IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 3, AUGUST 2005 401

Support Vector Machines for Quality Monitoring in a
Plastic Injection Molding Process

Bernardete Ribeiro, Member, IEEE

Abstract—Support vector machines (SVMs) are receiving
increased attention in different application domains for which
neural networks (NNs) have had a prominent role. However, in
quality monitoring little attention has been given to this more
recent development encompassing a technique with foundations
in statistic learning theory. In this paper, we compare C-SVM and
v-SVM classifiers with radial basis function (RBF) NNs in data
sets corresponding to product faults in an industrial environment
concerning a plastics injection molding machine. The goal is to
monitor in-process data as a means of indicating product quality
and to be able to respond quickly to unexpected process distur-
bances. Our approach based on SVMs exploits the first part of this
goal. Model selection which amounts to search in hyperparameter
space is performed for study of suitable condition monitoring. In
the multiclass problem formulation presented, classification accu-
racy is reported for both strategies. Experimental results obtained
thus far indicate improved generalization with the large margin
classifier as well as better performance enhancing the strength
and efficacy of the chosen model for the practical case study.

Index Terms—Fault detection and diagnosis, kernel learning
methods, model selection, radial basis function (RBF) neural
networks (NNS), support vector machines (SVMs).

1. INTRODUCTION

UPPORT vector machines (SVMs) are a new learning-by-

example paradigm spanning a broad range of classification,
regression, and density estimation problems. This systematic
approach motivated by statistical learning theory led to a class
of algorithms characterized by the use of kernels, the absence
of local minima, the sparseness of the solution and the capacity
control obtained by acting on the margin. They combine ideas
from various scientific branches such as mathematical program-
ming, exploiting the quadratic programming for convex opti-
mization, functional analysis, indicating adequate methods for
kernel representations, and machine learning theory, exploring
the large maximum classifiers concept [1]. They were first intro-
duced by Vapnik and co-workers and are described in more de-
tail in [2] and [3]. The roots of this approach, the so-called sup-
port vector (SV) methods of constructing the optimal separating
hyperplane for pattern recognition, were already presented and
had been used in machine learning in [4]. The SV technique
was generalized for nonlinear separating surfaces in [5], and it
was further extended for constructing decision rules in the non
separable case [6]. The training task involves optimization of
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a convex cost function conveying to a technique without local
minima. Other benefits include the construction of a learning
model which has an explicit dependence of the most informa-
tive patterns in the data (the SV). Advances in kernel methods
[7] and learning theory [8] allowed generalizations of the tech-
nique. Extensions of the SVM’s concept have been made by
several authors as, for example, in [9]. Recently, a number of
practical applications of SVMs have been reported [10]-[13].

In this paper, SVMs are applied within the framework of
an industrial problem for fault detection and diagnosis in an
injection molding process (IMP). Inherent complexities and
nonlinearity of the process make mathematical modeling dif-
ficult, hindering the use of conventional methods for process
modeling and condition monitoring. Neural networks (NNs)
have successfully been applied in industry. Concerning injec-
tion molding, previous work has been done using feedforward
networks as monitoring tools for improving product quality
[14], [15]. The article [16] investigates the integration of an-
alytical process knowledge and NNs as a solution for quality
prediction of molded parts. With the aid of NNs the relation-
ship between the process characteristics and product quality
is modeled in [17]. In [18], prediction of mechanical product
properties such as tensile modulus in injection molded plastics
using NN has been performed. In [19], a backpropagation net-
work is trained to associate part quality with the corresponding
data pattern produced during injection. In [20], a radial basis
function (RBF) NN has been used to identify faults and to
classify part defects following a series of runs in the molding
machine. The approach in [21] uses NNs to learn from sample
data and induces the values for change of the operating molding
conditions, leading to the dimensional improvement of the
injection molding parts.

Although, NNs are valuable machine learning modeling
tools, provided enough rich data is available for modeling the
process nonlinear relationships, they rely on empirical risk
minimization. The theoretical understanding of models which
are based on minimization of the generalization error increase
the degree of confidence of their use, particularly in noisy and
dynamic environments such as those found in industry. This
and other problem design techniques lead to seek innovative
ways within the field of machine learning.

We present a successful example of generating accurate
models for multiple quality characteristics in injection molding.
These models map process measurements into product quality.
The increasing quality demands from the customers make clear
the need to explore novel ways of quality control. The goal is
to monitor in-process data as a means of indicating product
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quality and to be able to respond quickly to unexpected process
disturbances. Our approach, based on SVMs, exploits the
first part of this goal. The approach is further compared with
RBF NNs under the same classification problem in the given
industrial data sets.

