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Abstract – Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging 

problem. Although some methods exist for addressing the problem in homogeneous WSNs, 

research on this problem in heterogeneous WSNs is progressed at a slow pace. Inspired by 

the promising performance of ant colony optimization (ACO) in solving combinatorial 

problems, this paper proposes an ACO-based approach that can maximize the lifetime of 

heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint 

connected covers that satisfy both sensing coverage and network connectivity. A construction 

graph is designed with each vertex denoting the assignment of a device in a subset. Based on 

pheromone and heuristic information, the ants seek an optimal path on the construction graph 

to maximize the number of connected covers. The pheromone serves as a metaphor of the 

search experiences in building connected covers. The heuristic information is used to reflect 

the desirability of device assignments. A local search procedure is designed to further 

improve the search efficiency. The proposed approach has been applied to a variety of 

heterogeneous WSNs. The results show that the approach is effective and efficient in finding 

high-quality solutions for maximizing the lifetime of heterogeneous WSNs. 

 

Index Terms – Ant colony optimization (ACO), connectivity, coverage, network lifetime, 

wireless sensor networks (WSNs) 
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I. Introduction 

With the advance of electronics and communication technology, real-time monitoring 

such as battlefield surveillance [1], environment supervision [2], and traffic control [3] has 

become a reality. These applications generally require the use of wireless sensor networks 

(WSNs) and their quality of services is strongly dependent on the network performance. A 

fundamental criterion for evaluating a WSN is the network lifetime [4], which is defined as 

the period that the network satisfies the application requirements. Since most devices of 

WSNs are powered by non-renewable batteries, studies of prolonging the network lifetime 

have become one of the most significant and challenging issues in WSNs. 

The existing methods for prolonging the lifetime of WSNs focus on the issues of device 

placement [5], data processing [6], routing [7]-[14], topology management [15], and device 

control [16]-[18]. Among them, the device control approach that schedules the devices’ 

sleep/wakeup activities has shown to be promising [19], [20]. Devices in a WSN carry out 

both monitoring and communication tasks. The monitoring task requires devices to offer 

satisfying sensing coverage to the target. The communication task demands devices to form a 

connected network for collecting and disseminating information via radio transmissions. In a 

WSN where devices are densely deployed, a subset of the devices can already address the 

coverage and connectivity issues. The rest of the devices can be switched to a sleep state for 

conserving energy. Therefore, the lifetime of a WSN can be prolonged by planning the active 

intervals of devices. At every point during the network lifetime, the active devices must form 

a connected cover for fulfilling sensing coverage and network connectivity. 

A number of methods have been proposed for finding one connected cover from a WSN. 

The connected cover obtained may be optimal under certain criteria, such as minimum size 

[21], [22] or minimum energy consumption [23], [24]. Nevertheless, generating a sequence 

of optimal connected covers by repeating the above methods may not lead to lifetime 
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maximization. Maximizing the number of connected covers is a more direct way for 

maximizing the network lifetime.  

The problem of finding the maximum number of connected covers is difficult because 

each connected cover must fulfill sensing coverage and network connectivity simultaneously. 

Its subproblem of maximizing the number of subsets that fulfill sensing coverage is already 

in the non-deterministic polynomial time (NP-complete) complexity class [25]. Many 

methods focus on solving the above subproblem but ignore the issue of connectivity [26]-[29]. 

These methods is able to maximize the lifetime of WSNs while maintaining both sensing 

coverage and network connectivity with a premise that the devices are identical and have a 

transmission range at least twice of the sensing range. However, they cannot ensure the 

network connectivity when the required premise is not satisfied. Their robustness in real-

world applications thus cannot be guaranteed. Zhao et al.[30] proposed a greedy algorithm 

that addressed both sensing coverage and network connectivity, but the algorithm can only 

handle the coverage of discrete points. It is also difficult to extend the algorithm to 

heterogeneous WSNs that comprise different types of devices. 

