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Abstract—In this paper, we explore the significance of second-
and higher-order statistics learning in communication systems.
The final goal in spread-spectrum communication systems is to re-
ceive a signal of interest completely free from interference caused
by other concurrent signals. To achieve this end, we exploit the
structure of the interference by designing second-order statistics
detectors, such as the minimum square error, in conjunction with
higher-order statistics (HOS) techniques, such as the blind source
separation (BSS). This hybrid higher-order statistics (HyHOS)
approach enables us to alleviate BSS algorithms of one of their
main problems, that is, their sensitiveness to high levels of noise.
In addition, we benefit from remarkable properties of BSS in
learning such as fast learning (superefficiency) and independence
of the initial settings of the problem (equivariance). We success-
fully applied the results of this approach to the design of multiuser
detectors in code-division multiple access channels.

Index Terms—Array signal processing, blind source separation,
code-division multiple access (CDMA), higher-order statistics
(HOS), independent component analysis, unsupervised learning.

I. INTRODUCTION

I NTERFERENCE limitation due to the simultaneous access
of multiple users has been the stimulus to the development

of a powerful family of signal processing techniques, namely
multiuser detection (MUD). These techniques have been ex-
tensively applied to direct-sequence code-division multiple ac-
cess (DS-CDMA) systems. Thus, most of last generation dig-
ital communication systems such as global positioning system
(GPS), wireless 802.11 b, Universal Mobile Telecommunication
System (UMTS), etc., may take advantage of any improvement
on this topic. In the blind case, the algorithms should cope not
only with noise and the near-far problem but with no training se-
quence available. In this sense, the minimum mean square error
(MMSE) criteria [1] provides a good blind linear solution to the
problem. Due to its computational complexity, some other al-
ternative algorithms have been proposed [2]–[4].

On the other hand, blind source separation (BSS) techniques
allow us to reconstruct a set of nonobservable signals, regarded
as sources, from mixtures of them. BSS has lately been a main
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field of research due to the great number of applications in
different areas. BSS have been successfully applied (see [5]
and references therein) to communications signals (mainly in
array processing), biomedical signals such as electrocardio-
gram (ECG) or electroencephalogram (EEG), as an alternative
to principal component analysis in image or financial data
processing, in monitoring, etc In addition, they have been
lately applied to other problems such as spread-spectrum-based
communications [6], [7], digital watermarking of images [8],
audio spectrum basis functions computation [9], image clas-
sification, encoding, or compression [10]. Several methods
have been proposed as solutions to the BSS problem. We bring
out here two main approaches that rest on the assumption that
sources are statistical independent. On the one hand, we have
techniques based on the cancellation of estimation equations
by using the natural-gradient (NG) steepest descent algorithm
[11]–[13]. These methods usually have the maximum-likelihood
(ML) approach as a starting point and are not usually robust as
they need some knowledge on the probability density functions
(PDF) [12], [14]. Here, robustness stands for the methods to
be available for sources of any statistical distributions. In this
paper, we will use the M-EASI algorithm [7] as it exhibits good
properties in the separation of digital communication signals.
On the other hand, we have contrast functions. Contrasts are cost
functions whose minimization yields the solution to the BSS.
Assuming zero-mean signals, these algorithms use higher-order
statistics (HOS) in the computation of a unitary transformation
to diagonalize higher-order cumulant tensors of the whitened
(decorrelated) outputs. This tensor may be diagonalized by
either canceling the whole set of cumulants out of the diag-
onal [minimization of the mutual information (MI)] or by the
maximization of the absolute value of the diagonal entries
(minimization of the marginal entropy (ME) [15]). The SICA
[16] method used in this paper is based on this last approach.

Some of these BSS algorithms have been proposed as fully
blind MUDs, as spreading codes are unknown [7], [17]–[19].
However, these blind detectors usually are quite sensitive to
noise and computationally expensive. In this paper, we propose
to introduce BSS [5], [16] into the structure of the MMSE MUD
to exploit its proven noise robustness, inheriting BSS remark-
able properties as equivariance [11], superefficiency [20], and,
in some approaches, low computational cost. We will focus on
the performance of BSS-MUD detectors based on the offline
SICA algorithm and the online M-EASI [17] methods.

