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Abstract—Model-driven approach has recently received much
attention in developing secure software and systems. In addition,
software developers have attempted to employ such an emerging
approach in the early stage of software development life cycle.
However, security concerns are rarely considered and practiced
due to the lack of appropriate systematic mechanisms and tools.
In this paper, we introduce a multilayered software development
life cycle (SDLC), which is based on an assurance management
framework (AMF), focusing on the development of authorization
systems. AMF facilitates comprehensive realization of formal se-
curity model, security policy specification and verification, gen-
eration of security enforcement codes, and rigorous conformance
testing. We also articulate our experience in analyzing role-based
authorization requirements and realizing those requirements in
constructing a role-based authorization system.

Index Terms—Authorization, model-driven approach, role
based, unified modeling language (UML).

I. INTRODUCTION

ECURITY has become a core ingredient of nearly most

modern software and information systems. Unfortunately,
the integration of such critical security concerns throughout
the overall software development process has been exercised
in an ad hoc manner. Security countermeasures are often inte-
grated into existing systems after significant security problems
are discovered during the administration or usage phase. This af-
terthought approach causes several severe problems such as un-
satisfied security requirements, integration difficulties, and mis-
matches between design models and actual implementations.
In order to effectively address security aspects in the software
development process, more convenient and mature mechanisms
should be designed to help software developers analyze and
capture security concerns from the early stage of software de-
velopment life cycle.

Several issues should be taken into account for accommodat-
ing such requirements. First, there exists a gap between security
models and building secure systems with those models. Secu-
rity models are generally described in some forms of formalism.
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However, software developers are reluctant to fully adopt a for-
mal security model for their development tasks. Consequently, it
is very important to have mechanisms and corresponding tools to
aid software developers or system administrators in understand-
ing and articulating a specific-security model and associated
policies in the software analysis and design stages. Second, it
is crucial to verify and validate the security model and policies
before actual implementation commences, such that flaws and
conflicts in the system design can thus be identified as early
as possible and efficiently resolved. Furthermore, the security
model and policies that are specified with modeling languages
should be translated to security enforcement codes for deriving
appropriate security properties. Additionally, the consistency
between the design model and its implementation, and the cor-
rectness of the translation should be evaluated.

To address these issues, we introduce an assurance manage-
ment framework (AMF), which ensures that formal security
models are fully realized in real systems through model rep-
resentation, policy specification and validation, and generation
of security enforcement codes. In addition, formal verification
of security models and corresponding policies, and automatic
test case generation are supported in this framework. Moreover,
we believe that more practical engineering processes for secure
software development should be addressed so that software de-
velopers can easily adopt our approach in their development
practices. Therefore, we further propose a multilayered soft-
ware development life cycle (SDLC) for building role-based
authorization systems based on AMF framework. This multi-
layered SDLC includes four development phases: authorization
requirement analysis, authorization model and policy verifi-
cation, authorization system design and implementation, and
conformance testing. In order to demonstrate the applicability
of this engineering approach, we utilize a role-based-banking-
authorization system as a case study.

The rest of this paper is organized as follows. Section II
introduces our assurance management framework. We discuss
our layered software development life cycle for constructing
role-based-authorization systems in Section III. In Section IV,
we elaborate the processes of building a role-based-banking-
authorization system to demonstrate the feasibility of our ap-
proach. Section VI concludes this paper with future research
directions.

II. ASSURANCE MANAGEMENT FRAMEWORK

In this section, we introduce our assurance management
framework [19], which is depicted in Fig. 1. The framework
is designed for facilitating the secure software development. In
the modeling stage, formal specifications of security model and
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Fig. 1. Assurance management framework.

policies are verified. Then, application-oriented security model
representation and corresponding security policy specification
are derived from formal specification of security model and
policy, which can also be utilized to produce test cases automat-
ically. Furthermore, the generated test cases are used to check
conformance to the formal specification. In the implementation
stage, security enforcement codes are generated systematically
from the application-oriented specifications. The correctness
and conformance of the generated codes with respect to the
formal specification are also evaluated by using the generated
test suites in the simulation. We divide all tasks in the AMF
framework into two phases as follows:

1) Automatic realization of security model and policy

a) Application-oriented security model representa-
tion: The representation of a security model should
enable software engineers to integrate security as-
pects into the applications without knowing de-
tails of the security model. In this regard, a well-
designed and general-purpose visual representation
should be considered as a means to represent the
security model in an intuitive fashion.

b) Application-oriented security policy specification:
Security policies are an important means for lay-
ing out high level security rules for organizations
to avoid unauthorized accesses. A considerable
amount of work has been carried out in the area
of security policy specification. A high-level policy
specification approach should be considered in the
practical system development process so that secu-
rity policies can be easily integrated into the system
design by system developers.