Recent studies have shown that heterogeneous WSNs have inherent advantages in terms 

of reliability, robustness, and energy efficiency [31], [32]. A growing trend of heterogeneous 

designs has also been witnessed in a number of applications [33], [34]. In order to prolong 

the lifetime of heterogeneous WSNs, novel device placement methods [35], routing protocols 

[36], and topology management strategies [37] have been introduced. The device control 

approach for planning the activities of different devices, however, remains unexplored. In this 

paper, a common type of heterogeneous WSNs is considered and a novel activity planning 

approach for maximizing the network lifetime is proposed. The approach can be used in both 

cases of discrete point coverage and area coverage. We focus on the more general case, i.e., 

area coverage, in the following study. 
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The considered heterogeneous WSNs comprise two types of devices: sensors and sinks. 

The sensors monitor the target and transmit the monitoring results to the sinks. The sinks 

relay the monitoring results to the destination (e.g., data processing center). Therefore, a 

connected cover in the heterogeneous WSNs must satisfy the following three constraints: 1) 

the sensors form complete coverage to the target; 2) all the monitoring results obtained by the 

sensors are transmitted to the sinks; 3) the sinks compose a connected wireless network. 

These three constraints interact with each other as the second constraint involves both sensors 

and sinks. Finding the maximum number of connected covers is thus more difficult than 

either the problem of maximizing the number of sensor subsets under the coverage constraint 

or the problem of maximizing the number of sink subsets under the connectivity constraint. It 

is unlikely to have a polynomial-time deterministic algorithm for solving the problem. 

Heuristic methods are more promising for finding high-quality solutions. 

Ant colony optimization (ACO) is a well-known metaheuristic inspired by the foraging 

behavior of real ants [38], [39]. In ACO, ants are stochastic constructive procedures that build 

solutions while walking on a construction graph. Such constructive search behavior makes 

ACO suitable for solving combinatorial optimization problems [40]. Besides, ACO utilizes 

search experiences (represented by pheromone) and domain knowledge (represented by 

heuristic information) to accelerate the search process. ACO algorithms have been 

successfully applied to a number of industrial and scientific problems [41]-[47]. In the fields 

of WSNs, ACO-based routing algorithms have been used for improving the power efficiency 

in unicasting [8]-[11], broadcasting [12], [13], and data gathering [14]. Different from the 

above ACO algorithms that focus on the routing issue in homogeneous WSNs, this paper 

proposes an ACO-based approach for maximizing the lifetime of heterogeneous WSNs by 

finding the maximum number of connected covers. 

The proposed ACO-based approach for maximizing the number of connected covers 
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(ACO-MNCC) first transforms the search space of the problem into a construction graph. 

Each vertex in the graph denotes an assignment of a device in a subset. Heuristic information 

is associated to each assignment for measuring its utility in reducing constraint violations. 

Pheromone is deposited between every two devices to record the historical desirability of 

assigning them to the same subset. In each iteration, the number of subsets is adaptively 

determined as one plus the number of connected covers in the best-so-far solution. The ants 

thus concentrate on finding one more connected cover and avoid constructing subsets 

excessively. A local search procedure is designed to refine the solutions by reassigning 

redundant devices. The ACO-MNCC is applied to thirty-three heterogeneous WSNs with 

different characteristics. Experimental results validate the effectiveness and efficiency of the 

proposed approach. 

 The remainder of this paper is organized as follows. Section II defines the problem 

addressed in this paper. A method for estimating an upper bound of the number of connected 

covers is also given. Section III is devoted to the development of ACO-MNCC. Experimental 

results and discussions are presented in Section IV. Section V draws a conclusion and 

provides guidelines for future research. 

 

II. Preliminary 

In this section, the problem of finding the maximum number of disjoint connected covers 

is defined. We also introduce a method for estimating an upper bound of the number of 

connected covers in a WSN. 

A. Problem Definition 

Randomly deploy a set of sensors SE = {SE1, SE2, …, SE|SE|} and a set of sinks SI = {SI1, 

SI2, …, SI|SI|} in an L×W area (|⋅| denotes the size of a set). Suppose the sensors have a 

sensing range rs and a transmission range rt. The sinks have a transmission range Rt larger 
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than rt. By denoting the number of disjoint connected covers as C,  the problem can be stated 

as maximizing C, with each connected cover Si ( i ⊆ US SE SI , i=1,2,…,C) subject to 

1) The coverage constraint, which requires the sensors in Si to fully cover a target area T. In 

other words, for any given point P∈T, at least one sensor SEj∈Si satisfies 

 sjSE P r− ≤ , (1) 

where ||x−y|| represents the distance between the two points x and y. 

