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Automatic Detection and Elimination of Specular
Reflectance in Color Images by Means of MS

Diagram and Vector Connected Filters
Francisco Ortiz and Fernando Torres, Member, IEEE

Abstract—This paper proposes a new method for the detection
and elimination of specular reflectance in color images of real
scenes. We use a two-dimensional histogram that allows us to
relate the signals of intensity and saturation of a color image,
and to identify the specularities in an area of the histogram. This
is known as the Intensity-Saturation (MS) diagram, and it is
constructed from the Intensity-Saturation-Hue (MSH) generalized
color space. An experimental and detailed study of the presence
of specularities in the MS diagram for different types of materials
in real scenes is carried out. To eliminate the specularities
detected, we use a new connected vectorial filter based on the
extension of mathematical morphology to color images, employing
a lexicographical order. This new filter operates only in the bright
areas previously detected, avoiding the high cost of processing the
connected filters and the related oversimplification. The proposed
method achieves results similar to current methods, but without
the need for costly multiple-view systems or stereo images.

Index Terms—Brightness detection, brightness elimination,
color mathematical morphology, connected vectorial filters,
Intensity-Saturation (MS) diagram.

I. INTRODUCTION

IN INDUSTRIAL visual inspection systems, images are ac-
quired in work environments where the illumination plays

an important role. Sometimes a bad adjustment of illumination
can introduce brightness (highlights or specular reflectance) in
the objects captured by the vision system. The presence of such
brightness alters the pattern recognition process because the pre-
vious stage of detection of edges in the objects fails. As such,
the correct identification of objects, a goal in computer vision,
is difficult to realize.

The elimination of specular reflections is not only interesting
in visual inspection, but also in other fields of computer vision,
restoration, and reproduction of images, since the brightness
affects the visual quality of the scene. There is no commercial
software application that allows the automatic elimination of
such specularities.

To be able to attenuate the effect of the specular reflectance
in the captured scene, the phenomenon in the image must first
be detected and identified. The dichromatic reflection model
proposed by Safer [1] is a tool that has been used in many meth-
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ods for detecting specularities. Such a model supposes that the
interaction between the light and a dielectric material produces
different spectral distributions in the object; i.e., the specular
and diffuse reflectances. Diffuse component is a product of il-
lumination and surface pigments, whereas specular reflectance
has the same spectral makeup as its incident illuminant. The
color of a given pixel in an image is a linear combination
of a function of diffuse reflection and a function of specular
reflection.

Based on this model, Lin et al. [2] have developed a system for
eliminating specularities in image sequences by means of stereo
correspondence. Bajcsy et al. [3] use a chromatic space based
on polar coordinates that allows the detection of specular and
diffuse reflections by means of the previous knowledge of the
captured scene. Klinker et al. [4] employ a pixel clustering algo-
rithm which has been shown to work well in detecting brightness
in images of plastic objects. Gershon et al. [5] and Lee et al. [6]
use chromatic information for highlight identification. A similar
approach is presented by Sato and Ikeuchi [7], who employ a
so-called temporal-color space to extract the specular reflection
and the body reflection. These previous approaches have pro-
duced good results, but they have requirements that limit their
applicability such as the use of stereo or multiple-view systems,
the previous knowledge of the scene, or the assumption of a
homogeneous illumination, without considering the interreflec-
tions present in most typical real scenes.

In this paper, we develop an automatic system for the de-
tection of highlights in images by means of the use of a two-
dimensional (2-D) histogram of intensity and saturation signals
from a three-dimensional (3-D) polar coordinate color repre-
sentation. This representation allows us to obtain a specular
reflectance map of the image. Once the specularities have been
identified, they are eliminated from the image by applying a
vectorial geodesic reconstruction algorithm, which has a low
cost and avoids the oversimplification of the image.

In this paper, the two most important steps of the method pro-
posed for brightness detection and elimination are described. In
Section II, we present the color space used for the processing,
together with the MS diagram developed to detect the specular
reflectance. In addition, experimental results for the detection
of brightness in real scenes are given. In Section III, we present
the extension of the geodesic operations to color images. In Sec-
tion IV, we develop a new connected vectorial filter for elim-
inating the highlights detected in Section II. This elimination
and the parameters of the algorithm are presented in Section V.
Finally, our conclusions are outlined in Section VI.
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Fig. 1. RGB cube and its transformation in MS diagram. (a) 3-D projection.
(b) 2-D opposite projections. (c) Shape and limits of MS diagram.