The rest of the paper is organized as follows. Section II in-
troduces SVMs for classification and gives details on both the
C-SVM and v-SVM model classifiers. Section III points out the
main issues involved in the SVMs training and gives a summary
of model selection techniques as well as the formulation of the
multiclass handled problem in injection molding. Section IV is
devoted to present experimental results. First, describes the in-
dustrial process set up and examines the process data sets and,
second, reports results concerning both the SVM’s and the RBF
approaches. Finally, Section V presents the conclusions.

II. SUPPORT VECTOR CLASSIFICATION

The problem of classification consists of estimating a func-
tion f : RN — {£1} using [ i.i.d. input-output training data
(x1,%1), - -, (x1,91) € RN x {#1} from a data set D such that
f classifies correctly unobserved data (x,y) (i.e., f(x) = y for
examples (x, y) generated from the some underlying probability
distribution P(x, y)). In other words, the loss function L can be
defined by (1)

L(yi, f(x:)) = [1 = yi f(x:)|+ )

where ;. = max{0,r} relR.

We give a very brief review of support vector classification
(SVCO); the reader is referred, for more details, to textbooks or
survey papers in [22] and [23]. When the data is linearly sep-
arable there exists a vector w € IRY and a scalar b € IR
such that y;(w - x; + b) > 1 for all patterns in the training set
(¢ =1,...1). The optimal hyperplane separates points lying on
opposites classes yielding to the maximum margin separation.
A separating hyperplane which generalizes well can be found
by solving the following quadratic programming (QP) problem
(forz = 1,...10):

1
Minimize 3 ||w||?
Subjectto  y;(w-x; +b) > 1, Vi. 2)

This constrained optimization problem is solved by con-
structing a Lagrangian

1
1
Lp(w,b,0) = S|[wl* =Y ai(yi(w xi +0) —1). ()

i=1

The Lagrangian has to be minimized with respect to the primal
variables w and b and maximized with respect to the dual vari-
ables «;. The Karush—-Kuhn-Tucker (KTT) conditions lead to
find the solution vector in terms of the training patterns, w =
Zi‘:1 a;y;x; for some «; > 0. Notice that a; # 0 only for a
subset of the training patterns, precisely those few vectors that
lie on the margin, called the support vectors (SVs). Under cer-
tain conditions, a kernel function K (-, -) can be found such that
K(x4i,X;) = X; - Xj. An SVM uses then the convolution of the

scalar product to build, in input space, the nonlinear decision
function

!
f(x) = sgn (Z iy K (%, x;) + b) “4)

=1

where b is found from the primal constraints and is computed
by a;(yi(w-x;,+b)—1)=0,i=1,..., [, such that «; is not

zero and sgn is the signal function.

A. C-SVM Classifier

When the training data is not linearly separable, a separating
hyperplane does not exist. Besides, when real data sets are used,
SVMs can fit noise and outliers leading to poor generalization.
Thus, a hard margin classifier is no longer adequate. Introducing
a soft margin, the learning task is essentially the same as indi-
cated in (2) except for the introduction of the penalty term C'
and the slack variable £. The classifier tries then to separate the
data by minimizing the objective function

1 C <
M. . . - 2 - 1
inimize 2||w|| + i ;:15

Subjectto  y;(w-x; +b)>1-¢;
0<a; <C/l, &3>0 ®)

for: = 1,...,[. Inthis sense, it acts by controlling the classifier
capacity and the number of training errors. In other words, the
task is now to minimize the sum of errors Zizl &; in addition to
||w||?. Again this optimization problem can be transformed into
an QP problem. The value of C' can be found by experimentation
in a validation set and cannot be determined from either the
model or the data set.

B. v-SVM Classifier

The setting of error penalty in the original SVM’s formula-
tion is essentially based on trial-and-error which requires ad-
ditional time consuming training. This shortcoming is partially
overcome with the v—SVM by [24]. The »—SVC algorithm is
a new class of SVMs where the minimization problem is

S 1 2 1
M1n}um1ze §||w|| _Vp+fz&

Subjectto  y;(w-x; +b) > p—¢;

&>0, i=1,....0, p>0 (6)

where p is the position of the margin and 0 < v < 1. The new
parameter ~ has been introduced to control the number of SVs
and training errors.