2) The collection constraint, which requires the sinks to collect all the monitoring results 

obtained by the sensors in the same subset. Assume that the sensors cannot relay data. For 

each sensor SEj∈Si, at least one sink SIk∈Si has 

 tj kSE SI r− ≤ . (2) 

3) The routing constraint, which requires the sinks in Si to form a connected network for 

transmitting the collected monitoring results to the destination. Mathematically, this 

constraint can be written as follows.  Between any two sinks SIj, SIk ∈Si, there is a path ℘ 

satisfying 

 
t( , )

max
x y

x ySI SI
SI SI R

∈℘
− ≤ . (3) 

Fig. 1 shows an example of a connected cover. It can be observed from the above three 

constraints that the connected cover addresses both sensing coverage and network 

connectivity. The tasks of monitoring and communication can be successfully carried out. 

 

B. The Upper Bound of C 

In a WSN, the maximum number of connected covers cannot exceed the maximum 

number of full cover subsets that satisfy the coverage constraint. Therefore, the maximum 

number of full cover subsets can be used as the upper bound of the number of connected 

covers, i.e., the upper bound of C. Although finding the maximum number of full cover 
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subsets is an NP-complete problem [21], we can estimate the upper bound of the number of 

full cover subsets with the following method. 

When all the deployed sensors are active, the target area is logically divided into a 

number of fields, each of which is a set of points covered by the same set of sensors [27]. Fig. 

2 shows an example of five sensors forming fifteen fields. Among all the fields, the ones 

covered by the minimum number of sensors are denoted as the critical fields (e.g., F1, F3, F5, 

F13, and F15 in Fig. 2). If a set of sensors can form complete coverage to the target area, each 

critical field is covered by at least one sensor. The number of sensors covering a critical field 

can be estimated as the upper bound of the number of full cover subsets [20], [27], [48], [49]. 

Therefore, the minimum number of sensors covering a field, which is denoted by Ĉ , can be 

used as the upper bound of C. 

 

III. ACO-MNCC 

In this section, we introduce the ACO-MNCC approach for maximizing the number of 

connected covers in a heterogeneous WSN. First, the objective function is formulated. The 

ants’ search behavior is then described. An introduction of the local search procedure 

follows. Finally, the process of the whole algorithm will be summarized. To facilitate the 

descriptions, the notations used in this section are tabulated in Table I. 

A. The Objective Function 

Define a solution to the problem as S = {S1, S2, …, SN}, where i ⊆ US SE SI  denotes a 

subset composed of Ui sensors and Vi sinks, i=1,2,…,N, and N is the number of subsets. Each 

subset is disjoint with the others and the union of the N subsets equals the set of SE SIU . 

Three criteria are designed to evaluate each subset’s satisfaction to the three constraints in 

Section II-A. The objective value of the solution is calculated on the basis of the three 

criteria. 
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1) Criterion for the Coverage Constraint. The coverage percentage achieved by the sensors 

in Si can be directly used as the criterion for the coverage constraint. If the target is a group of 

discrete points, the coverage percentage is the proportion of covered points. If the target is an 

area, the coverage percentage can be calculated based on the idea of fields. This paper uses 

area coverage as a study case and the coverage percentage κi is the ratio of the number of 

covered fields to the number of existing fields, i.e., 

 

j i
jSE

iκ
∈

=
U S

F

F
, (4) 

where Fj⊆F denotes the set of fields covered by a sensor SEj∈Si, i=1,2,…,N.  

2) Criterion for the Collection Constraint. Term a sensor with at least one sink in its 

transmission range as a collected sensor. Obviously, a subset with a larger proportion of 

collected sensors can better satisfy the collection constraint. The proportion χi of collected 

sensors in Si can be employed as the criterion, i.e., 

 i
i

i

H
U

χ = , (5) 

where Hi is the number of collected sensors in Si. 

