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Pattern Recognition Approach for Music Style
Identification Using Shallow Statistical Descriptors

Pedro J. Ponce de León and José M. Iñesta

Abstract—In the field of computer music, pattern recognition
algorithms are very relevant for music information retrieval appli-
cations. One challenging task in this area is the automatic recogni-
tion of musical style, having a number of applications like index-
ing and selecting musical databases. From melodies symbolically
represented as digital scores (standard musical instrument digital
interface files), a number of melodic, harmonic, and rhythmic sta-
tistical descriptors are computed and their classification capability
assessed in order to build effective description models. A frame-
work for experimenting in this problem is presented, covering the
feature extraction, feature selection, and classification stages, in
such a way that new features and new musical styles can be eas-
ily incorporated and tested. Different classification methods, like
Bayesian classifier, nearest neighbors, and self-organizing maps,
are applied. The performance of such algorithms against different
description models and parameters is analyzed for two particular
musical styles, jazz and classical, used as an initial benchmark for
our system.

Index Terms—Bayesian classifier, music style classification,
nearest neighbors, self-organizing maps (SOMs).

I. INTRODUCTION

COMPUTER music research is an emerging area for pat-
tern recognition and machine learning techniques to be

applied. The content-based organization, indexing, and explo-
ration of digital music databases (digital music libraries), where
digitized (MP3), sequenced [musical instrument digital inter-
face (MIDI)], or structurally represented (XML) music can be
found, is known as music information retrieval (MIR). Efforts
to standarize the descriptions for content-based search and re-
trieval of multimedia documents like MPEG-7 are already being
developed.

One of the problems to solve in MIR is the modelization
of music style. The computer could be trained to recognize
the main features that characterize music genres so as to look
for that kind of music over large musical databases. The same
scheme is suitable to learn stylistic features of composers or even
model a musical taste for users. Another application of such a
system can be its use in cooperation with automatic composition
algorithms to guide this process according to a given stylistic
profile.

A number of recent papers explore the capabilities of ma-
chine learning methods to recognize music style. Pampalk
et al. [1] use self-organizing maps (SOMs) to pose the prob-
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lem of organizing music digital libraries according to sound
features of musical themes, in such a way that similar themes
are clustered, performing a content-based classification of the
sounds. Whitman et al. [2] present a system based on neural
networks and support vector machines able to classify an au-
dio fragment into a given list of sources or artists. In [3], a
neural system to recognize music types from sound inputs is
described. An emergent approach to genre classification is used
in [4], where a classification emerges from the data without any
a priori given set of styles. The authors use co-ocurrence tech-
niques to automatically extract musical similarity between titles
or artists. The sources used for classification are radio programs
and databases of compilation CDs.

Other works use music data in symbolic form (most MIDI
data) to perform style recognition. Dannenberg et al. [5] use a
naive Bayes classifier, a linear classifier, and neural networks to
recognize up to eight moods (genres) of music, such as lyrical,
frantic, etc. Thirteen statistical features derived from MIDI data
are used for this genre discrimination. In [6], pitch features are
extracted both from MIDI data and audio data and used sep-
arately to classify music within five genres. Pitch histograms
regarding the tonal pitch are used in [7] to describe blues frag-
ments of the saxophonist Charlie Parker. Also, pitch histograms
and SOMs are used in [8] for musicological analysis of folk
songs. Other researchers use sequence-processing techniques
like hidden Markov models [9] and universal compression al-
gorithms [10] to classify musical sequences.

Stamatatos and Widmer [11] use stylistic performance fea-
tures and the discriminant analysis technique to obtain an ensem-
ble of simple classifiers that work together to recognize the most
likely music performer of a piece given a set of skilled candidate
pianists. The input data are obtained from a computer-monitored
piano, capable of measuring every key and pedal movement with
high precision.

Compositions from five well-known Eighteenth Century
composers are classified in [12] using 20 style features, most
of them being counterpoint characteristics, and several super-
vised learning methods, such as k-means clustering, k-nearest-
neighbor, and decision trees. This paper offers some conclusions
about the differences between composers discovered by the dif-
ferent learning methods.