III. SVM TRAINING

This section reviews some key concepts that we will need
for the the SVM’s approach in the plastics injection molding
machine problem.

A. Problem Oriented Kernel Choice

The use of kernel methods [25] provide a powerful way of ob-
taining nonlinear algorithms capable of handling nonseparable
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data sets in the original input space. The basic idea is to construct
a mapping ¢ into a higher dimensional feature space by the use
of reproducing kernels. The kernel function is a positive definite
function RY x IRY to IR that defines an embedding of input
patterns into feature vectors. An inner product in feature space
has an equivalent kernel in input space K (x,y) = ¢(x) - ¢(y)
provided K is a symmetric kernel function satisfying Mercer’s
condition [5]. This allows classification to be carried out in the
feature space without knowing the explicit form of the mapping
¢. While Mercer’s theorem clearly establishes the characteriza-
tion of the kernel, its choice remains an open issue and in most
cases is problem-oriented. In fact, its importance is two-fold:
it determines both the effectiveness of data representation for
a particular problem and the class of functions chosen by the
SVMs for solving the problem. Using different kernels corre-
spond to different functions to be chosen. Some examples in-
clude Gaussian RBF (K (x,y) = exp(—v|/x — y||?) where
v > 0 is related with the kernel width, polynomials of de-
gree d(K(x,y) = (y(x-y)+r)%) with v > 0 and sigmoid
(K(x,y) = tanh(~y(x - y) 4+ 7)) where v, , and d are kernel
parameters.

B. Model Selection

In any predictive learning task, such as classification, an
appropriate representation of examples as well as the model
and parameter estimation method should be selected to obtain a
high level of performance of the learning machine. Traditional
statistical approach to estimating models from data is based
on parametric estimation. The basic fact that an assumption
of an underlying dependency with a simple known parametric
form is an ensuing need, limits its applicability in practice.
Recent approaches allow a wide class of models of varying
complexity to be chosen. Then the task of learning amounts
to selecting the model of optimal complexity and estimating
parameters from training data [26]. Under the SVM’s approach,
the usually parameters to be chosen are the following:

* the penalty term C which determines the tradeoff between
the complexity of the decision function and the number of
training examples misclassified;

» the mapping function ¢; and

* the kernel function such that K (x;,x;) = ¢(x;) - ¢(x;).

In the case an RBF kernel is chosen, the other indeterminate
is the kernel width which implicitly defines the high dimen-
sional feature space. Theoretical model selection strategies give
areasonable estimate for the kernel parameter utilizing an upper
bound on the generalization error predicted by the VC-theory
[27]. In this sense, it can be used a theorem [2] stating that the
generalization error bound (F) is reduced as the margin p is
increased. This upper bound is E = R2/Ip?, where R is the ra-
dius of the smallest ball containing the [ training data points in
the nonlinear feature space. At the optimum (2) it is possible to
show that ), a? = (1/p?) where a? are the values of «; at the
optimum. For an RBF kernel, the data lies in an hy}l)ersphere
(R = 1) and the bound above can be written as >,_; o /1.
Through sequential training of the SVMs, an estimate can be
found by choosing the proper value of the kernel width for which

F is minimized. This estimate can be poor in distributions where
data lies in a flat ellipsoid since the radius R would be influenced
by the largest deviations [25]. Experiments in [2] and [23] indi-
cate that the bounds are very loose, though the minimum of the
bound seems to approximately coincide with the minimum of
the generalization error [28]. Taking into account unbalanced
data distributions, the approach in [29] is based on rescaling
data in the kernel feature space using the eigenvalues and eigen-
vectors of the covariance matrix K (x;,X;). Another strategy
is the leave-one-out cross validation approach. In this method
of resampling, single elements are removed from the training
set, while the support vetor machine is trained on the remained
ones and then tested on the removed datapoint. The prediction
risk is estimated via cross validation and the model providing
lowest estimated risk is chosen. It can be shown than for large
data sets, cross validation is asymptotically equivalent to ana-
lytical model selection [30]. In this case, the computational cost
of cross validation in terms of computational time and training
time is high. This problem also occurs with NNs when using
weight decay since both the regularization parameter and the
number of hidden neurons have to be determined.