The paper is organized as follows. Section II summarizes
the matrix model, main assumptions, and definitions for a
DS-CDMA communication system. Linear MUDs will be
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also addressed. Then, BSS techniques are introduced in Sec-
tion III, where we will focus on the SICA algorithm and natural
gradient-based methods such as the M-EASI. Section IV is
devoted to relate both of these approaches BSS and the MMSE
to propose new HOS-based detectors. These novel MUDs are
referred to throughout this paper as hybrid high-order statistics
(HyHOS) detectors. In Section V, we focus on the character-
ization of these detectors. Section VI includes experiments
to compare MMSE with the HyHOS developed in this work
and to show their noise resistance and superefficient learning.
Section VII is devoted to conclusions.

II. COMMUNICATION SYSTEM MODEL:
LINEAR MULTIUSER DETECTION

Consider a synchronous code-division multiple access
(CDMA) transmitter [1]. The baseband discrete-time model at
the chip rate for the received signal at symbol th and chip th,
assuming a noisy channel, yields

(1)

where is the length of the spreading codes, is the number
of active users, is the th user’s th symbol, and is
a scaling factor specified by the power control loop. Besides,
the normalized spreading code of user is denoted by

with each . Finally, is white
Gaussian noise added to the th symbol at the th chip. By using
a discrete model, we assume that the transmitted pulse-shape fil-
ters are Nyquist and that the receiver uses a chip-rate-sampled
matched filter. If this filter is followed by a serial-to-parallel con-
verter, we have the following matrix model of the system:

(2)

where , ,
vector with white Gaussian random entries, and

is a matrix including the spreading codes and scaling
factors. Hence

(3)

where the th column of is vector and
. The optimum receiver for this system

when is the matched filter (MF). However, if ,
the difference between powers of users is high enough and
user’s codes are not orthogonal, we have the near-far problem.
Under these circumstances, other well-known second-order
statistics (SOS)-based linear detectors, such as the MMSE,
have much better performance.

A. Linear Multiuser Detection

A linear multiuser detector gives an estimation of the orig-
inal transmitted signals as

(4)

If we know the number of users and their spreading codes,
we may use this information in the design of the detector. This
is the so-called centralized (i.e., base station) detector. On the
contrary, if we have access just to the spreading code of the
desired user, we have the noncentralized (i.e., user equipment)
detector. The centralized detector minimizing the MSE for each
user , , yields

(5)

where is the output of the MF and is the
whitening matrix for vector , , and
its covariance matrix. Here, as in the following, denotes
transpose-conjugate or simply conjugate for scalar values.
Besides, the noncentralized MMSE detector in matrix form is
defined as follows:

(6)

where is the whitening matrix for vector . Notice that al-
though we have matrix in (6) with the whole set of spreading
codes, each of its columns leads us to a different user’s detector.

In the context of the BSS, we propose to compute the detector
that minimizes statistical dependence at the output by using
HOS. The application of BSS approaches to fully blind MUDs
is almost immediate [7], [18], [19]. However, they usually in-
volve a high computational complexity as they operate on the
chip space rather than on the user subspace . Besides,
they do not cope with noise. In this paper, we assume we have
the active user’s spreading codes available and we face the use
of this knowledge in the development of blind HOS-BSS-based
detectors [21]. We first introduce these HOS-BSS techniques.

III. BLIND SEPARATION OF SOURCES

A. Main Assumptions and Model

BSS involve the task of obtaining a nonobservable set of sig-
nals, the so-called sources, from another set of observable sig-
nals regarded as mixtures or observations. Here, the adjective
“blind” stands for the fact that neither the original sources nor
the mixture itself are known. Usually, and in the context of this
paper, the assumption of spatial statistical independence is the
key to achieve separation. If we deal with temporally white sig-
nals, the use of HOS is mandatory [15]. In statistical terms, we
aim to compute the projection of a set of components (mixtures
in BSS) that minimizes the statistical dependence of the outputs
[15], [22]. This is the independent component analysis (ICA) of
the observations.