In [13], the ability of grammatical inference methods for
modeling musical style is shown. A stochastic grammar for each
musical style is inferred from examples, and those grammars
are used to parse and classify new melodies. The authors also
discuss about the encoding schemes that can be used to achieve
the best recognition result. Other approaches like multilayer
feedforward neural networks [14] have been used to classify
musical style from symbolic sources.
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II. OBJECTIVES

Our aim is to develop a framework for experimenting on mu-
sic style automatic recognition from symbolic representation of
melodies (digital scores) by using shallow structural features,
like melodic, harmonic, and rhythmic statistical descriptors.
This framework involves all the usual stages in a pattern recogni-
tion system, like feature extraction, feature selection, and classi-
fication stages, in such a way that new features and corpora from
different musical styles can be easily incorporated and tested.

Our working hypothesis is that melodies from a same musical
genre may share some common features, permitting a suitable
pattern recognition system, based on statistical descriptors, to
assign the proper musical style to them.

Initially, two well-defined music styles, like jazz and classical,
have been chosen as a workbench for our experiments. The
initial results have been encouraging (see [15]), but the method
performance for different classification algorithms, descriptor
models, and parameter values needed to be thoroughly tested.
This way a framework for musical style recognition can be set
up, where new features and new musical styles can be easily
incorporated and tested.

In this paper, we first present the proposed methodology, de-
scribing the musical data, the descriptors, and the classifiers that
have been used. The initial set of descriptors are analyzed to test
their contribution to the musical style separability. These pro-
cedures will permit us to build reduced models, discarding not
useful descriptors. Then, the classification results obtained with
each classifier, and their analysis with respect to the different
description parameters, are presented. Finally, conclusions and
possible lines of further work are discussed.

III. METHODOLOGY

In this section, we first present the music sources from which
the experimental framework has been established. Second,
the details of the statistical features from the musical data are
described. Next, the feature selection procedure that led us
to reduced models is explained. Then, the parameter space is
discussed, and, finally, the classifier implementation and tuning
are presented.

A. Musical Data

MIDI files from jazz and classical music were collected.
These styles were chosen due to the general agreement in the mu-
sicology community about their definition and limits. Classical
melody samples were taken from works by Mozart, Bach, Schu-
bert, Chopin, Grieg, Vivaldi, Schumann, Brahms, Beethoven,
Dvorak, Haendel, Paganini, and Mendelssohn. Jazz music sam-
ples were standard tunes from a variety of well-known jazz
authors including Charlie Parker, Duke Ellington, Bill Evans,
Miles Davis, etc. The MIDI files are composed of several tracks,
one of them being the melody track from which the input data
are extracted.1 The corpus is made up of a total of 110 MIDI

1All the melodies are written in the 4/4 meter. Anyway, any other meter could
be used because the measure structure is not used in any descriptor computation.
All the melodies are monophonic sequences (at most one note is playing at any
given time).

TABLE I
DISTRIBUTION OF MELODY LENGTH IN BARS

files, 45 of them being classical music and 65 being jazz music.
The length of the corpus is around 10 000 bars (more than 6 h of
music). Table I summarizes the distribution of bars from each
style. This dataset is available for research purposes on request
to the authors.

This is a quite heterogeneous corpus, not specifically created
to test our system but collected from different sources, ranging
from websites to private collections without any processing be-
fore entering the system, except for manually checking for the
presence and correctness of key, tempo, and meter meta-events
as well as the presence of a monophonic melody track. The
original conditions under which the MIDI files were created are
unknown. They may be human-performed tracks or sequenced
tracks (i.e., generated from scores) or even something of both
worlds. Nevertheless, most of the MIDI files seem to fit a rather
common scheme: a human-performed melody track with several
sequenced accompaniment tracks.

The monophonic melodies consist of a sequence of musical
events that can be either notes or silences. The pitch of each
note can take a value from 0 to 127, encoded together with
the MIDI note onset event. Each of these events at time t has
a corresponding note off event at time t + d, (d being the note
duration measured in ticks2). Time gaps between a note off event
and the next note onset event are silences.

B. Description Scheme

A description scheme has been designed based on descriptive
statistics that summarize the content of the melody in terms
of pitches, intervals, durations, silences, harmonicity, rhythm,
etc. This kind of statistical description of musical content is
sometimes referred to as shallow structure description [16].

Each sample is a vector of musical descriptors computed
from each melody segment available (see Section III-C for a
discussion about how these segments are obtained). Each vector
is labeled with the style of the melody to which the segment
belongs to. We have defined an initial set of descriptors based on
a number of feature categories that assess the melodic, harmonic,
and rhythmic properties of a musical segment, respectively.

This initial model is made up of 28 descriptors summarized
in Table II and described as follows.