II. COLOR SPACES AND MS DIAGRAM

The color receptors of the human eye (cones) are more sen-
sitive to the blue, green, and red zones of the spectrum, and
the signals they emit are further processed in the brain’s visual
system. However, in the perception process, the human brain
does not estimate the exact amounts of red, green, and blue in
objects, but rather the basic attributes of color, such as inten-
sity, hue, and saturation [8]–[10]. These attributes define the in-

Fig. 2. (a) Synthetic chromatic image and (b) its MS diagram.

tuitive color systems Hue-Saturation-Intensity, Hue-Lightness-
Intensity, Hue-Saturation-Value (HSI, HLS, HSV, etc.) which
are widely used in image processing. They can be represented
by a single system, which Levkowitz and Herman define as
Generalized Lightness-Hue-Saturation (GLHS) [11], adapted
for image processing by Serra’s L1-norme [12]. We shall denote
the intensity function by m, which is the mean of the r, g, and
b values, where (r, g, b) are coordinates of the RGB color space
[Fig. 1(a)], with r ∈ [0, 255], g ∈ [0, 255] and b ∈ [0, 255]. As
such, m corresponds to the l in the LHS-triangle model

m =
1
3
(r + g + b). (1)

The m signal calculated is the normalization (0 ≤ m ≤ 255)
of the achromatic axes of the RGB cube. In Fig. 1(b), two
opposite 2-D projections of the 3-D cube are observed. The
value of s is given by Serra’s L1-norme as

s =

{
1
2 (2r − g − b) = 3

2 (r − m), if (b + r) ≥ 2g
1
2 (r + g − 2b) = 3

2 (m − b), if (b + r) < 2g.
(2)

A. MS Diagram

We propose to exploit the existing relation between m and
s that permits the detection of specular reflections in a digital
image, independently of the hue of the object in which the
brightness appears [13]. Fig. 1(c) shows the MS diagram as
the positive projection of all of the corners of the cube in a
normalization of the achromatic line to the m signal.

The MS diagram is a grey image f(m, s) in which each
coordinate (m, s) indicates the quantity of the pixels in values
of m and s of the original color image [14]

f(m, s) =
log(MS(m, s))

max(log(MS(m, s)))
255 (3)

where m ∈ [0, 255], s ∈ [0, 255] and f(m, s) ∈ [0, 255]. In
Fig. 2, a synthetic color image and its corresponding MS di-
agram are shown. As can be seen, the maximum values of s
along m are limited to the shape defined in Fig. 1(c).

B. Extraction of Specular Reflectance

It is known that the specularities in the chromatic image
have values of high m and low s,m ∈ [mmin,mmax], s ∈
[smin, smax], where mmax = 255 and smin = 0. This represents
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Fig. 3. Contrast enhancement of color image. (a) Chromatic real scene. (b)
Contrast enhancement by histogram equalization. (c) Contrast enhancement by
top hat contrast operator.

a given position of the MS diagram, precisely in the defined area
under s1 (saturation of primary colors G and B) and the projec-
tion of the corners c3 and c4 of the RGB cube. The achromatic
axes zone could be considered as a highlight. This is partly true
because it is only fulfilled for grayscale images. In color images,
as m decreases, the brightness shows a similar color of surface
(diffuse reflection) of the objects on which this brightness ap-
pears, approaching the c3 and c4 lines, whose definitions are{

c3 = − 3
2 (m − 255), ∀m ∈ [m3,mmax]

c4 = −3(m − 255), ∀m ∈ [m4,mmax]
(4)

where it is easily observed that m3 = (2/3)mmax and m4 =
(5/6)mmax. The value of mmin is calculated from c3, such as

mmin =
2smax − 3mmax

−3
. (5)

The smax value is still to be calculated. An important consid-
eration is that not all the images have the same dynamic range
and, therefore, the m and s values of their specularities do not
correspond with the positions of the MS diagram previously
presented. The solution to this problem could be a contrast en-
hancement of the image by a histogram equalization of the m
signal, but this is not the best solution, as it can sometimes cause
an excessive increase in intensity and oversaturation, resulting in
a false detection of objects, as if they were brightness. In order to
avoid such inconveniences, we have opted for a neighborhood-
based morphological contrast enhancement which considers the
local features of the images. Specifically, m’ is the result of a
top hat contrast operator [15] defined as

m′ = m + WTH(m) − BTH(m). (6)

In Fig. 3, we show the difference between the contrast en-
hancement by histogram equalization and the morphological
contrast operator that does not excessively increase the inten-

Fig. 4. Color images for empirical study using different types of materials. (a)
Plastic in “color-beans.” (b) Ceramics in “plates.” (c) Fruit in “cherries.” (d)
Plastic in “life-saver.” (e) Plastic in “balloons.” (f) Wood in “umbrella.”

sity of the image “life-saver” and is effective in the regions of
mild specularities.

