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Abstract

The memory dumping problem arises in the context of
planning and scheduling activities of the Mars Express
mission of the European Space Agency. The problem
consists of scheduling scientific data transmission from
Mars to the Earth. A previously developed algorithm
computes robust schedules in a heuristic way and iter-
atively improves the schedule robustness by solving a
sequence of max-flow problems. We present a linear
programming algorithm to compute schedules of max-
imum robustness, providing provably optimal solutions
in a very short computing time. We also give neces-
sary and sufficient conditions to characterize “easy” and
“difficult” instances, such that the former ones can be
solved directly without any optimization algorithm.

Introduction
The Mars Express mission of the European Space Agency
aims at the observation of Mars from a satellite orbiting
around around the Red Planet. The satellite is equipped with
many different devices to gather scientific data about Mars.
These data are kept in a memory device on board and they
are periodically transmitted to Earth stations during suitable
visibility time windows.

The Mars Express memory dumping problem, introduced
by (Cesta et al. 2002) and (Oddi et al. 2003), consists
of scheduling scientific data transmission from Mars to the
Earth.

The problem has been studied in several versions: a sim-
plified version was initially considered in (Oddi and Poli-
cella 2004; 2007). The objective is to compute a dumping
schedule of maximum robustness in order to cope with un-
certainty in the amount of incoming scientific data. The al-
gorithm devised by (Oddi and Policella 2004; 2007) to com-
pute robust schedules is heuristic and iteratively improves
the schedule robustness by solving a sequence of max-flow
problems with classical polynomial-time specialized algo-
rithms, such as the Ford and Fulkerson algorithm (Ahuja,
Magnanti, and Orlin 1993).

In this paper we further elaborate on the formulation pre-
sented by (Oddi and Policella 2004; 2007) and we present a
linear programming algorithm to compute schedules of max-
imum robustness. The algorithm provides provably optimal
solutions in a very short time. We also give necessary and

sufficient conditions to characterize “easy” and “difficult”
instances, such that the former ones can be solved directly
without any optimization algorithm.

We also describe how a mathematical programming ap-
proach can be used to take into account other details of the
real application problem, not considered in this simplified
version.

Problem definition
Following (Oddi and Policella 2004; 2007) we define the
Mars Express memory dumping problem as follows.

Data. We are given a setI of packet stores with a finite
capacityci for eachi ∈ I and a setJ of time windows that
are available for the transmission of data to the Earth: the
overall available capacitybj is known for each time window
j ∈ J . In each time period between two consecutive time
windows, sayj − 1 andj, scientific data are acquired; these
data are stored into the packet stores at the end of each time
window j ∈ J , that is after the transmission of old data to
the Earth: the amountdij of data stored in each packet store
i ∈ I at the end of each time windowj ∈ J is known. We
remark that the store operation takes effect only at the end
of the time window: hence the amount of datadij cannot be
transmitted during time windowj ∈ J . We are also given
an initial amount of datadi0 in each packet storei ∈ I.

Variables. The decision variables are the amounts of data
to be transferred from each packet storei ∈ I to the Earth
in each time windowj ∈ J . We indicate these continuous
non-negative variables byxij . We also introduce auxiliary
variablesyij to indicate the amount of data stored in each
packet storei ∈ I after each time windowj ∈ J andzij to
indicate the amount of data stored in each packet storei ∈ I
after the data transmission in time windowj ∈ J and before
the store operation occurring in the same time window. All
these variables are continuous and non-negative.

Constraints. Flow conservation constraints represent the
operations in each packet storei ∈ I and in each time win-
dow j ∈ J , as follows:

yi j−1 = xij + zij ∀i ∈ I, ∀j ∈ J (1)



zij + dij = yij ∀i ∈ I, ∀j ∈ J (2)

To forbid overdumpingand overwriting, upper and lower
bounds are imposed to the variables:

zij ≥ 0 ∀i ∈ I, ∀j ∈ J (3)

yij ≤ ci ∀i ∈ I, ∀j ∈ J (4)

Finally the capacity constraints on transmissions are im-
posed through the following constraints:

∑

i∈I
xij ≤ bj ∀j ∈ J (5)

It is possible to impose that the schedule dump all data to
the Earth within the given set of time windows, by setting
yi|J | = 0 for all packet storesi ∈ I.

