain, which are then validated on the target
testing data.

A. PDM Regularization for Multiple Source Domains

Here, our interest is on PDM across multidomains and the
multiclass contexts. First, we define the notions of positive
transferability and negative transferability.

Definition 1: Positive transferability is introduced as the as-
sessment of the synergy between the source and target domains
in their prediction models. In other words, it measures the
constructive synergy of the source labeled data in accelerating
or enhancing the learning of the prediction model for the target
unlabeled data. This is highly plausible when the selected
source labeled data and the set of target data share similar
predictive models.

Next, the antonym of positive transferability, which is re-
ferred as negative transferability, is defined.

Definition 2: Negative transferability is introduced as a mea-
sure for the destructive synergy of the source labeled data in
enhancing the learning of the prediction model for the target
unlabeled data.

With the notion of positive transferability given by
Definition 1, we proposed a criterion to measure the degree
of positive transferability between a sample pair of different
domains in terms of their predictive distributions.
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Fig. 1. Work flow of the PDM framework to maximally align the positive transferability criterion. See Table I for the notations.

Definition 3: The criterion of positive transferability be-
tween two samples from different domains is defined here as

W rd
ij =P

(
yri , y

d
j |xr

i ,x
d
j

)
S
(
xr
i ,x

d
j

)
I
[
yri = ydj

]
=P r (yri |xr

i )P
d
(
ydj |xd

j

)
S
(
xr
i ,x

d
j

)
I
[
yri = ydj

]
(2)

where W rd
ij is defined as the product of S(xr

i ,x
d
j ), which mea-

sures the similarity between xr
i and xd

j , and P (yri , y
d
j |xr

i ,x
d
j )

that describes the synergy between the source and target
domains for Definition 1. For the efficient estimation of
P (yri , y

d
j |xr

i ,x
d
j ), a conditionally independent assumption is

made for their class labels yri and ydj given the inputs xr
i and xd

j

where P (yri , y
d
j |xr

i ,x
d
j ) = P r(yri |xr

i )P
d(ydj |xd

j ). Furthermore,
the similarity S(xr

i ,x
d
j ) is used to measure how the importance

of P r(yri |xr
i ) and the importance of P d(ydj |xd

j ) should be
related. In addition, I[yri = ydi ] indicates that the two samples
must have the same labels.

From this definition, positive transferability thus denotes the
maximal alignment between P r(yri |xr

i ) and P d(ydj |xd
j ) and

their similarity S(xr
i ,x

d
j ). Note that P r(yri |xr

i ) is the predictive
distribution of the rth domain on vector xr

i , which is estimated,
for instance, by means of LR [39] or SVM probability [40],
using the labeled data in the rth domain.2 The next challenge is
how to maximally align the source and target domains when
no or few target labeled data are available. To address this
challenge, we propose to infer the pseudolabeled data (see
Section II-B) and identify the source data (see Section II-C) via
an iterative process that converges when the source and target
data are maximally aligned. To infer the pseudolabeled data, we
use the positive transferability in Definition 3 to define a PDM
regularizer as follows.

Definition 4: A PDM regularizer is defined to
minimize the predictive function ω(·) of a classifier:
(1/n2)

∑m
r,d=1

∑nr

i=1

∑nd

j=1 (ω(x
r
i ) − ω(xd

j ))
2
W rd

ij I[ r �= d]

where W rd
ij defines two samples drawn from different domains

(I[r �= d]). This regularizer enforces data that have high

2For each source domain (r < m), the predictive distributions in (2) are
required to compute only once before the iterative process.

similarity according to the definition of positive transferability
W , to share similar predictive outputs.

Definition 4 is motivated by the concept of manifold reg-
ularization [41]–[43] where two inputs, xr

i and xd
j , are en-

forced by W rd
ij to share similar predictive outputs of ω(xr

i )

and ω(xd
j ). Note that W rd

ij defines the weight of an edge in a
k-nearest-neighbor graph. In traditional manifold regulariza-
tion, only S(xr

i ,x
d
j ) is considered, and the data are assumed to

originate from a single source. In this paper, the data are from
different sources, and W rd

ij is defined based on the notation
of positive transferability given in Definition 3. Furthermore,
the PDM score for xr

i and xd
j is P r(yri |xr

i )P
d(ydj |xd

j ) where

both
∑C

z=1 P
r(yz|xr

i ) and
∑C

z=1 P
d(yz|xd

j ) have the value of
1. Since we do not assume any manifold assumption on each
domain, the indicator function I[r �= d] serves to enforce only
data of unique domains to associate or pair up. Note that, if the
target domain follows a manifold assumption, a manifold regu-
larizer can be incorporated into our formulation seamlessly by
simply excluding the I[r �= d] term. To avoid any loss of gener-
ality, here, we consider a formulation that generalizes well.