3) Criterion for the Routing Constraint. Consider a communication graph Gi, where the Vi 

sinks in Si compose the vertex set and the edge set is {(SIj, SIk): ||SIj−SIk||≤Rt, SIj, SIk∈Si, j≠k}. 

The sinks in Si constitute a connected network if and only if Gi is a connected graph. Based 

on the graph theory, the connectivity of a graph can be measured by the relative size λi of its 

largest connected subgraph [50]. The criterion for the routing constraint is defined as 

 i
i

i

B
V

λ = , (6) 

where Bi is the number of sinks in the largest connected subgraph of Gi. 

The values of the above three criteria are all in the range of [0,1]. A larger value indicates 
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a smaller violation of the constraint. We use the average value of the three criteria, 

(κi+χi+λi)/3, to summarize how well the set Si satisfies the three constraints. If the average 

value equals one, i.e., κi=χi=λi=1, Si fulfills all the three constraints and becomes a connected 

cover. After applying the three criteria to evaluate all the N subsets, the objective value of the 

solution S can be calculated as 

 1 21
( ) ( ) / 3N

i i ii
Cω κ χ λ ω

=
Φ = + + +∑S , (7) 

where ω1, ω2 > 0 are predefined weights and C is the number of connected covers in S. 

It can be observed that the objective function has two components. The first component 

summarizes the constraint violations of all the subsets. The second component awards the 

objective value based on the number of connected covers. Since the goal of ACO-MNCC is 

to find a solution that maximizes the number of connected covers, the objective value should 

grow as C increases. For ensuring this, the values of ω1 and ω2 need to satisfy 

 
2

1

Ĉω
ω

≥ . (8) 

Please refer to the Appendix for the proof of the above proposition. In this paper, we set ω1=1 

and 2 Ĉω = . 

 

B. Search Behavior of Ants 

In ACO, an ant’s search behavior is mainly influenced by three components: the 

construction graph, the solution construction rule, and the pheromone management. The 

following subsections describe the three components. 

1) The Construction Graph 

Fig. 3 shows an example of the construction graph with five sensors and three sinks 

(|SE|=5 and |SI|=3). It can be observed that the vertices of the construction graph are 

arranged into an Nt by (|SE|+|SI|) matrix, where Nt is the number of available subsets in 
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iteration t. Each vertex vij (i=1,2,…,Nt, j=1,2,…, |SE|+|SI|) in the construction graph denotes 

a device assignment to a subset. If j is smaller than |SE|, vij represents the assignment of 

sensor SEj to Si. Otherwise, vij is to assign the sink SIj−|SE| to Si. Every pair of vertices in the 

adjacent columns is connected with an undirected arc, which indicates a potential route of 

ants. An ant following the arcs throughout the construction graph selects exactly one vertex 

from each column, resulting in a solution with Nt disjoint subsets. Each subset Si is composed 

of the devices corresponding to the selected vertices on row i, i=1,2,…,Nt. Still take Fig. 3 as 

an example. The ant’s path (v11, v42, v23, v34, v15, v36, v27, v48) (denoted by black arrows) 

represents a solution S={S1,S2,S3,S4,S5}, where S1={SE1,SE5}, S2={SE3,SI2}, S3={SE4,SI1}, 

S4={SE2,SI3}, and S5=∅ are the five subsets in the solution. 

A novelty of the above construction graph lies in the determination of Nt. Assume that 

the maximum number of connected covers is already known as Cmax. A reasonable setting of 

Nt is Nt = Cmax+1, in which the extra one denotes a subset for the devices that are not included 

in the Cmax connected covers. However, since the value of Cmax is the optimization objective 

and is unknown in advance, the above setting is infeasible. It is also undesirable to replace 

Cmax with the upper bound Ĉ  because an overlarge Nt can lead to excessive subset building 

and cause waste on computational cost. In order to address the problem, we adapt Nt to the 

search process of ACO-MNCC, i.e., 

 Nt = Cbs+1, (9) 

where Cbs is the number of connected covers in the best-so-far solution Sbs until iteration t. 

This way, Nt never exceeds Cmax+1 and the approach avoids building subsets excessively. 

Besides, this setting makes the ants concentrate on finding one more connected cover than 

Sbs, which helps improve the search efficiency by setting an explicit goal.  