1) Overall descriptors: Number of notes, number of signifi-
cant silences, and number of not significant silences. The
adjective significant stands for silences explicitly written
in the underlying score of the melody. In MIDI files, short
gaps between consecutive notes may appear due to inter-
pretation nuances like stacatto. These gaps (interpretation
silences) are not considered significant silences since they

2A tick is the basic unit of time in a MIDI file and is defined by the resolution
of the file, measured in ticks per beat.
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TABLE II
MUSICAL DESCRIPTORS

should not appear in the score. To make a distinction be-
tween kinds of silences is not possible from the MIDI file,
and it has been made based on the definition of a silence
duration threshold. This value has been empirically set to
a duration of a 16th note. All silences with longer or equal
duration than this threshold are considered significant.

2) Pitch descriptors: Pitch range (the difference in semitones
between the highest and the lowest note in the melody
segment), average pitch relative to the lowest pitch, and
standard deviation of pitches (provides information about
how the notes are distributed in the score).

3) Note duration descriptors (measured in ticks and com-
puted using a time resolution of Q = 48 ticks per bar3):
Range, average (relative to the minimum duration), and
standard deviation of note durations.

4) Significant silence duration descriptors (in ticks): Range,
average (relative to the minimum), and standard devia-
tion.

5) Interonset interval (IOI) descriptors (an IOI is the distance,
in ticks, between the onsets of two consecutive notes4):
Range, average (relative to the minimum), and standard
deviation.

6) Interval descriptors (difference in absolute value between
the pitches of two consecutive notes): Range, average
(relative to the minimum), and standard deviation.

7) Harmonic descriptors:

3This is call quantization. Q = 48 means that when a bar is composed of
four beats, each beat can be divided, at most, into 12 ticks.

4Two notes are considered consecutive even in the presence of a silence
between them.

a) Number of nondiatonic notes. An indication of fre-
quent excursions outside the song key (extracted
from the MIDI file) or modulations.

b) Average degree of nondiatonic notes. Describes the
kind of excursions. This degree is a number between
0 and 4 that indexes the nondiatonic notes of the
diatonic scale of the tune key, which can be major
or minor key5

c) Standard deviation of degrees of nondiatonic notes.
Indicates a higher variety in the nondiatonic notes.

8) Rhythmic descriptor: Number of syncopations. Notes that
do not begin at measure beats but in some places between
them (usually in the middle) and that extend across beats.

9) Normality descriptors. They are computed using the
D’Agostino statistic for assessing the distribution normal-
ity of the n values vi in the segment for pitches, durations,
intervals, etc. The test is performed using the following
equation:

D =
∑

i(i − ((n + 1)/(2))vi√
n3

(∑
i v2

i − (1/n) (
∑

i vi)2
) . (1)

The descriptors of this category computed for the analyzed
segment are the normality values of the following:

a) pitch distribution;
b) note duration distribution;
c) IOI distribution;
d) silence duration distribution;
e) interval distribution;
f) nondiatonic notes distribution.

For pitch and interval properties, the range descriptors
are computed as maximum minus minimum values, and the
average-relative descriptors are computed as the average value
minus the minimum value (only considering the notes in the
segment). For durations (note duration, silence duration, and
IOI descriptors), the range descriptors are computed as the ratio
between the maximum and minimum values, and the average-
relative descriptors are computed as the ratio between the aver-
age value and the minimum value.

This descriptive statistics is similar to histogram-based de-
scriptions used by other authors [7], [8] that also try to model
the distribution of musical events in a music fragment. Comput-
ing the range, mean, and standard deviation from the distribution
of musical items like pitches, durations, intervals, IOIs, and non-
diatonic notes, we reduce the number of features needed (each
histogram may be made up of tens of features). Other authors
have also used this sort of descriptors to classify music [6], [17],
mainly focusing on pitches.

C. Free Parameter Space

Given a melody track, the statistical descriptors presented
above are computed from equal-length segments, defining a
window of size ω measures. Once the descriptors of a segment

5Nondiatonic degrees are: 0: !II, 1: !III ("III for minor key), 2: !V, 3: !VI,
4: !VII. The key is encoded at the beginning of the melody track. It has been
manually checked for correctness in our data.
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have been extracted, the window is shifted δ measures forward
to obtain the next segment to be described. Given a melody
with m > 0 measures, the number of segments s of size ω > 0
obtained from that melody is

s =
{

1, if ω ≥ m
1 +

⌈
m−ω

δ

⌉
, otherwise (2)

showing that at least one segment is extracted in any case (ω
and s are positive integers; m and δ may be positive fractional
numbers).