In its simplest form, the BSS reduces to the following matrix
form. The mixtures sampled at time , , are instanta-
neous linear combinations of the sources , that is

(7)

where is the mixing or transfer matrix. If is a stationary
ergodic random sequence and the mixing matrix is nonsin-
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gular, it is possible to estimate a separation matrix to obtain
the sources as

(8)

In BSS, we compute matrix so that is ideally the identity
matrix. However, the original scaling and arrangement cannot
be estimated from the independence assumption. In this sense,

is a nonmixing matrix if it has one and only one nonzero entry
in each column and each row. Matrix can be decomposed
into the product of a whitening and a unitary matrix. The
whitening stage gives us signals

(9)

In addition to the source independence hypothesis, there are
other minor considerations. First, although the instantaneous
mixture model considered here applies to many of the appli-
cations referred at the Introduction, it may be extended to the
convolutive case [23], [24] when needed. Besides, we may con-
sider here the case where the number of mixtures is greater
or equal to the number of sources (i.e., ). In the case

, a subspace approach, such as a singular value decompo-
sition (SVD), may be used to project the mixture space onto the
signal subspace, reducing the effect of weak noises. For noisy
mixtures, see [25]–[27]. In addition, a necessary and sufficient
condition for the waveform-preserving source estimation to be
feasible is that no more than one Gaussian distributed source be
present in the mixture [15], [25], [28].

The model in (7) for instantaneous BSS may be easily identi-
fied with narrowband m-sensor linear-array applications in com-
munications and particularly with the synchronous-CDMA case
with spreading factor and users. In synchronous
CDMA communications, matrix may be decomposed as in
(3). Thus, the mixing matrix includes the spreading codes and
different powers of the signals to estimate the sources. Notice
that BSS directly applied to CDMA would lead to a detector
where neither a training sequence nor the spreading codes them-
selves are needed. This detector is referred to as fully blind
MUD. Note that the noise vector in (2) is not included in the
BSS model in (7). If noise is high enough, the performance of
the BSS based on this model deteriorates.

Adaptive solutions to this problem are usually based on max-
imum likelihood (ML) and the natural (or relative) gradient [11],
[29], [30]. On the contrary, most of the offline solutions to ICA
[31] minimize one criterion, contrast function, or cancellation
of multiple criteria. In this sense, we consider here the contrast
function based on the minimization of the marginal entropies
[15].

B. Minimum Marginal Entropy-Based Contrast

A contrast function maps , the set of random vectors
(multivariate PDFs), on . It has a minimum when the entries of

are statistically independent (i.e., if has independent compo-
nent nonsingular). Thus, the minimization of
a contrast function yields the solution to the BSS problem. If the
number of sources , these contrasts are functions that are

difficult to minimize. The “Jacobi optimization” (JO) [15] con-
sists of solving the -dimensional problem by decomposing it in
a set of 2-dimensional (2-D) optimizations. Hence, the rotation
matrix in (9) is decomposed into Givens ro-
tations. Minimizing the contrast for each angle ,
drives the system to the solution. We will first focus on these 2-D
contrasts.

Under the whiteness constraint (i.e., ), it yields
the following orthogonal (denoted by ) contrast [22]:

(10)

where the criteria to minimize is the marginal entropy .
Here, as in the following, means equality up to an additive
constant . Besides, we will denote by
and the fourth-order and second-order moments.
If we approximate the possible distributions for by and Edge-
worth expansion [32], rewrite the result in terms of second-order
and fourth-order cumulants of the zero-mean outputs

, and then minimize it for all
possible distributions [15], it follows that:

(11)

where is the autocumulant of output .
Thus, the minimization of the fourth-order cumulant-based ME
contrast yields the diagonalization of the fourth-order cumulant
tensor when at most one marginal fourth-order cumulant is null.
In the following, we will face the real case. The extension to
complex-valued sources is somehow immediate [33].

