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Abstract—In this paper, we explore a new data mining capa-
bility for a mobile commerce environment. To better reflect the
customer usage patterns in the mobile commerce environment, we
propose an innovative mining model, called mining mobile sequen-
tial patterns, which takes both the moving patterns and purchase
patterns of customers into consideration. How to strike a com-
promise among the use of various knowledge to solve the mining
on mobile sequential patterns is a challenging issue. We devise
three algorithms (algorithm TJLS, algorithm TJPT, and algo-
rithm TJPF) for determining the frequent sequential patterns,
which are termed large sequential patterns in this paper, from the
mobile transaction sequences. Algorithm TJLS is devised in light
of the concept of association rules and is used as the basic scheme.
Algorithm TJPT is devised by taking both the concepts of associa-
tion rules and path traversal patterns into consideration and gains
performance improvement by path trimming. Algorithm TJPF

is devised by utilizing the pattern family technique which is de-
veloped to exploit the relationship between moving and purchase
behaviors, and thus is able to generate the large sequential pat-
terns very efficiently. A simulation model for the mobile commerce
environment is developed, and a synthetic workload is generated
for performance studies. In mining mobile sequential patterns, it
is shown by our experimental results that algorithm TJPF signifi-
cantly outperforms others in both execution efficiency and memory
saving, indicating the usefulness of the pattern family technique de-
vised in this paper. It is shown by our results that by taking both
moving and purchase patterns into consideration, one can have a
better model for a mobile commerce system and is thus able to ex-
ploit the intrinsic relationship between these two important factors
for the efficient mining of mobile sequential patterns.

Index Terms—Data mining, mobile computing, mobile sequen-
tial patterns, user behavior.

I. INTRODUCTION

THE EMERGENCE of powerful portable devices, along
with advance in wireless communication technologies,

has made the mobile services available. In the near future, it
is expected that tens of millions of users will carry mobile
phones or portable devices that use wireless connection to ac-
cess a worldwide information network for business or personal
use from anywhere at any time, making the mobile commerce
(MC) a reality [1], [57], [58]. For example, eNetwork Web
Express [19] enables mobile users to use commercial Web ap-
plications over wide-area wireless networks (WANs). Bluetooth
technology [20] allows terminals and cash registers to talk di-
rectly to each other for the purpose of mobile commerce. The
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Fig. 1. Illustrative example for a mobile transaction sequence where cells are
underlined if items are purchased there.

Wireless Access Protocol (WAP) [21] brings the MC environ-
ment a world-wide standard for providing Internet communi-
cations to digital mobile phones. In an MC environment, cus-
tomers can make any transaction from anywhere at any time
with the payment mechanism provided by banks or credit card
companies [58]. In addition, some kind of Nokia mobile phones
provide the wallet application that enables customers to get easy
access to mobile services and to make convenient online mo-
bile transactions [2]. In the wallet, customers can store sensitive
personal information, such as payment and loyalty card details,
delivery addresses, and notes, as well as service profiles. In addi-
tion, with the wallet application, the Nokia mobile phones have
the capability of storing the transactions with moving patterns
and purchasing patterns of customers.

Example 1.1: One example scenario envisioned for a mo-
bile transaction sequence is shown in Fig. 1, where a customer
moves in the mobile commerce environment and makes trans-
actions in the corresponding cell through the mobile device.
Fig. 1(a) shows the moving patterns of this customer and the
mobile transaction sequence data is recorded in Fig. 1(b), where
for example, item i1 was purchased when the customer moved
to the cell A.

It is important to note that since customers are moving along
an MC environment to search for desired items to purchase, the
implications from moving patterns and purchase patterns are in
fact entangled, and both are of great importance for studying
customer behaviors. Clearly, the distinctive features of knowl-
edge discovery in an MC environment increase the difficulty of
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extracting information from the mobile transaction sequences.
However, as these mobile commerce services are becoming in-
creasingly popular nowadays, it is imperative to devise efficient
algorithms for deriving customer buying behavior to improve
the quality of these services. As a result, the design and devel-
opment of efficient mining algorithms for knowledge discovery
in an MC environment while fully exploring the intrinsic rela-
tionship between moving and purchase patterns is taken as the
objective of this paper. Conducting the mining on the moving
and purchase patterns of customers in an MC environment is
called the mining of mobile sequential patterns (i.e., large se-
quential patterns) in this paper. In addition, a novel knowledge,
called mobile sequential rules, can be derived from the mobile
sequential patterns for the measurement of customer purchase
behavior association.

Example 1.2: For the example shown in Fig. 1, the customer
has one kind of moving pattern ABC and two kinds of purchas-
ing patterns {〈A; t1〉 and 〈C; t9〉} where itemset t1 = {i1} and
itemset t9 = {i2, i3}. If there are sufficient customers having
the same patterns, the mobile sequential pattern is an implica-
tion of the form 〈{〈A; t1〉, 〈C; t9〉}: ABC〉, which means that
most customers usually purchase itemset t1 in cell A and then
purchase itemset t9 in cell C with the specific path ABC. In ad-
dition, the mobile sequential rule is an implication of the form
〈{〈A; t1〉 =⇒ 〈C; t9〉: ABC〉 which means that customers pur-
chasing itemset t1 in cell A are usually moving along path ABC
to cell C for purchasing itemset t9. With the mobile sequential
rule, when a customer purchases itemset t1 in cell A, the cellular
phone company could send the coupons of products (i.e., item
i2 and item i3) in itemset t9 to boost the sales through the base
stations in the cells A, B, or C in accordance with their broad-
casting schedules. More description about mobile commerce is
available in [1].

The details of related works are given in Section II-A. De-
spite some efforts having been elaborated upon examining the
user behavior, none of the prior work, to the best of our knowl-
edge, has taken both moving and purchase patterns together into
consideration to model the customer behavior in a mobile com-
merce environment. This can in part be explained by the fact
that the cost is expensive to track and log detailed movements of
mobile users today.1 However, it is expected that such cost will
decrease soon and the cellular phone will become the popular
interface of the interconnection networks for accessing various
services [57], thus justifying the practicality and necessity of
conducting mobile sequential pattern mining. It is understood
that the records of cells visited and items purchased, required
for mining mobile sequential patterns, may belong to different
companies, and for these companies, they may have different
considerations on using their data to improve the mobile com-
merce services provided. It should go without saying that such
data analysis should be done solely for the purposes of system
and service improvements and should be conducted in a contin-
gent way that neither any law is violated nor is the privacy of
customers intruded. Nevertheless, with the legality and privacy

1The cost to locate a mobile user is estimated to be about US $0.01 to
US $0.05 each time according to a major mobile phone service provider.

Fig. 2. Notion of mining mobile sequential patterns.

issues considered, the knowledge discovery from the MC data
is believed to be an increasingly challenging technical prob-
lem which is of great practical importance for the evolving MC
techniques.

Consequently, to better reflect the customer buying behav-
ior in the MC environment, we propose an innovative mining
model that takes both the moving patterns and purchase patterns
into consideration. In essence, the mining of mobile sequential
patterns aggregates the concepts on mining association rules,
mining path traversal patterns, and mining sequential patterns,
and thus requires a combined use of corresponding techniques.
The notion of mining mobile sequential patterns is shown in
Fig. 2, where the relationship among these mining capabili-
ties is depicted. How to strike a compromise among the use
of various knowledge to solve the mining on mobile sequential
patterns is a challenging issue. As an effort to solve this prob-
lem, we devise a procedure, namely mobile sequential patterns
MSPs), to conduct the mining of mobile sequential patterns.
With the details described in the Section II-C, the procedure
MSP splits the problem of mining mobile sequential patterns
into four phases, namely: 1) the large-transaction generation
phase; 2) the large-transaction transformation phase; 3) the
sequential-pattern generation phase; and 4) the sequential-rule
generation phase.

