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Modeling Search in Group Decision Support Systems

Jackie Rees and Gary J. Koehler

Abstract—Groups using group decision support systems (GDSS)
to address particular tasks can be viewed as performing a search.
Such tasks involve arriving at a solution or decision within the con-
text of a complex search space, warranting the use of computer-
ized decision support tools. The type of search undertaken by the
groups appears to be a form of adaptive, rather than enumera-
tive, search. Recently, efforts have been made to incorporate this
adaptation into an analytical model of GDSS usage. One possible
method for incorporating adaptation into an analytical model is to
use an evolutionary algorithm, such as a genetic algorithm (GA), as
an analogy for the group problem-solving process. In this paper, a
test is made to determine whether GDSS behaves similarly to a GA
process utilizing rank selection, uniform crossover, and uniform
mutation operators. A Markov model for GAs is used to make this
determination. Using GDSS experimental data, the best-fit transi-
tion probabilities are estimated and various hypotheses regarding
the relation of GA parameters to GDSS functionality are proposed
and tested. Implications for researchers in both GAs and group de-
cision support systems are discussed.

Index Terms—Genetic algorithms, group decision support sys-
tems, Markov processes.

1. INTRODUCTION

ROUPS of individuals meeting to solve particular prob-

lems can be viewed as searching for an optimal or near-
optimal solution within a solution space [1]. This solution space
is likely to be highly complex; otherwise, the best solution could
be located by an individual, rather than requiring the effort of
a group of individuals. Group support systems, in particular,
group decision support systems (GDSS), have been used to as-
sist groups in their problem-solving efforts.

GDSS are designed to support group decision-making
through specialized software, hardware, and decision sup-
port tools. DeSanctis and Gallupe in [2] defined GDSS as
a combination of computer, communications, and decision
technologies working in tandem to provide support for problem
identification, formulation, and solution generation during
group meetings. For our purposes, we do not restrict the term
GDSS to the traditional decision room and facilitator.

Using the above definition, GDSS could be construed as a
tool for facilitating the search for better solutions within the
defined solution space. Not only does GDSS provide decision
support tools for modeling and solving problems, but also tools
for reducing the “process losses” and emphasizing the “process
gains” assumed to be present in typical GDSS usage [3]. Within
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this context, GDSS is a tool to improve the efficiency of the
group’s search through the solution space.

A phenomenon of interest to GDSS researchers is the patterns
of search behavior present in group decision-making. Once the
patterns of search are better understood, GDSS variables and the
relationships between search patterns and those variables can
be re-examined, with the eventual goal of making GDSS as ef-
ficient and effective as possible. Examples of GDSS variables
include proximity (face-to-face or geographically dispersed),
incentive structure, degree of anonymity, leadership presence,
group size, and composition, etc.

The pattern or type of search typical in GDSS use is most
likely not a random search; otherwise, GDSS would have no
beneficial effects over certain groups. However, the search is
most likely not deterministic in an algorithmic sense. Hirokawa
and Johnson proposed that the group decision-making process
is an evolutionary one [4]. There exists a class of algorithms
that behave like evolutionary processes, so-called evolutionary
algorithms. The genetic algorithm (GA) is a special type of evo-
lutionary algorithm particularly suitable for modeling the search
activities of groups using GDSS.

This paper describes and improves upon an earlier analytical
model for GDSS search using a GA as the basis of the model [5].
The model is improved by incorporating more sophisticated im-
plementations of the selection and recombination operators that
should better capture the dynamics of a GDSS process. We test
this model using experimental data and present the results of
tests of hypotheses linking GA parameters to GDSS variables,
specifically geographic proximity and incentive structure. Ear-
lier studies [5], [6] using a simpler GA model focused on ge-
ographic proximity and leadership variables. These results are
further underscored by the overall robustness of the generalized
GA approach presented in Rees and Koehler [7].

The remainder of the paper is organized as follows: Section II
briefly presents existing analytical models for GDSS as well as
the mechanics and characteristics of the GA. Section Il presents
the model for GDSS search and research questions based on the
model and are put forth in Section I'V. Section V discusses the
experimental data used to test the research questions and the
results that are contained in Section VI. Finally, the conclusions
and future research are presented in Section VII.