By using complex (polar) notation
and under the whitening constraint, the independent com-

ponents and in the 2-D approach yield

(12)

where . The whitened mixture vector
is a simple rotation of the normalized (unit

variance) sources . Notice that
at the solution , .
The estimate of the rotation angle minimizing 2-D contrasts
may be easily expressed as a closed function of the following
complex-valued linear combinations (centroids) of the statistics
of the outputs [34]:

(13)

(14)

(15)

Based on the so-called “weighted estimators” (WEs) or
WAML [35], [36] a general 2-D estimator yields

(16)
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This estimates yields a wide variety of estimators such as
the EML in [34] or the [37],
MK [31], [38], SKSE and SKDE [39], ML [40] estimates

, in [39], or the
[35]. The discussion on the optimum

[36] is open as it is difficult to compute the statistics of
these estimates and analyze them for all possible PDFs. In this
paper, we propose to use

(17)

as it may be proved [16] that the SICA contrast function is equiv-
alent to the ME approach in (11). Thus, it provides a
solution to the ICA problem with the only condition of no more
than one source with null fourth-order statistics in the mixture.
The minimization of is immediate as the solution is
the phase of the resulting function, a sinusoid. This may be
easily implemented by a lookup table so that we minimize the
number of operations needed.

The 2-D case above may be easily extended to dimensions
by using the JO [15]. We have rewritten the algorithm using

. Such an algorithm can be summarized as follows:

Algorithm 1: -dimensional SICA using
Jacobi optimization

1) Whitenning. Compute a whitening
matrix and the output vector

. Set and .
2) Sweep . For all

pairs, i.e., for , do

(a) Compute the Givens angle
in (17) with

.
(b) If , do rotate the pair

by .

3) End? If the number of sweeps
satisfies or no Givens
angle has been updated, stop. Other-
wise, go to step 2 for another sweep
with .

C. Natural Gradient in BSS

The steepest descent method updates according to the di-
rection of the gradient of a loss function .
The natural [24] or relative gradient [5] proposes to use

. The stochastic version uses the
instantaneous value . The learning law yields

(18)

In this paper, we assume statistical independence at the outputs
. ML is an extended technique to derive a loss function for this

criteria [5], [24]. It can be shown that we achieve independence
at the output by canceling the estimating function

(19)

where in the ML approach, the th entry of vector yield
, being the probability

density function of the th source and its corresponding
score function. However, as source distributions are supposed
unknown, each author introduces his own activation function

. A family of them may be found, for sources with
negative or positive kurtoses, in [41]. Here, as in the following,
the temporal reference has been removed for the sake of
simplicity. The learning law to cancel (19) yields

(20)

By normalizing (20), the learning law may be written as follows

(21)

In [17], the authors proposed a NG-based algorithm to sep-
arate signals in digital communication, the M-EASI (Median-
Equivariant Adaptive Separation via Independence). This
method assumes zero-mean, symmetric, “circularly distributed”
complex signals and introduces the sign function to reduce the
bias introduced by noise. Its estimating function yields

(22)

where , . With this
method [30], we improve the stability of the algorithm, pro-
vide the method with phase recovering properties, and make the
method more robust against noise.

IV. HYBRID HIGH-ORDER STATISTICS MULTIUSER DETECTORS

We could use the natural gradient to compute a detector by
imposing some criteria such as the MSE. But we may directly
exploit the MMSE structure in (5) for the centralized case. In
this sense, we propose first a BSS-based solution by using the
SICA algorithm presented in Section III-B. Then, we will intro-
duce the natural gradient-based detector.