In this paper, the performance bottleneck is in phase 3), i.e.,
the sequential-pattern generation phase. By having different
priorities on the factors involving large itemsets, traversal
paths and orders of purchases, we devise three algorithms
(algorithm TJLS, algorithm TJPT, and algorithm TJPF) to
determine mobile sequential patterns. First, algorithm TJLS is
devised in light of the concept of itemset joining in association
rules mining [6]. However, as will be seen later, without fully
utilizing the traversal paths of mobile sequential patterns, algo-
rithm TJLS tends to count the supports of a lot of out-of-path
sequential patterns (i.e., the sequential patterns which do not
stay within a path), thus degrading the performance. Next,
to eliminate the out-of-path sequential patterns, algorithm
TJPT is devised by taking both the concepts of association
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rules [6] and path traversal patterns [12] into consideration and
gains performance improvement by path trimming. However,
algorithm TJPT incurs the comparison along the path with
time complexity O(P ), where P is the average path length, and
may generate some uncertain candidate sequential patterns
which undesirably require further subpattern identifications.

Consequently, by fully exploring the intrinsic relationship be-
tween moving and purchase behaviors of customers, algorithm
TJPF is developed in light of the pattern family technique. The
pattern family of a pattern consists of the pattern itself and all
its subpatterns generated in each round. In essence, the pattern
family technique is a filtering technique that fully exploits the
purchase patterns generated in the intermediate stages of mo-
bile sequential pattern mining. For better readability, we defer
the detailed description of the pattern family technique and the
corresponding theoretical properties to Section III. It will be
shown that utilizing the information of pattern family, algo-
rithm TJPF compares the path with time complexity O(1) and
generates fewer uncertain candidate sequential patterns, thus re-
ducing the corresponding computational overhead and memory
consumption.

After all mobile sequential patterns are obtained, the mobile
sequential rules can be derived with a straightforward way and
it is described clearly in Section II-C4. A simulation model for
the MC environment is developed and a synthetic workload is
generated for performance studies. By utilizing pattern family
technique, TJPF is shown to be able to determine large se-
quential patterns very efficiently. As validated by the synthetic
workload, it is shown by our experimental results that algorithm
TJPF significantly outperforms others in both the execution ef-
ficiency and the memory saving. It is shown by our results that
by taking both moving patterns and purchase patterns into con-
sideration, one can have a better model for an MC system and is
thus able to exploit the intrinsic relationship between these two
customer behaviors.

This paper is organized as follows. Preliminaries are given in
Section II. In Section III, three algorithms (TJLS, TJPT, and
TJPF) are devised for determining large sequential patterns.
Experimental studies are conducted in Section IV. This paper
concludes with Section V.

II. PRELIMINARIES

In this section, the problem of mining mobile sequential pat-
terns is described in Section II-A, the related works are described
in Section II-B, and the procedure of mining mobile sequential
rules is outlined in Section II-C.

A. Problem Formulation

In the mobile commerce environment where items are sold
in various cells, customers may move among the cells to pur-
chase items of interest with either traditional or electronic com-
merce trading mechanisms. In either case, customers pay for
items through the mobile devices and the purchasing records are
logged. Let N = {n1, n2, . . . , ng} be a set of cells in the MC
environment and I = {i1, i2, . . . , ih} be a set of items sold in
that environment. We are given a database of mobile transaction

TABLE I
PATTERNS AND THEIR NOTATIONS

sequences, where each mobile transaction sequence consists
of sequence-id, cells visited, and a list of itemsets purchased
in the corresponding cells, ordered by customer movements
among cells.

A path is denoted by 〈n1n2 . . . ny〉, where nj ∈ N , for
1 ≤ j ≤ y. Thus, the sequence of cells visited implicitly forms
the path of the mobile transaction sequence. In this pa-
per, the discovered patterns and their notation are given in
Table I. A transaction, denoted as 〈C; {i1, i2, . . . , ip}〉, means
that itemset {i1, i2, . . . , ip} was bought in cell C, where
C ∈ N , and {i1, i2, . . . , ip} ⊆ I . Thus, the list of itemsets
purchased in the corresponding cells implicitly forms the list
of transactions of the mobile transaction sequence. As a re-
sult, each mobile transaction sequence contains the informa-
tion of path and a list of transactions. Given a database DM

of mobile transaction sequences, the problem of mining mo-
bile sequential patterns is to discover the frequent sequential
patternss among all mobile transaction sequences. A sequential
pattern is represented by the form 〈list of transactions: path〉,
where the transactions are made along the path. The support for
a sequential pattern is defined as the number of mobile trans-
action sequences which support this sequential pattern. A large
sequential pattern is a sequential pattern with the minimum
support (i.e., a sequential pattern that appeared in a sufficient
number of mobile transaction sequences).

The length of a large sequential pattern is the number of trans-
actions in that large sequential pattern. A large sequential pattern
of length k is called a large k-sequential pattern. Thus, a large
1-sequential pattern can be represented by the form 〈transaction:
cell〉, where the transaction is made in the cell. Note that each
transaction in a large k-sequential pattern must meet the mini-
mum support. In [7], an itemset with minimum support is called
a large itemset or litemset. Similarly, we call a transaction with
minimum support large transaction or L-transaction, which can
be represented as 〈C; tj〉 , where tj represents a litemset in cell
C. Thus, if the transaction 〈C; {i1, i2, . . . , ip}〉 has the mini-
mum support, the litemset {i1, i2, . . . , ip} will be represented
as tj and the L-transaction 〈C; {i1, i2, . . . , ip}〉 will be repre-
sented as 〈C; tj〉. Since each transaction in a large k -sequential
pattern will have the minimum support, a large k-sequential
pattern can be represented as 〈{x1, x2, . . . , xk}: n1n2 . . . ny〉,
where xj is an L-transaction made along the path n1n2 . . . ny .

Recall that in association rules [6], a large itemset is a
frequently purchased itemset. In sequential patterns [7], a large
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sequence is a frequently purchased set of itemsets ordered by
the purchase time. In traversal patterns [12], a large reference
is a frequently traveled path. In this paper, a large sequential
pattern is a pattern containing: 1) the frequently purchased
itemset (meaning that the itemset in an L-transaction must
have the minimum support); 2) the frequently purchased set
of itemsets ordered by the purchase time (meaning that the
set of L-transactions in a large sequential pattern must have
the minimum support); and 3) the frequently traveled path
(meaning that the path in a large sequential pattern must have
the minimum support).

B. Related Work

Recently, mining of databases has attracted a growing amount
of attention in database communities due to its wide applica-
bility to studying the buying behaviors of customers [11], [18].
Mining association rules is employed to discover the impor-
tant associations among items such that the presence of some
items in a transaction will imply the presence of other items
in the same transaction [5]. After that, several technologies on
association rule mining have been developed including: 1) al-
gorithm improvements [3], [6], [10], [15], [27], [32], [43], [68];
2) constraint-based [25], [28], [46]; 3) incremental updating
[9], [14], [30]; 4) multiple minimum supports [35], [60]; 5) fre-
quent closed itemsets [45], [47], [67]; and 6) generalized [53],
multilevel [23], intertransaction [56], quantitative [54], and mul-
tidimensional [61], [62].

Mining sequential patterns was first introduced in [7] for
finding the intertransaction patterns in the traditional retailing
environments. After that, several technologies on sequential pat-
tern mining have been developed, including: 1) algorithm im-
provements [26], [39], [48], [66]; 2) constraint-based [36], [55],
[65]; 3) incremental updating [33], [44], [69]; and 4) general-
ized [55].