II. BACKGROUND

A brief overview of two previous analytical models for GDSS
processes is presented. The relative strengths and weaknesses of
the models are highlighted along with the justification for why
another analytical model would be useful for both researchers
and practitioners. We also present in this section a brief back-
ground on GAs as they are used in this particular study. The me-
chanics and underlying theory of the GA as pertaining to this re-
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search and justification for why GAs are suitable as a modeling
tool are discussed.

A. Analytical Models for GDSS

Valacich and Dennis in [8] presented a simple mathematical
model of electronic brainstorming using GDSS. Their model
presents GDSS brainstorming as the ideas generated by a group
of individuals, each working alone, account for process losses
and process gains [3]. In other words, ... group performance
is a function of individual performance minus process losses
plus process gains” [8, p. 64]. Their model was one of the ear-
liest models to provide analytical insight into a particular GDSS
process. The shortcoming of the model is that it can provide
no insight into the expected behavior of the system, where the
system is composed of the group members, the environment, the
task under consideration, the reward (internal or external) tied
to decision quality, and the final decision itself.

Perhaps the most closely related GDSS research to this
particular research project is the economic analysis of GDSS
[9]. This work was preceded by research on distributed GDSS
[10], [11] where brainstorming and other GDSS activities were
closely examined. One of the important features of their model
is that it considers GDSS use by groups to be in the format of
a search problem with a very large search space. According to
their model, every feasible solution has a payoff, which must
be balanced with the cost of performing the search. Another
aspect of interest in their model is the discussion of a “trigger
phenomenon” [9]. This is the case when an original idea “trig-
gers” a new line of reasoning or discussion. The model also
addressed the probability of finding a solution, the expected
net benefit of finding a particular solution, stopping criteria,
and the marginal value of group size [9]. The one drawback to
their model is the difficulty in understanding the underlying
processes in GDSS use. For example, the trigger phenomenon
is described but is not easily operationalized. However, this
phenomenon is remarkably similar to the mutation operation of
the GA, discussed below.

B. GAs

In order to provide the type of analysis that would prove
useful to researchers and practitioners, the appropriate tool must
be selected as the basis of such a model. We propose that the GA
as described in [12] is such a tool.

GAs are general-purpose search algorithms driven by the
basic principles of Darwinian natural selection and evolution.
Search is performed from a population of agents, rather than
from a single one. Such agents, called strings, points, or
chromosomes, explore a space using three basic operations.
Selection or reproduction is the operator that tends to take the
“fittest” members of the population for use in generating the
next generation. Crossover combines genetic material between
selected members of the population. Finally, mutation adds
diversity back into a population. This process is illustrated in
Fig. 1.

The GA operations proceed as follows. First, strings are eval-
uated according to a given fitness function. This evaluation, or
objective value, influences the proportion of the string in the
next time series, or generation. Fitter strings generally have a

Selection
Mutation
Fig. 1. Simple GA process.
TABLE 1
SIMPLE GA

Algorithm: Genetic Algorithm

Given:
String length £, fitness function f(), mutation rate e [0,0.5],
crossover rate Y € [O,I] and population size n>1.

Initialization: Generate an initial population, population 0. This is usually done
by randomly drawing n strings from Q =1{01,....2" — I} with replacement.

Step 1: Form a new population as follows. Repeat the following steps until the
new population has n members.
(A) Randomly choose two (or more) members from the old population
according to a selection process. These are called parent strings.
(B) Form one or more children through a mixing process consisting of
crossover and mutation operations.
Step 2: conditions are not met, return

If stopping to Step 1

greater chance of being stochastically selected for the next gen-
eration. Second, selected strings are recombined, or crossed, in
the hope of discovering better or fitter strings by combining ge-
netic material. Third, the selected strings are randomly mutated
to replace any lost diversity after selection and crossover. As
such, GAs are a stochastic search technique. The mechanics of
the GA are illustrated in Table I below.

Selection occurs similar to that of asexual reproduction in the
natural world. Chromosomes that are deemed “fit” by measure
of a predefined fitness function are stochastically more likely
to be represented in future populations. The version of selec-
tion used for this model is rank selection. Rank selection starts
by sorting the population according to fitness value. Each string
receives new copies that are placed in the new population ac-
cording to a function of this ordering. Several other variations
of selection are discussed in [12].