C. Multiclass Problem Formulation

Although SVMs were originally designed for binary classi-
fication, there are several methods for the extension from the
binary two-class problem to n classes while ongoing research
is still being done. Basically, the two types of approaches usu-
ally followed are: 1) to modify the design of the SVMs in order
to incorporate multiclass learning in the quadratic solving al-
gorithm [31] and 2) to combine several binary classifiers [32],
[33]. In the first case, the proposed methods treat all classes at
once considering only one optimization problem, however the
computational cost is high particularly if a large-scale real-life
problem is considered. In the second case, several methods have
been proposed where typically a multiclass classifier is con-
structed by combining binary classifiers. From this standpoint
of view, the “one-against-all” is the standard approach to the
n-class problem. It constructs 7 models of SVMs, where the
training is as follows: the kth model is trained with all patterns
in class k with positive labels (e.g., +1) and all the other patterns
with negative labels (e.g., —1). After solving n decisions func-
tions a given pattern is in the class with largest value of the deci-
sion function, i.e., it uses a winner takes-all like voting scheme.
Another method is the “one-against-one” which consists on a
pairwise classification. The basic idea is to use n * (n — 1)/2
classifiers covering all pairs of classes instead of using only n
classifiers as in the “one-against-all.” In fact, in this algorithm,
n hyperplanes are constructed, each hyperplane separating one
class from another. In this sense, there are n decision functions
fe(1 <k < n) of the form (4). Thus, the n-class classification
problem can be viewed as a discriminant vector € IR™ where the
index of the largest component is chosen as the elected class de-
cision. The approach used in this paper uses the last but one for-
mulation being n = 6, since six faults are identified for molded
parts produced by the injection machine, as it will be further
detailed.
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D. Implementation

The SV optimization problem can be solved analytically
when the size of training data is very small. A general package
that solves linearly constrained convex programs can then be
used. For larger problems, alternative techniques have to be
chosen. Traditional optimization algorithms such as Newton,
quasi-Newton, conjugate gradient, etc., cannot be directly
applied. One common technique is to use a decomposition
algorithm [34] so that only portions of the training data need
to be handled at a time, i.e., the QP problem to be solved is
decomposed into a series of smaller QP problems. As discussed
in [35], from an optimization point of view, the decomposition
method has the disadvantage of slow convergence. Therefore,
for difficult models, more optimization knowledge and flex-
ibility should be added as implemented in the SV package
LIBSVM [36]. In this package, other formulations are also in-
cluded such as v-SVM. Unlike the standard C-SVM technique
which penalizes the total misclassification error, the v-SVM
controls the number of SVs and training errors. The v parameter
is more intuitive to tune than C which is difficult to select and
can easily lead to model overfitting as shown henceforth in the

paper.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We describe the computational experiments and discuss the
results from applying SV algorithms, C-SVM and v-SVM, and
RBF NN, in a real application concerning plastics injection
molding technology for automotive industry. One primary goal
is to ensure a superior level of quality control of the molded parts
via automation in order to respond to the high demanding from
industry customers. To achieve this goal, a model for defects
detection of molded parts is designed. The model consists on
training a SVM in combination with multiple-input—-multiple-
output strategy to learn relationships between discrepancies of
process parameters and parts quality properties. The model con-
tains the essential components for quality control leading to the
ultimate goal of the molding machine parameters setup.

A comparison of performance between RBF NNs and SVMs
for handling the model is performed. All computations were
done on a Pentium 3 Mobile 1.0-GHz machine running on
Windows.

A. Industrial Problem Setup

IMP is one of the most important plastic manufacturing tech-
niques and widely used extrusion processes [37]. In the IMP,
a thermoplastic, in the form of granules, passes from a feed
hopper into a barrel where it is heated and melted. It is then
injected into a cold mold that is clamped tightly closed. When
enough time has elapsed, the plastic returns to a solid state, the
mold opens and the produced part is extracted. All the mold
details are, by this way, reproduced in the finished part. Fig. 1
illustrates the molding machine, a sketch of the molding func-
tioning process and two of the observed parts defects (edges
and unfilled) for the automotive industry. While this industrial
process seems quite simple from a theoretical point of view, a
close look at its dynamics reveals, however, a high degree of
complexity. In fact, the strong nonlinear relationships between

Fig. 1. IMP and automobile plastic molded parts defects.
TABLE 1
PLASTIC PARTS IDENTIFICATION FAULTS

Fault 1 | Streaks
Fault 2 | Stains
Fault 3 | Burn marks
Fault 4 | Edges
Fault 5 | Unfilled parts
Fault 6 | Warped parts

the process parameters and their reciprocal effects as well as the
unpredictable behavior of the material under temperature-pres-
sure fluctuations, makes not only the mathematical analysis of
its behavior, but also the quality control of the molded parts dif-
ficult. Additionally, the lack of consistent relationships between
the process parameters, the material properties and the molded
parts quality, as well as the environmental fluctuations, intro-
duce several sources of variation into the system, which prevent
it from attaining an ideal state of constant quality.