Several temporal association rule mining techniques are ad-
dressed in [8], [13], [29], and [41]. Episode mining has been
studied in [31] and [38] for discovering frequent patterns in a
sequence of time events. Das et al. [17] investigated the prob-
lem of finding rules relating patterns in a time series to other
patterns in that series, or patterns in one series to patterns in
another series. Mining series of interval events was discussed
in [59] for discovering the temporal containment relationships of
event sequences. A temporal logic approach is proposed in [42]
for finding temporal patterns. Mining partial orders from the
sequential data is explored in [37]. Mining segmentwise peri-
odic patterns is discussed in [24]. Mining asynchronous periodic
patterns is investigated within a subsequence shifted by distur-
bance [63]. Searching for partial periodic patterns in time-series
databases is discussed in [22].

A study on efficient mining of path traversal patterns for
capturing Web user behavior was conducted in [12]. WEB-
MINER [16] was designed for mining Web usage association
rules and sequential patterns. Several WWW server logs are
analyzed in [50] for deriving the path distribution patterns of
the Web users. With mining longest repeated subsequences, a
robust method was proposed in [51] for reducing the complexity

Fig. 3. Flowchart of the whole procedure of mining mobile sequential patterns.

while preserving the predictability of the Web user surfing paths.
Recently, several EC Web sites have been using recommended
systems for analyzing the customer behaviors to help their cus-
tomers to find products for possible purchases [4], [52]. For
capturing the user behavior in the EC environment, a study on
efficient mining Web transaction patterns was reported in [64].

Note that by treating the cells as other items in the patterns,
one may extend algorithm GSP, which was designed for mining
conventional sequential patterns in [55], to find mobile sequen-
tial patterns. However, such an extension to algorithm GSP is
not deemed ideal for mining mobile sequential patterns for two
reasons. First, since our approaches process the cells and the
items individually, and the modified GSP treats the cell as an-
other item in the patterns, it is expected that the former will have
a smaller domain to process, thereby having better efficiency,
than the latter. More importantly, by simply treating the cell as
another attribute, GSP is not able to utilize the intrinsic rela-
tionship between moving and purchase behaviors of customers,
thus not attaining the mining efficiency we could have owing to
the nature of this problem.

C. Procedure for Mining Mobile Sequential Patterns

With the aggregate concept of mining on association rules,
path traversal patterns and sequential patterns, the problem of
mining mobile sequential patterns cannot be solved by a simple
addition of prior techniques since factors in these companion
mining capabilities are in fact entangled. This fact justifies the
necessity of devising a new mining procedure for mobile se-
quential patterns. As the mobile commerce business has been
identified by several leading industrial companies as the key
direction to move for years to come, it is believed that min-
ing mobile sequential patterns has become a very timely and
important issue to address.

The flowchart for the whole procedure is shown in Fig. 3
and the meanings of symbols are given in Fig. 4. In the overall
procedure, the proposed methods for mining mobile sequential
patterns is outlined as follows.
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Fig. 4. Meanings of symbol used in mining mobile sequential patterns.

Procedure MSP (Mobile Sequential Patterns):
1) Large-Transaction Generation Phase: Determine the

(L-transactions large transactions) from the mobile trans-
action sequences.

2) Large-Transaction Transformation Phase: Employ
algorithm Large-Transaction Transformation with
Sequence-Trimming (LTTST) to transform all mobile
transaction sequences into the maximal L-transaction
sequences.

3) Sequential-Pattern Generation Phase: Employ one of
the following three algorithms [TJLS (Transactionset Join
with Large-transaction set), TJPT (Transactionset Join
with Path Trimming), and TJPF (Transactionset Join with
Pattern Family)] to determine the large sequential patterns
from the maximal L-transaction sequences.

4) Sequential-Rule Generation Phase: Derive mobile se-
quential rules from the large sequential patterns.

1) Large-Transaction Generation Phase: For each cell, we
apply a modified algorithm DHP [43] for finding the set of
all L-transactions TL. Similarly to the approach taken by [7],
the set of litemsets is mapped to a set of contiguous integers
for reducing the time required to check if a mobile sequential
pattern is contained in a mobile transaction sequence. Note that
we are able to simultaneously discover the set of all large 1-
sequential patterns, since this set is mainly {〈x: C〉|x ∈ TL, C
is the cell containing itemset x}.

Example 2.1: An illustrative database for this problem is
shown in Fig. 5, where Sequence IDentification (SID) 100 is the
mobile transaction sequence shown in Fig. 1. For the example
database in Fig. 5, the L-transactions are shown in Fig. 6(a). For
the L-transactions shown in Fig. 6(a), after the mapping shown
in Fig. 6(b), the set of large 1-sequential patterns is shown in
Fig. 6(c).

2) Large-Transaction Transformation (LTT) Phase: As will
be seen in Section III, we need to repeatedly determine which
part of a given set of large sequential patterns will appear in the
mobile sequential patterns. For efficiently mining the patterns,
we employ algorithm LTTST to transform each mobile trans-

Fig. 5. Illustrative example database DM that stores six mobile transaction
sequences.

Fig. 6. Mapping table shown in (b) maps the large transactions in (a) to the
large 1-sequential patterns in (c).

action sequence into a maximal L-transaction sequence in this
phase.

Example 2.2: With the mobile transaction sequence shown in
Fig. 1 and the mapping table shown in Fig. 6(b), Fig. 7 illustrates
the operations in algorithm LTTST. In Fig. 7, the first column
corresponds to the sequence of movements, the second column
contains the nodes visited and the third column has the items
purchased in SID 100. The fourth column gives the on-going L-
transaction in the buffer and the fifth column gives the on-going
string in the buffer. The sixth column shows the L-transaction
set and the seventh column shows the path of the maximal L-
transaction sequence generated by LTTST.

Note that the same itemsets in different cells are viewed as
different transactions. Thus, the same litemsets sold in different
cells will be transformed to different integers.

Example 2.3: For example, transactions 〈A; {ig, ih}〉,
〈B; {ig, ih}〉, and 〈C; {ig, ih}〉 all have itemset {ig, ih}. In ad-
dition, {ig, ih} is a litemset in both cells A and B but is not in
cell C. After this phase, {ig, ih} in cell A and {ig, ih} in cell
B are transformed to different integers (say, ty and tz) whereas
{ig, ih} in cell C will be trimmed. For the database DM shown
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Fig. 7. Example for producing the maximal large transaction sequences.

in Fig. 5, the transformed database DT , storing maximal L-
transaction sequences, is shown in the first table of Fig. 8 for
illustrative purposes.

3) Sequential-Pattern Generation Phase: After all the
mobile transaction sequences are transformed to maximal
L-transaction sequences, three algorithms (algorithm TJLS,
algorithm TJPT, and algorithm TJPF) are devised for
mining large sequential patterns from the transformed
database DT . A large k-sequential pattern is represented as
〈{x1, x2, . . . , xk}: n1n2 . . . ny〉, where xj is an L-transaction
made along the path {n1n2 . . . ny}. The details of algorithms
of this phase will be described in Section III.

Example 2.4: The large sequential patterns, generated in the
sequential-pattern generation phase from the example database
DT , are shown in Fig. 8. For example, 〈{〈A; t1〉, 〈C; t3〉,
〈F; t4〉}: ABCDEF〉 is one large 3-sequential pattern, whose
L-transaction set and path appear in SID 100, SID 200, SID
400, and SID 500. The support is thus 4.