Taking ω and δ as free parameters in our methodology, dif-
ferent datasets of segments have been derived from a number of
values for those parameters. The goal is to investigate how the
combination of these parameters influences the segment classi-
fication results. The exploration space for this parameters will
be referred to as ωδ-space. A point in this space is denoted as
〈ω, δ〉.

ω is the most important parameter in this framework since it
determines the amount of information available for the descrip-
tor computations. Small values for ω would produce windows
containing few notes, providing little reliable statistical descrip-
tors. Large values for ω would lead to merge, probably different,
parts of a melody into a single window and they also produce
datasets with fewer samples for training the classifiers [see (2)].
The value of δ would affect mainly the number of samples in a
dataset. A small δ value combined with quite large values for ω
may produce datasets with a large number of samples [see also
(2)]. The details about the values used for these parameters can
be found in Section IV.

D. Feature Selection Procedure

The features described above have been designed according
to those used in musicological studies, but there is no theoretical
support for their style classification capability. We have applied
a selection procedure in order to keep those descriptors that bet-
ter contribute to the classification. The method assumes feature
independence, that is not true in general, but it tests the separa-
bility provided by each descriptor independently, and uses this
separability to obtain a descriptor ranking.

Consider that the M descriptors are random variables
{Xj}M

j=1, whose N sample values are those of a dataset cor-
responding to a given ωδ-point. We drop the subindex j for
clarity because all the discussion applies to each descriptor. We
split the set of N values for each descriptor into two subsets:
{XC ,i }NC

i=1 are the descriptor values for classical samples and
{XJ ,i }NJ

i=1 are those for the jazz samples, where NC and NJ

are the number of classical and jazz samples, respectively. XC

and XJ are assumed to be independent random variables since
both sets of values are computed from different sets of melodies.
We want to know whether these random variables belong to the
same distribution or not. We have considered that both sets of
values hold normality conditions, and assuming that the vari-
ances for XC and XJ are different in general, the test contrasts
the null hypothesis H0 ≡ µC = µJ against H1 ≡ µC &= µJ . If
H1 is concluded, it is an indication that there is a clear sepa-
ration between the values of this descriptor for the two classes

and so it is a good feature for style classification. Otherwise, it
does not seem to provide separability between the classes.

The following statistical for sample separation has been
applied:

z =
|X̄C − X̄J |√

s2
C/NC + s2

J/NJ

(3)

where X̄C and X̄J are the means and s2
C and s2

J the variances
for the descriptor values for both classes. The greater the z value
is, the wider the separation between both sets of values is for
that descriptor. A threshold to decide when H0 is more likely
than H1, that is to say, the descriptor passes the test for the
given dataset, must be established. This threshold, computed
from a t-student distribution with infinite degrees of freedom
and a 99.7% confidence interval, is z = 2.97. Furthermore, the
z value permits to arrange the descriptors according to their
separation ability.

When this test is performed on a number of different ωδ-point
datasets, a threshold on the number of passed tests can be set
as a criterion to select descriptors. This threshold is expressed
as a minimum percentage of tests passed. Once the descriptors
are selected, a second criterion for grouping them permits to
build several descriptor models incrementally. First, selected
descriptors are ranked according to their z value averaged over
all tests. Second, descriptors with similar z values in the rank-
ing are grouped together. This way, several descriptor groups
are formed, and new descriptor models can be formed by in-
crementally combining these groups. See Section IV-A for the
models that have been obtained.

E. Classifier Implementation and Tuning

Three algorithms from different classification paradigms have
been used for style recognition. Two of them are fully supervised
methods: the Bayesian classifier and the k-nearest neighbor
(k-NN) classifier [18]. The other one is an unsupervised learning
neural network, the SOM [19].

The Bayesian classifier is parametric and, when applied to a
two-class problem, computes a discriminant function

g(X) = log
P (X | ω1)
P (X | ω2)

+ log
π1

π2
(4)

for a test sample X , where P (X | ωi) is the conditional prob-
ability density function for class i and πi are the priors of each
class. Gaussian probability density functions for each style are
assumed for each descriptor. Means and variances are estimated
separately for each class from the training data. The classifier
assigns a sample to ω1 if g(X) > 0 and to ω2 otherwise. The
decision boundaries, where g(X) = 0, are in general hyper-
quadrics in the feature space.