B. Inferring Target Pseudolabeled Data

In this section, we discuss how to infer pseudolabeled data
from the target unlabeled data. For each iteration j, the highest
confidence predicted outputs of the target unlabeled data are
added to the set of acquired pseudolabeled data

Bj = Bj−1 ∪
{
∪C
c B

j
c

}
. (3)

The acquired pseudolabeled data of the jth iteration for class c
is then

Bj
c =

{
(xi, yi) ∈ T j

c |1 ≤ i ≤ pjc

}
(4)

where pjc = min(σ, |T j
c |), |T j

c | is the cardinality of T j
c and σ

is a relaxation parameter.3 T j
c denotes the unlabeled data with

class labels c inferred using the PDM regularized classifier f j

3A higher value of σ would speed up the process, but at the expense of
including less confident pseudolabeled data. Since the efficiency of the process
is not a major concern, σ is configured to 1 in our study.
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and is sorted in a decreasing order in terms of P (y = c|x) as
follows:

T j
c =

{
(xi, c)|xi ∈ Dj

U , h(xi) = c, P (y = c|xi)

≥ P (y = c|xi+1)
}

(5)

where Dj
U = Dj−1

U \Bj−1 and P (y = c|xi) is the predictive
distribution for class c given xi that is estimated from both
Bj−1 and Dj−1

L (which is the identified source data in the
(j − 1)th iteration and is presented in the next Section II-C),
while the predicted class h(.) is defined as follows:

h(x) = argmax
c∈C

ωc(x) (6)

with ωc(x) denoting the predictive output of PDM regularized
classifier f j for class c. Hence, Bj

c in (4) (the acquired pjc
number of pseudolabeled data) represents the data with the
highest predictive distribution values in T j

c . After the new set of
pseudolabeled data is formed in (3), the PDM framework rees-
timates Pm(y|x), for instance, by means of LR. The inferred
pseudolabeled data formed in (3) can then be used to compute
the positive transferability on (2) for the next iteration.

C. Removing Irrelevant Source Data

In practice, some source data may not align with the pre-
dictive distribution of the inferred target pseudolabeled data.
Hence, in this section, we discuss how these irrelevant source
data are removed.

Without loss of generalities, the remaining source labeled
data at the jth iteration can be defined as

Dj
L = Dj−1

L \
{
∪C
c Dc

}
(7)

where D0
L is the initial set of source labeled data (DL) and Dc

is the set of data grouped according to their true class label yi.
Each grouped set is then sorted according to their estimated
predictive distribution values in ascending order as follows:

Dc =
{
(xi, yi)|xi ∈ Dj−1

L , yi = c, Pm(y = c|xi)

≤ Pm(y = c|xi+1) ≤ π, 1 ≤ i ≤ γ
}

(8)

where π denotes the minimum level of confidence for any
data vectors to be retained and Pm is estimated by using the
pseudolabel data Bj . The removed source data for each class
Dc are the lowest γ consistence data points4 with respect to the
pseudolabeled data. After convergence is reached, all source
labeled data with Pm(y|x, f j

t ) ≤ π are removed by simply
setting γ to ∞.

Since the inferring process is designed to iteratively select
the highly confident pseudolabeled data, it is natural to end the
PDM process when the inferred labels of the pseudolabeled

4Note that a higher γ value in (7) speeds up the process, but it will remove
high confidence source labeled data that are relevant to the target domain. As
speeding up the process is not our main objective here, γ is configured as 1 in
our study.

data fail to measure up to the given confidence level. In this
paper, parameter δ is used to control the level of confidence in
the pseudolabeled data as

min
xi∈Bj

Pm(yi|xi) ≤ δ. (9)

III. PDM REGULARIZED CLASSIFIER INSTANTIATIONS

In this section, instantiations of the PDM framework with LR
(PDM-LR) and SVM (PDM-SVM) are presented as the PDM
regularized classifier.

A. PDM LR Classifier (PDM-LR)

LR is primarily popular in the context of text classification.
On multiclass classification problems, the predictive distribu-
tion P (y = c|x) of a class c is defined as follows:

ωc(x) = P (y = c|x) = eβ
′
cx∑C

z=1 e
β′

zx
(10)

where βc is the weight vector for class c and ωc(x) is the
predictive output for class c. In LR, both P (y = c|x) and ωc(x)

have the same value, and
∑C

c ωc(x) = 1 can be regarded as a
form of probability measure. On multiclass LR, minimizing the
negative log likelihood of (10) becomes

g1(β) = −
m∑
r=1

nr∑
i=1

wr
iβ

′
yr
i
xr
i +

m∑
r=1

nr∑
i=1

wr
i log

C∑
z=1

eβ
′
zx

r
i

(11)

where wr
i is the weight5 of the ith sample in the rth domain and

β = [β1, . . . ,βC ]. To prevent overfitting, a regularizer with
parameter C1 is typically incorporated

g2(β) =
1

2
C1‖β‖22. (12)

Hence, a regularized multiclass LR is defined as

argmin
β

g1(β) + g2(β). (13)