4) Sequential-Rule Generation Phase: After the sequential-
pattern generation phase, we can find the mobile sequential rules
from the large sequential patterns in this phase in a straightfor-
ward manner. Unlike the association rule [6], the mobile se-
quential rule, derived from mobile sequential patterns in this
paper, is an implication of the form 〈X =⇒ Z:n1, n2, . . . , ny〉,
where X and Z are both sets of L-transactions, X ∩ Z = Φ,
and {n1, n2, . . . , ny} ⊆ N. The rule 〈X =⇒ Z: n1n2 . . . ny〉
has support s if the number of mobile transaction sequences
in DM containing 〈X ∪ Z: n1n2 . . . ny〉 is s. Also, the rule
〈X =⇒ Z: n1, n2, . . . , ny〉 holds with confidence c if c% of
mobile transaction sequences in DM that contain X also con-

tain Z along the path {n1, n2, . . . , ny}. Explicitly, support
(〈X =⇒ Z: n1n2 . . . ny〉) = support(〈X ∪ Z: n1n2 . . . ny〉),
and confidence (〈X =⇒ Z: n1, n2, . . . , ny〉) = (〈X ∪ Z:
n1n2 . . . nh . . . ny〉)/(〈X:n1n2 . . . nh〉}).

Example 2.5: For example, suppose that 〈{〈A; t1〉,
〈C; t3〈, 〈F; t4〉}: ABCDEF〉 is one large 3-sequential pat-
tern with support = 4 and 〈{〈A; t1〉, 〈C; t3〉}: ABC〉
is one large 2-sequential pattern with support = 5.
Then, we can derive one mobile sequential rule 〈{〈A; t1〉,
〈C; t3〉} =⇒ {〈F; t4〉}: ABCDEF〉 with the support equal to
support(〈{〈A; t1〉, 〈C; t3〉} =⇒ {〈F; t4〉}: ABCDEF〉) =
support(〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉}: ABCDEF〉)
= 4 and the confidence (〈{〈A; t1〉, 〈C; t3〉} =⇒
{〈F; t4〉}: ABCDEF〉) = (support(〈{〈A; t1〉, 〈C; t3〉,
〈F; t4〉}:ABCDEF〉))/(support(〈{〈A; t1〉, 〈C; t3〉} : ABC〉)}
= 80% .

III. ALGORITHMS FOR MINING MOBILE

SEQUENTIAL PATTERNS

Once the database contains maximal L-transaction sequences
for all mobile users, we can derive the large sequential patterns
by identifying the frequently occurring transaction sequences.
Let Sk be the set of large k-sequential patterns, Rk be the set of
candidate k-L-transaction sets, and Ck represent the set of can-
didate k-sequential patterns. Rk is the transaction component of
Ck, and Sk is a subset of Ck. By having different priorities on
the factors involving large itemsets, traversal paths and orders of
purchases, we devise three algorithms (algorithm TJLS, algo-
rithm TJPT, and algorithm TJPF) to determine large sequential
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Fig. 8. Large sequential patterns generated in sequential-pattern generation phase from the example database DT .

patterns. Because both algorithm TJPT and TJPF generate Sk

along with the generation of Ck+1, we use round k to refer to
the procedure performed to obtain (Sk, Ck+1). For algorithm
TJLS, we use round k to refer to the procedure performed
to obtain (Sk, Rk+1). Note that S1 is obtained in the large-
transaction generation phase, we thus use round one to refer to
the procedure performed to obtain (R2). These algorithms are

devised step by step in light of the features of the candidate
generation of sequential patterns and are outlined as follows.

Generalized Descriptions of Algorithms:
1) AlgorithmTJLS: By deriving a straightforward extension

from prior works, algorithm TJLS is devised as a variant
of algorithm a priori in [6] by using a two-level hash tree
in mining large sequential patterns.
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2) Algorithm TJPT : In light of the concept of the path
trimming technique, algorithm TJPT is devised by taking
the path into consideration in generating the candidate
patterns.

3) Algorithm TJPF: In light of the concept of the pattern
family technique, algorithm TJPF is devised by using the
shared-path tree in generating the candidate patterns.

A. Algorithm TJLS (Transactionset Join With Large-
Transaction Set)

Algorithm TJLS is a variant of algorithm a priori in [6]. Algo-
rithm TJLS essentially utilizes the concept of joining itemsets in
association rule mining [6], [55] while solving the discrepancy
between large sequential patterns and large itemsets. Similarly
to algorithm a priori [6], TJLS joins the L-transaction sets of
large (k − 1)-sequential patterns for the generation of candidate
k-L-transaction sets in the procedure to discover large sequential
patterns. However, unlike algorithm a priori, TJLS employs a
two-level hash tree, called the mobile sequence tree, to store the
candidate sequential patterns. By utilizing the two-level hashing
technique, TJLS can join the L-transaction sets to construct the
transaction component of the mobile sequence tree in the can-
didate generation. Then, in the database scan for counting the
support, TJLS constructs the path component by extracting the
corresponding path from the maximal L-transaction sequences
whose L-transaction sets contain the corresponding candidate
L-transaction sets.

In the two-level hash tree, a node either contains a list of
patterns (a leaf node) or a hash table (an internal node). In an
internal node, each bucket of the hash table points to another
node. The patterns are stored in the leaf nodes. The root of
the hash tree is defined to be at depth 1. An internal node
at depth d points to nodes at depth d + 1. When TJLS adds
a pattern p, TJLS starts from the root and go down the tree
until reaching a leaf. At an internal node at depth d in the
transaction component, TJLS decides which branch to follow
by applying a hash function to the dth L-transaction of the L-
transaction set of pattern p. Similarly, at an internal node at
depth g in the path component, TJLS decides which branch to
follow by applying a hash function to the gth cell of the path of
pattern p.

In the beginning of hashing a maximal L-transaction sequence
m, TJLS finds all the candidate sequential patterns contained
in m as follows. If TJLS reaches an internal node by hashing
the L-transaction l (cell c), it hashes on each L-transaction (cell)
that comes after l (c) in m and recursively applies this procedure
to the node in the corresponding bucket. If TJLS reaches a leaf
node, it finds which of the patterns in the leaf node are contained
in m and adds support counts to them.

Example 3.1: Fig. 8 is the large sequential patterns gener-
ated in sequential-pattern generation phase from the example
database DT , and Fig. 9 is the mobile sequence tree storing S4

in Fig. 8.
For mining mobile sequential patterns, the first round is ex-

ecuted with large-transaction generation phase to obtain S1,
the set of large 1-sequential patterns, as shown in Fig. 6(c). In

addition, algorithm TJLS utilizes the L-transactions in S1 as the
seed set for generating R2, the set of candidate 2-L-transaction
sets, which is stored in the transaction component of a mo-
bile sequence tree. In the second round, TJLS constructs the
complete mobile sequence tree by hashing each combination
of 2-L-transactions set in each maximal L-transaction sequence
into the transaction component and hashing the corresponding
path for constructing the path component, to count the support of
each candidate sequential pattern. Then, TJLS destructs the mo-
bile sequence tree for deriving S2, the set of large 2-sequential
patterns, and utilizes the L-transaction sets in S2 for generat-
ing R3. In each subsequent round, TJLS starts with candidate
L-transaction sets found in the previous round for the counting
of supports of candidate sequential patterns and then identifies
large sequential patterns. TJLS proceeds to the generation of
new candidate L-transaction sets and stores them to the mobile
sequence tree. The procedure continues until no large sequential
patterns are derived.