Objective function. The objective of the optimization is
the robustness of the schedule. This is measured by the max-
imum fraction of capacity of a packet store which happens
to be taken by stored data at any point in the schedule. A
schedule is robust when this fraction is low, because this
yields safety margins to manage unexpected peaks of ac-
quired data. Since the objective function is “min max”, we
introduce an additional continuous non-negative variableα
to be minimized and we replace constraints (4) with the fol-
lowing constraints:

yij ≤ αci ∀i ∈ I, ∀j ∈ J . (6)

With the notation above the problem can be formulated as
follows:

min α (7)

s.t.yi j−1 = xij + zij ∀i ∈ I, ∀j ∈ J (8)

zij + dij = yij ∀i ∈ I, ∀j ∈ J (9)

yij ≤ αci ∀i ∈ I, ∀j ∈ J (10)∑

i∈I
xij ≤ bj ∀j ∈ J (11)

xij ≥ 0 ∀i ∈ I, ∀j ∈ J (12)

zij ≥ 0 ∀i ∈ I, ∀j ∈ J . (13)

The model yields a linear programming problem, easily
solvable by the very effective LP solvers available today,
with the additional advantage of the optimality guarantee,
not provided by heuristics.

Optimally balanced solutions
The Mars Express memory dumping problem in its simpli-
fied version is a linear programming problem and it is poly-
nomially solvable. Owing to the “min max” objective func-
tion, the most robust dumping schedule corresponds to an
optimally balanced solution, that is a solution in which the
amount of data in the packet stores is distributed in an eq-
uitable way. This observation leads to a question: “What
makes an instance more difficult than another?”. To an-
swer this question we have developed a classification crite-
rion to distinguish between “easy” and “difficult” instances,
and a fast method to solve easy instances exactly. The same

method can also be used to solve difficult instances approx-
imately.

If in each time period the amount of new data assigned to
each packet store is roughly proportional to its capacity, it is
possible to spread the data among all the packet stores, so
that their saturation level is uniform; in this way it is pos-
sible to devise a method that yields the optimal solution to
the maximum robustness scheduling problem for each time
period. Difficult instances of the problem occur when the
amounts of new data are not uniformly distributed among
all packet stores in each time period. This intuitive concept
can be expressed in a formal way as follows.

First of all we define thesaturation levelof a packet store
as the ratio between the amount of data stored in it and its
capacity. We also define a solution to beoptimally balanced
after a given time windowj ∈ J if both these conditions
hold:

• Condition 1: the overall amount of stored data is mini-
mum;

• Condition 2: the amount of data stored in each packet
store is directly proportional to the capacity of the packet
store.

The reason for Condition 1 is that we consider only sched-
ules in which data are transmitted to the Earth as soon as
possible, so that no transmission capacity is left unused un-
less all packet stores are empty. It is easy to prove that
leaving more data than necessary in some packet stores can-
not improve the robustness of the schedule. Condition 2 is
equivalent to asking for a structure of the optimal solution
which would be achieved if it were possible to shift data
from one packet store to another. In our model this is forbid-
den by constraints (12): without these constraints one could
fill data into a packet storei (xij < 0), so enlarging the avail-
able capacity (constraints 11) for dumping data from other
packet stores in the same time window; the net effect would
be to shift data from other packet stores into packet storei.
In the remainder we give necessary and sufficient conditions
to characterize “easy” and “difficult” instances; informally,
easy instances are such that after each time window it is pos-
sible to achieve the same optimal solution as if constraints
(12) were not present.

Keeping solutions balanced
Considering two consecutive time windows, sayj andj +1,
we assume that after time windowj the solution is optimally
balanced (the amount of stored data is minimum and the sat-
uration level is the same for all packet stores) and we give
necessary and sufficient conditions for the same property to
hold after time windowj + 1.

We indicate the amount of data in packet storei ∈ I after
the former time window withyi and the same quantity after
the latter time window byy′i. We assume thatα = yi

ci
∀i ∈

I, i.e. the same fraction of capacity is used in all packet
stores at the end of the former time window. We want to
obtainα′ = y′i

ci
∀i ∈ I, i.e. the same property must hold

after the end of the latter time window. We indicate bydi

the amount of data sent to each packet storei ∈ I at the



end of the latter time window and byxi the amount of data
downloaded from each packet storei ∈ I in the latter time
window. We also use the following total quantities:

D =
∑

i∈I
di,

X =
∑

i∈I
xi,

C =
∑

i∈I
ci,

Y =
∑

i∈I
yi

and
Y ′ =

∑

i∈I
y′i.

They indicate respectively the overall amount of new data
stored, the overall amount of old data downloaded, the over-
all capacity of the packet stores, the overall amount of data
stored after the former and after the latter time window. Fi-
nally we indicate byB the overall available transmission
capacity in the latter time window, that isbj+1. Note that
X = min{B, Y }.

