Loading [MathJax]/extensions/MathMenu.js
Predicting the Parts Weight in Plastic Injection Molding Using Least Squares Support Vector Regression | IEEE Journals & Magazine | IEEE Xplore

Predicting the Parts Weight in Plastic Injection Molding Using Least Squares Support Vector Regression


Abstract:

To achieve the desired quality in plastic injection molding, advanced monitoring techniques are often recommended in the workshop. Unfortunately, the signal in plastic in...Show More

Abstract:

To achieve the desired quality in plastic injection molding, advanced monitoring techniques are often recommended in the workshop. Unfortunately, the signal in plastic injection modeling process such as nozzle pressure that is relevant to part quality is not easy to obtain because of the cost of sensors. The sensor-based modeling idea is therefore adopted. In this paper, a new method for predicting the parts weight in plastic injection molding using least squares support vector regression (LS-SVR) is proposed, which is composed of two steps. The first step is to estimate the nozzle pressure with the hydraulic system pressure using an LS-SVR model. The second step is to predict product weight using the estimated nozzle pressure, which is done using another LS-SVR model. The experimental results show that the new method is very effective.
Page(s): 827 - 833
Date of Publication: 16 December 2008

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.