Example 3.2: To illustrate the operations of algorithm TJLS,
it can be seen from Fig. 9, {〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉}
is a candidate 4-L-transaction set generated by join-
ing the L-transaction sets {〈A; t1〉, 〈C; t3〉, 〈F; t4〉} and
{〈A; t1〉, 〈C; t3〉, 〈G; t5〉}, respectively, from large 3-
sequential patterns 〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉}: ABCDEF〉 and
〈{〈A; t1〉, 〈C; t3〉, 〈G; t5〉}: ABCDEFG〉. In scanning database
phase, algorithm TJLS constructs the path component of
the mobile sequential tree and counts supports of the can-
didate sequential patterns. For example, after the transac-
tion component of tree is constructed in the Fig. 9(a), TJLS

scans the database DT in Fig. 8 to obtain the path compo-
nent in Fig. 9(b) while also counting supports. In SID 100,
when the support for candidate L-transaction set {〈A; t1〉,
〈C; t3〉, 〈F; t4〉, 〈G; t5〉} is being counted, the corresponding
path 〈ABCDEFG〉 will be generated in the path component of
the mobile sequence tree to account for one support count of
〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉}: ABCDEFG〉. Hence, the fi-
nal support of 〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉}: ABCDEFG〉
is 2, i.e., from SID 100 and SID 200. Explicitly, the cor-
responding path is divided into several subpaths by identi-
fying the cells of L-transactions. For the example shown in
Fig. 10, algorithm TJLS counts the support of L-transaction set
{〈A; t1〉, 〈C; t3〉, 〈P; t7〉} in SID 100. TJLS first locates 〈A; t1〉
on position (1) and 〈C; t3〉 on position (2) in the L-transaction
set, and the corresponding subpath 〈ABC〉 is extracted from the
subpath 〈ABC〉 shown in (3). Then, TJLS locates 〈C; t3〉 on
position (2) and 〈P ; t7〉 on position (4) in the L-transaction
set, and the corresponding subpath 〈CDEFGLP〉 is extracted
from the subpath 〈CDEFGHQGLP〉 shown in (5). Note that
the redundancy of HQG is eliminated because they cause a
cycle between L-transaction 〈C; t3〉 and L-transaction 〈P; t7〉.
After scanning database for counting the support of candi-
date sequential patterns, TJLS obtains large sequential pat-
terns in the procedure of destructing the mobile sequence
tree. Each large sequential pattern is generated when its sup-
port exceeds the minimum support. For example, one can de-
struct the mobile sequence tree in Fig. 9 to determine S4 in
Fig. 8.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 16, 2009 at 02:29 from IEEE Xplore.  Restrictions apply.



286 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 37, NO. 2, MARCH 2007

Fig. 9. Data structure of a mobile sequential tree for storing candidate 4-sequential patterns in algorithm TJLS.

Fig. 10. Procedure of counting support of L-transaction set
〈{〈A; t1〉, 〈C; t3〉, 〈P; t7〉}: ABCDEFGLP〉 in SID 100.

B. Algorithm TJPT (Transactionset Join With Path Trimming)

Without exploiting the paths of large sequential pat-
terns, algorithm TJLS tends to count the supports of a
lot of out-of-path sequential patterns (i.e., the sequential
patterns that do not stay within the path), thus degrading
the performance. In light of the concept of path trimming,
algorithm TJPT is designed by taking both the L-transaction
sets and paths of large sequential patterns into consideration
to generate candidate sequential patterns. Explicitly, during the
generation of large sequential patterns, by destructing the mo-
bile sequence tree, TJPT not only determines large sequential
patterns but also maintains a buffer that contains the leaf nodes
in the transaction component and the corresponding paths in the
path component so as to classify the patterns. The purpose of
classifying the patterns is that the patterns, whose paths do not

contain each other, need not be considered to generate candidate
sequential patterns together. Thus, TJPT can trim the generation
of candidate sequential patterns according to the paths. This is
referred to as the path trimming technique. As a result, TJPT uti-
lizes large sequential patterns to generate candidate sequential
patterns in the candidate generation for solving the out-of-path
sequential pattern problem in TJLS mentioned above.

Example 3.3: For the example shown in Fig. 8, in SID 300,
when the support for candidate 4-L-transaction set {〈A; t1〉,
〈C; t3〉, 〈F; t4〉, 〈G; t5〉} is being counted, the corresponding
path 〈AWBCEFG〉 will be generated in the path component
of mobile sequence tree to account for one support count
for 〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉}: AWBCEFG〉. Note
that 〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉}: AWBCEFG〉 has four
subpatterns including 〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉}: AWBCEF〉,
〉{〈A; t1〉, 〈C; t3〉, 〈G; t5〉}: AWBCEFG〉, 〈{〈A; t1〉, 〈F; t4〉,
〈G; t5〉}: AWBCEFG〉, and 〈{〈C; t3〉, 〈F; t4〉, 〈G; t5〉}:
CEFG〉. However, all of them are not large 3-sequential
patterns. Instead, they are out-of-path 3-sequential patterns in
round 3 in the sense that not all of their subpatterns are large
2-sequential patterns. Explicitly, only 〈{〈F; t4〉, 〈G; t5〉}: FG〉
is a large 2-sequential pattern in this case. However, algorithm
TJLS still counts the supports of them in round 3. In algorithm
TJLS, out-of-path sequential patterns will be generated in each
round if the candidate L-transaction sets are contained in the
L-transaction sets of maximal L-transaction sequences in DT .
For example, the out-of-path sequential patterns generated by
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Fig. 11. Example for describing the out-of-path sequential pattern problem in
SID 300 caused by algorithm TJLS.

SID 300 are shown in Fig. 11. Such an out-of-path sequential
pattern problem will happen in round k for k > 2. This in turn
implies that one can trim the support counting of the redundant
sequential patterns according to the paths traversed.

Recall that Sk represents the set of large k-sequential patterns
and Ck is the set of candidate k-sequential patterns. In the can-
didate generation phase, TJPT constructs both the transaction
and path components of mobile sequential tree for storing Ck. In
the candidate generation, TJPT joins the L-transaction sets of
large (k − 1)-sequential patterns for the generation of candidate
k -L-transaction set and compares the paths of large (k − 1)-
sequential patterns. If one path does not contain the other path,
the generated candidate k-L-transaction set is trimmed. If one
path p contains the other path q, TJPT generates a candidate k-
sequential patterns consisting of the candidate k-L-transaction
set and p.

Example 3.4: Consider the example scenario shown in
Fig. 12. In algorithm TJPT, the candidate 5-sequential pattern
〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉, 〈Q; t6〉}: ABCDEFGHQ〉 in
Fig. 12(a) is generated by joining L-transaction set
{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉} in subpattern 〈1〉 and L-
transaction set {〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈Q; t6〉} in subpattern
〈2〉 with the path trimming technique to identify the fact that
path 〈ABCDEFGHQ〉 contains path 〈ABCDEFG〉. Finally,
〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉, 〈Q; t6〉}: ABCDEFGHQ〉 is
qualified as a candidate 5-sequential pattern after TJPT

identifies that the other subpatterns (i.e., subpatterns 〈3〉, 〈4〉,
and 〈5〉) are large 4-sequential patterns in Fig. 12(b).

By classifying the large k-sequential patterns, TJPT can
efficiently generate candidate k-sequential patterns. Partic-
ularly, by classifying the patterns in Sk for k ≥ 2, TJPT

will not generate any out-of-path (k + 1)-sequential pattern.
This demonstrates the very advantage of the path trimming
technique TJPT employs.

Example 3.5: For the example shown in Fig. 9, TJPT gen-
erates the complete mobile sequence tree by hashing not only
L-transaction sets but also paths in candidate generation so that
the path 〈AWBCEFG〉will not be counted for the support. Note
that such out-of-path sequential patterns as the one shown in Fig.
11 will not occur anymore, showing a significant performance
improvement of TJPT over TJLS.

C. Algorithm TJPF (Transactionset Join With Pattern Family)

Algorithm TJPF is similar to algorithm TJPT in that it em-
ploys the concept of utilizing large sequential patterns for gener-
ating candidate sequential patterns to reduce the computational
overhead caused by out-of-path sequential patterns but is dif-
ferent from the latter in that algorithm TJPF by utilizing the
information in patterns and is able to reduce the number of
uncertain candidate sequential patterns and store candidate se-
quential patterns with a compact approach, thus further reducing
the corresponding overhead. Recall that algorithm TJPT utilizes
path trimming technique for the generation of candidate sequen-
tial patterns by comparing the paths of its subpatterns to identify
if one path contains another.