The wide range of parameters to be manipulated during
real time, polymers variety and production techniques make,
no doubt, the process very difficult to maintain under control.
Each variable (temperature, flow rate, pressure, . . .) has a great
impact in the final product quality and in the production rate.
The choice of the control strategy, particularly the development
of a new regulation tool to suggest process parameter values
automatically, is essential to solve quality defects in injection
molding ensuring energy savings and process safety.

B. Process Data Analysis

The industrial data we deal with concern plastic parts for
the automotive industry which have been molded in Demag
injection molding machine with Hostacom DM2 T06 polymer
and with mold DN502. Currently, parts quality are monitored
in the plant using statistical analysis of discrete data. Control
of injection molding is currently mostly done by operator intu-
ition in a trial-and-error basis mode. The operator controls the
set points of the machine based upon his understanding of the
effects of each of the controls on the quality of the parts. This
situation leads to significant difficulties and variation in the
quality of the parts and reliability of the process. Although there
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TABLE 1I
DISPERSION AND CENTRAL TENDENCY MEASURES FOR PROCESS DATA

Process [ Dispersion Measures [ Central Tendency
Variables | Range | Std. Dev | Variance [ Mean [ Median

Cycle time 692.10 73.43 5391.92 43.77 31.65
Metering time 5.91 0.99 0.99 10.42 10.50
Injection time 3.05 0.47 0.22 2.40 2.10
Barrel temp. 17.00 3.52 12.41 | 228.16 227.00
Cushion 18.00 3.01 9.07 13.13 13.10
Injection Velocity 67.00 6.20 38.40 | 204.80 205.00

is ongoing research in the molding machine parameter setting,
most published approaches include: mathematical models, nu-
merical simulation, process windows, design of experiment
(DOE), expert systems, NNs, case based reasoning (CBR),
genetic algorithms (GAs) and evolutionary strategies. For an
excellent review of the state-of-art on the topic, see [38]. Here,
we present a new approach for quality monitoring of online
molded parts by analyzing complete data patterns based on
SVMs. Before going further into the proposed solution, some
observations about the process data characterization are ex-
amined first. The data patterns consists of a series of discrete
values. The process responses include sensor readings forming
a time series of temperatures, pressures, etc. Twenty-six setup
parameters have been registered and stored in each run, from
barrel temperatures up to injection pressures. Since the total
number of inputs is large, selection of features from these
profiles were extracted for modeling purposes as well as the
cycle length for the cyclical variables. Therefore, six process
variables, namely, cycle time, metering time, injection time,
barrel temperature before nozzle, cushion, and injection ve-
locity have been identified. Regarding quality characteristics
they are classified as mechanical properties, dimensions, or
measurable characteristics, and attributes. In general, some of
the main causes of quality problems are material related defects,
i.e., black specks and splay, process related problems such as
filling related defects, i.e., flash and short shots, packing and
cooling related defects, i.e., sink marks and voids, and post
mold related defects, i.e., warpage, dimensional changes, and
weight. The parts quality measure was chosen to be based
on six quality variables, namely, streaks, stains, burn marks,
edges, unfilled parts and warpage which have been found to
be representative of the range of defects that can occur so far
in the plant. These data have been obtained using different
process conditions across the runs when an entire sensor profile
is analyzed. Table I establishes the corresponding fault identi-
fication assignement. Table II illustrates the tendency central
measures and the dispersion measures for the data showing
heterogeneity.

C. Injection Molding Fault Models Design

1) RBF NNs: The standard RBF NN with a single output
neuron realizes a mapping function, f : x — f(x), where
the N-dimensional input vector is submitted to the network and

the scalar output, f(x), obtained to generate the classification
decision. The RBF network output is then given by (7)

f(x) = Zwi¢i(x7 ci)+b @)
=1

where m is the number of hidden layer neurons, w; and b are the
weights. Each hidden neuron ¢ has an associated kernel function
¢i = exp(—(||x — ¢i]|?)/(20?)),¢ : RN — IR, where c; €
IRY and o are the RBF centers and width, respectively. For a
two-class classification problem, the classifier determines the
class label of the input vector x