Next, with the ω(x) of the PDM regularizer in Definition 4
given by β′

yx, the resultant PDM regularizer is then formulated
as follows:

g3(β) =
C2

2n2

m∑
r,d=1

nr∑
i=1

nd∑
j=1

(
β′
yr
i
xr
i − β′

yd
j
xd
j

)2

W rd
ij I[r �= d]

(14)

where C2 denotes the parameter that regulates the importance
of PDM. Hence, combining the PDM regularizer with (13), the
proposed PDM multiclass LR or PDM-LR in short becomes

argminβ G(β) = argminβ g1(β) + g2(β) + g3(β). (15)

5This weight can be adjusted to define the importance of each data vector
sample to deal with the marginal distribution differences among domains, often
known as the reweighting method [18]. Since the focus here is on predictive
distribution differences, we treat all data samples equally in this paper, i.e.,
assigning each wr

i to 1/n.
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1) Convergence Analysis: In what follows, the details to-
ward solving (15) and the properties of convergence are pre-
sented. Note that the PDM regularizer in Definition 4 represents
a special case of [41] which is positive semidefinite, and LR
is strongly convex [39]. Hence, the resultant PDM-LR is also
strongly convex. Thus, the problem can be solved using convex
optimization technique, such as the coordinate descent method
due to its simplicity and efficiency, since the computation
of the entire Hessian matrix is not required. The coordinate
descent method is composed of an outer and an inner loop. The
inner loop conducts the Newton descent search on a dimension
while the outer loop checks for convergence. An outline of the
coordinate descent method is depicted in Algorithm 1.

Algorithm 1 Coordinate descent method

1: repeat
2: for p = 1 & c = 1 TO η & C, respectively, do
3: Solve minβpc

G(β), by means of approximation, to
obtain z.

4: βpc = βpc + z
5: end for
6: until β is optimal
7: return β

To attain the gradient and Hessian information of each co-
ordinate, the derivations for LR, (13), follow that of [39]. The
gradient and Hessian formulations for the PDM regularizer in
(14), on the other hand, are derived in what follows. The first
derivation of (14) can be derived as

∂g3
∂βpc

=
C2

n2

n∑
i=1

n∑
j=1

(
Wij

(
β′
cxi − β′

cxj

)

× (I[yi = c]xip − I[yj = c]xjp)
)

=
C2

n2

n∑
i=1

n∑
j=1

(
WijI[yi = c]

(
β′
cxi − β′

cxj

)

×(xip − xjp)) (16)

since Wij consists of I[yi = yj ] where the pc of βpc is the
pth dimension and the class c of β. Note that, for the sake
of conciseness in (16), the notation for the PDM regularizer
in (14) is simplified with the removal of domain indexes, i.e.,
r and d, since the indicator, I[r �= d], is a precomputed value
and will implicitly inherit the domain indexes. Without loss of
generality, the PDM regularizer in (14) simplifies to

g3(β) =
C2

2n2

n∑
i=1

n∑
j=1

(
β′
yi
xi − β′

yi
xj

)2
Wij . (17)

In addition, the second-order information, i.e., the Hessian of
(17), is then derived as

∂2g3
∂2βpc

=
C2

n2

n∑
i=1

n∑
j=1

WijI[yi = c](xip − xjp)
2. (18)

In what follows, the details of updating βpc using a scaling
factor z that meets the sufficient decrease condition will be

discussed. E(p, c) ∈ 
η×C defines the direction of dimension
p and class c for updating the value βpc as

Eij(p, c) =

{
1, i = p, j = c
0, otherwise.

(19)

Updating of new βnew
pc as βnew

pc = βold
pc + z is equivalent to

performing β + zE(p, c). With this update, the value of PDM-
LR function G in (15) decreases as follows:

D (zE(p, c)) = G (β + zE(p, c))−G(β). (20)

The sufficient decrease condition [39] of zE(p, c) is given by

D (zE(p, c)) ≤ σzG′(βpc) (21)

where z = λd and d = −(G′(βpc)/G
′′(βpc)) denotes the New-

ton direction. From [39, Theorem 4], there exists the parameter
λ = 1, 0.5, 0.52, 0.53, . . . that satisfies the condition in (21)
with σ ∈ (0, 0.5). Here, our search begins with λ = 1, followed
by a check on the sufficient decrease condition of (21). If
the condition is violated, λ is reduced by half repeatedly,
until the inequality of (21) is satisfied. The D(zE(p, c)) of
each component in (15) can be formulated as D(zE(p, c)) =
D1(zE(p, c)) +D2(zE(p, c)) +D3(zE(p, c)), where D1, D2,
and D3 denote the reduction values of the function g1, g2, and
g3 in (15), respectively. While the derivations of D1 and D2

follow that of [39], D3, on the other hand, is derived as

D3 (zE(p, c))