Crossover implements a mating strategy for the combination
of “good” genetic material between fit parents. After the selection
procedure is complete, crossoveris applied with a predetermined,
fixed probability, called the crossover rate, usually ranging from
0.6to 1.0. Uniform crossover is implemented in this model. Each
corresponding bit pair between the two strings is exchanged with
probability 27 [13], where / is the length of the string. Other
crossover schemes exist and are discussed in [12].

Mutation is the last operation on the population before the
next generation is completely formed. In the binary case, muta-



REES AND KOEHLER: MODELING SEARCH IN GROUP DECISION SUPPORT SYSTEMS 239

tion simply requires the mutated bit becomes its complement
(i.e., 0 becomes 1 and vice-versa). Under uniform mutation,
mutation is applied with a fixed, predetermined probability to
each gene (each bit) in every string. The mutation rate is kept
very low, usually between 0.001 and 0.005, in order to keep the
search from diversifying too rapidly. Other mutation schemes
are available, see [12].

Nix and Vose in [14] developed a Markov chain (MC) model
for genetic algorithms. Each state of the Markov chain repre-
sents a population of the GA. This model provides an exact
representation for the expected populations of a GA over time.
Using this model, one can compute maximum-likelihood esti-
mates of crossover and mutation rates from existing data, rather
than repeatedly executing the GA with various crossover/muta-
tion rate combinations and attempting to find the best fit.

III. EVOLUTIONARY MODEL FOR GROUP DECISION
SUPPORT SYSTEMS

The idea that groups undergo change and that the initial ideas
or proposals submitted during a GDSS session are subject to
adaptation is not a new idea. However, little has been done to
incorporate the adaptation of potential solutions into an analyt-
ical model for GDSS. By using an evolutionary computing tech-
nique, for which an exact analytical model is available, such
as the GA described above, we can begin to more accurately
describe the search processes that occur during GDSS use. By
search processes we include the generation of solutions as oc-
curs during brainstorming activities, the exchange of informa-
tion as occurs during negotiation activities as well as any refine-
ment or learning of solutions that also may occur. For this par-
ticular study, we assume a simplified GDSS session, involving
only the following. Provided a task (for example a resource al-
location problem involving different and potentially conflicting
constraints, costs and benefits to specific group members and
the departments they represent), the group members will submit
ideas or potential solutions to the group using the GDSS. This
activity is analogous to the selection operation of the genetic
algorithm. These ideas are exchanged between group members
and extended or improved upon by other group members. This
activity is analogous to the crossover operation of the genetic
algorithm. In addition, the occasional random thought or idea
is inserted into the collection of ideas. This action is similar to
the mutation operation of the genetic algorithm. This process
continues until the group agrees upon a solution or suspends the
session for continuation at a later date.

We propose that group problem solving, when supported by
GDSS, can be modeled by a genetic algorithm, utilizing se-
lection, crossover and mutation. Each collection of proposed
ideas or solutions generated by the group can be represented
by a population of strings; each string in the population at time
step t represents a current proposed solution at time t. Selec-
tion, crossover and mutation operate as above. As the genera-
tions evolve, the genetic algorithm should find either the best or
at least a very good solution. We believe that GDSS supported
groups can be viewed as generating and evolving solutions using
a mechanism that can be modeled in this way.

We have chosen a genetic algorithm to model GDSS for sev-
eral reasons. First, GAs are adaptive, meaning there is change

over time, in response to the environment, including the fitness
function and other constraints. The second reason for using a
GA is a body of formal, mathematical theory has been devel-
oped to describe the expected behavior of the simple genetic
algorithm. If groups using GDSS for particular tasks can be
modeled as a GA, this theory could provide numerous insights
into the group decision-making process. For example, variables
and different environmental pressures thought to influence the
process could be related to GA parameters and then factors such
as the expected behavior of the system could be determined or
optimized. Eventually, the model could be used as the basis for
simulation studies, allowing researchers to examine more com-
binations of GDSS variables before conducting lab and field ex-
periments, with the goal of better understanding different vari-
ables, the interactions between those variables, and the impacts
upon GDSS decision quality.

IV. RESEARCH QUESTIONS

The underlying assertion for this work is that groups using
GDSS act like GAs using selection, crossover, and mutation.
This assertion was initially tested in [5] using a simpler form of
the GA. The enhanced GA will be tested in the first hypothesis.
In the following, x stands for “crossover rate” and (. stands for
“mutation rate.” Our main assertion is the following.