2) The Construction Rule 

The construction rule of ACO guides the ants to build their own solutions by selecting 
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vertices from the construction graph. In ACO-MNCC, the construction rule guides an ant to 

assign each device to a subset. The core of the construction rule, as in other ACO algorithms, 

is the design of pheromone and heuristic information. 

In ACO-MNCC, the pheromone is deposited between every two devices to record the 

historical desirability for assigning them to the same subset. Heavier pheromone indicates 

higher desirability. When assigning an unassigned device to a subset, the ants consider the 

average pheromone between this device and the devices already in the subset. Suppose the 

pheromone between two devices J and K is denoted by ( , )J Kτ . The average pheromone 

between an unassigned device J and the existing devices in a subset Si (i=1,2,…, Nt) can be 

calculated as 

 

0

1 ( , ), if 
( )

, otherwise

i
iK

ii

J K
J

τ

τ

∈

⎧ ≠ ∅⎪Τ = ⎨
⎪⎩

∑ S
S

S , (10)
 

where 1
0

ˆ(1 )Cτ −= +  is the initial pheromone value. Τi(J) can show the historical information 

about grouping device J and the existing devices in Si into the same subset. Note that 

different from many ACO algorithms, ACO-MNCC does not deposit pheromone on the 

components in the construction graph. This is because the key of the considered problem is 

the relative relation among devices but not the absolute relation between devices and subsets. 

The heuristic information in ACO-MNCC is associated to each device assignment for 

measuring the improvement that the device can bring to the subset. The sensors directly 

influence the coverage of the target area. The heuristic information for the sensors is thus 

based on the increment in the coverage percentage. The sinks affect the violation of the 

collection constraint. The heuristic information for the sinks is therefore related to the change 

in the proportion of collected sensors. Mathematically, the heuristic value for assigning an 

unassigned device J to a subset Si (i=1, 2, …, Nt) can be formulated as 
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, if  is a sensor

( )
, if  is a sink

i i
i

i i

J
J

J
κ κ

η
χ χ
′−⎧

= ⎨ ′−⎩
,  (11) 

where κi′ and χi′ denote the coverage percentage and the proportion of collected sensors after 

J joins Si. This way, the heuristic information biases the ants to choose the subsets in which 

the devices are more helpful for reducing constraint violations. 

With the above design of pheromone and heuristic information, the probability for 

assigning an unassigned device J to a subset Si (i=1,2,…, Nt) is calculated by 

 
1

( )[ ( )]( )
( )[ ( )]t

i i
i N

k kk

J Jp J
J J

β

β

η
η

=

Τ=
Τ∑

, (12) 

where β>0 is a predefined parameter that controls the influence of heuristic information. An 

ant chooses subset i for device J based on the following construction rule 

 1 0arg max ( ), if 

, otherwise
tk N kp J q q

i
I

≤ ≤ ≤⎧⎪= ⎨
⎪⎩

, (13) 

where q0∈(0,1) is a predefined parameter, q∈[0,1] is a uniform random number, and I is the 

index of the subset selected by the roulette wheel selection [51] based on the probability 

distribution given by (12). 

In a special case that the unassigned device J fails to improve the coverage percentage or 

satisfaction to the collection constraint of any subset, the values of ηi(J) are all zero for 

i=1,2,…, Nt. Consequently, the probabilities are also zero and the construction rule in (13) 

cannot be applied. To address this special case, we design a complementary rule that assigns 

J either to one of the Nt subsets or to a new subset 1tN +S . The details of the complementary 

rule are as follows: given a uniform random number q, device J is assigned to subset i 

according to 

 0
ˆ(1, ), if  or 1

1, otherwise
t t

t

rand N q q N Ci
N

⎧ ≤ = +⎪= ⎨
+⎪⎩

, (14) 
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where rand(1,Nt) generates a random integer in [1,Nt]. Note that the new subset will not be 

created if Nt is already equal to ˆ 1C+ , preventing the ants from building excessive subsets. 