c) Automatic generation of security enforcement
codes: It is also a crucial aspect to make the trans-
parent transition from system design to secure sys-
tem development. The goal of code generation in
AMF is to automatically generate executable mod-
ules from the application-oriented specification of
security model and policies by a well-known soft-

ware engineering mechanism, such as the model-
driven development (MDD) [31]. The generated se-
curity modules would be eventually integrated into
the real systems to achieve an acceptable degree of
assurance in secure system development.
2) Automatic analysis and testing of security model and
policy

a) Automatic analysis of formal security model and
policy: One of the promising advantages in
mathematical- and logic-based techniques for se-
curity model and policies is that formal reasoning
of the security properties can be performed. Since
the formal security model and policies serve as a
basis for secure system development in AMF, obvi-
ously the formal specifications of model and poli-
cies should be proved based on the expected se-
curity properties. Formal verification offers a rich
toolbox containing a variety of techniques such as
model checking, SAT solving, and theorem prov-
ing, for supporting automatic-system analysis.

b) Automatic test case generation from formal speci-
fication: While formal verification can prove viola-
tion or satisfaction of properties, it is not sufficient
enough to practically guarantee the assurance. The
proof only shows that a given formal specification
fulfills a set of properties. However, we should con-
sider that the actual implementation is influenced
by other facts, such as platform, transformation ap-
proach, compiler, and so on. Consequently, the im-
plemented module should be rigorously tested.
The most significant recent development in testing
is the application of verification approach, which
generates test cases from the formal specification.
We attempt to apply this notion to our framework
so that we can derive test cases from the formal
security model and policy. As aresult, the generated
test cases are fed into a validator and a simulator to
check whether the system design and development
comply with the formal specification.

III. MULTILAYERED SOFTWARE DEVELOPMENT LIFE CYCLE
FOR AUTHORIZATION SYSTEMS

In order to demonstrate the usability of AMF framework,
more practical engineering processes for developing secure sys-
tems should be articulated. We now present a multilayered soft-
ware development life cycle shown in Fig. 2, which is espe-
cially designed for software developers to build a role-based-
authorization system based on our AMF framework. The layered
software development life cycle consists of four development
phases as follows:

A. Phase 1: Requirement Identification

This phase analyzes security requirements to determine the
prospective actors and business processes of an authoriza-
tion system. In addition, the organizational authorization rules
need to be captured in this phase for reflecting authorization
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with AMF framework and corresponding tools.

requirements in the subsequent development phases. Further-
more, corresponding entities, relations and constraints are iden-
tified and defined based on the authorization requirement
analysis.

In this paper, we mainly focus on a role-based authoriza-
tion. We adopt the NIST/ANSI RBAC (role-based access con-
trol) standard [3], [16] as the underlying security model since
it includes most of RBAC features [29], and has been widely
adopted in information-assurance community. Based on this
RBAC standard, a domain-specific RBAC model is constructed
from the identified RBAC elements and relations. Authoriza-
tion constraints are an important means in RBAC for laying out
high-level security rules including organizational and system-
centric perspectives. An RBAC-constraint-specification lan-
guage RCL2000 [6] is utilized to define authorization constraints
formally based on the identified authorization requirements. The
RCL2000-based constraint specifications are used for policy
analysis, test case generation, and application-oriented policy
generation for the subsequent phases in the layered software
development life cycle.

B. Phase 2: Model and Policy Verification

In AMEF, the formal security model and policy serve as a
foundation of secure software development. The correctness of
the design and implementation is based on the premise that the
formal security model and policy are valid. This phase formally
verifies the specifications of security model and policy against
a given set of security properties. Such rigorous examination
allows us to provide a higher assurance in the layered software
development life cycle.

To support this task, RBAC model and RCL2000-based con-
straints are reconstructed and converted, respectively, to al-
loy [20]. Then, we use alloy analyzer to further examine prop-
erties of RBAC model and corresponding constraints.

C. Phase 3: System Design and Implementation

To build a secure system based on a particular security model,
it is very important to have an application-oriented represen-
tation of the security model for software engineers. In addi-
tion, a high-level policy-specification approach should be con-
sidered in the practical system development process so that
security policies can be easily understood and incorporated
into the system design by software engineers. We use unified
modeling language (UML), which is a general-purpose visual-
modeling language, for representing the domain-specific RBAC
model for authorization-system design. Then, we adopt object
constraint language (OCL) [37] for transforming RCL2000-
based constraints to OCL-based constraint specifications that
are easily embedded in UML-based RBAC representation. In
AMEF, executable modules are generated automatically from the
UML/OCL-based specification of authorization model and pol-
icy. The generated authorization modules would be eventually
used to construct role-based-authorization systems.

RBAC authorization environment (RAE) [4] is utilized to
support the major features in AMF, especially for authoriza-
tion system design and implementation. RAE tool is composed
of three functional components: specification, validation, and
code-generation components. In addition, the domain-specific
RBAC model and constraints can be validated to detect miscon-
figurations and conflicts during the authorization system design
phase.