= g3 (β + zE(p, c))− g3(β)

= z
C2

n2

n∑
i=1,j=1

2WijI[yi = c]

×
(
(xip − xjp)β

′
cxi + (xjp − xip)β

′
cxj

)

+ z2
C2

n2

n∑
i=1,j=1

×
(
WijI[yi = c]

(
x2
ip + x2

jp − 2xipxjp

))
. (22)

The stopping criterion of the outer loop is defined as ‖G′‖22 < ε,
where ε is a predefined parameter (see G′ in (21)).

2) Computational Complexity of Algorithm 1: From [39,
Theorem 5], it can be derived that the gradient, Hessian, and
reduction functions of g1 and g2 in (15) have a total computa-
tional complexity of O(n). In PDM, (16), (18), and (22) are
computed. It is worth noting that the matrix W of PDM is
sparse, with at most k nonzero values that denote the k nearest
neighbor of each sample [41]. Since matrix W has only at most
kn nonzero values, the computations of (16), (18), and (22)
equate to O(kn) per βpc. Since (18) and the second component
of (22) are independent of β, both need to be computed only
once and can be cached for subsequent reuse throughout the
coordinate descent process. From the aforementioned compu-
tational analysis, the computational complexity of each inner
loop in Algorithm 1 totals to O(knCη). This, however, can be
reduced to O(knη) due to the existence of the I[yi = c] term in
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TABLE II
INVESTIGATED TRADITIONAL SUPERVISED, SEMISUPERVISED, AND DA STATE-OF-THE-ART ALGORITHMS

(16), (18), and (22). Moreover, since k is a constant and usually
small, it can be ignored to finally arrive at O(nη). Furthermore,
it is worth noting that the outer loop in Algorithm 1 typically
takes only very few iterations to reach convergence, i.e., ten iter-
ations, as will be shown and discussed later in the experimental
study (see Section V-C). Hence, the computational complexity
of Algorithm 1 can be arrived as O(nη).

B. PDM SVM Classifier (PDM-SVM)

When a classification problem is governed by a nonlinear
function, SVM fits in nicely with its properties of integrating
nonlinear kernel for nonlinear and binary classification prob-
lems with ease. The SVM takes the form of

argmin
ω

m∑
r=1

nr∑
i=1

wr
i  (y

r
i , ω (xr

i )) +
C1

2
‖ω‖2 (23)

where wr
i denotes the weight6 of the ith sample in the rth

domain, (·) defines the hinge loss function, i.e., max(0, 1−
yri ω(x

r
i )), y

r
i ∈ {−1, 1}, and C1 is the parameter that defines

the tradeoff between classification errors on the labeled samples
and model complexity. Note that, in SVM, h(x) in (6) is
defined by sign(ω(x)). The decision function of SVM takes the
form of

ω(x) =

m∑
r=1

nr∑
i=1

αr
iK (x,xr

i ) . (24)

Incorporating the PDM regularizer within SVM, which we de-
note here as the PDM-SVM, the resultant formulation becomes

min
ω

m∑
r=1

nr∑
i=1

wr
i  (y

r
i , ω (xr

i )) +
C1

2
‖ω‖2

+
C2

2n2

m∑
r,d=1

nr∑
i=1

nd∑
j=1

(
ω (xr

i )− ω
(
xd
j

))2
W rd

ij I[r �= d] (25)

6In this paper, our focus is on predictive distribution differences, so each wr
i

is treated equally by assigning them as 1/n.

where C2 is the parameter that regulates the importance toward
PDM. Note that (25) can be solved using the Laplacian SVM
algorithm described in [44], which has a computation com-
plexity of O(n2). The predictive distribution for SVM is then
estimated by

P (y = 1|x) = 1

1 + eAω(x)+B
(26)

where both A and B are determined by means of maximizing
the log likelihood on the training data [40]. From (26), P (y =
−1|x) = 1− P (y = 1|x).

IV. EXPERIMENTAL SETUP

In this section, an experiment study of the proposed PDM
framework, i.e., PDM-LR, is carried out on synthetic multi-
class and multidomain data sets and a real-world Sentiment
problem.

A. State-of-the-Art Algorithms

In this paper, a plethora of supervised, semisupervised, and
DA state-of-the-art algorithms are considered for comparison
as summarized in Table II, where DL denotes the data of all
the available source domains and DU is the target unlabeled
data. Furthermore, Table II indicates which algorithms can be
directly applied to address the multiclass problem. Since the
proposed PDM is integrated with LR for multiclass problems,
the variants of LR algorithms considered include LR, FA-LR,
and PDM-LR in the experimental study.