The k-NN classifier uses an Euclidean metrics to compute the
distance between the test sample and the training samples. The
style label is assigned to the test sample by a majority decision
among the nearest k training samples (the k-neighborhood).

SOM are neural methods that are able to obtain approxi-
mate projections of high-dimensional data distributions into
low-dimensional spaces, usually bidimensional. Within the map,
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TABLE III
SOM TRAINING PARAMETERS

different clusters in the input data can be located. These clusters
can be semantically labeled to characterize the training data and
also hopefully future new inputs.

For SOM implementation and graphic representations, the
SOM_PAK software [20] has been used. After some exploratory
experiments, a 16× 8 bidimensional map geometry has been
eventually used. An hexagonal topology for unit connections
and a bubble neighborhood have been selected for training.
The radius of this neighborhood is equal for all the map units
and decreases as a function of time. The training was done
in two phases: a first fast coarse training and a second fine
tuning phase (see Table III for the different training parameters).
The metrics used to compute distances among samples is the
Euclidean distance.

IV. EXPERIMENTS AND RESULTS

A. Feature Selection Results

The feature selection test presented in Section III-D has been
applied to datasets corresponding to 100 randomly selected
points of the ωδ-space. This is motivated by the fact that the
descriptor computation is different for each ω and the set of
values is different for each δ, and so the best descriptors may
be different for different ωδ-points. Thus, by choosing a set of
such points, the sensitivity of the classification to the feature se-
lection procedure can be analyzed. Being a random set of points
is a good tradeoff decision to minimize the risk of biasing this
analysis.

The descriptors were sorted according to the average z value
(z̄) computed for the descriptors in the tests. The list of sorted
descriptors is shown in Table IV . The z̄ values for all the tests
and the percentage of passed tests for each descriptor are dis-
played. In order to select descriptors, a threshold on the number
of passed tests has been set to 95%. This way, those descriptors
that failed the separability hypothesis in more than a 5% of the
experiments were discarded from the reduced models. Only 12
descriptors out of 28 were selected. In the rightmost column, the
reduced models in which the descriptors were included are pre-
sented. Each model is denoted with the number of descriptors
included in it.

Three reduced size models have been chosen, with 6, 10, and
12 descriptors. This models are built according to the z̄ value
as displayed in Fig. 1. The biggest gaps in the z̄ values for
the sorted descriptors led us to group the descriptors in three
reduced models. Note also that the values for z̄ show a small
deviation, showing that the descriptor separability is quite stable
in the ωδ-space.

It is interesting to remark that at least one descriptor from each
category of those defined in Section III-B were selected for a
reduced model. The best represented categories were pitches and
intervals, suggesting that the pitches of the notes and the relation

TABLE IV
FEATURE SELECTION RESULTS

Fig. 1. Values for z̄ for each descriptor as a function of their order numbers.
The relative deviations for z̄ in all the experiments are also displayed. The
biggest gaps for z̄ and the models are outlined.

among them are the most influent features for this problem.
From the statistical point of view, standard deviations were the
most important features, since five from six possible ones were
selected.

B. ωδ-Space Framework

The melodic segment parameter space has been established
as follows:

ω = 1, . . . , 100 (5)
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and for each ω

δ =
{

1, . . . , ω, if ω ≤ 50
1, . . . , 20, otherwise. (6)

The range for δ when ω > 50 has been limited to 20 due to the
very few number of samples obtained with large δ values for this
ω range. This setup involves a total of 2275 points 〈ω, δ〉 in the
ωδ-space. A number of experiments have been made for each of
these points: one with each classifier (Bayes, NN, and SOM) for
each of the four description models discussed in Section IV-A.
Therefore, 12 different experiments for each ωδ-point have been
made, denoted by (ω, δ, µ, γ), where µ ∈ {6, 10, 12, 28} is the
description model and γ ∈ {Bayes,NN,SOM} the classifier
used.

In order to obtaining reliable results, a tenfold crossvalidation
scheme has been carried out for each of the (ω, δ, µ, γ) experi-
ments, making ten subexperiments with about 10% of samples
saved for test in each subexperiment. The success rate for each
(ω, δ, µ, γ) experiment is averaged for the ten subexperiments.