D. Phase 4: Conformance Testing

Even though formal analysis can prove whether or not a given
formal specification satisfies all of critical properties, it is nec-
essary to perform a conformance testing. AMF automatically
derives test cases from the formal specification of access con-
trol model and policy. Counterexamples are also articulated as
part of test cases. Then, the generated test cases are used to
check conformance of the application-oriented system design
against the formal specification. In addition, the correctness and
conformance of the generated codes with respect to the for-
mal specification are evaluated as well. We use alloy analyzer
with a SAT solver to achieve this goal by generating test cases
from alloy-based model and policy specification. The gener-
ated test cases are fed into RAE to check the validity of RBAC
model and constraint specifications as well as utilized by an
RBAC-authorization-simulation system (RASS) [4] to evaluate
the generated RBAC codes under simulation.

IV. CONSTRUCTING A ROLE-BASED AUTHORIZATION FOR A
FINANCIAL SERVICE SYSTEM

In this section, we illustrate the applicability of our lay-
ered software development life cycle based on system require-
ments for a role-based-banking-authorization system derived
from [12]. A domain-specific RBAC model is built based on
the RBAC standard to reflect the domain-specific authorization
requirements. We call our customized RBAC model for this
financial service environment as Bank-RBAC model.
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A. Authorization Requirement Analysis

1) System Requirement of the Banking Application: The
banking application can be used by various bank officers to
perform transactions on customer accounts. The bank officers,
called “actors” in the system requirement analysis, include
teller, customer service representative, loan officer, accoun-
tant, accounting manager, internal auditor, and branch man-
ager. The business processes called “use cases” in the system
requirement analysis are articulated including the following ba-
sic tasks: 1) create, delete, or modify customer deposit accounts;
2) create, delete, or modify customer loan accounts; 3) create
general ledger report; and 4) modify or verify the ledger posting
rules.

The participating actors and business tasks performed by each
actor in the banking system are defined as follows:

1) teller: input and modify customer deposit accounts;

2) customerServiceRep: create and delete customer deposit

accounts;

3) loanOfficer: create and modify status of loan accounts;

4) accountant: create general ledger reports.

5) accountingManager: in addition to the inherited privileges

from accountant, modify ledger-posting rules;

6) internalAuditor: verify ledger posting rules; and

7) branchManager: perform all privileges inherited from

other actors.

Since some actors may perform the functions of others, there
exist dependencies between the actors. For example, we may
have two actors who are accountants but one actor is senior to
another actor with additional privileges in the system. Thus, we
can model the dependency relations between accountingMan-
ager and accountant, and between branchManager and all other
actors. It implies that accountingManager inherits all privileges
of accountant and branchManager inherits capabilities from all
actors.

In the banking system, several organizational authorization
rules should be enforced to support common security principles
such as separation of duty and least privilege. We address these
authorization rules in the banking system as follows.

Rule 1: Some bank officers, such as customerServiceRep and
accountingManager, cannot be performed by the same user.

Rule 2: Some users cannot act as the same bank officer.

Rule 3: Some bank officers, such as customerServiceRep and
loanOfficer, cannot be activated by the users in the same trans-
action session.

Rule 4: A user can play a bank officer role x only if the user
has been assigned to a different bank officer role y.

Rule 5: A banking business process can be performed by a
bank officer only if the bank officer already has the ability to
perform another banking business process.

Rule 6: The number of users assigned to a bank officer should
be restricted. For example, only one user can be assigned to an
internalAuditor.

2) Identifying RBAC Entities, Relations, and Constraints for
the Banking Application: Identifying RBAC entities. Since an
actor in use case analysis portrays business responsibilities in a
given system, the actors defined earlier for the banking applica-
tion can be treated directly as corresponding roles [11], [38] for

TABLE I
BANK PERMISSIONS AND CORRESPONDING BANK
OPERATIONS AND BANK OBJECTS

Operation | Object

D, ——
|ru I

createDepositAccount Create Deposit account
deleteDepositAccount Delete Deposit account
inputDepositAccount Input Deposit account
modifyDepositAccount Modify Deposit account
createLoanAccount Create Status of loan account
modifyLoanAccount Modify Status of loan account
modifyLedgerReport Modify General ledger report
createLedgerPostingRule Create Ledger posting rule
verifyLedgerPostingRule Verify Ledger posting rule

branchManager

customerServiceRep

teller |Ioan0fﬁcer| | accountingManager | | internalAuditor

accountant

Role hierarchy for banking-authorization system.

TABLE II
ASSIGNMENTS BETWEEN PERMISSIONS AND ROLES

Fig. 3.