The parameters of all the methods are configured by means
of k-fold source-domain cross-validation, which represents an
extension of the k-fold cross-validation for DA suggested in
[45]. Specifically, each partition is a source domain in the k-fold
source-domain cross-validation. In addition, a linear kernel is
used in the SVM considered in this section, due to its popularity
in the text classification domain.
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TABLE III
NUMBER OF DATA FOR EACH CLASS IN EACH DOMAIN

ON SENTIMENT DATA SET

TABLE IV
NUMBER OF DATA FOR EACH CATEGORY IN EACH DOMAIN

ON REUTERS DATA SET

B. Data Sets

Here, the commonly used data sets, including Sentiment,
Reuters-21578, and Newsgroup-20, are considered. Sentiment
is a popular multidomain benchmark data set defined in [46].
It is typically used in the context of DA and is used here to
synthesize the presence of diverse class distributions in the
source and target domains, for the purpose of investigating
on the robustness of traditional machine learning and DA
methods. On the one hand, Reuters data set allows one to study
the efficacy of the methods in the presence of uneven class
distribution in each domain. On the other hand, Newsgroup-
20 enables the study on the existence of similar class distri-
bution in the domain. The brief descriptions of the Sentiment,
Reuters-21578, and Newsgroup-20 data sets are summarized
in Tables III–V, respectively. In the experimental study, the
Sentiment, Reuters-21578, and Newsgroup-20 data sets are
preprocessed by extracting only the single terms, removing
all stop words, performing stemming, and normalizing each
feature. Each feature of the review is then represented by its
respective term frequency-inverse document frequency value.

1) Multidomain Sentiment Data Set: The multidomain Sen-
timent data set is generated from Amazon.com and comprises
four categories of product reviews: Book, DVDs, Electronics,
and Kitchen Appliances. The data set consists of five-star rating
for each review, but the third-star rating is removed to avoid
ambiguity [46] in the binary classification problem. Hence, only
ratings 1, 2, 4, and 5 are considered. For each task, one category
forms the target domain while the rest are treated as related
source domains. In the target domain, all available samples
form the unlabeled data. In each source domain, 200 samples
are randomly chosen to form the labeled data. Each task is
repeated ten times, and the average performances are reported.

TABLE V
NUMBER OF DATA FOR EACH CATEGORY IN EACH DOMAIN

ON NEWSGROUP DATA SET

In the binary problem, star ratings 1 and 2 form the positive
data, while 4 and 5 form the negative data. To study the
mismatch of predictive distributions between the source and
target domains, five different positive class ratio (PCR) settings
are generated here for investigations. The five PCR settings are
chosen from 0.3 to 0.7 at an incremental step size of 0.1. Note
that the PCR value defines the percentage of positive data in the
source domains. A PCR setting of 0.3, for example, indicates
that 60 data vectors have positive class labels while the rest
have a negative label, out of the 200 selected data in each source
domain.

In the multiclass problem, each star rating is equivalent to
a class. Coincidently, the data set consists of an even class
number; hence, it becomes possible to study the mismatch in
predictive distributions between the source and target domains
based on binary problem settings. The same five PCR settings
are also generated for the source domains, and the PCR value
denotes the total percentage of the reviews of star ratings 1 and
2 in the source domain. In addition, the number of star-rating
reviews are chosen to be equal for 1 and 2 and 4 and 5. For a
PCR value of 0.3, for example, out of the 200 selected data in
each source domain, star ratings 1 and 2 each have 30 reviews
while star ratings 4 and 5 each have 70 reviews.

2) Multidomain Reuters Data Set: Three out of four main
categories of the Reuters data set, namely, People(Peo), Orga-
nizations(Orgs), and Exchanges(Excs), are considered in this
paper. The Places category is not considered in this paper due
to the vast instances belonging to this category that would
overwhelm all other categories, thus making the study fruitless.
In each task, the kth largest subcategory of a main category is
considered as the kth domain. The groupings of the domains
are detailed in Table IV. Mainly, the largest subcategory is
used as the target domain (Reuter-1) while the remaining four
largest subcategories form the related source domains (Reuter-2
to Reuter-5).

In the binary context, three resultant tasks are investigated in
total: Peo versus Orgs, Peo versus Excs, and Orgs versus Excs.
For each task, the mth domain of a category is labeled as posi-
tive, while the mth domain in another category forms the nega-
tive data. Note that this experimental setting is consistent to the
other works [47]–[49] that also considered the Reuters data set.

In the multiclass context, each category is treated as an
individual class. All data in the source domains are used as
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labeled data, and for the target domain, the entire data set
is used as unlabeled data. Note that this data set contains
imbalance positive and negative samples in each subcategory;
hence, the class distribution of the target domain is imbalanced,
and the predictive distributions of the source domains are quite
diverse with respect to one another.