A. SICA-Based MUD: HyHOS I

We propose to substitute the matrix product in
(5) by a matrix that makes the outputs as statistically
independent as possible. Attending to the matrix product, this
is the detector, referred to as hybrid higher-order statistics
(HyHOS) detector

HyHOS BH (23)

where is a separating matrix. Notice that in the centralized
case, the dimensional reduction is carried out by the matched
filter . As the spreading codes are usually available (at least
at the base station), it is straightforward to introduce them as
a subspace algorithm at a null complexity cost [3]. In fact, we
have no information loss in this subspace projection [1] and it
allows us to cope with noise.

By computing the separating matrix in (23) with the SICA
algorithm in (17) [16], we have the HyHOS I. When applying
SICA to the projected signal , we first use SOS in
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the whitening stage. This gives us . This matrix may
be computed as in the MMSE algorithm (e.g., by using the sin-
gular value decomposition of the covariance matrix). Then, this
algorithm uses JO to compute the unitary matrix so that the
contrast function in (11) with is minimized. Thus,
this last stage may be seen as a fourth-order decorrelation. We
go further than the second-order-based MMSE to find a new
HOS-based solution to the problem. Notice that the JO-SICA
Algorithm 1 is an offline method that computes matrix from
a whole set of observations, similar to the MMSE method.

On the other hand, it is not possible to define a BSS-based
architecture for the noncentralized MUD similar to that of the
MMSE in (6). Suppose the candidate now to be the detector

(24)

Here, matrix is already a solution, as independence is
imposed at the outputs. Thus, is not a detector as .
Computing matrix is basically a blind separation problem
and it is out of the scope of this paper. Notice that this detector is
fully blind as it does not use the spreading codes [7], [17], [18],
but rather estimates them.

B. Natural Gradient-Based MUD: HyHOS II

In this subsection, we use the NG in the design of BSS-based
MUDs, the NG-MUD. Notice that the natural gradient may be
used in the whitening (SOS) process by setting in (19).
The resulting detectors [21] are centralized and noncentralized
adaptive MMSE MUDs. The description of these detectors is
out of the scope of this paper as we focus on NG and HOS
applied to MUD.

Proceeding as in the previous subsection, we have the fol-
lowing centralized BSS-based detector algorithm. It is possible
to substitute the matrix product in (5) by a sepa-
rating matrix . Thus, we have as in (23) where

is computed as a BSS. In this section, the separating matrix
is computed by using the M-EASI algorithm

(25)

where was given in (22), , and
may be chosen as described in [41]. Thus, the MMSE structure
is further enhanced by the properties of the M-EASI algorithm
discussed in the next section. This detector will be referred to as
the HyHOS II detector. Again, the noncentralized detector leads
us to a fully blind MUD.

C. User of Interest

BSS based on statistical independence allow us to recover the
sources (i.e., the users’ symbols). However, as described in Sec-
tion III, the original arrangement cannot be estimated from the
independence assumption. Thus, each row of the (ei-
ther I or II) is a detector for one of the active users, but we do
not know which one corresponds to the user of interest (UOI).
As we face a blind detector where no training sequence is trans-
mitted, the only information available is that of the spreading

codes of each user. Thus, we propose to correlate the rows of
with the user of interest’s spreading code. This leads

us to the UOI’s HyHOS detector.

V. DISCUSSION

We include here a discussion on some theoretical aspects of
the methods above. We focus on the near-far problem, noise,
convergence, and complexity.

The main point in using the natural gradient in MUD is that
it is equivariant [5] (i.e., the convergence has a uniform perfor-
mance). Thus, the convergence of the HyHOS II does not de-
pend on the mixing matrix . This matrix in the CDMA problem
yields as in (3). Similar conclusions may be drawn for
the SICA-based HyHOS I method [36]. It can be concluded that
the detectors proposed in this paper are near-far resistance, as
convergence is independent of the user’s amplitudes (i.e, they
are scale invariant).