[ BankRole [ BankPermission
customerServiceRep createDepositAccount,
teller inputDepositAccount,

modifyDepositAccount
loanOfficer createLoanAccount,

modifyLoanAccount
accountingManager modifyLedgerReport
internalAuditor createLedgerPostingRule
branchManagexr verifyLedgerPostingRule

the role-based-banking-authorization system. Therefore, we can
identify following seven bank roles: teller, customerServiceRep,
loanOfficer, accountant, accountingManager, internalAuditor,
and branchManager. The bank use cases represent the bank
business processes performed by each bank actor. Hence, we
also derive the permissions from the same use cases accord-
ingly. Table I lists the permissions identified for the banking
authorization system as well as the corresponding bank opera-
tions and bank objects.

Identifying RBAC relations: There are dependency relations
between actors in the banking use case. These dependency re-
lations can be mapped to inheritance relations in role hierar-
chy. Fig. 3 shows the role-hierarchy structure in the banking
application.

We identified the actors and the business processes that can
be performed by each actor in the banking application so far.
With this identification, we now capture the assignment rela-
tions between permissions and roles. Table II summarizes all
permission-to-role assignments in the banking application.

Identifying RBAC constraints: Several organizational rules
need to be captured in system requirements for the banking
application. These organizational authorization rules are repre-
sented and enforced in RBAC systems by means of authorization
constraints. Several RBAC constraints including static separa-
tion of duty, dynamic separation of duty, prerequisite condition,
and cardinality rules are used to support these organizational
authorization rules. Table III shows six RBAC constraints and
corresponding organizational authorization rules identified for
the banking application.
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TABLE III
IDENTIFIED CONSTRAINTS, SUPPORTED AUTHORIZATION RULES AND
CORRESPONDING COLLECTIONS FOR THE BANKING SYSTEM

[ Constraint [ Rule [ Collection |
Statical SoD constraint ggggigﬁ 2311-: ;‘ gg; T
Dynamical SoD constraint | Session-based DSoD Rule 3 DCR
Prerequisite constraint Prerequ%s%[e-Role‘ - Rule 4 PR

Prerequisite-Permission Rule 5 PP
Cardinality constraint Cardinality-Role Rule 6 | RUC

RBAC constraints can be formally specified with RCL2000.
We illustrate two typical RBAC constraints specified in
RCL2000 for the banking application as follows:

Constraint 1: (SSoD-CR): The number of conflicting roles,
which are from the same conflicting role set, authorized to a
user cannot exceed the cardinality of the conflicting role set.

| roles*(0E(U)) N GS(OE(SCR)) |< GC(DE(SCR))

Constraint 2: (User-based DSoD): The number of conflicting
roles, which are from the same conflicting role set, activated
directly (or indirectly via inheritance) by a user cannot exceed
the cardinality of the conflicting role set.

| roles*(sessions(0E(U))) N GS(OE(DCR)) |< GC(OE(DCR))

As shown in Table III, six collections, SCR, SCU, DCR, PR,
PP, and RUC, are required for defining constraints in the banking
application. These collections specified in constraint specifica-
tions should be instantiated to enforce constraints properly at
runtime in the banking application. For instance, in the banking
application, the static conflicting role collection (SCR) for the
SSoD-CR constraint is instantiated as follows, where the car-
dinality of the conflicting role sets in SCR is one. It implies
the conflicting roles in the same conflicting role set cannot be
assigned to a user simultaneously.

SCR = { ({customerServiceRep,
accountingManager}, 1),
({customerServiceRep, internalAuditor}, 1),
({loanOfficer, accountingManager}, 1),
({loanOfficer, internalAuditor}, 1),
({accountingManager, internalAuditor}, 1),
({teller, accountant}, 1),

({teller, loanOfficer}, 1),

({teller, internalAuditor}, 1),
({accountant, loanOfficer}, 1),
({accountant, internalaAuditor}, 1)}}

The user-based DSoD constraint defines the dynamic con-
flicting roles cannot be activated by a user at the same time. For
example, the dynamic conflicting role set (DCR) for the user-
based DSoD constraint with the cardinality can be defined as
follows:

DCR = {({customerServiceRep,

loanOfficer}, 1)}.
B. Authorization Model and Policy Verification

1) Model Representation in Alloy: In order to verify role-
based-authorization model and policy, the authorization model

should be verified. First, we represent the authorization model
in alloy. The alloy representation of the bank-RBAC model with
respect to NIST/ANSI RBAC is given as follows:

module Bank-RBAC

Core Bank-RBAC-----—----——--~

BankUser {}

BankRole {}

BankOperation {}

BankObject {}

BankPermission {BankOperation,
BankObject}

sig
sig
sig
sig
sig

sig BankSession {}
sig URA{

ura: BankUser->BankRole}
sig PRA{

Pra: BanKPermission->BankRole}
sig Us{

us: BankUser!->BankSession}
sig SR{

sr: BankSession->BankRole }
sig PB{

pb: BankOperation->BankObject}

sig RRA{
hierarchy: BankRole->BankRole}
——————— Constrained Bank-RBAC----------—-—
sig SCR{
conflict_role: set BankRole,
cardinality: Int}
sig scu{
conflict_user: set BankUser,
cardinality: Int}
sig DCR{
conflict_role: set BankRole,
cardinality: Int}
sig PR{
prerequisite._role: set BankRole}
sig PP{
prerequisite_permission:
set BankPermission}
sig RuUC{
role: BankRole,
cardinality: Int}

This alloy specification includes the core elements and rela-
tions in the bank-RBAC model. Role-hierarchy relation is also
defined to support an hierarchical RBAC. Six signatures are also
defined to support RBAC constraints in alloy specification.