3) Multidomain Newsgroup Data Set: The three main cat-
egories of the data set are comp, rec, and sci. We considered
four subcategories in each main category and grouped these
four subcategories into four domains as described in Table V.

In the multiclass context, each category is treated as an
individual class. Since each domain has a significant number
of data to be used as the target domain, we generated four tasks
from these groupings. Task m uses Newsgroup-m as the target
domain, and the rest forms the source domains. All data in the
source domains form the labeled data while the entire data set
of the target domain serves as the unlabeled data.

V. EXPERIMENTAL STUDY

In this section, we present an empirical study of the PDM
framework, particularly PDM-LR, on several commonly used
DA benchmark text classification data sets.

A. Binary Classification DA

We begin our study on the performances of various classi-
fiers for each of the four domains in the Sentiment data set,
i.e., Book, DVDs, Electronics, and Kitchen Appliances, when
used independently as the target domain, are summarized in
Fig. 2(a)–(d), respectively. For each of the subfigures, it depicts
the testing accuracies obtained for five different PCR settings
of the source domains at 0.3 to 0.7. On the other hand, the
PCR of the target unlabeled data set is configured at 0.5. Hence,
when the PCR of the source domains is also in the region of 0.5,
the predictive distributions of the source domains are likely to
match that of the target unlabeled data set. Any other PCR set-
tings, on the other hand, would likely result in mismatch of the
predictive distributions between the source and target domains.

Note that each of the subgraphs exhibits similar performance
trends, where all of the classifiers considered in the study
perform optimally at a PCR value of 0.5, while displaying
sharp declining accuracies when the PCR is skewed toward
either extreme ends, except for the proposed PDM-LR which
is designed to handle data sets with unbalanced class labels.
It is notable that the larger the discrepancies in predictive
distributions between the source and target domains, the greater
is the bias found in the target prediction accuracies by the clas-
sifiers, which are geared toward the source domains. At both
extreme ends of the PCR settings, LapSVM which represents
an extension of the traditional SVM is noted to generally fare
better than SVM since the former acts to evolve the predictive
distribution of the labeled data toward that of the unlabeled
data. However, just using the unlabeled data alone in LapSVM
does not resolve the issues pertaining to differing predictive
distributions between the source and target domains (as denoted
by the values of PCR �= 0.5) since LapSVM is observed to
underperform PDM-LR in Fig. 2.

Fig. 2. Binary-class Sentiment data set: Testing accuracies for varying PCR in
source domains. Subfigures (a)–(d) represent the target domain of Book, DVDs,
Electronics, and Kitchen Appliances, respectively.

At a PCR of 0.5, the target domain shares similar predictive
distribution to the source domain. Thus, it is natural to expect
the DA algorithms to exhibit similar performances with the tra-
ditional classifiers. Nevertheless, FA-LR is observed to obtain
improved accuracy over LR in all the subgraphs. In addition,
KMM and DASVM also outperform SVM in Fig. 2(a)–(c),
respectively. Recall that FA-LR, KMM, and DASVM are the
DA versions of the LR and SVM, respectively. The observed
improvements thus suggest that FA-LR, KMM, and DASVM
can only be beneficial when the predictive distributions among
domains match. In either extreme ends of the PCR values,
the FA-LR, KMM, and DASVM adaptation methods have
reported poorer accuracy compared to their respective non-
DA counterparts. Hence, as a summary, it is notable that,
when the predictive distributions among domains do not match,
DA algorithms generally report lower accuracies than their
respective non-DA counterparts; thus, DA algorithms are prone
to the effects of negative transfer.

In contrast to existing DA approaches, which suffer from
performance degradation due to the effects of negative transfer,
PDM-LR effectively unearths the useful knowledge that lies
inherent within the multisource domains by means of predic-
tion distribution matching, to arrive at the robust prediction
performance observed on the Sentiment data target testing set.
In particular, while DA methods in either extreme ends of the
PCR values displayed poor prediction accuracies of around
55%, PDM-LR, on the other hand, shows an impressive gain of
15% improvements at an accuracy of 70%. Furthermore, PDM-
LR is able to deliver stable results with accuracies that do not
deviate over 5% across all the PCR settings. This demonstrates
the robustness and reliability of the PDM-LR under different
PCR settings by benefiting from the positive transferability
facilitated in the proposed framework.

We further experimented the classifiers on the Reuters data
set. The results obtained are summarized in Fig. 3. Overall,
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Fig. 3. Testing accuracies on binary-class Reuters data set.