The partitions were made with the MIDI files to make sure
that training and validation sets do not share segments from any
common melody. Also the partitions were made in such a way
that the relative number of measures for both styles were equal
to those for the whole training set. This permits us to estimate
the prior probabilities for both styles once and then use them
for all the subexperiments. Once the partitions have been made,
segments of ω measures are extracted from the melody tracks
and labeled training and test datasets containing µ-dimensional
descriptor vectors are constructed.

To summarize, 27 300 experiments consisting of ten subex-
periments for each one, have been carried out. The maximum
number of segments extracted is s = 9339 for the ωδ-point
〈3, 1〉. The maximum for s is not located at 〈1, 1〉 as expected
because segments not containing at least two notes are discarded.
The minimum is s = 203 for 〈100, 20〉. The average number of
segments in the whole ωδ-space is 906. The average proportion
of jazz segments is 36% of the total number of segments, with
a standard deviation of about 4%. This is a consequence of the
classical MIDI files having a greater length in average than jazz
files, although there are less classical files than jazz files.

C. Classification Results

Each (ω, δ, µ, γ) experiment has an average success rate, ob-
tained from the cross-validation scheme discussed in the pre-
vious section. The results presented here are based on those
rates.

1) Bayes Classifier: For one subexperiment in a point in
the ωδ-space, all the parameters needed to train the Bayesian
classifier are estimated from the particular training set, except
for the priors of each style, that are estimated from the whole
set, as explained above.

Fig. 2 shows the classification results with the Bayesian clas-
sifier over the ωδ-space for the 12-descriptor model. This was
one of the best combination of model and classifier (89.5%)
in average for all the experiments. The best results were found
around 〈58, 1〉, where a 93.2% average success was achieved.

Fig. 2. Recognition percentage in the ωδ-space for the Bayesian classifier with
the 12-descriptor model. Numbers on top of level curves indicate the recognition
percentage at places on the curve. The best results (around 93.2%) are found in
the lighter area, with large widths and small displacements.

The best results for style classification were expected to be
found for moderate ω values, where enough musical events to
calculate reliable statistical descriptors are contained in a seg-
ment, while musical events located in other parts of the melody
are not mixed in a single segment. But the best results are gen-
erally obtained with a combination of large ω values and small
δ. Experiments for ω = ∞ (taking the whole melody as a single
segment) are discussed in Section IV-C4.

The worst results occurred for small ω due to the few musical
events at hand when extracting a statistical description for such a
small segment, leading to nonreliable descriptors for the training
samples.

All the three reduced models outperformed the 28-descriptor
model (see Fig. 3 for a comparison between models for δ = 1),
except for ω ∈ [20, 30], where the 28-descriptor model obtains
similar results for small values of δ. For some reason, the par-
ticular combination of ω and δ values in this range results in a
distribution of descriptor values in the training sets that favors
this classifier.

The overall best result (95.5% of average success) for the
Bayesian classifier has been obtained with the ten-descriptor
model in the point 〈98, 1〉. See Table V for a summary of best
results (indices represent the 〈ω, δ〉 values for which the best
success rates were obtained). About 5% of the subexperiments
(4556 out of 91 000) for all models yielded a 100% classification
success.

2) k-NN Classifier: Before performing the main experi-
ments for this classifier, a study of the evolution of the clas-
sification as a function of k was designed in order to test the
influence of this parameter in the classification task. The results
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Fig. 3. Bayes recognition results for the different models versus the window
width, with a fixed δ = 1.

TABLE V
BEST SUCCESS RATES

Fig. 4. Evolution of k-NN recognition for the different models against values
of k.

are displayed in Fig. 4. Recognition percentage is averaged for
all 〈ω, 1〉 points. Note that there is almost no variation in the
recognition rate as k increases, except a small improvement for
the six-descriptor model. Thus, the simplest classifier (k = 1)
was selected to avoid unnecessary time consumption due to the
very large number of experiments to be performed.

Once the classifier has been set, the results for the different
models were obtained and are displayed in Fig. 5 for δ = 1.
All models performed comparatively for ω ≤ 35. For ω > 35,
the 28-descriptor model begins to perform better than the re-
duced models. Its relatively high dimensionality and a greater
dispersion in the samples (the larger the ω, the higher the prob-
ability of different musical parts to be contained in the same

Fig. 5. NN recognition results for the different models versus the window
width, with a fixed δ = 1.

segment) causes larger distances among the samples, making
the classification task easier for the k-NN.