Assertion: Groups Using GDSS Act Like a Genetic Algo-
rithm: We implement this GA using rank selection, uniform
crossover, and uniform mutation as described above. We will
specifically test this assertion by comparing the maximum like-
lihood ratios of the path probabilities of the estimated parame-
ters (x* and 1*) to the probability of these paths under a random
search. This comparison is tested in the following hypothesis:

HI-P;;(x*, u*)—Pi;(0.0,0.5) # 0: The above hypothesis
will be tested using the methodology described in Section V
below.

1) GDSS Variable Hypotheses: One of the issues facing
group work is the social and political forces affecting members
of the group, possibly affecting the quality of the group’s de-
cision-making. We hypothesize that proximate or face-to-face
(FTF) groups respond more to group or “societal” pressures
and tend to conform. This would lead to similar thought pro-
cesses being explored in depth, rather than many different (and
possibly conflicting) ideas being presented for consideration.
Therefore, FTF groups tend to be more focused. Geographi-
cally dispersed or computer-mediated-communication (CMC)
groups are exposed to fewer visual cues meaning a greater
sense of anonymity, which could lead to the proposal of
possibly very different solutions [3]. Research performed on
distributed groups versus proximate groups has found that
distributed groups exhibit greater degrees of depersonalization
and impulsiveness, lowered inhibition, and generate *. .. more
extreme opinions” [15, p. 328], [8]. In other words, CMC
groups can be considered more explorative of the solution
space than FTF groups. Under these assumptions of social
and political motivations, FTF groups would be less likely to
present completely new solutions than CMC groups. CMC
group members would be more likely to explore alternate but
possibly unpopular or politically less favorable solutions. These
ideas lead to our next hypotheses.
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Hypothesis H2a—purprr — ove < 0: We test H2a by com-
paring the maximum likelihood estimate of the mutation rates
of both groups. If H2a is true, the best fit mutation rate x should
be lower for FTF groups than CMC groups. In both FTF and
CMC groups from Barkhi’s study, there were three to four par-
ticipants in each group, for a total of 48 groups.

Solution diversity within a population provides insight into
the variation among the different solutions proposed by group
members. As stated above, FTF groups are likely to conduct
a less explorative search than CMC groups. Therefore, as the
same number of group members searches less of the solution
space in FTF groups than CMC groups, we would expect the
diversity levels to average lower than CMC groups.

Diversity (A) can be measured as the average distance be-
tween the solutions, or points, in the solution space. GA research
has concerned itself extensively with the concept of Hamming
distance [12]. Mitchell in [16] defines Hamming distance as
the number of locations or genes at which the corresponding
values or bits differ. Other such distance measures are possible,
however, Hamming distance represents the simplest and most
widely used distance measure for complex search spaces in GA
literature. We define A as

A Zi:pl d’ (1)

p

where d; is the Hamming distance between each pair 7 and n,
is the number of pairs.

Hypothesis H2b—Aprr—Acmc < 0: As A becomes small,
x should also become small for FTF groups. As there is less di-
versity within the group, the crossover rate, or the rate at which
“parts” of proposals or ideas are exchanged, should become
small, as most of the proposals are already identical. Corre-
spondingly, A and y should both be larger for CMC groups.

Hypothesis H2c—xrrr — xXcme < 0: We test this hypoth-
esis by comparing the maximum likelihood estimates of the
crossover rates x, between FTF and CMC groups. Given that
diversity is lower for FTF groups as proposed in H2b, the esti-
mated crossover rate y should be lower for FTF groups than for
CMC groups.

The next set of variable hypotheses examines the link be-
tween GA parameters and incentive structure. Often in GDSS
research, group member incentive or payoff is assumed to be
implicit (i.e., a normal part of the job). Very few studies have
examined the impact of incentive on GDSS outcome.

Barkhi in [17] examined the effects of two different explicit
incentive structures on a particular negotiation task. The task in
their study was a type of resource allocation problem involving
conflict, negotiation, and information asymmetry. Group mem-
bers were provided cost and revenue data specific to the par-
ticular department of the member. The task was to select the
set of customer orders that would maximize profit for the com-
pany given capacity and resource constraints. Group members
received rewards that were tied to the profitability of either the
firm as a whole (global incentive structure) or based on how
well the individual departments controlled costs relative to rev-
enues (local incentive structure). These two incentive structures
studied are representative of the many possible permutations of
the incentive variable.