Fig. 4. Four-class Sentiment data set: Testing accuracies for varying PCR
in source domains. Subfigures (a)–(d) represent the target domain of Book,
DVDs, Electronics, and Kitchen Appliances, respectively. Compared multiclass
problem on various types of LR methods.

it is observed that PDM-LR, KMM, and DASVM outperform
all other classifiers considered on the Reuters data set. On the
other hand, FA-LR which can also be considered as a multitask
learning method for learning a shared parameter model under
the unique predictive distribution of each domain can lead to
negative transfer since FA-LR underperforms LR in Fig. 3(b)
and (c). Notably, Fig. 3(a) shows significant accuracy improve-
ments of PDM-LR over KMM, DASVM, and all others. In
Fig. 3(b) and (c), PDM-LR is also shown as competitive to
KMM and DASVM. Note that SVM is observed to reach a
near full score of 100% accuracy in Fig. 3(c). This suggests the
high similarities in predictive distributions among the source
and target domains. It is thus reasonable for PDM-LR to
perform close to KMM and DASVM. Nevertheless, PDM-LR
is generally superior to LR.

B. Multiclass Classification DA

The prediction trends of the DA and LR classifiers in the
multiclass setting of the Sentiment problem in Fig. 4 are
observed to be in agreement with those obtained on the two-
class setting (as shown in Fig. 2). Fig. 4 shows that PDM-
LR generally outperforms the other counterpart algorithms in
almost all the different PCR configurations on the multiclass

Fig. 5. Testing accuracies on the three-class Newsgroup and Reuters data sets.
Compared multiclass problem on various types of LR methods.

Sentiment data set. Furthermore, PDM-LR delivers stable re-
sults with accuracies that do not deviate over 5% across all
the PCR settings. In the multiclass setting, the negative transfer
phenomenon of DA is more adverse as shown in the results of
FA-LR. This is because the likelihood for differing predictive
distributions among domains is likely to happen since more
class distributions are considered. Hence, PDM becomes ever
more challenging in the multiclass classification context.

The multiclass Newsgroup and Reuters experimental results
are next summarized in Fig. 5. Although the class distributions
of the Newsgroups are similar across domains, there are signs
of the DA methods suffering from negative transfer since FA-
LR is observed with lower accuracies than the traditional LR.
In addition, KMM also has poorer accuracies than LR. In
particular, the causes of low prediction accuracy on the testing
set for FA-LR and KMM are likely to be a result of the differing
predictive distributions between the training and testing sets
and also likely the reason for the lack of robustness in the
performances of KMM and FA-LR when compared to LR
across the range of PCR values in both the Sentiment and
Newsgroup data sets (see Figs. 2, 4, and 5). It is also worth
noting in Fig. 5 that LR fares generally better in prediction
accuracy on the Reuters than the Newsgroup data sets. Taking
this cue, we infer the predictive distributions of the domains
in the Reuters data set to bare greater similarities. In compar-
ison to all algorithms, PDM-LR overall exhibits at least 5%
improvements in accuracy on all the data sets while attaining
at least 10% accuracy enhancements on four out of the five data
sets considered. Furthermore, an impressive improvement of up
to 20% is observed on Newsgroup-1.

C. Computational Complexity of PDM-LR
Regularized Classifier

In this section, we analyze the computational complexity of
the PDM-LR regularized classifier via empirical study. Fig. 6
summarizes the computational effort involved in the training
of a PDM-LR regularized classifier on the various data sets
considered. It is observed that the coordinate descent method
as described previously in Section III-A2 takes around ten
iterations in the outer loop to solve the PDM-LR regularized
classifier. The experimental results thus confirm our theoretical
complexity analysis of PDM-LR as O(nη). In addition, the time
taken by the classifier in each algorithm is shown in Fig. 7. In
particular, the PDM-LR regularized classifier takes an addition
of 0.4 s or twice the time for training compared to LR where the
additional time is mainly for computing the regularizer term of
PDM-LR.
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Fig. 6. Computational time effort incurred to train the PDM-LR regularized classifier on multiclass settings with Kitchen Appliances with PCR = 0.5, Reuters,
and Newsgroup-1 as the target domains. Each point in the subplots represents the ith iteration for the outer loop of the coordinate descent method in PDM-
LR. The x-axis denotes the time taken in seconds while the y-axis denotes the ΔG = G(βi)−G(β0) at the ith iteration. The algorithm terminates when
‖G′‖22 < 0.00001.

Fig. 7. Time taken for training a classifier in each algorithm under binary-
class Kitchen Appliances with PCR = 0.5.

VI. REAL-WORLD COMPLEX PROBLEM:
WATER MOLECULES

In this section, we present the application of the proposed
approach to the water isomer discovery problem [50]. Water
clusters are crucial for understanding the enigmatic properties
of water. They are analyzed in biology to study hydrophobic
and hydrophilic interactions and elucidate water’s role in bio-
chemical processes which include ligand docking and protein
folding [50]. Water clusters are also investigated in physical
chemistry to discover the fundamental molecular interactions
and collective effects of the condensed phase (liquid and ice)
[51]. The identification of water isomers, which are low-energy
stable and metastable molecular structures of pure water clus-
ters, is important to study the key properties of the structures.