We must distinguish two different cases: in Case 1 we
haveY ≤ B andX = Y , in Case 2 we haveY > B and
X = B.

Case 1. If Y ≤ B, in order to fulfill Condition 1 it is
necessary to transmit all the content of all packet stores, i.e.
xi = yi ∀i ∈ I andX = Y . Therefore the new data are the
only data stored at the end of the latter time window; hence
an optimally balanced solution is achieved if and only if

di =
ci

C
D ∀i ∈ I.

Case 2. If Y > B, in order to fulfill Condition 1 we
haveX = B; however in this case some residual data re-
main in the packet stores and the values of the variablesxi

are not automatically determined. Instead, each of them is
constrained between0 andyi for each packet store.

The following relations hold:

α =
Y

C
(14)

α′ =
Y ′

C
(15)

y′i = yi − xi + di ∀i ∈ I (16)
Starting from an optimally balanced solution, another opti-
mally balanced solution is achieved if and only if the above
equations admit a solution such that0 ≤ xi ≤ yi ∀i ∈ I.

From the equations above we obtain:

α′ =
Y ′

C
=

∑
i∈I(yi − xi + di)

C
= α +

D −B

C
.

Since each packet store must be filled by a fraction of capac-
ity equal toα′, we want to have

y′i
ci

= α′ ∀i ∈ I

and hence

yi − xi + di

ci
= α +

D −B

C
∀i ∈ I

from which we obtain

xi = di − ci

C
(D −B) ∀i ∈ I.

Therefore the condition0 ≤ xi ≤ yi ∀i ∈ I is equivalent
to

ci

C
(D −B) ≤ di ≤ ci

C
(D −B) + yi ∀i ∈ I (17)

or equivalently

ci(
D

C
− B

C
) ≤ di ≤ ci(

D

C
− B

C
+ α) ∀i ∈ I (18)

or equivalently

α′ − α ≤ di

ci
≤ α′ ∀i ∈ I. (19)

When these conditions hold, it is possible to determine the
optimal values of thex variables directly from (14), (15) and
(16) without having recourse to any optimization algorithm.

Balancing an unbalanced solution
Even if for some time window it is impossible to achieve an
optimally balanced solution, as defined before, it is however
of practical interest to keep the solution as balanced as pos-
sible in the subsequent time window. Following the method
outlined above for Case 2, it easy to show that an optimally
balanced solution can be achieved after a given time window
from anysolution after the previous time window if and only
if the following conditions hold:

ci(
D

C
− B

C
+

Y

C
− yi

ci
) ≤ di ≤ ci(

D

C
− B

C
+

Y

C
) ∀i ∈ I.

(20)
The condition resembles condition (18) with the only differ-
ence that the upper and lower limits todi are now increased
by a termci(Y

C − yi

ci
), which can be positive or negative ac-

cording to the load unbalance in packet storei ∈ I with
respect to the average loadY

C .
In Case 1, i.e. whenY ≤ B, the analysis presented in the

previous subsection still holds.

A fast heuristic
The analysis presented here above directly suggests the im-
plementation of a very simple and fast heuristic, which it-
eratively considers the time windows in chronological or-
der, analyzes each of them in order to detect whether the
corresponding balancing subproblem is easy or difficult and
solves it, in the former case directly, in the latter case by lin-
ear programming by solving a problem like (7)-(13) with-
out indexj (because it concerns only one time window at a
time). If all subproblems, one for each time window, hap-
pen to be easy, then the overall problem is also easy and the
overall solution computed by this algorithm is guaranteed to
be optimal; otherwise there is no optimality guarantee. The
advantage of such a heuristic algorithm is to avoid solving



a potentially large linear programming problem, in case of
very tight time restrictions (for instance, when real-time re-
planning is needed).

The pseudo-code of the heuristic is reported in Algorithm
1.

Algorithm 1 A heuristic algorithm.
for all j ∈ J do

if B ≥ Y then
// Easy iteration: dump everything //
for all i ∈ I do

xij := yi j−1

end for
else

if B = 0 then
// Easy iteration: dump nothing //
for all i ∈ I do

xij := 0
end for

else
if Condition (18) holdsthen

// Easy iteration: achieve optimal balance //
for all i ∈ I do

xij := dij − ci

C (D −B)
end for

else
// Difficult iteration: optimal balance cannot be
achieved //
// Solve model (7)-(13) for the current time win-
dow j //

end if
end if

end if
end for

Computational results
Computations experiments have been done on the bench-
mark instances provided by (Oddi and Policella 2004; 2007),
available on line. They have been produced from real data
and some randomization, as described in the cited refer-
ences. In particular data-set B5 is made of 9 different in-
stances, each one with up to 13 packet stores and a num-
ber of payload operation requests (yielding data store oper-
ations) ranging from 15 and 96.