The best results (96.4%) were obtained for the point 〈95, 13〉
with the 28-descriptor model. The best results for all the models
have been consistently obtained with very large segment lengths
(see Table V). The percentage of perfect (100%) classification
subexperiments amounts to 18.7% (17 060 out of 91 000).

For the whole ωδ-space, the NN classifier obtained an 89.2%
in average with the 28-descriptor model, while the other models
yielded similar rates, around 87%. The behavior of the 10- and
12-descriptor models was almost identical over the parameter
space (Fig. 5) and for the different tested values for k (Fig. 4).

3) SOM Classifier: The SOMs were trained using the pa-
rameters shown in Table III and discussed in Section III-E. For
each 〈ω, δ〉 subexperiment, at least three maps were initialized
and trained before choosing that map with the minimum average
quantisation error. The SOM was then labeled in a supervised
way, using the training set as calibration set. Then the labeled
map is used to classify test samples.

An example of a labeled map is shown in Fig. 6. Gray levels
represent the distances between neighbor units, a darker gray
level indicating a greater distance between units. Note that the
labels for both styles trend to cluster in different parts of the map
and how the calibration process has located the jazz labels
mainly on the left zone and those corresponding to classical
melodies on the right. Some units may be labeled with both mu-
sic styles if they are activated by samples from both of them. In
those cases, a single label is assigned to the unit according to
the class that achieved the higher number of activations.

The general trend for all models [see Fig. 7(a)] was to give
good classification results with ω ≤ 20 and small δ values. For
larger segment lengths, the classification results worsen as ω
increases, with large dispersion in the results, and no model
seems to be better than the others. In any case, the six-descriptor
model performed better on average (see Table VI) and provided
the best success rate (90.7%) at 〈19, 4〉.

The degradation of results for large ω is due to the fixed map
dimensions used across the whole ωδ-space. For large segment
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Fig. 6. SOM map labeled with (top) jazz and (bottom) classical for six-
descriptor model, ω = 19 and δ = 4.

Fig. 7. (a) SOM recognition results for the different models against the window
width, with a fixed δ = 1. (b) The same results averaged for all models (–•–),
and averaged only using the classified samples (–◦–) (one point every five points
is displayed for clarity).

TABLE VI
AVERAGES AND STANDARD DEVIATIONS OF SUCCESS RATES

TABLE VII
AVERAGE SUCCESS RATES FOR WHOLE MELODY

SEGMENT LENGTH (ω = ∞)

lengths, the number of samples available for training seems to
be not enough for a good coverage of the map, resulting in
an excessive number of unlabeled units and, as a consequence,
a high ratio of nonclassified test samples. When unclassified
samples are not considered, this degradation does not occur [see
Fig. 7(b)]. A method to estimate SOM size as a function of the
number of training samples available for each 〈ω, δ〉 could be
applied to improve these results.

4) Whole Melody Segment Classification: The good results
obtained for large ω called our attention to the question of
how good would be the results of classifying whole melodies,
instead of fragments, as presented so far. The first problem is
the small number of samples available this way (110 samples
for training and test). This is particularly hard for training
the SOM. The results of these experiments are displayed in
Table VII. The same ten-fold cross-validation scheme described
in Section IV-B was used here. The results are comparable or
even better than the average in the ωδ-space for Bayesian and
NN classifiers, but SOMs were unable to perform well due to
the small size of the training set.

In spite of this good behavior for Bayes and k-NN, this ap-
proach has a number of disadvantages. Training is always more
difficult due to the smaller number of samples. The classification
cannot be performed online in a real-time system because all
the piece is needed in order to take the decision. There are also
improvements to the presented methodology, like cooperative
decisions using different segment classifications that cannot be
applied to the complete melody approach.

5) Results Comparison: Bayesian and NN classifier per-
formed comparatively and better than SOM. There were, in
general, lower differences in average recognition percentages
between models for NN than those found with the Bayesian clas-
sifier (see Table VI) probably due to its nonparametric nature.

An ANOVA test with Bonferroni procedure for multiple com-
parison statistics [21] was used to determine which combination
of model and classifier gave the best classification results in av-
erage. According to this test, with the number of experiments
performed, the required difference between any two recognition
rates in Table VI must be at least 0.45123 in order to be con-
sidered statistically different at the 95% confidence level. Thus,
it can be stated that Bayes classifier with 12-descriptor model
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and NN classifier with 28-descriptor model perform compara-
tively well, and both outperform the rest of classifier and model
combinations. The Bayes classifier has the advantage of using
a reduced size description model.