This operation expels only the highlights from within the lim-
its of the RGB cube. The result of the local enhancement by the
top hat is that the specular reflectance pixels are positioned on
the c3 and c4 lines in the MS diagram. These lines identify differ-
ent specularities along their coordinates, from the most intense
to the dullest. The optimum height for both lines (c3 and c4) can
be determined experimentally. In the next section, we present
the results of a study carried out on a set of real chromatic images
that are quite representative of countless common materials (i.e.,
plastic, ceramics, fruit, wood, etc.), in which there are strong and
weak reflectances. The images used in the study are shown in
Fig. 4. The MS diagrams are presented in Fig. 5. In Fig. 6, we
can see the pixels with saturation and intensity defined by the
lines c3 and c4. As can be seen, all of the specularities have been
detected. In some cases, such as “cherries” and “life-saver,” just
one line is sufficient, since all of the highlights are located on
the same hue. Fig. 7 shows the evolution of the specularities
detected when the saturation s is increased along c3 and c4. It
is a logarithmic evolution where most of the bright pixels are
located in maximum value of m and minimum s. The rest cor-
respond to the transition from specular to diffuse reflection of
the dichromatic refection model [1] in the surface of the objects.
The graphs show that the detection of specularities stops, in all
of the cases, at a maximum saturation of smax = (mmax)/(10),
and at higher values, no additional pixels in the image are de-
tected as brightness. We obtained the same results with other
images. It is now easy to calculate the value of mmin (5).

III. MATHEMATICAL MORPHOLOGY AND COLOR GEODSY

The definition of morphological operators needs a totally
ordered complete lattice structure [16], [17]. The color pixels
do not present, a priori, this structure, and it is necessary to
impose an order relationship in the color space. Several studies
have been carried out on the application of mathematical
morphology to color images [18]–[21]. The approach most
commonly adopted is based on the use of a lexicographical
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Fig. 5. MS diagrams of color images in Fig. 4. Highlights are present in the
lines c3 and c4 of the diagrams.

Fig. 6. Masks of brightness. Experimental results for real scenes in Fig. 4. The
white points represent pixels of specular reflectance: (a) 347 in 192× 128 of
“color-beans.” (b) 122 in 169× 148 of “plates.” (c) 237 in 164× 124 of “cher-
ries.” (d) 218 in 165× 128 of “life-saver.” (e) 187 in 168× 110 of “balloons.”
(f) 48 in 162× 127 of “umbrella.”

order, which imposes total order on the vectors. In this way, we
avoid the false colors in an individual filtering of signals. Let
x = (x1, x2, . . . , xn ) and y = (y1, y2, . . . yn ) be two arbitrary
vectors (x,y ∈ Zn ). An example of lexicographical order olex,
will be

x < y if

{x1 < y1 or
x1 = y1 and x2 < y2 or
x1 = y1 and x2 = y2 . . . and . . . xn < yn .

(7)

On the other hand, it is important to define the color space
in which operations are to be made. We use the normalized
intuitive color space MSH (intensity, saturation, and hue). The
preference or disposition of the components of the MSH in
the lexicographical ordering depends on the application and the
properties of the image. Ordering with intensity in the first posi-
tion is the best way of preserving the contours of the objects in
the image (lattice influenced by intensity). For our application,
we employ this strategy. We define a lattice with a lexicograph-
ical order of olex = (m → s → h) [19], [21]. As such, we put
more emphasis on the intensity signal m. Afterward, we analyze

the saturation. Next, we compare a hue distance value only if
the pixels are colored.

A. Connected Vectorial Filters

Morphological filters by reconstruction have the property of
suppressing details, preserving the contours of the remaining
objects [22]–[24]. The use of these filters in color images re-
quires an order relationship among the pixels of the image. For
the vectorial morphological processing the lexicographical or-
dering, previously defined olex, will be used. The infimum (∧v )
and supremum (∨v ) will be vectorial operators, and they will
select pixels according to the order olex in the MSH generalized
color space.