N

C(x) = sgn(f(x))- ®

Training of RBF NNs involves selecting the centers c;, esti-
mating the weights w;, and bias b that connect the hidden and
the output layers. Although most straightforward approaches for
training RBF networks are nonlinear optimization algorithms,
most nonlinear algorithms suffer from long training times and
local minima. Therefore, a hybrid learning algorithm is often
used. It allows, in a first stage, to determine the centers and
the kernel widths, by a self-organizing bottom-up process that
places the centers only in those regions of the input space where
data is present. In a second stage, the weights are then evalu-
ated by the supervised LMS algorithm. Standard k-means clus-
tering algorithm [39] allows to find the centers by determining
the local minimum of the squared Euclidean distance, £, be-
tween [ training vectors x; and the nearest of m centers c; given
by

l

E = Z Zk”(cz — Xj)T(CZ' — Xj) (9)

J

where k;; is an (m x [){0,1} matrix with exactly one “1”
per column which identifies the processing node to which the
training vector belongs. A RBF NN with six inputs (cycle time,
dosage time, injection time, cushion, peak melt temperature,
ram velocity), six outputs (streaks, stains, burn marks, edges,
unfilled parts, warped parts) and Gaussian hidden nodes was
used. It was trained with the previously described algorithm
on a training data set consisting of 120 input—output pairs. The
testing data set was constitued by 80 input—output patterns. The
outputs are the observed defects in molded parts obtained onsite
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RBF-NN: TRAINING ACCURACY WITH VARYING NUMBER OF GAUSSIAN HIDDEN UNITS

Y%Training Accuracy || Fault 1 | Fault 2 Fault 3 Fault 4 Fault 5 Fault 6
RBF Kernels streaks | stains | burn marks | edges | unfilled parts | warped parts
60 65.10 76.56 92.20 88.29 99.89 97.35
80 73.55 77.49 93.95 93.11 99.89 82.98
100 77.27 84.35 93.61 93.16 99.58 85.98
TABLE 1V

RBF-NN: TESTING ACCURACY WITH VARYING NUMBER OF GAUSSIAN HIDDEN UNITS

Y% Testing Accuracy || Fault 1 | Fault 2 Fault 3 Fault 4 Fault 5 Fault 6
RBF Kernels streaks | stains | burn marks | edges [ unfilled parts | warped parts

60 53.09 70.61 85.55 72.90 99.86 99.95

80 67.60 68.18 87.33 77.92 88.68 99.04

100 64.03 81.26 90.26 84.65 99.46 99.60

TABLE V
C-SVM WITH RBF KERNEL: C' = 1 AND C' = 1000
C-SVM (C=1) " C-SVM (C=1000)
#Iter | SVs | Accuracy(%) #Iter || SVs | Accuracy(%)

Faultl | 1831 93 75.00 Faultl || 43588 68 86.67
Fault2 350 87 79.17 Fault2 || 18693 60 90.83
Fault3 233 51 86.67 Fault3 4387 27 97.50
Fault4 456 54 90.00 Fault4 || 31300 46 96.67
Faulth 102 22 98.33 Faulth 61 15 100.00
Fault6 37 17 99.17 Fault6 7 16 100.00

during running of the industrial molding machine upon conve-
nient change of the respective process setups. The classification
results are shown in Tables III and IV regarding the six faults
tested. With 60 hidden Gaussian units, the root mean squared
error (RMSE) obtained on the data testing set was 0.2465, after
183745 training iterations, whereas with 100 Gaussian units the
RMSE = 0.1863, achieved on the testing data set after 127713
training iterations. An intermediate value of RMSE = 0.2165
and a number of training iterations of 121724 was obtained for
the network with 80 hidden units. The configuration with 60
nodes almost fails to identify Fault 1. Besides, if we think about
the sizes of the training and test data set, we easily realize that
the configuration design of 100 hidden units leads to overfit-
ting, since we have almost one unit per data point. The results
regarding Fault 6 are due to an unbalanced number of this kind
of fault in both data sets. In summary, the RBF classifier with 80
hidden units corresponds to the best configuration obtained so
far and will be considered for further comparison in next section.

2) C-SVM Classifier: C-SVM classifiers are designed for
binary classification. When dealing with several classes, as in
the case of fault detection in the injection molding machine, an
appropriate multiclass method is required. As mentioned in the
Subsection III-C, one common approach is to formulate the mul-
ticlassification problem as a series of binary classification prob-
lems. The standard approach “one against all” has been used and
six classifiers are then constructed. For a given test pattern, the
classifier with the highest output is selected as the winner and
the corresponding class label assigned.