The linear programming instances have been solved by
the free LP-solver GLPK (Gnu Linear Programming Kit),
available on-line. Computational experiments have been
done on a PC with Intel Core2 Duo T7300 CPU (2.0 GHz)
and 2 GB RAM.

Table 1 reports the maximum saturation levels obtained
with the algorithm of Oddi and Policella (column OP), those
obtained with the heuristic described above (column HEUR)
and the optimal ones given by the solution of the LP model
(7)-(13) (column OPT).

The results given by the heuristic are significantly better
than those of the OP algorithm: the average percentage gap
from optimality is5.40% instead of10.98%.

Instance OP HEUR OPT
1 0.73 0.72 0.68
2 0.76 0.71 0.65
3 0.78 0.68 0.68
4 0.75 0.66 0.59
5 0.73 0.72 0.68
6 0.74 0.72 0.69
7 0.70 0.66 0.59
8 0.59 0.59 0.59
9 0.59 0.59 0.59

Table 1: Maximum saturation level.

Instance N. packet stores HEUR OPT
B5 13 < 0.001 0.01

B5-28 28 0.10 0.70
B5-54 54 0.11 2.32

Table 2: Average computing time (seconds).

These results are obtained at the expense of a negligible
computing time, as shown in Table 2.

There results are referred to three benchmarks: the first
one, B5, is the same as before; the other two are artificially
made by combining together two or more instances from B5,
in order to have a larger number of packet stores. In data-set
B5 the percentage of “easy” iterations (those for which the
heuristic does not call the LP solver) is greater than75%,
although some “difficult” iteration is always encountered.

For the sake of comparison with the state of the art, the
computing time reported in (Oddi and Policella 2007) for
solving instance B5 in an approximate way is 21.8 seconds
on a 1.8 GHz processor; therefore our exact method turns
out to be three orders of magnitude faster and our heuristic
turns out to be four orders of magnitude faster.

Scalability. To assess the scalability of our method, we
also made computational experiments with larger instances.
They are reported in Table 3: the columns indicate the name
of the instance, the number of days to be covered by the
data dumping plan, the number of time windows in the in-
stance, the number of store operations, the observed com-
puting time, and the maximum saturation level obtained. For
these instances we used ILOG CPLEX instead of GLPK as
an LP solver. From the examination of the results, it is clear
that computing time remains quite acceptable also for large
scale instances. It does not depend much on the size of the
instance (measured by the number of days, the number of
time windows and the number of store operations) but rather
on the balance of the incoming scientific data.

Extensions
More complete and realistic versions of the Mars Express
memory dumping problem consider other features, such as
housekeeping data and priorities, and different objective
functions, such as the minimization of dump operations,
which are conflicting with the minimization of the satura-
tion considered as the main objective function in (Oddi and



Instance N. Days N. TWs N. Store Time Satur.
I71-73 3 15 154 0.17 0.48
I81-83 3 15 145 0.21 0.32
I91-93 3 24 159 0.24 0.37
I71-75 5 25 260 0.21 0.48
I81-85 5 27 232 0.23 0.32
I71-77 7 31 340 0.24 0.48
I81-87 7 34 300 0.24 0.32
I91-97 7 44 352 0.32 0.54
I81-90 10 47 442 0.63 0.32
I81-91 11 56 483 0.82 0.32
I88-98 11 59 522 0.65 0.54
I71-84 14 65 691 0.57 0.48
I81-94 14 73 665 0.90 0.54
I71-91 21 100 973 0.77 0.48
I75-94 20 98 640 0.94 0.54
I72-92 21 102 1008 0.85 0.58
I74-94 21 102 1003 0.78 0.54
I75-95 21 103 993 0.85 0.54
I76-96 21 103 982 0.74 0.54
I78-98 21 106 975 0.97 0.54
I71-97 27 135 1284 0.61 0.54
I72-78 27 132 1287 0.58 0.58
I71-98 28 137 1311 0.63 0.54

Table 3: Experimental results on large instances.

Policella 2004; 2007) and in this paper. These versions of
the problem, described for instance by (Cesta et al. 2007b;
2007a), can also be solved by mathematical programming,
following the approach shown in this paper, even if the com-
putational complexity can be much higher due to the possi-
ble presence of binary variables in the mathematical model.
This is the subject of ongoing research.
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