Once the orders have been defined, the morphological oper-
ators of reconstruction for color images can be generated and
applied. An elementary geodesic operation is the geodesic di-
lation. Let g denote a marker color image and f a mask color
image (if olex(g) ≤ olex(f), then g ∧v f = g). The vectorial
geodesic dilation of size 1 of the marker image g with respect
to the mask f can be defined as

δ
(1)
vf (g) = δ(1)

v (g) ∧v f (8)

where δ
(1)
v (g) is the vectorial dilation of size 1 of the marker

image g. This propagation is limited by the mask f .
The vectorial geodesic dilation of size n of a marker color

image g with respect to a mask color image f is obtained by
performing n successive geodesic dilations of g with respect to
f

δ(n)
vf

(g) = δ(1)
vf

[
δ(n−1)
vf

(g)
]

(9)

with δ
(0)
vf (g) = f .

Geodesic transformations of bounded images always con-
verge after a finite number of iterations. The propagation of the
marker image is impeded by the mask image. Morphological
reconstruction of a mask image is based on this principle.

The vectorial reconstruction by dilation of a mask color im-
age f from a marker color image g, (both with Df = Dg and
δ
(n)
vf (g) = δ

(n+1)
vf (g)) can be defined as

Rvf
(g) = δ(n)

vf
(g) (10)

where n is such that δ
(n)
vf (g) = δ

(n+1)
vf (g).

The vectorial reconstruction is an algebraic opening (increas-
ing, antiextensive, and idempotent) only if all the operations
between pixels respect the total order; in our case, the lexico-
graphical order.

IV. ELIMINATION OF SPECULARITIES

To eliminate the highlights that were previously detected with
the MS diagram, we use a new geodesic reconstruction filter. It
is a vectorial opening by reconstruction (VOR) applied to the
specular areas of the image and their surroundings. In this case,
a new mask-image h represents the pixels of f with which we
will be operating. The mask-image h is a dilation of the mask
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Fig. 7. Evolution of the specularities detected according to values of s. (a) “Color-beans.” (b) “Plates.” (c) “Cherries.” (d) “Life-saver.” (e) “Balloons.” (f)
“Umbrella.”

of specularities (Fig. 6). Assuming that Dh = Df , each pixel
(x, y) has a value of h(x, y) = {0, 1}, where h(x, y) = 1 in the
new areas of interest in the image.

In the VOR, f is first eroded. The eroded sets are then used
as sets for a reconstruction of the original image. The new VOR
is defined, taking into account the fact that, in this case, the
operation will not affect all the pixels (x, y), but only those in
which h(x, y) = 1

γ(n ′)
vf , h

=
{

δ(n ′)
vf

(
ε(s)
v (f)

)
| ∀f(x, y) ⇒ h(x, y) = 1

}
(11)

where n′ represents the successive iterations of the geodesic
dilation, and the vectorial erosion of the opening by recon-
struction is done with a structural element of size s, which is
automatically obtained from the largest area of specular ob-
jects of Fig. 6. As such, the new local filter is a totally auto-
matic method for brightness elimination. The vectorial erosion
replaces highlight pixels (high olex) by the surroundings chro-

matic pixels (low olex). Next, the vectorial geodesic dilation
(iterated until stability) reconstructs the color image without the
recovering of the specularities. This is the same approach suc-
cessfully used for the attenuation of the color objects in medical
images [25], the Gaussian noise reduction [26], or filling the
holes [27].

In this new operation, we avoid some of the main inconve-
niences of the geodesic reconstruction; i.e., the high cost of
processing caused by the multiple iterations of the reconstruc-
tion, the oversimplification of the image [21], and the manual
selection of the structural element of the operations.

The morphological function now operates only in the bright
areas and their surrounding pixels. As such, the surrounding
pixels replace the specular reflectance. This approach is an ad-
vance with respect to the brightness elimination by selection of
area by means of color marker [28].

The main steps of the proposed method are summarized in
Fig. 8.
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Fig. 8. Algorithm steps for the detection and elimination specular reflectance
in color images.

TABLE I
PARAMETERS OF THE ALGORITHM

V. RESULTS

We now present the results obtained from the application
of our method for eliminating the specularities detected in the
different real scenes in Fig. 4. For each experiment, we show the
global vectorial color opening by reconstruction of the original
image, and the new proposed filter which only operates in the
bright areas that have previously been detected in the original
image.