Training SVMs requires the selection of parameters which in-
fluence the ensuing model performance. Therefore, to achieve a
good model those parameters have to be chosen correctly. Ex-
amples, as stated earlier, are 1) cost function C' and 2) the map-

ping function ¢. In our experiments, we have considered RBFs
as the kernel function. The RBF kernel is very advantageous in
complex nonseparable classification problems due to its ability
of nonlinear input mapping. As aforementioned, it has the prop-
erty that ¢(x) - ¢(y) = exp(—v||x — y||?), and subsequently
7 (defined as 1/202, o being the kernel width) is an important
parameter to be chosen.

a) “Trial-and-Error” Parameters Selection: In a first se-
ries of experiments we run the classifier with several values of
C and « somehow trying to guess which combination of param-
eters might be the best for a “good” model. That is, the one that
could better express the causal relation among variables which
govern the quality within the mold/machine platform. This is
accessed through the evaluation of performance accuracy. One
possible way is to divide the original data into a data training
set and into a validation data set for model evaluation. We com-
pare, in Table V, the number of iterations, the number of SVs
and the testing accuracy of the learning machine with C' set to
1 and 1000. The stopping tolerance for solving the optimiza-
tion problem is set to 102, As verified in the latter case, the
accuracy is higher for all the displayed faults. In case of fault
5 (Unfilled parts) and 6 (Warped parts), no misclassification er-
rors are found. In Fig. 2, experimental results show for Faultl
a) the variation of number of SVs and b) testing accuracy as a
function of kernel -y both parametrized with C. Larger C corre-
spond to less number of SVs as well as higher testing accuracy
although overfitting cannot thus be avoided. Further explana-
tion is required for these results taking into account both C' and
~ parameters. In fact, minimizing 1/2||w/||? in (5) corresponds
to maximize the margin 2/||w]||? between two classes of data.
For nonseparable data, the penalty term C 25:1 &; is able to
reduce the training errors in the working data set. Therefore,
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Fig. 2. Fault 1 model parametrized with C'. (a) Number of SVs versus 7. (b)
Accuracy versus 7.

the margin is an indicator of the generalization accuracy. In the
absence of a method to compute the best tradeoff between the
regularization term and the training errors, the balance sought
by the SVM’s technique is hard to find. Thus, a larger C' corre-
sponds to assign a higher penalty of training errors and clearly
overfitting occurs. On the other hand, when the kernel parameter
~ becomes higher, the greater the variety of the decision bound-
aries that can be formed originating a more complex model. The
added flexibility decreases initially the generalization error as
the model can better fit the data. However, there is the danger,
as can be seen in the Fault 1 model, that this can lead to overfit-
ting as well.

b) Interactive Grid Search Model Selection: Choosing
the best parameters, especially if a systematic approach is
not used and/or the problem knowledge do not aid for proper
selection, can be timing consuming since we have to rely upon
guessing and trial and error techniques. Therefore, an inter-
active grid search model selection has been accomplished for
each one of the displayed faults and the generalized accuracy
evaluated. Fig. 3 depicts the generalization graphic contours for
the selected faults after a five-cross validation, thus, reducing

the search space as it might be noted by simply analyzing the
graphs in the following. The efficient heuristic way of searching
points in that space with small generalization errors will lead to
a good understanding of the hyperparameter space [40]. We can
then do a refined search of the (C,~) pairs for proper model
selection. Table VI illustrates the results obtained choosing the
pair of parameters which satisfy clearly the restrictions to the
handled problem. Said in another way, it is demonstrated that
the pair (C, ) in each fault case conveys to the learning model
with the smallest capacity and, thus, the highest generalization.
If we compare with RBF NNs we may conclude that SVMs are
more accurate and allow better generalization than the former.
Besides, in the SVM'’s technique there is no heuristic choice
for model design as it is required in the RBF networks. Also,
another issue concerns the different solution method compar-
ison in both techniques; the QP problem in SVM’s formulation
is simpler to solve, particularly in cases of not too large data
sets, conveying to a technique without local minima.