That particular study reported that a local incentive structure
resulted in greater organizational profit than did global incentive
structure. They theorized that local group members, assuming
rationality, could easily compute the marginal increase in re-
ward as effort level increased and would select the best effort
level for each customer order. Groups under global incentive re-
ceive increasing benefits as the group members’ productivity in-
creases. If the group members are unable to see the relationship
between individual effort and group productivity, a tendency
to “free ride” results as described in [17] and [18] effectively
lowers group output. Groups under global incentive also tend to
engage in gaming behavior as described in [17], reducing profit
for the entire group. As groups engage in such behavior, the level
of cooperation is often reduced in the face of uncertainty. Since
there is little pressure on the global incentive group member to
find the best solution possible, there would be little motivation
to actively cooperate and quickly converge. Conversely, we ex-
pect local incentive group members to engage in more coop-
erative behavior in order to reach convergence. Therefore, we
would expect the level of exploration in solutions proposed to
be lower in local incentive groups and higher in global incentive
groups (due to the increased competition).

Hypothesis H3a—p1, — pe < 0: This hypothesis will be
tested by comparing the maximum likelihood estimates of the
mutation rates of both groups. The estimated mutation rate, p,
should be lower for local (L) incentive groups than global (G)
incentive groups.

Similarly, as the same number of group members are con-
ducting a less explorative search in local incentive groups than
for global incentive groups, the solutions should not vary as
much in local incentive groups than in global incentive groups.
We, therefore, believe the average level of diversity (A) as mea-
sured by the average Hamming distance will be lower for local
incentive groups than for global incentive groups.

Hypothesis H3b—A1, — Ag < 0: We will test this hypoth-
esis by comparing A for both global incentive and local incen-
tive groups. A should be smaller for local incentive groups than
for global incentive groups. As A becomes small, x should also
become small for local incentive groups. As there is less diver-
sity within the group, the rate at which segments of solutions
are exchanged will appear smaller, as most of the solutions are
already identical.

Hypothesis H3c—x1, — xa < 0: We will test this hypoth-
esis by comparing the maximum likelihood estimates of the
crossover rates x between local and global incentive groups.
Given that diversity is lower for local incentive groups as pro-
posed in H3b, the estimated crossover rate y should be lower
for local incentive groups than for global incentive groups.

V. EXPERIMENTAL DATA

To test and validate our model, we use data provided by
Barkhi in [17]. We now present some of the details of these
experiments, as the research variables used in Barkhi’s study
influenced the way in which we have related GA parameters to
GDSS parameters. Barkhi’s experiments examined the effects
of various factors on the outcome of GDSS problem-solving
tasks. He considered a mixed-motive task by which group
members had to coordinate the final solution in the face of
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conflicting pay-off information. He constructed a group where
each member represented a different department within a
simulated manufacturing environment, the departments being
labeled as production, purchasing, and marketing. Some of the
groups in the study were comprised of the three members la-
beled as above and the others were comprised of four members
(the previous three plus a designated “leader” who had override
power on all decisions made within the group). There were 48
groups in his study. The group was assigned a combinatorial
problem with a calculated payoff for each member.

Included in the research variables studied were proximity
(face-to-face versus geographically distributed) and member
incentive structure (local versus global). Barkhi tested two
different incentive schemes. One scheme, local incentive,
rewarded each manager based on how well the manager
controlled actual costs compared to projected costs. The other
scheme, global incentive, rewarded each manager based on an
equal percentage of the organizational bonus, corresponding to
organizational profit.

A. Model Details

This section presents the problem-specific details of the re-
search model. The encoding of the strings, population sizing,
fitness function, and GA operator implementation are described.

Each string in the population represents a set of orders to be
filled as proposed by a manager or the leader in a specific gen-
eration. Each string is composed of 20 binary digits, each repre-
senting the inclusion (or exclusion) of a customer order by a one
(or zero). A population consists of a number of solutions. The
number varies from episode to episode, but there is no “natural”
demarcation for groups using GDSS. GDSS supported groups
can be modeled as having a dynamic population size. We pro-
pose the following scheme for modeling the populations.