2) Constraint Verification in Alloy: A critical task for speci-
fying constraints is to determine whether a set of constraint ex-
pressions reflects the desired authorization requirements prop-
erly. Normally, constraints prohibit an action or state occurring
in the system. Two issues should be considered carefully while
analyzing a given set of constraints against the expected autho-
rization requirements. First, constraints may be too weak, named
under-constraint to grant undesired system states. A safety prob-
lem (i.e., the leakage of a right to an unauthorized user) can be
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resulted from the weak constraints. Second, constraints may be
too strong, named over-constraint to deny desired system states.
Strong constraints can cause availability problems. For exam-
ple, an entitled user cannot own the right to access a resource.

Using formal verification, both over- and under-constraints
for an access control model specification are analyzed automat-
ically with a set of given access control properties.

a) Identifying Under-Constraint: If unexpected authorization
property is satisfied by the access-control-model specification,
under-constraint is detected.

In the banking application, the following authorization prop-
erty with a given role hierarchy is prohibited because of separa-
tion of duty principles.

1) Two conflicting roles, such as teller and accountant, are

authorized to the same user.

This unexpected authorization property can be specified in
alloy as follows:

pred Check_SSoD-CR[disj teller, accountant:
BankRole, u: BankUser, scr: SCR]{
teller in scr.conflict_role &
accountant in scr.conflict_.role &
scr.cardinality = 1 &
teller in u. (URA.ura). ~ * (RRA.hierarchy)
& accountant in u. (URA.ura) .
~ * (RRA.hierarchy)

run Check_SSoD-CR

In the banking application, suppose the policy designer only
specifies a simple SSoD-CR constraint, which ignores the role-
hierarchy relation in constraint expressions. An RCL2000 policy
expression for this simple SSoD-CR constraint has been given
in [6]. The policy is then transformed to alloy expression using
an RAE tool. The following alloy fact specifies an alloy-based
simple SSoD-CR constraint:

fact SSoD-CR {
all u:BankUser | all scr:SCR |
#(u. (URA.ura) &
scr.conflict role) <= scr.cardinality }

When running the predicate Check_SSoD-CR defined ear-
lier in alloy analyzer, we can discover that conflicting roles,
teller and accountant are indirectly assigned to a user. It in-
dicates that the unexpected authorization property is held by
the constraint specification. Thus, we can conclude this sim-
ple SSoD-CR constraint is too week with respect to the given
authorization property.

b) Identifying over-constraint: If the verifier discovers that the
expected authorization property is not satisfied by the access-
control-model specification, this points out the defined con-
straints are too strong. Thus, the constraint definitions should
be refined by reducing the restriction of constraints.

Taking into account the following authorization properties for
dynamic separation of duty principle.

1) A user cannot activate two conflicting roles in the same

session, but can activate them in the different session.

We can specify this expected authorization property in alloy
as follows:

assert Check_DSoD {
all u: BankUser |
all disj customerServiceRep,
loanOfficer: BankRole |
all disj sl,s2:BankSession |
all dcr: DCR |
customerServiceRep in dcr.conflict_role
& loanOfficer in dcr.conflict.role &&
dcr.cardinality = 1 &&
u->sl) in US.us &&
u->s2) in US.us &&
customerServiceRep->sl) in ~ SR.sr &&
loanOfficer->sl) !in~ SR.sr &
(loanOfficer->s2) in~ SR.sr }
check Check_DSoD

—~ o~ —~ —

With a User-based DSoD constraint! defined earlier, the fol-
lowing alloy fact specifies an alloy-based DSoD constraint:

factDSoD {
all u:BankUser | all dcr:DCR |
#(u. (US.us).(SR.sr) & dcr.conflict_role)
<= dcr.cardinality }.

Running “check Check_DSoD” in alloy analyzer, coun-
terexamples are found, which indicate the expected authoriza-
tion property expressed in assertion Check_DSoD is denied by
the constraint specification. That is, the constraint is too strong,
and should be weakened to contain the expected authorization
properties.