3) The Pheromone Management 

The pheromone management in ACO-MNCC comprises a local pheromone updating rule 

and a global pheromone updating rule. The local updating rule is performed after an ant a has 

finished building its solution S(a), where a=1,2,…,m, and m is the number of ants. Suppose 

S(a) comprises N(a) subsets. The pheromone between any two devices J and K in the same 

subset ( )a
iS  (i=1,2,…,N(a)) is updated by 

 0( , ) (1 ) ( , )J K J Kτ ρ τ ρ τ= − ⋅ + ⋅ , (15) 

where ρ∈(0,1) is the evaporation rate of the local pheromone update. 

The global updating rule is performed in the end of each iteration after the best-so-far 

solution Sbs is determined. Instead of updating the pheromone between every pair of devices 

in each subset, this rule only updates the pheromone between two devices that are in the same 

connected cover of Sbs. Suppose Sbs comprises Nbs subsets. The global updating rule can be 

written as 

 
bs(1 ) ( , ) , if ,  and 1

( , )
( , ), otherwise

i i i iJ K J K
J K

J K
ξ τ ξ τ κ χ λτ

τ
⎧ − ⋅ + ⋅Δ ∈ = = =

= ⎨
⎩

S , (16) 

where ξ∈(0,1) is the evaporation rate in the global pheromone update, i=1,2,…,Nbs, and Δτ is 

the pheromone increment calculated by 

 

bs

2

( )
ˆ(1 )C

τ ΦΔ =
+
S . (17) 

From the two updating rules, we know that the pheromone remains unchanged until the 

iteration in which Sbs finds the first connected cover (i.e., Cbs≥1). Since that iteration, the 

objective value Φ(Sbs) calculated by (7) exceeds ˆ1 C+  and Δτ is larger than τ0. The global 

pheromone update is thus able to reinforce the pheromone between each pair of devices in 
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every connected cover of Sbs. More ants will then be attracted to exploit the neighborhood of 

Sbs. In the following iterations, if the corresponding pairs of devices are again assigned to one 

subset, the reinforced pheromone will be reduced by the local pheromone update but still 

remain above τ0. The ants that build solutions afterwards benefit from the reduced pheromone 

and gain more opportunities to explore the search space. With the two updating rules, ACO-

MNCC is able to strike a balance between exploration and exploitation. 

 

C. The Local Search Procedure 

In the iterations when the best-so-far solution Sbs is updated, a local search procedure is 

performed to refine Sbs. Before describing the implementation of the local search, we first 

introduce a definition termed ‘redundant device’. A redundant device can be removed from 

the subset to which it used to belong without reducing the coverage and connectivity of the 

subset. For example, a redundant sensor of a subset Si can be removed without reducing κi, 

whereas a redundant sink of Si can be removed without reducing χi and λi, i=1,2,…N. 

Based on the idea of redundant devices, the local search uses two modules for scheduling 

sensors and sinks respectively. The pseudo-code of the two modules is shown in Fig. 4. The 

sensor module (from lines 2 to 24 in Fig. 4) examines the coverage of critical fields for the 

subsets of Sbs. If a subset  fails to cover a critical field Fv, the sensor module seeks a 

redundant sensor that covers Fv in the other subsets and moves it to . The sink module 

(from lines 25 to 35 in Fig. 4) is performed after evaluating the new Sbs generated by the 

sensor module. In the sink module, all the redundant sinks of every connected cover are 

moved to the subsets that have not satisfied all the constraints. If all the subsets in Sbs are 

already connected covers, the redundant sinks will be moved to a new subset . Note 

that the changes made by the local search procedure are only accepted when they indeed 
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improve Sbs. Otherwise, Sbs will be reverted to the state before the local search. 

 

D. A Summary of ACO-MNCC 

As shown in the overall flowchart of Fig. 5 (a), the ACO-MNCC approach can be 

summarized as follows. 

At the beginning of the approach, the control parameters including m, β, q0, ρ, and ξ are 

first given. The upper bound Ĉ  is calculated and the pheromone is initialized as τ0. After the 

initialization, the m ants build their own solutions following the instructions in Section III-B. 