Example 3.6: For the example in Fig. 12,
algorithm TJPT generates the candidate 5-sequential
pattern in Fig. 12(a) by joining L-transaction set
{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉} in subpattern 〈1〉 and
L-transaction set {〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈Q; t6〉} in subpat-
tern 〈2〉 with the path trimming technique to identify that path
〈ABCDEFGHQ〉 contains path 〈ABCDEFG〉.

Comparing the paths of subpatterns incurs O(|P |) computa-
tion, where |P | is the average path length of large sequential
patterns. In addition, algorithm TJPT is required to store the
same paths as the branches in different subtrees of the trans-
action component in the mobile sequence tree, which incurs
an excessive use of memory. Note that even by treating the
cells as other items in the patterns, modified algorithm GSP still
needs to compare the whole cells in the path and incurs O(|P |)
computation. Hence, algorithm TJPF surpasses algorithm
TJPT and the modified GSP in that with the pattern family
technique, TJPF is able to generate a more compact tree to
store the patterns to minimize the corresponding overhead.

1) Remarks of Algorithm TJPF: Algorithm TJPF is devised
in light of the pattern family technique. To facilitate our descrip-
tion of algorithm TJPF, some theoretical properties of pattern
family are devised below.

Definition 1: A maximal sequential pattern is a large sequen-
tial pattern that is not contained in any other large sequential
pattern. For each maximal sequential pattern, its pattern family
consists of the pattern itself and all its subpatterns generated in
each round.

Example 3.7: For the example shown in Fig. 8,
one of the maximal sequential patterns is 〈{〈A; t1〉,
〈C; t3〉, 〈F; t4〉, 〈G; t5〉, 〈Q; t6〉}: ABCDEFGHQ〉which is also
a large 5-sequential pattern. The corresponding pattern family
is shown in Fig. 13.

Definition 2: For a pattern family whose maximal sequential
pattern is sk which consists of L-transactions {x1, x2, . . . , xk}
and path 〈m1m2 . . . mq〉, a maximal-path large 2-sequential
pattern (abbreviatedly as MS2), 〉{x1, xk}: m1m2 . . . mq〉, is
a large 2-sequential pattern which has the same path as the
maximal sequential pattern of this pattern family.

Example 3.8: For each pattern family, it is noted that MS2 is
the large 2-sequential subpattern with the maximal path. For the
example shown in Fig. 13, patterns marked gray are the patterns
with MS2 = 〈{〈A; t1〉, 〉Q; t6〉}: ABCDEFGHQ〉, which is the
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Fig. 12. Candidate 5-sequential pattern shown in (a) is generated by identifying the existence of its five large 4-sequential subpatterns shown in (b).

Fig. 13. One pattern family example. Patterns marked gray are the patterns
having the maximal-path large 2-sequential pattern.

large 2-sequential pattern with path length equal to 9, larger than
those of other large 2-sequential patterns.

Definition 3: Suppose sk, k ≥ 3, is the maximal sequen-
tial pattern of a pattern family, and sk consists of L-
transactions {x1, x2, . . . , xk} and path 〈m1m2 . . . mq〉. The
centro-subtransactionset of a pattern in this pattern family is
{x2, . . . , xk−1}.

Example 3.9: For example, the large 4-sequential pat-
tern 〈{〈A; t1〉, 〉C; t3〉, 〈F; t4〉, 〈Q; t6〉}: ABCDEFGHQ〉
can be viewed as two parts, i.e., MS2 =
〈{〈A; t1〉, 〈Q; t6〉}: ABCDEFGHQ〉 and the centro-
subtransactionset being {〈C; t3〉, 〈F; t4〉}. Note that a large
k-sequential pattern is a pattern consisting of k L-transactions
and a path. For each large k-sequential pattern, all its k
(k − 1)-sequential subpatterns are large. Explicitly, for a large
k-sequential pattern with L-transaction {x1, x2, . . . , xk}, the
L-transactions of its k (k − 1)-sequential subpatterns can be
represented by {x2, x3, . . . , xk}, {x1, x3, . . . , xk}, . . ., and
{x1, x2, . . . , xk−1}. Then, we have the following remarks.

Remark 1: For a large k-sequential pattern pk, k ≥ 3, there
exist at least k − 2 large (k − 1)-subpatterns whose paths are
identical to that of pk.

Example 3.10: For the large 5-sequential pattern
〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈G; t5〉, 〈Q; t6〉}: ABCDEFGHQ〉
shown in Fig. 13(a), there exist 3 large 4-subpatterns,
〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉, 〈Q; t6〉}: ABCDEFGHQ〉,
〈{〈A; t1〉, 〈C; t3〉, 〈G; t5〉, 〈Q; t6〉}: ABCDEFGHQ〉, and
〈{〈A; t1〉, 〈F; t4〉, 〈G; t5〉, 〈Q; t6〉}: ABCDEFGHQ〉, shown in
Fig. 13(b), whose paths are the same with the one of the large
5-sequential pattern.

Remark 2: Note that a maximal sequential pattern is also
a large sequential pattern. Thus, for a maximal sequen-
tial pattern sk with L-transactions {x1, x2, . . . , xk} and path
〈m1m2 . . . mq〉, there exist k − 2 large (k − 1)-sequential sub-
patterns which have identical maximal-path large 2 -sequential
pattern 〈{x1, xk}: m1m2 . . . mq〉.
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Fig. 14. Algorithm TJPF hashes the last L-transaction first so that the centro-
subtransactionset is identified and compares the individual integers stored in
shared-path tree.

2) Algorithm TJPF Using Shared-Path Tree in Can-
didate Generation: Algorithm TJPF is able to generate
a maximal sequential pattern sk with L-transactions
{x1, x2, . . . , xk} and path 〈m1m2 . . . mq〉 as a candidate
sequential pattern by joining the previous large sequential
patterns 〈{x1, (x2, x3, . . . , xk−3, xk−2), xk}: m1,m2, . . . ,mq〉
and 〈{x1, (x2, x3, . . . , xk−3, xk−1), xk} : m1,m2, . . . ,mq〉
with the pattern family technique. Explicitly, TJPF

obtains: 1) {x2, x3, . . . , xk−3, xk−2, xk−1} by joining
the centro-subtransactionsets {x2, x3, . . . , xk−3, xk−2}
and {x2, x3, . . . , xk−3, xk−1} and 2) the new MS2 =
〈{x1, xk}: m1,m2, . . . ,mq〉 by comparing the MS2’s in
the previous large sequential patterns. By hashing the last
L-transaction first and storing an integer for each path, TJPF

constructs the mobile sequence tree with a form that for each
candidate sequential patterns, two L-transactions of MS2

come first, a centro-subtransactionset is in the middle, and an
integer, which is returned from shared-path tree for indexing
the corresponding path, is in the leaf.

Example 3.11: For example, TJPF stores the can-
didate sequential patterns 〈{〈A; t1〉, 〈C; t3〉, 〈F; t4〉,
〈Q; t6〉}: ABCDEFGHQ〉 and 〈{〈A; t1〉, 〈C; t3〉, 〈G; t5〉,
〈Q; t6〉}: ABCDEFGHQ〉 in Fig. 12(b) into the mobile se-
quence tree as in Fig. 14(a). TJPF hashes the last L-transaction,
〈Q; t6〉, in the first position of the mobile sequence tree.
Note that path 〈ABCDEFGHQ〉 is represented by the integer
〈p3〉, derived from the mapping of the shared-path tree in
Fig. 14(b). Then, TJPF can join the L-transaction sets of these
two large 4 -sequential patterns, i.e., pattern 〈2〉 and 〈3〉 shown
in Fig. 15(b), with a buffer to keep a block that contains the
leaf nodes in the transaction component and the corresponding
integers in the path component to classify the patterns for
generating the candidate 5-sequential pattern in Fig. 12(a)
efficiently.