3) v-SVM Classifier: To support our experiments on the
SVM’s model building, we have used a v-SVM classifier,
since, partially, it removes the difficulty in selecting the most
effective error penalty. Besides, it has been shown that when C'
is large, there may have more numerical difficulties on using
the decomposition method [41]. In the ¥-SVM method, there
is no C, so intuitively we might think that this difficulty no
longer exists. We compare C-SVM and v-SVM classifiers
which basically perform in the same way but with different
parameters. The range of C' is from zero to infinity but v is
always between [0, 1]. A nice property of v is that it is related
to the ratio of SVs and the ratio of the training error. We can
see that if v becomes smaller, the total number of SV decreases
where the increase in C' decreases the number of SVs. Table VII
shows the results with v-SVM classifier obtained for the six
faults tested. However, the use of uneven training data class
sizes, which occurs in our run experiments particularly with
Faults 5 and 6, leads to learning machines biased toward the
classes with the largest training sizes (Faults 2, 3, and 4). To
circumvent these effects as well as to adjust the error penalties
of each class separately, a different v for each class was used.
Fig. 4 illustrates an experimental study which shows the relation
between C' and v for various values of the kernel parameter y.

V. CONCLUSION

In this paper, we have discussed the application of the mul-
ticlass SVM’s classifiers and compared with RBF NNs to
predict faults in automotive parts from molding injection in
plastics industry. The basic idea of the SVMs is to determine
the structure of the classifier by minimizing the bounds of
the training error and generalization error. The SVs close to
the boundary decision surface determine the efficacy of the
classifier, whereas in RBF NN classifier, the RBF centers are
selected by k-means clustering techniques. The hidden layer
of the RBF NN classifier can be viewed as a function that
maps the input patterns from a nonlinear separable space. In
the new space, the responses of the hidden layer neurons form
new features vectors for pattern representation. Then the dis-
criminative power is determined by RBF centers. Experiments
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Fig. 3. Model Selection for Faults F;,7 = 1,6. In case of F, the grid searchison C' = 2°,2%, ..., 20 andy = 275,274,..., 25,

TABLE VI
GENERALIZED ACCURACY FOR C AND v HYPERPARAMETERS OBTAINED
BY MODEL SELECTIONFOR FAULTS F;,i = 1,6

Faults | C v ]| #1ter [ SVs [ Accuracy (%) [ Accuracy (%)(cv)
Fault 1 16 1 3724 85 75.00 70.83
Fault 2 | 512 2 14221 65 85.83 76.67
Fault 3 | 32 1 1246 37 96.67 93.33
Fault 4 | 128 2 2856 42 92.5 87.50
Fault 5 4 2 115 20 100 98.33
Fault 6 | 16 | 0.25 8 4 100 99.16

indicate that in general the test accuracy of RBF NNs is a
little worse than that of the SVMs in both cases of either the

C-SVM or the »-SVM. Though RBF NNs trained with an
hibrid learning algorithm keeps similarities to the SVMs due
to the Gaussian kernel, determining ad hoc the number of RBF
centers still downgrades the classifier performance. Within the
chosen SVM'’s framework, the hyperparameter tuning, input
selection and computation of posterior class probability for risk
minimization decision making can be conducted in a unified
way. We show that overfitting can be avoided by a criterious
grid selection search on parameter’s space. Regarding the im-
plementation issues, SVMs are considerable faster than the
training of RBF NN, even for large-size problems, requiring
less heuristics and, thus, being preferable. In addition, SVMs
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Fig. 4. (a) C' and number of iterations versus ¢. (b) Relation between C' and
v. (7-RBF kernel).

TABLE VII
v-SVM CLASSIFIER: RBF KERNEL
v-SVM
SVs | Accuracy (%) | #Iter v C
Faultl 58 93.33 2190 | 0.200 | 1194.5
Fault2 76 92.50 2150 | 0.175 | 330.84
Fault3 | 59 98.33 1356 | 0.060 | 26.79
Fault4 | 66 95.83 718 0.150 | 8.25
Faulth 15 100.00 86 0.015 | 10.26
Fault6 15 100.00 96 0.095 | 9.93

attain sparse solutions in the sense that most of the coefficients
a; are set to zero as a result of the optimization problem.
This property is also computational attractive. Besides the ex-
pected ratio of the number of SVs and the number of training
points bounds the generalization error. Our results demonstrate
that the SVMs have the potential to obtain a reliable distinc-
tion among production part defects, and to assist operators
for making a correct diagnosis. An interesting aspect to be
investigated is to use SVMs for feature extraction from large
industrial data profiles for modeling purposes. The extension
of the implementation to data sets in a larger scale, different

methods of problem multiclass formulation and possibly fur-
ther subclassify the part defects are the focus of our current
research.
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