C. Authorization System Design and Implementation

1) Model Representation in UML and OCL: We first rep-
resent domain-specific RBAC model using UML class dia-
gram. Role, User, Permission, Session, Object, and Operation
in the NIST/ANSI RBAC standard are parameterized by Bank-
Role, BankUser, BankPermission, BankSession, BankObject,
and BankOperation for the bank domain, respectively. A com-
plete representation of the Bank-RBAC model including core
bank-RBAC, hierarchical bank-RBAC, and constrained bank-
RBAC in UML class diagram can be derived from the UML
representation of RBAC standard [4]. Six classes SCR, SCU,
DCR, PR, PP, and RUC are defined for constraint specifications
in the banking application.

The functional specification of the RBAC standard defines
various functions, such as administrative function, review func-
tion, and system function. All functions defined in bank-RBAC
model are specified in OCL. For brevity, we elaborate sev-
eral typical OCL-based functional definitions for bank-RBAC
model.

a) Functional definition of core bank-RBAC: Administrative
commands: These commands are for the creation and mainte-
nance of RBAC element sets and relations by administrators.

'In order to reduce the complexity, we omit the role hierarchy in this con-
straint.
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The functions for adding and deleting an element such as
AddRole and DeleteRole can be addressed in UML class
diagrams as well. A command specification for AssignUser
is defined as follows:

context BankRole: :AssignUser (u:BankUser)
pre : self.user->excludes (u)
post : self.user->includes(u) .

Review functions: These functions are for administrators
to query RBAC element sets and relations. Query operations
do not change system states. Instead, each query returns a
value or a set of attributes of corresponding RBAC element
set or relation. In OCL, they are defined as a body expres-
sion. The following OCL definition supports a review function
UserPermissions:

context BankUser: :UserPermissions () :
Set (BankPermission)
body : self.role.permission->asSet()
Supporting system functions: The functions are applied to cre-
ate and maintain RBAC dynamic properties with regard to users’
sessions and access control decisions. CheckAccess checks
whether an operation on an object is allowed to be performed
in a particular session. OCL representation for this function is
defined as follows:

context BankSession: :CheckAccess (op:
BankOperation, ob:BankObject) :Boolean
pre : true
post : self.SessionRoles()->exists (r|
r.permission->exits (p|
p.operation->includes (op)
and p.object->includes (ob))) .

b) Functional definition of hierarchical bank-RBAC: There
are four functions such as AddSenior, DeleteSenior,
AddJunior,and DeleteJunior for administrators to main-
tain inheritance relationships among roles. We define two review
functions Al1Seniors and A11Juniors for role hierarchy.
The following definition is for Al11Seniors:

context BankRole: :AllSeniors () : Set (BankRole)
body : self.senior->union(self.senior
->collect(r|r.AllSeniors()))->asSet ()

c) Functional definition of constrained bank-RBAC: The
definitions related to constraint expressions are incor-
porated with corresponding components in UML-based
model representation. We introduce two system func-
tions CheckStaticConstraints and CheckDynamic
Constraints for bank-RBAC model to enforce constraint
expressions and to check conflicts. For example, when a user
is assigned to a role, we need also enforce relevant constraints.
The following AssignUser function includes assignment op-
erations as well as constraint enforcement.

context BankRole: :AssignUser (u:BankUser)
pre : self.user->excludes (u)
post : self.user->includes(u) and
if (not self.CheckStaticConstraints())
or (not u.CheckStaticConstraints())

then
self.user->excludes (u)
endif

Using RAE tool, RCL2000-based RBAC constraints are
translated automatically to corresponding OCL constraint ex-
pressions in the system-design phase. For instance, the OCL
expression for SSoD-CR constraint for the banking application
is translated as follows.

context BankUser

inv: let
scr:SCR =

in
self.AuthorizedRoles () ->
intersection(scr.RoleSet) ->
size()<=scr.SetCardinality

SCR.allInstances () ->any (true)

2) Model and constraint validation: As indicated in the
modeling stage, the authorization tool RAE can help policy
designers validate RBAC model and policies. The results of val-
idation are utilized to find if the current model and constraints
are adequate, detecting constraint conflicts. Our validation ap-
proach checks a set of system states against authorization poli-
cies. In UML-based representation, a system state is an UML
object diagram, which can be changed by creating and deleting
objects as well as inserting and removing links between objects.
There are six components, SCR, SCU, DCR, PR, PP, and RUC
that are used to specify conflicting sets. Constraint expressions
employ these components to specify corresponding constraints.
Each component is instantiated as an object during constraint
validation.

An analyzer component in an RAE tool is responsible for
model and constraint validation. The main task of the analyzer
component is to parameterize and interpret RBAC constraint
expressions and evaluate these constraints against the current
system state. When conflicting element sets are changed, or
constraint expressions are established or modified, the analyzer
checks if the constraints are violated by the current system state.
Also, if the system state is changed, the analyzer also evaluates
all authorization constraints against the changed system state.
If any of the authorization constraint is violated during this
process, it indicates that the authorization constraint is false,
or the system state is undesirable. If the system state violates
the RBAC constraints, it generates a report that assists users to
find the root causes for the conflict and to make decisions for
resolving the conflict.