The population-sizing scheme treats each group member
(each functional area manager and leader, if present) as having
ideas of nearly equal weight. Whenever a solution from a
different manager is presented, the current generation is closed.
For example, the marketing manager proposes a solution,
then another solution immediately afterwards. The production
manager then proposes a solution. This marks the end of the
generation and the population size is three. For groups with
a leader, the leader is simply regarded as another functional
manager. However, several issues are raised. In the case where
the GDSS participants are not anonymous, if a leader is present,
there is the belief that leaders may exert a different type of
influence over the decision-making process than do peers.
Therefore, some account of this variance in influence should be
taken in forming the generations. An example of an application
of the sizing scheme is provided in Fig. 2. In this example,
managers each contribute possible solutions to the discussion.
These ideas are encoded into binary strings. For example, the
marketing manager (M) proposes a solution, followed by a
solution from the production manager (P), followed by another
solution from the marketing manager (M), followed by the
leader of the group (L) and so forth. These proposed solutions
are then temporally placed into populations. In Fig. 3, the ideas
proposed in Fig. 2 are grouped into populations where each
population has two strings (n = 2).

Proposed Solution Sequence
M: 00100011010001000011
P: 10100010010010001011
M: 00010011010000000011
L: 00100011010000000011
L: 00100011010001000011
P: 00100111010010000000
P: 00100011010001000011

Fig. 2. Population sizing scheme example: idea generation process.

Populations
Population 0:
00100011010001000011
10100010010010001011
Population 1:
00010011010000000011
00100011010000000011
Population 2:
00100011010001000011
00100111010010000000
Population 3:
00100011010001000011

Fig. 3. Population sizing scheme example: generations formed from proposed
solution sequence.

The fitness functions can be viewed as an implementation
of the social welfare functions described in economic agency
theory literature. Luce and Raiffa define social welfare function
as “... arule which associates to each profile of preference or-
derings (i.e., to each element of R(™)) a preference ordering for
society itself” [19, p. 332]. More specifically, the fitness func-
tion used is to be an additive utilitarian social welfare function
as described in [20].

The GA as presented in [13] utilizes three operators: selec-
tion, crossover, and mutation. There exist several variations
on each operator, for example, single-point versus uniform
crossover [13]. An earlier version of our model implemented
perhaps the simplest version of a GA as possible [5]. To better
capture the nature of the GDSS search process, the model was
enhanced from roulette wheel selection to rank selection and
from single-point crossover to uniform crossover. Uniform
crossover applied to two ideas—A and B—is illustrated in Fig. 4,
where the crossed digits are highlighted in bold. Finally,
uniform mutation is illustrated in Fig. 5, where the underlined
bit is the one that is mutated.

As GDSS supported groups can be modeled as a GA as stated
above, rank selection serves as a likely means of selection of the
next (t + 1) generation. Rank selection is an intuitive means of
selecting solutions that will serve as parent solutions for future
generations and is described in [12] and [13]. Crossover is im-
plemented in our model as uniform crossover as detailed in [12]
and formally in [13]. Uniform crossover appears a likely can-
didate due to its ability to “mix and match” portions of the two
parent solutions, rather than the one cut mechanism of single-
point crossover. Mutation is implemented as uniform mutation
also as described in [12] and [13].
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Before crossover
Idea A: 100100111010010010
Idea B: 010010001001010010

After crossover
Idea A’: 010010101000010010
Idea B’: 100100011011010010

Fig. 4. Uniform crossover implementation.

Before mutation
Idea A’:100100111001010010

After mutation
Idea A”: 101100111001010010

Fig. 5. Uniform mutation implementation where _ denotes the mutated bit.

TABLE 1I
STEPS IN THE WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST

1) Calculate the difference between each pair D; = x;; — X
fori=1, ..., nwhere x;; and x;; are the matched observations.

in order and

2) Assign ranks by placing each pair, |Di

record signs.