Algorithms in BSS usually do not cope with the noisy case
whenever the number of sources and mixtures are the same

. On the other hand, if a signal subspace projec-
tion allows noise reduction. Previous BSS approaches to fully
blind MUDs use a singular value decomposition (SVD) decom-
position, a MPLL [18], However, this involves a higher com-
putational complexity. As spreading codes are usually available
(at least at the base station), it is straightforward to introduce
them as a subspace algorithm at a null complexity cost [1], [4].
In this sense, the structure of the centralized MMSE detector
has been exploited. In addition, by using the M-EASI algo-
rithm, we combat the effect of noise in the separation process
for digital communication signals [7], reducing the variance of
the estimation.

Another important characteristic of natural gradient BSS
techniques is that of superefficiency [20]. In this sense, pro-
vided (an usual case), the covariance between
two outputs decreases of the order of in batch estimation
and of the order of in online learning. Furthermore,
gives, asymptotically, the best performance, which is the same
as the optimal batch estimator. Thus, with we achieve
an online algorithm with batch features at every . On the other
hand, if adaptive features are needed, we may use to
achieve an output covariance decreasing as . The HyHOS
II inherits these properties. In the SICA algorithm used in the
HyHOS I, the variance of the estimator in (17) decreases of the
order of [36].

On the question of complexity, the MMSE solution at every
time involves computing the SVD of the covariance matrix of
the inputs in the whitening stage. This leads us to a number of
multiplications and accumulations (MACs) of the order ,
where is the number of active users. Thus, the computational
resources needed are significant. The SICA algorithm used in
the HyHOS I aggravates this problem as after we need to
compute the unitary matrix by using fourth-order moments.
However, if we compute (20)–(22) in right-to-left matrix multi-
plication order, the number of MACs yields of the order .
Hence, being the stochastic NG superefficient, the HyHOS II
included in this paper may be designed as an online algorithm
with solutions close to those of the offline methods at a lower
computational cost.
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VI. EXPERIMENTAL RESULTS

The test environment used here is a synchronous CDMA
system where the BPSK symbols were spread using GOLD
sequences with spreading factor chips. We consider here
two scenarios. On the one hand, we face the typical evaluation
of the performance in a digital communications system (i.e., bit
error rates for ). This is a low-noise environment
(LNE). On the other hand, as the BSS problem is posed in the ab-
sence of noise, one of the main issues is to test the performance of
the resulting algorithms in noisy environments. Therefore, we in-
clude an evaluation in a high noise environment (HNE) where we
test the noise resistance capabilities of the HyHOS algorithms
with bit error rates as low as
and equivalent signal-to-noise ratio (SNR) for the user of in-
terest (UOI) of . Besides, we will use the
signal-to-interference-plus-noise ratio (SINR) as performance
index in these environments.

We compare here the SVD-based MMSE–the HyHOS I and
the HyHOS II. This comparison must be done with equal con-
vergence speed (i.e., learning speed) on one hand and equal
final variance on the other to faithfully characterize their perfor-
mance. The useful methods described in [42] and [43] are to be
used to analyze the final variance and the convergence speed of
each algorithm. Those methods are straightforward in the case
of linear algorithms such as the MMSE but, in the case of the
nonlinear functionals of the HyHOS algorithms, this is a much
difficult task and, as such, merits a separate analysis which is
currently under way. In the present work, and as a means to com-
pare the algorithms on an equal footing, the convergence speed
of the NG-based MUDs was fixed so that if we have a faster
average convergence than the MMSE we do not have a worse
SINR (or BER) at any sample size. In this sense, the learning
rate of the NG was set to and the activation function
used in the HyHOS II was the cubic function . The
number of Monte Carlo simulations averaged is 100 in the HNE
and 500 in the LNE, which amounts to a confidence margin of
at least 95% for any BER estimation presented in this work. The
number of samples used in the learning of the detectors used in
the BER estimation was 2000.