Obtaining the true computational design of water isomers
using mechanical calculation, such as B3LYP [52], is often
computationally intractable without the availability of some
supercomputing facilities, particularly on large-scale water
clusters. To overcome the issue of computational intractabil-
ity, cost-effective empirical models, including OSS2 [53] and
TTM2.1-F [54], have been developed and employed as alter-
natives to their computationally expensive counterparts. Using
the sample sets of isomers collected from past sampling on the
different models, we aim to predict the true water isomers in
B3LYP, thus reducing the time effort that would otherwise be
spent on exhaustive sampling using the expensive mechanical
calculations. Here, four source water isomer data sets have
been collected from past sampling processes on the different
potential energy models, which are summarized in Table VI.
Data Sources 1 and 2 were obtained from OSS2 while Sources 3
and 4 were obtained from TTM2.1-F. Here, the sparse data set
archived from the past computational design of water isomers
via B3LYP is then referred to the target domain of interest. In
each domain, all water isomers are denoted as positive labeled

TABLE VI
WATER-MOLECULE DATA SETS

Fig. 8. Testing accuracies on binary-class water-molecule data set. Compared
nonlinear problem on various types of SVM methods.

data while the unstable water-molecule structures are assigned
with negative labels.

Aside from PDM-SVM, here, the traditional methods, SVM
and LapSVM, and DA methods, KMM and DASVM, as de-
scribed in Table II, are also used to address the water isomer
prediction problem. In addition, FA on the SVM classifier (23),
which is denoted in this study as FA-SVM, is further consid-
ered. In all the methods, the Gaussian kernel is employed.

Fig. 8 summarizes the accuracies obtained by PDM-SVM
and all other algorithms considered for predicting the water iso-
mers. Overall, PDM-SVM showcased superiority over all the
methods considered, with rewarding performance of at least 5%
accuracy improvements. Analysis shows that the improvements
are attained due to class distribution differences between the
source and target domains, as denoted in the last column of
Table VI, and also the conflicting class labels among domains,
which is caused by the low fidelity of the empirical models.
In addition, PDM-SVM is shown to identify suitable source
samples as depicted by the circle-enclosed substructures in
Fig. 9(a) and (b) that would lead to positive transferability.
The dotted-rectangle-enclosed substructures in Fig. 9(a) and
the dotted-triangle-enclosed substructures in Fig. 9(b) denote
the positive information transferred from source domains in
the inference of the target B3LYP molecule of Fig. 9(c). This
learning process allows the target structure to be inferred while
avoiding source samples that conflict with the target domain.
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Fig. 9. Example of eight water molecules in different domains. PDM-SVM uses OSS2 and TTM2.1 water isomers to infer a B3LYP as water isomer. The circle-
enclosed substructures in subfigures (a) and (b) depict the structure similarities between the OSS2 and TTM2.1 samples. Similarly, the dotted-rectangle-enclosed
substructures in subfigure (a) and the dotted-triangle-enclosed substructures in subfigure (b) denote the positive information transferred from source domains in
the inference of the target B3LYP molecule of subfigure (c).

Eventually, PDM-SVM learns the predictive distribution of the
target domain to select positive transferability data samples for
enhanced prediction.

VII. SUMMARY

In practice, the true predictive distributions of the source
and the target domains often differ. When the predictive dis-
tributions among domains do not match well, DA algorithms
that attempt to match the marginal distributions generally fail
to function well due to the phenomenon of negative transfer.
The causes of predictive distribution differences among related
domains are mainly due to the differing class distributions and
conflicting class labels among domains in specific regions of
the vector space. In addition, the challenges pertaining to the
differing predictive distributions among domains are known to
increase in the multiclass context since more class distributions
need to be considered.

To address the issues of predictive distribution differences
among domains, we first present a criterion of positive trans-
ferability, which measures the similarity between two samples
from different domains in terms of their predictive distribu-
tions. With this criterion, a PDM regularizer is proposed to
enforce data that are similar according to the notion of positive
transferability to have similar predictive outputs. To achieve
this, an iterative construction of a k-nearest-neighbor graph
that models the regions of relevant source labeled data with
predictive distributions that maximally align with data in the
target domain of interest has been presented. Finally, we in-
corporate our PDM regularizer into two common regularized
risk frameworks. Namely, LR and SVM are considered as
instantiations of the PDM to attain at PDM-LR and PDM-
SVM classifiers that are robust to negative transfer caused
by differing predictive distributions across domains. Extensive
experimental study on the PDM framework has been shown
to facilitate positive transferability with significant accuracy
improvements attained on both binary and multiclass contexts,
thus verifying the success of the proposed PDM regularizer
in the identification of relevant data and transfer of useful
knowledge across source domains.
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