3) T"=)D, forD, >0
i=1

4) Test statistic, w,.,, is set for the two-tailed test at o= 0.05

B. Methodology

Several researchers have examined the evolutionary charac-
teristics of systems by creating a simulation environment where
a GA is used to mimic the behavior of some agent or group of
agents. This research differs in that rather than simulate the
groups used in Barkhi’s study, we used the historical data from
Barkhi to find a best-fit GA. We used the model proposed in [13]
which gives transition probabilities to determine a likelihood
function for the probabilities of each group’s particular path
through the solution space. Specifically, each population of a GA
can be represented as a state in a Markov chain. The likelihood
of moving from generation to generation can be expressed as a
function of the selection and mixing operators [13]. The expected
path probability, or likelihood, for a given Markov chain is

Pj.jo (N1, N2)Pj, 55 (N2, N3) ... Py 5 (No—1, Np)  (2)

where N1, No, ... Nt are the population sizes at times t =
1,2,...,T. We maximized this quantity over x and . There-
fore, the maximum-likelihood function over y and p is

T-1

max H Pji,j;+1(Ni7Ni+l)' (3)
A

The maximum-likelihood estimates (MLEs) for these paths
were calculated over all possible values of mutation (0, 0.5)
and crossover (0, 1.0) with three-digit precision. Therefore, we
estimated a best-fit mutation and crossover rate for each group,

TABLE III
TEST RESULTS FOR MAIN HYPOTHESIS
Hypothesis Critical Value  Results
H1 T =1081 (p<.001)
Wos=691.1 Do Not Reject

assuming each group acted like a GA. This process is also known
as learning the parameters of the Hidden Markov Model (HMM)
within the data and was demonstrated in [7]. The best-fit path
probability estimates for each group were compared with the
path probability for a GA using random search, namely a GA
where x = 0.0 and i = 0.5. If the groups behave significantly
different than a GA using random search, then there is support for
the hypothesis that the groups behave as a GA with specific GA
operators and parameter values. We test this hypothesis by using
the Wilcoxon matched-pairs signed-ranks test [21] described in
Table II. The assumptions of the test are that the difference be-
tween each pair is a continuous random variable, the distribution
of each difference is symmetric, the differences are mutually
independent, the differences all have the same median, and the
measurement scale is interval [22]. Each GDSS variable/GA
parameter hypothesis is tested by means of a one-tailed t test on
the average parameter values, assuming unequal variances, at the
a = 0.05 level to test for differences in the described groups.

VI. RESULTS

The results of the test of Hypothesis HI1, that groups using
GDSS behave like a GA, are provided in the table below
(Table III). The results indicate that there is strong evidence
against groups using GDSS acting like a random search. At
the 5% significance level, these results specifically show that
the GDSS groups examined did not have best-fit estimated
crossover rates equal to 0.0 or best-fit estimated mutation
rates equal to 0.5. Therefore, we have evidence that the GDSS
groups are conducting a search process consistent with the
search undertaken by a GA.

Our first parameter hypothesis, H2a, stated that FTF groups
are likely to have less radical or extreme search than CMC
groups. In order to test this hypothesis, we compared the
best-fit mutation rate i between FTF and CMC groups. For this
hypothesis to not be rejected, FTF groups must have a smaller
w1 than CMC groups. This hypothesis was rejected at « = 0.05.
The overall mean for FTF groups is slightly higher (0.023) than
the overall mean for CMC groups (0.022) but not significantly
so (p = 0.44). Therefore, we conclude there is no significant
difference in the level of radicality of the search between FTF
and CMC groups. These results are presented in Table IV.

The next hypothesis posed compares the level of diversity
(difference in solutions as measured by the Hamming distance)
between FTF and CMC groups. Hypothesis H2b stated FTF
groups are likely to have a lower diversity value (as measured by
A) than CMC groups. This hypothesis was rejected at « = 0.05.
The difference in the means for the two groups is significant;
however, the CMC groups have the lower level of diversity than
the FTF groups. Therefore, we conclude FTF groups do not have
a lower diversity value than CMC groups. The one-tailed t test
results for the average diversity level are presented in Table IV.
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TABLE IV
RESULTS OF STATISTICAL TESTS ON COMMUNICATIONS CHANNEL HYPOTHESES
Hypothesis FTF CMC Results
Mean Mean
H2a 0.023 0.022 (p=0.44)
Reject H2a
H2b 1.277 0.860 (p=0.04)
Reject H2b
H2c 0.100 0.206 (p=0.10)
Do Not Reject
H2c
TABLE V
RESULTS OF STATISTICAL TESTS ON INCENTIVE STRUCTURE
Hypothesis Local Global Results
Mean Mean
H3a 0.017 0.028 (p=0.05)
Do not reject
H3a
H3b 1.001 1.094 (p=0.33)
Reject H3b
H3c 0.199 0.120 (p=0.17)
Reject H3c

Our final hypothesis comparing FTF groups with CMC
groups relates the crossover rate  to the diversity rate. Hypoth-
esis H2c stated if the diversity A is close to zero, FTF groups
are likely to behave like a GA having a lower crossover rate x
than CMC groups. We find that there is some support for H3a,
although it is not strongly significant (p—value = 0.10). The
one-tailed t test results for the best-fit estimated crossover rates
are presented in Table IV.