A. LNE

In the LNE we present, for the sake of clarity, the conver-
gence performance of the HyHOS and the MMSE algorithms
both with five and 25 users. In Fig. 1, we see a clear difference
in the convergence behavior of the HyHOS I and the MMSE
algorithm. That of the HyHOS II online algorithm closely re-
sembles that of the offline MMSE method. It can be observed
that 2000 samples is more than enough training length for the
HyHOS I algorithm while for the MMSE, convergence cannot
be achieved in a highly occupied channel.

In the evaluation of the bit error rate (see Fig. 2), this speed of
convergence of the different algorithms is reflected in the per-
formance of all the algorithms. In this LNE, the sought features
in a multiuser detector are that of a controlled degradation of
bit error rate with an increase in the number of users. Both the
SICA-based HyHOS algorithm (HyHOS I) and the natural-gra-
dient-based HyHOS (HyHOS II) show a performance close to

Fig. 1. Signal-to-interference plus noise rate for the HyHOS detectors and the
MMSE detector, both with 15 and 20 users and a SNR of the User Of Interest
(UOI) = 15 dB. The powers of the interfering users are distributed uniformly
between 0 and 30 dB above that of the UOI.

Fig. 2. Bit error rate in LNE (i.e., SNR of the UOI � 8 dB) for the HyHOS
detectors and the MMSE detector, both with five and 25 users. The powers of
the interfering users are distributed uniformly between 0 and 30 dB above that
of the UOI.

that of the MMSE (if not better in the HyHOS I case) with a low
occupation of the channel (five users). But the difference in be-
havior arises in a highly occupied channel (25 users), where the
BER of the MMSE degrades from at approximately 14 dB
of SNR to , while the HyHOS I algorithm keeps the BER
to approximately in the same conditions. The HyHOS II
is halfway between both methods at a lower computational cost.

B. HNE

In the case of HNE, the convergence speed (see Fig. 3) of
both HyHOS algorithms is completely similar but for higher
variance in the HyHOS I algorithm due to its sensitiveness to
noise. Both for a low or high number of users, the convergence
is fairly similar. The MMSE shows a lack of convergence in a
high-noise, low-interference channel. This was expected for the
MMSE because the interference noise structure is completely
masked by Gaussian noise, avoiding this algorithm to “lock” on
to the signal of the user of interest. Quite the contrary is the case
of the HyHOS algorithms.
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Fig. 3. Signal to interference plus noise rate, with SNR of the UOI =

�15 dB, for the HyHOS detectors and the MMSE detector, with five and 25
users. The powers of the interfering users are distributed uniformly between 0
and 30 dB above that of the UOI.

Fig. 4. Bit error rate in high noise environment (HNE) [i.e., SNR of the
UOI � 0 dB], for the HyHOS detectors and the MMSE detector, with five and
25 users. The powers of the interfering users are distributed uniformly between
0 and 30 dB above that of the UOI.

The bit error rates of the HyHOS algorithms show the noise
resistance proper to the MMSE without showing its demeanors.
The convergence to a matched filter solution in the asymptotic
limit of is shown experimentally in Fig. 4.

VII. CONCLUSION

In this paper, the authors propose HOS-based BSS as valid
techniques to exploit the matrix structure of the parameters in-
volved in MUD, an application of the more general narrowband
m-sensor linear-array digital communications problem. We ex-
ploit BSS approaches based on contrast functions and estima-
tion equations such as the SICA and the M-EASI. The Jacobi
optimization and the natural gradient may be used in the op-
timization of these HOS-based cost functions. We developed a
novel hybrid MUD by introducing these BSS techniques into the
structure of the blind centralized MMSE MUD for synchronous
CDMA systems. This way, we palliate one of the main problems
of the BSS/ICA algorithms–their sensitiveness to noise. In addi-
tion, by using HOS, we achieve a better solution than with SOS-

based approaches as the MMSE. The results included here show
a good near-far resistant performance in synchronous CDMA as
these BSS methods are equivariant. Besides these BSS methods
being superefficient, these new detectors present good conver-
gence. Finally, natural gradient-based MUD exhibits a low com-
putational cost for adaptive versions. Some experiments have
been included to demonstrate these properties.
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