From Remark 2, we know that TJPF joins Sk for generating
Ck+1 with the pattern family technique, and the paths of all large

Fig. 15. Algorithm TJPF joins the centro-subtransactionsets with integer
comparison.

sequential patterns to be joined are identical to one another in
round k, k ≥ 3. Thus, TJPF joins the centro-subtransactionsets
with comparing individual integers for achieving performance
improvement.

Example 3.12: For the example shown in Fig. 15, TJPF joins
the centro-subtransactionsets in pattern 〈4〉 and 〈5〉 shown in
Fig. 15(c) with comparing integers which are equal to each
other (i.e., p3) to generate pattern 〈2〉 in Fig. 15(b). Similarly,
TJPF joins the centro-subtransactionsets in pattern 〈2〉 and 〈3〉
shown in Fig. 15(b) by comparing integers to generate pattern
〈1〉 in Fig. 15(b).

The method for algorithm TJPF to reduce computational
overhead and memory consumption is as follows. In the first
round, algorithm TJPF also joins the L-transactions in S1 for
generating R2 to be stored in the transaction component of a mo-
bile sequence tree. However, in the second round, TJPF hashes
each combination of 2-L-transactions set in each maximal L-
transaction sequence into the transaction component by hashing
the last L-transaction first. Then, TJPF hashes the correspond-
ing path into the shared-path tree which has an assigned integer
in each leaf node for representing the path from the root node
to the parent node of that leaf node. TJPF next returns the inte-
ger for constructing the path component of the mobile sequence
tree while keeping counting the support. After the candidate 2
-sequential patterns with the minimum support are identified
as the large 2-sequential patterns, algorithm TJPF joins the L-
transaction sets with the path trimming technique to generate
candidate 3-sequential patterns. Note that the shared-path tree
constructed in round two will be used for the mapping between
paths and integers in the following rounds.

Example 3.13: For example, the shared-path tree shown in
Fig. 14(b) maps the paths of large 4-sequential patterns in
Fig. 12(b) into integers {p1,p2,p3,p4,p5}.

In the third round, TJPF counts the supports of candidate 3-
sequential patterns by hashing into the mobile sequence tree the
L-transaction sets and integers returned from the shared-path
tree. In destructing the mobile sequence tree, TJPF not only
determines large 3-sequential patterns but also uses a buffer
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Fig. 16. Uncertain candidate transaction patterns generated by TJPT and
TJPF.

to keep a block that contains the leaf nodes in the transaction
component and the corresponding integers in the path compo-
nent to classify the patterns. By hashing the last L-transaction
first, the mobile sequence tree is well-structured and TJPF com-
pares the individual integers to trim the generation of candidate
sequential patterns according to the paths. In each subsequent
round, TJPF constructs the mobile sequence tree by hashing
the last L-transaction first and utilizing the shared-path tree
for mapping so that TJPF compares the individual integers in
trimming the generation of candidate sequential patterns. Al-
gorithm TJPF thus has O(1) execution time complexity in this
step, better than O(|P |) by algorithm TJPT, where |P | is the
average path length of large sequential patterns. In addition, un-
like algorithm TJPT, algorithm TJPF utilizes MS2 to filter out
some uncertain candidate sequential patterns before subpattern
identification. For a candidate k-sequential patterns, it should
have k large (k − 1)-sequential patterns. For an uncertain can-
didate k-sequential patterns, it is generated by joining two large
(k − 1)-sequential patterns. Thus, for proving that an uncer-
tain candidate k-sequential patterns is qualified as a candidate
k-sequential patterns, there are k − 2 subpattern identifications
the need to be conducted.

Example 3.14: For example, taking the large 4 -sequential
patterns shown in Fig. 8, TJPT generates four uncertain can-
didate 5-sequential patterns shown in Fig. 16(a). However, by
utilizing the pattern family technique, TJPF only generates one
uncertain candidate 5-sequential pattern shown in Fig. 16(b).
Thus, TJPT conducts 12 subpattern identifications and TJPF

conducts three subpattern identifications. This demonstrates the
very advantage of the pattern family technique TJPF employs.

IV. EXPERIMENTAL RESULTS

To assess the performance of TJLS, TJPT, and TJPF, we
conducted several experiments to determine large sequential
patterns. These experiments are performed on a computer with
a 1-GHz Intel CPU and 512 MB of memory. The method used to
generate synthetic data is described in Section IV-A. In Section
IV-B, performance of TJLS, TJPT, and TJPF is comparatively
studied.

A. Generation of Synthetic Mobile Transaction Sequences

In the experiments, the moving scenario with transactions
made in a mobile commerce environment is simulated. Since
the mobile commerce service is a new application in the near
future, we believe that the customers have the similar behaviors
to those of them in the current data network when they first use
this service. After this service is used by customers, the behav-

Fig. 17. Parameters used in the simulation.

Fig. 18. Mesh network to simulate mobile commerce environment.

iors will then be changed according to their usage experiences.
Currently, there is no real scenario that we can mimic. Thus, in
this paper, the simulation model for generating synthetic mobile
transaction sequences is in fact similar to that in the companion
papers [43], [49]. Explicitly, the method for generating moving
patterns is similar to that in [49] and the method for generating
transactions is similar to that in [43].

Fig. 17 summarizes the meanings of various parameters
used in the experiments. First, we construct an n × n mesh
network [40] with a modification by taking the geographic
boundary into consideration to limit the number of neighbors
so as to mimic the mobile environment, where each node
represents one cell [49]. The number of items in each cell is
determined from a uniform distribution within a given range,
denoted by nI . For each cell, the advancing probability Pa

of each neighbor is the probability for a customer to move to
neighboring cells to purchase the items sold there. In essence,
each directed edge from one cell A to another cell B is assigned
with a weight, corresponding to the advancing probability of B
for A. In the model, the advancing probability is obtained by the
ratio of the number of items sold in each neighbor to those num-
bers of other neighbors. For the 3× 3 mesh network example
shown in Fig. 18(a), there are four neighbors 〈N1, N2, N3, N4〉
for cell Y with the corresponding advancing probabili-
ties 〈Pa1, Pa2, Pa3, Pa4〉. In addition, 〈iN1 , iN2 , iN3 , iN4〉
are the numbers of items sold in cells 〈N1, N2, N3, N4〉
and we have Pa1 = (iN1)/(iN1 + iN2 + iN3 + iN4) and
Pa2 = (iN2)/(iN1 + iN2 + iN3 + iN4).