Hypothesis H3a stated that groups having a local incentive
structure should have a lower mutation rate than groups having
a global incentive structure. We do not reject H3a at « = 0.05.
This finding supports the hypothesis that local incentive groups
appear to converge to a solution faster than global incentive
groups. These results are reported in Table V below.

Hypothesis H3b stated groups having a local incentive
structure should have a lower diversity A than global incentive
structure. This hypothesis was rejected at the « = 0.05 level.
However, we found that local incentive groups have a lower
A(1.001) than global incentive groups (1.094).

The crossover rate x for global and local incentive groups was
also compared. Hypothesis H3c stated local incentive groups are
likely to experience a lower estimated crossover rate than global
incentive groups. Again, we reject this hypothesis at « = 0.05.
However, it is noted that local incentive groups have a lower
estimated crossover rate y (0.199) than global incentive groups
(0.120), providing limited support for this hypothesis.

VII. CONCLUSION

As discussed in the previous section, we conclude that groups
using GDSS do act like a GA using selection, crossover, and

mutation. Also in this research, we studied two parameters: the
crossover and mutation rates, y and pu, respectively, and their
effects on communications channel and incentive structure. We
experienced mixed success in linking the GA parameters of 1
and x to the particular GDSS variables examined in Barkhi’s
study [17]. The linkage between the parameters x, 1+ and the di-
versity level A and communications channel was tenuous. There
appeared to be no difference in estimated mutation rates be-
tween the two communications channels. There was a signifi-
cant difference in diversity levels between the two channels but
not in the direction hypothesized. There was a weakly signif-
icant difference between the estimated crossover rates of the
two channels, implying that there are measurable differences
between the search processes of the two experimental groups.
It is clear that more experimental data are required for fully
understanding the phenomena involved in this particular GDSS
model.

The linkages between x, u and A were more interesting for
the incentive structure variable. A significant difference in esti-
mated mutation rates was observed between the local incentive
groups and the global incentive groups. Although not signifi-
cant, the average diversity levels and estimated crossover rates
were also different, suggesting fundamental differences in the
search processes of the two experimental groups.

It is readily apparent that more data sets are required to carry
out robust and accurate testing of this particular model, since
most results came out as anticipated but were not always statis-
tically significant. Additionally, the relationships between other
GDSS variables, such as group size, composition, task type,
anonymity, and others, and GA parameters need to be examined,
including any interaction effects, for a more complete analysis.
However, it is clear that the experimental GDSS groups did not
perform a random search, but in fact conducted a search consis-
tent with a genetic search with identifiable crossover and muta-
tion rates. It is also weakly confirmed that a relationship exists
between incentive structure and GA parameters. The possible
relationship between communication channel and GA parame-
ters requires further analysis. One very positive feature of the
approach demonstrated in this research is that the GA approach
itself appears robust in the general case as shown in [7].

One implication of this finding is that work may begin on
designing useful and more realistic simulation models for
GDSS experiments. Different experimental configurations
might be examined before conducting time-consuming and
expensive experiments with actual groups. Additionally, the
underlying Markov Chain model of the GA can be utilized to
study the expected behavior of the system and hopefully gain
further insights into GDSS processes.

This project provides many opportunities for future research.
The GDSS model could be improved by incorporating the more
expressive GA operators described in the previous section. Fea-
tures of other models could be included, particularly the eco-
nomic model for GDSS as proposed in [9]. Obviously, more
data from actual GDSS experiments is required to further val-
idate this model, especially from experiments that further ex-
amine the variables studied in [17].

There are also future research implications of particular in-
terest to GDSS researchers. Not only are there other GDSS
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configurations of interest, but also location and time-dependent
meetings, meetings that occur over an extended period of time,
and meetings that take place within virtual organizations [23].
Other task types and GDSS variables, such as group size, com-
position, anonymity, and incentive structures can be examined
within the context of the model. This model can eventually be
applied to non-GDSS-supported groups, contributing to the un-
derstanding of all group interactions.
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