In a recent work using the same dataset [22], several text cat-
egorization algorithms have been used to perform style recogni-
tion from whole melodies. In particular, a naive Bayes classifier
with several multivariate Bernoulli and multinomial models are
applied to binary vectors indicating the presence or absence of
n-length words (sequences of n notes) in a melody. The work
reported around 93% of success as the best performance. This is
roughly the same best result reported here for the whole melody,
although it is outperformed by the window classifications.

Results for the ωδ-space are hardly comparable with results
by other authors because we used segments instead of complete
melodies and because of the different datasets put under study
by different authors. Nevertheless, a comparison attempt can be
made with the results found in [6] for pairwise genre classifica-
tion. The authors use information from all the tracks on the MIDI
files except tracks playing on the percussion channel. In [16],
a 94% accuracy for Irish folk music and jazz identification is
reported as the best result. Unfortunately, they did not use clas-
sical music samples. This accuracy percentage is similar to our
results with whole melody length segments and the NN classi-
fier (93%). A study on the classification accuracy as a function
of the input data length is also reported, showing a behavior
similar to the one reported here: classification accuracy using
statistical information reaches its maximum for larger segment
lengths, as they reported a maximum accuracy for five classes
with 4-min segment length. Our best results were obtained for
ω > 90 (see Table V).

V. CONCLUSION AND FUTURE WORK

Our main goal in this work has been to test the capability of
melodic, harmonic, and rhythmic statistical descriptors to per-
form musical style recognition. We have developed a framework
for feature extraction, selection, and classification experiments,
where new corpora, description models, and classifiers can be
easily incorporated and tested.

We have shown the ability of three classifiers, based on dif-
ferent paradigms, to map symbolic representations of melodic
segments into a set of musical styles. Jazz and classical music
have been used as an initial benchmark to test this ability. The
experiments have been carried out over a parameter space de-
fined by the size of segments extracted from melody tracks of
MIDI files and the displacement between segments sequentially
extracted from the same source. A total of 273 000 classification
subexperiments have been performed.

From the feature selection stage, a number of interesting con-
clusions can be drawn. From the musical point of view, pitches
and intervals have been shown to be the most discriminant fea-
tures. Other important features have been the number of notes
and the rhythm syncopation. Although the former set of de-
scriptors may be probably important in other style classification
problems, probably these latter two have found their importance
in this particular problem of classical versus jazz. From the sta-

tistical point of view, standard deviations were very relevant,
since five from six possible ones were selected.

The general behavior for all the models and classifiers against
the values for ω was to have bad classification percentages
(around 60%) for ω = 1, rapidly increasing to an 80% for
ω ≈ 10 and then keep stable around a 90% for ω > 30. This gen-
eral trend supports the importance of describing large melody
segments to obtain good classification results. The preferred
values for δ were small, because they provide a higher number
of training data.

Bayes and NN performed comparatively. The parametric ap-
proach preferred the reduced models but NN performed well
with all models. In particular, with the complete model, without
feature selection, it achieved very good rates, probably favored
by the large distances among prototypes obtained with such a
high dimensionality. The best average recognition rate has been
found with the Bayesian classifier and the 12-descriptor model
(89.5%), although the best result was obtained with the NN,
which reached a 96.4% with ω = 95 and δ = 13.

The SOM classifier achieved results comparable to the other
classifiers for ω < 20, but they got worse for larger ω val-
ues, because of the number of unclassified samples and be-
cause a fixed map size was used for all the experiments (see
Section IV-C3).

Also, whole melody classification experiments were carried
out, removing the segment extraction and segment classification
stage. This approach is simpler, faster, and provide comparative
results even with few training samples, but has a number of
disadvantages. It does not permit the use of online implemen-
tations where the system can input data and take decisions in
real-time, since all the piece needs to be entered to the classifier
in a single step. In addition, the segment classification approach
permits to analyze a long theme by sections, performing local
classifications.

An extension to this framework is under development, where a
voting scheme for segments is used to collaborate in the classifi-
cation of the whole melody. The framework permits the training
of a large number of classifiers that, combined in a multiclassi-
fier system, could produce even better results.

In the future, we plan to make use of all this methodology
to test other kind of classifiers, like feedforward neural nets or
support vector machines, and to explore the performance with
a number of different styles.
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