In the experiments, |D| is the number of mobile transaction
sequences generated. When a customer moves among cells for
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Fig. 19. (a) Execution time of algorithms TJLS, TJPT, and TJPF when minimum support varies and (b) execution time of algorithms TJLS, TJPT, and
TJPF when number of mobile transaction sequences varies.

shopping in the MC environment, the mobile transaction se-
quence completed by this customer consists of a moving path
and a set of transactions made in the corresponding cells. The
starting position of each mobile sequential pattern can be either
vistor location register (VLR) or home location register (HLR)
and is randomly selected among these cells [34]. A moving path
consists of cells moved by a user. The size of each moving path
is determined from a Poisson distribution with mean equal to
|P |. When a customer moves to a cell, the probability that this
customer makes the transaction in this cell is denoted by Pb.
Note that the number of items in each cell is determined from
a uniform distribution within a given range nI . For each cell,
once the number of items is determined, the items that could
be purchased in each cell are fixed. The method for generating
transaction data in each cell is similar to the one in the prior
work [43]. In the mobile commerce environment, people tend
to buy sets of items together, which are also called potential
maximal frequent sets. The size of the maximal elements is
clustered around a mean with a few long itemsets. A transaction
may contain one or more of such frequent sets. The transaction
size is also clustered around a mean, which is denoted |T |. The
probability that a user will move from the current cell back to
the cell from which he/she came, called the backward weight, is
denoted by P0, which is equal to Pa × Pd, where Pd is a damp-
ing factor because of the backward movement. Without loss of
generality, Pd is set to 0.8 in our experiments. The probability
of moving to each neighbor Pm is also determined by the ad-
vancing probability and the sum of the weights for all these cells
is equal to 1 − P0. For the mesh network shown in Fig. 18(a),
when one user visits cell Y from cell N1, the probabilities of the
neighbors that this user will move to are shown in Fig. 18(b).

B. Performance Comparison

In the following experiments, we construct an 8× 8 mesh
network and set |D| = 200 K, s = 0.5%, nI = 200, Pb =
0.5, Pd = 0.8, |T | = 4, and |P | = 20.

1) Experiment One: When the Minimum Support Varies: In
this experiment, s varies from 1.5% to 0.25%. Fig. 19(a) shows
that TJPT and TJPF in general, outperform TJLS for various
minimum supports. With the path trimming and the pattern
family techniques, both TJPT and TJPF can generate fewer

candidate sequential patterns than TJLS, which suffers a lot of
out-of-path sequential patterns in every round. As the minimum
support decreases, the execution times of all the algorithms
increase because of the increases in the total number of candidate
and large sequential patterns.

2) Experiment Two: When the Number of Mobile Transaction
Sequences Varies: In this experiment, |D| varies from 200 to
1000 K. Fig. 19(b) shows that the execution times of TJPT and
TJPF increase linearly as the database size increases, indicating
the good scale-up feature of TJPT and TJPF.

3) Experiment Three: When Purchasing Probability Varies:
Note that algorithm TJLS suffers the out-of-path sequential pat-
tern problem. To address this problem, we conduct this ex-
periment with the purchase probability Pb varying from 0.5
to 0.3, and the result is shown in Fig. 20(a). For each al-
gorithm, its execution time is taken as the base point when
Pb is 0.5, and Fig. 20(a) shows the execution time when Pb

varies. When the purchase probability decreases, the execution
times of all the algorithms decrease because of the decreases
in the total number of candidate and large sequential patterns.
However, the path lengths of the out-of-path sequential pat-
terns increase because the average number of cells visited per
transaction increases. Note that although the total number of
candidate and large sequential patterns decreases, the out-of-
path sequential pattern problem causes algorithm TJLS to still
count the supports of nonlarge sequential patterns. As a re-
sult, when Pb decreases, the decrease of the execution time
of TJLS is not as prominent as those of TJPT and TJPF. To
provide more insight into the performance comparisons of algo-
rithms, it is shown in Fig. 21 that TJPT and TJPF outperform
TJLS in different database sizes, which indicates that TJPT and
TJPF are robust in the sensitivity analysis of the purchasing
probability.

4) Experiment Four: When the Average Path Length Varies:
To examine the sensitivity of varying the average path length, |P |
varies from 10 to 30. The result is shown in Fig. 20(b). For each
algorithm, its execution time is taken as the base point when |P |
is 10, and Fig. 20(b) shows the execution time when |P | varies.
It can be seen that TJPF is less sensitive to the variation of path
length than TJPT. This agrees with the fact that TJPF has O(1)
execution time for comparing the path in the candidate gener-
ation stage, whereas the corresponding complexity of TJPT is
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Fig. 20. (a) Execution time of algorithms TJLS, TJPT, and TJPF when purchasing probability varies and (b) execution time of algorithms TJPT and TJPF

when average path length of mobile transaction sequences varies.

Fig. 21. Execution time of algorithms TJLS, TJPT, and TJPF when purchasing probability varies in different database sizes.

O(|P |). In addition, it is also shown in Fig. 22 that TJPF out-
performs TJPT in the sensitivity analysis of the average path
length with different database sizes. To provide more insight
into the candidate generation stage of TJPT and TJPF, it is
shown in Fig. 23 that the ratio (TJPT )/(TJPF ) of execution
time which is incurred by comparing the path is almost equal to
(O(|P |))/(O(1)).

5) Experiment Five: Performance Comparison Between
TJPT and TJPF in Each Round: To provide more insights
into the shared path tree feature exploited by pattern family
technique, we set |D| = 200 000, s = 0.5%, nI = 200, Pb =

0.5, Pd = 0.8, |T | = 4, and |P | = 20 and compare the perfor-
mance of TJPT and TJPF in each round. Because S1 is ob-
tained in the large-transaction generation phase, we thus use
round one to refer to the procedure performed to obtain (R2)
and use round two to refer to the procedure performed to obtain
(C2, S2, C3). Note that TJPT and TJPF generate Sk along
with the generation of Ck+1, we use round k, k ≥ 3 to refer
to the procedure performed to obtain (Sk, Ck+1). As shown in
Fig. 24(a), TJPF consistently outperforms TJPT in all rounds,
except round one. This agrees with our intuition. Note that in
round one, without any path information, both TJPT and TJPF
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Fig. 22. Execution time of algorithms TJPT and TJPF when average path length of mobile transaction sequences varies in different database sizes.

Fig. 23. Ratio of execution time which is incurred by comparing the path.

join the L-transactions in S1 for generating R2 to be stored in the
transaction component of a mobile sequence tree. In round two,
TJPT constructs the path component of the mobile sequential
tree for storing C2. In the following rounds, when TJPT

stores the path information of Ck, k ≥ 3, TJPT still needs
to construct the path component of the mobile sequential tree
for storing Ck. However, by utilizing the pattern family rela-
tionship, TJPF can use the shared-path tree generated in C2

for indexing the path information of Ck, k ≥ 3, in the follow-
ing rounds, leading to more efficient execution. In addition,
to provide more insights into TJPF and TJPT, the numbers of
branches for storing the path information of Ck are shown in
Fig. 24(b). In TJPT, these branches are stored in the mobile se-
quential trees for all rounds. In TJPF, these branches are stored

Fig. 24. Performance comparison between TJPT and TJPF in each round.
(a) Execution time and (b) the number of paths stored.

in the shared-path tree generated in round two, and thus, the
amount of memory savings is 25.8 MB.

V. CONCLUSION

In this paper, we explored a data mining capability which
involves mining mobile sequential patterns for an MC envi-
ronment. In essence, the mining of mobile sequential patterns
aggregates the concepts of mining association rules (mining
path traversal patterns and mining sequential patterns) and thus
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requires a combined use of corresponding techniques. By hav-
ing different priorities on the factors involving large itemsets,
traversal paths, and orders of purchases, we have devised three
algorithms (algorithm TJLS, algorithm TJPT, and algorithm
TJPF) for determining large sequential patterns from mobile
transaction sequences. TJLS is devised in light of the concept
of association rules, and TJPT is devised by taking both the
concepts of association rules and path traversal patterns into
consideration. By utilizing the pattern family technique, TJPF

is able to generate large sequential patterns very efficiently.
A simulation model for the MC environment was developed,
and a synthetic workload was generated for performance stud-
ies. In our performance study, the proposed algorithm TJPF

significantly outperforms others in both execution efficiency and
memory saving, indicating the usefulness of the pattern family
technique. It is shown by our results that by taking both moving
patterns and purchase patterns into consideration, one can have
a better model for an MC system and thus be able to exploit
the intrinsic relationship between these two important customer
behaviors for the efficient mining of mobile sequential patterns.
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