The following example illustrates how the banking authoriza-
tion model and constraints can be validated during the system
design phase. Suppose a policy designer accidentally omits the
following condition that he has defined in advance: customerSer-
viceRep and accountingManager are mutually exclusive. Later,
the policy designer decides to define that accountingManager
is a prerequisite role of customerServiceRep due to the change
of an organizational policy. When a user is assigned to custom-
erServiceRep, the Prerequisite-Role constraint forces the user
to be assigned to accountingManager as well. Clearly, we can
observe that the SSoD-CR constraint is violated since custom-
erServiceRep and accountingManager are conflicting roles and
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they cannot be assigned to the same user. Hence, the policy
designer should remove either prerequisite relation or mutual
exclusion relation between customerServiceRep and account-
ingManager.

3) Generating Authorization Enforcement Code: The code
generation in MDD approach enables the developers to build
a real application by creating a platform-independent model
and then transforming it to platform-dependent codes. Our code
generation is to generate security enforcement codes with some
degree of assurance based on model specifications represented
by UML and OCL. As we addressed in the previous sections, all
model components and constraints are evaluated so the enforce-
ment codes generated from our model representation should
fully reflect features and functionalities of the security model.
Although we select the Java language as the target language
in this paper, we believe the mechanisms can be also used for
other languages. The process of mapping model specification
to enforcement codes is performed by the adoption of the tools
such as Octopus [2] and Dresden OCL toolkit [1]. Instead of
discussing the details of the translating process, we elaborate
some issues and solutions related to this translating process.

In our specification of bank-RBAC model, bank-RBAC
model elements and relations are defined in the UML class dia-
gram. The functionalities and constraints are specified with OCL
expressions. To implement UML model elements, the classes,
attributes, operations, and associations need to be translated into
corresponding Java classes or operations. Then, each class in the
model is mapped to one Java class; an operation for the class is
created by one operation in Java class; and an attribute and its
association with the class in the model generate a private class
member and a get and set operations in the Java class. In
addition, the basic types of OCL are mapped to corresponding
Java types. For example, Real in OCL is mapped to £1oat in
Java. OCL collection type is implemented as a library using Set
or List of Java language. It is slightly complicated when im-
plementing this library, because OCL collections have a large
amount of predefined operations. These operations should be
defined as standard operations using Java. Based on the imple-
mented standard OCL library, we can generate Java codes from
OCL expressions directly.

In our implementation, two special system func-
tions, CheckStaticConstraints and CheckDynamic
Constraints, for constrained-RBAC are created automati-
cally to collect and enforce static and dynamic constraint expres-
sions respectively. Although we can use a universal function,
such as a CheckConstraints function, to check all con-
straints for one component, for the purpose of making checking
procedures more efficient, we provide two system functions
for constraint checking: session-related constraint expressions
are performed by CheckDynamicConstraints, and other
constraints are enforced by CheckStaticConstraints.

D. Conformance Testing

In our conformance-testing approach, two kinds of test cases
are generated for testing a constraint. One is called negative
test case, which is considered as an undesired access control

authorization state that should be denied by the constraint in the
banking system. Another test case is named positive test case.
This test case represents a desired access control authorization
state and should be allowed to appear in the banking system.

Negative test case can be derived from a formal specification,
in which an access-control-model specification does not satisfy
the constraint specification. Since the constraint specification
is taken out from the access control model specification, the
authorization property expressed by constraint specification is
not exactly held on the access-control-model specification. The
verifier may generate counterexamples, which can be used to
construct negative test cases.

Positive test case is generated from a formal specification, as
we draw the constraint specification from the access-control-
model specification, and take the negated-constraint specifica-
tion as the authorization property to verify the access control
model specification. Counterexamples are derived and utilized
to build positive test cases.

We take the SSoD-CR constraint as an example to demon-
strate the process of automated test case generation for the
banking application. For instance, suppose the banking appli-
cation has one user Bob Dylan and fwo conflicting roles,
customerServiceRep and loanOfficer. We first need
to add the following assignments into bank-RBAC model spec-
ification in alloy.

one sig Bob Dylan extends BankUser{}

one sig customerServiceRep, loanOfficer
extends BankRole{}

fact SCR_rules {
customerServiceRep in SCR.conflict_role
& loanOfficer in SCR.conflict_role }

The following assertion is defined to derive the negative test
cases for the constraint specification.

assert SSoD-CR {
all u:BankUser | all scr:SCR |
#(u. (URA.ura) & scr.conflict_role)
<= scr.cardinality }
check SSoD-CR.

In order to derive positive test cases for the simple SSoD
constraint, the negated-constraint specification is used as an
authorization property. We define an assertion for this objective
as follows:

assert Neg_SSoD-CR {
all u:BankUser | all scr:SCR |
#(u. (URA.ura) & scr.conflict_role)
> scr.cardinality }
check Neg_SSoD-CR.