From the results obtained, the effectiveness of our method for
the detection and elimination of specular reflectance can be ob-
served. It must be emphasized that in the results obtained with
the new filter, the oversimplification does not appear. In con-
ventional connected filters, the size of the structuring element
required for eliminating the specular reflectance causes a loss
of detail in the images. These features can not be retrieved in
the geodesic reconstruction. This has occurred in all the tested
images of the experiment, and is more visible in the scenes of
“plates,” “cherries,” “life-saver” and “balloons” [Fig. 9(c), (e),
(g), and (i), respectively]. This undesirable effect does not ap-
pear with our algorithm, since the erosion and reconstruction
only function in bright areas. Furthermore, as the function of
the connected filters is restricted to specific areas in the image,
the results are obtained at a much lower processing cost.

Details of algorithm parameters for the color images of this
experiment can be observed in Table I. The size s of the struc-
tural element required in the vectorial erosion is automatically
calculated from the masks of brightness in Fig. 6. The global
vectorial geodesic dilation requires more iterations n (with a
longer processing time) than the new operation n’. This reduc-
tion of time is important in the geodesic operations.

Fig. 9. Elimination of specular reflectance of real color images in Fig. 4 by
means a global vectorial color opening by reconstruction (left column) and the
results of our proposed method (right column).

VI. CONCLUSION

In this paper, we have presented a new method for the detec-
tion and elimination of specular reflectance in color images in or-
der to allow a correct identification of objects in computer vision.
We have show the effectiveness of the MS diagram in brightness
detection. A detailed study has demonstrated that the specular-
ities in real scenes appear in a given area of the MS diagram.
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The use of a new connected vectorial filter allows us to elim-
inate the specular reflectance previously detected. This filter is
an extension of the geodesic transformations of the mathemat-
ical morphology to color images. The possibility of eliminat-
ing brightness in color images without causing oversimplifica-
tion has also been demonstrated. In addition, the elimination of
brightness has been obtained automatically with a very low pro-
cessing time, with respect to a global geodesic reconstruction.
The detection and elimination of brightness is achieved inde-
pendently of the material of the objects on which they appear,
without any need of multiple view of the scenes.

Based on the success shown by these results, we are now
working to improve our method for detecting and eliminating
specularities. Specifically, in the highlight detection step, we
are researching the effectiveness of using other color spaces
based on polar coordinates. In the highlight elimination step, the
objective is to reduce the processing time required for geodesic
operations as much as possible.
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National des Mines de Paris in 2002, invited by J. Serra.

REFERENCES

[1] S. A. Shafer, “Using color to separate reflection components,” Color Res.
Appl., vol. 10, pp. 210–218, 1985.

[2] S. Lin, Y. Li, S. Kang, X. Tong, and H. Shum, “Diffuse-specular separation
and depth recovery from image sequences,” in Lecture Notes in Computer
Science, vol. 2352, New York: Springer-Verlag, 2002.

[3] R. Bajcsy, S. Lee, and A. Leonardis, “Detection of diffuse and specular
interface reflections and inter-reflections by color image segmentation,”
Int. J. Comput. Vis., vol. 17, no. 3, pp. 241–272, 1996.

[4] G. Klinker, S. A. Shafer, and T. Kanade, “Image segmentation and re-
flection analysis through color,” in Appl. Artificial Intelligence VI, Proc.
SPIE, vol. 937, pp. 229–244, 1988.

[5] R. Gershon, A. D. Jepson, and J. K. Tsotsos, “Highlight identification
using chromatic information,” in Proc. 1st Int. Conf. Computer Vision,
London, U.K., 1987, pp. 161–170.

[6] S. Lee and R. Bajcsy, “Detection of specularity using color and multiple
views,” Image Vis. Comput., vol. 10, pp. 643–653, 1992.

[7] Y. Sato and K. Ikeuchi, “Temporal-color space analysis of reflection,” in
Proc. IEEE Conf. Computer Vision and Pattern Recognition, New York,
1993, pp. 570–576.

[8] H. Palus, “Representations of color images in different color spaces,” in
The Color Image Processing Handbook, S. Sangwine and R. Horne, Eds.,
London, U.K.: Chapman and Hall, pp. 67–90, 1998.

[9] G. Wyszecki and W. S. Stiles, Color Science, Concepts and Methods,
Quantitative Data and Formulas, 2nd ed., New York: Wiley, 1982.

[10] K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and
Applications. New York: Springer-Verlag, 2000.

[11] H. Levkowitz and G. Herman, “GLHS: A generalized lightness, hue and
saturation color model,” Graph. Models Image Process., vol. 55, no. 4,
pp. 271–285, 1993.

[12] J. Serra, “Espaces couleur et traitement d’images,” Centre de Morphologie
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