Note that the above assertion states the number of roles—
which are from a conflicting role set—assigned to a user must
exceed the cardinality number of the conflicting role set. Sup-
posing the cardinality number is one, it means a user must own
two or more conflicting roles.
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Fig. 4.

Performing an SSoD-CR assertion, which contains SSoD-CR
constraint specification, with the scope of one user and fwo roles.
Alloy analyzer can generate a negative test case [see Fig. 4(a)]
for the SSoD-CR constraint, such that the user Bob Dylan
is assigned to two conflicting roles customerServiceRep
and loanOfficer. On the other hand, through running a
Neg_SSoD-CR assertion including negated SSoD-CR con-
straint specification, three positive test cases serving as desired
system states are constructed as shown in Fig. 4(b). The gener-
ated test cases are utilized to check whether SSoD-CR constraint
expression in system design and implementation phases com-
plies with the formal constraint specification.

V. RELATED WORK

There are several work on UML-based modeling of secu-
rity model. Epstein and Sandhu [15] and Shin and Ahn [32]
demonstrated the usage of UML for the representation of RBAC
model. Ahn and Shin [7] showed how RBAC constraints can be
expressed in UML using OCL. Jurjens [22] proposed an ex-
tension to UML that defines several new stereotypes toward
formal security verification of elements. Basin et al. [10] and
Lodderstedt er al. [24] defined a metamodel to generate secu-
rity definition languages, an instance of which is SecureUML,
a platform-independent language for RBAC. Doan et al. [14]
attempted to accommodate mandatory access control issues in
UML-based software design. Ray er al. [28] specified reusable
RBAC policies using UML diagram templates and showed how
RBAC policies can be easily integrated with the application. Al-
ghathbar and Wijesekera [8] defined an approach AuthUML that
includes a process and a modeling language to express RBAC
policies via use cases. All of these approaches accommodated
security requirements without considering the validation of se-
curity model and policy, and the translation to a concrete imple-
mentation. Our approach uses the standard UML to represent
security model, supports the model and policy validation, and
translates security model to enforcement codes.

In addition, there are several related work on the specifi-
cation of access control policies such as formal logic-based
languages [9], [21] high-level languages [13], [27], and visual-
ization of access control policies [23], [34]. In our approach, we
introduced more comprehensive mechanism, which can accom-
modate three approaches to specify authorization policies.

One important aspect of policy analysis is to formally check
general properties of access control policies, such as inconsis-
tency and incompleteness [17], [18]. Schaad and Moffett [30]
specified the access control policies under the RBAC96 and
ARBAC97 models and a set of separation of duty constraints in
alloy. They attempted to check the constraint violations caused

(b)

Example of generated test case for SSoD-CR constraint. (a) Negative test case. (b) Positive test case.

by administrative operations. Toahchoodee et al. [35] demon-
strated how the spatiotemporal aspects in RBAC model could
be verified with alloy. Our approach also uses alloy to analyze
the formal specifications of an RBAC model and constraints,
which are then used for access-control-system development. In
addition, the verified specifications are used to automatically
derive the test cases for conformance testing. In [33], Sohr
et al. demonstrated how the USE tool, a validation tool for
OCL constraints, can be utilized to validate authorization con-
straints against RBAC configurations. However, the USE tool
mainly focuses on the analysis of OCL constraints and has some
limitations for specifying models and policies.

Very few studies addressed how access control mechanisms
could be tested. Recently, mutation analysis was applied to se-
curity policy testing. Xie et al. [25] proposed a fault model for
XACML policies. The mutation operators were introduced to
implement the fault model. Masood et al. [26] used formal tech-
niques to conceive a fault model and adopt mutation for RBAC
models. Traon et al. [36] also used mutation analysis and de-
fined security policy mutation operators in order to improve the
security tests. Compared with those approaches, our approach
adopts formal verification technologies to facilitate automated
generation of test cases from the formal specification of security
model and policy. In addition, our work demonstrates how these
test cases can be used to check the compliance of security system
design and implementation with the formal specification.

VI. CONCLUDING REMARKS

We have proposed a multilayered SDLC for authorization
systems based on our AMF, which is designed for analysis and
realization of security models and policies. In addition, we have
demonstrated how our approach could fulfill the requirements
from both software engineers and security experts for the anal-
ysis, design, implementation and testing of security properties
in constructing real authorization systems.

In our multilayered SDLC, our toolset—RAE and RASS—
constitutes a set of modules including a formal analysis tool
such as alloy analyzer to facilitate the features of our method-
ology. As part of future work, we would examine how such a
formal analysis can be integrated seamlessly with our toolset. In
addition, we plan to investigate the relationship between the size
of represented model and the time required for verification and
test case generation in our framework. In addition, we would
attempt to extend AMF for dealing with composite policies and
more complicated system properties such as temporal and con-
text attributes. In addition, we would study how our approach
can be applied to some emerging application domains [5].
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