Fig. 5 (b) depicts the detailed construction procedure of one ant. After all the ants finish 

building solutions, if the best-so-far solution Sbs has been updated, the local search procedure 

will be carried out to refine Sbs. The global pheromone updating rule is then applied to update 

the pheromone between each pair of devices in the connected covers of Sbs. An iteration of 

ACO-MNCC is completed after the global pheromone update. The approach reports Sbs as 

the result if the termination criterion has been satisfied. Otherwise, it starts a new iteration 

and dispatches ants to build solutions based on the updated pheromone. 

 

IV. Experiments and Discussions 

In this section, a series of experiments are performed to evaluate the performance of 

ACO-MNCC. Since the proposed approach is the first algorithm for maximizing the number 

of connected covers in heterogeneous WSNs, a greedy algorithm that applies the same 

heuristic information as ACO-MNCC is used for comparison. The effectiveness of 

pheromone, heuristic information, and local search procedure in the ACO-MNCC is also 

investigated. 

A. Test Cases 

Three sets of heterogeneous WSNs with different scales and redundancy are employed in 
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the experiments. In Set A, WSNs are generated by randomly deploying sensors and sinks in a 

50 by 50 rectangle. Table II tabulates the settings of these networks, including the scale |SE| 

and |SI|, rs and rt of sensors, Rt of sinks, and the upper bound Ĉ  of the number of connected 

covers. In the following study, we will show that ACO-MNCC is able to find a solution with 

Ĉ  connected covers for each case. Therefore, the value of Ĉ  is the maximum number of 

connected covers for each case in Set A. 

Based on an optimal solution of a case in Set A, a new case can be generated by 

removing redundant devices from the connected covers in the solution. Herein, we remove 

every device with a predefined probability ϕ. The device will be resumed if it is found 

necessary in its original subset. After checking all the devices, the remaining devices form a 

new network. Apparently, the new network has less redundancy than the original one, but the 

maximum number of connected covers remains unchanged because deleting redundant 

devices from a connected cover doesn’t reduce the sensing coverage and network 

connectivity. The WSNs in Sets B and C are obtained by performing the above process on the 

WSNs of Set A with ϕ=0.3 and ϕ=0.6, respectively. The settings of WSNs in Sets B and C 

are also displayed in Table II. Since Sets B and C are derived from Set A, the three cases on 

the same row of Table II have identical settings in rs, rt, Rt, and Ĉ  but are different in the 

network scale |SE| and |SI|. 

 

B. Experimental Settings 

During the experiments, the control parameters of ACO-MNCC are set as m=10, q0=0.9, 

β=2, and ρ=ξ=0.1 [40]. The termination criterion is set as 20,000 function evaluations (FEs). 

Using the same heuristic information as ACO-MNCC, the greedy algorithm always assigns a 

device to a subset where the device can bring the greatest improvement in sensing coverage 

or network connectivity. If two or more subsets share the highest heuristic value, devices are 
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randomly assigned to one of them. A detailed description of the greedy algorithm can be 

referred to Fig. 6. 

As the ACO-MNCC and the greedy algorithm both contain certain randomness in the 

search process, the two algorithms are performed thirty independent runs on each test case for 

fair comparison. All the experiments are carried out on a Dell computer with Intel® Core™2 

Quad CPU at 2.40GHz and RAM of 2GB. 

 

C. Comparison with the Greedy Algorithm 

The results of ACO-MNCC and the greedy algorithm on Sets A, B, and C are given in 

Tables III, IV, and V, respectively. ‘Best’, ‘Worst’, and ‘Avg’ denote the maximum, 

minimum, and average numbers of connected covers in the solutions found in the thirty runs, 

respectively. Better results between ACO-MNCC and the greedy algorithm are bolded. 

From Table III, it can be observed that the best results of ACO-MNCC can reach the 

upper bound of each WSN in Set A. Such a phenomenon implies that the optimal solution of 

each WSN in Set A has exactly Ĉ  connected covers. We use ‘SR’ to indicate the percentage 

of finding an optimal solution in thirty runs. ACO-MNCC can obtain SR=100% for all WSNs 

in Set A, whereas the greedy algorithm only has an average SR lower than 90%. On A1, A9, 

A10, and A11, the greedy algorithm cannot find the optimal solution even once. 

The advantage of ACO-MNCC against the greedy algorithm further enlarges on WSNs 

with fewer redundant devices. According to the results in Table IV, ACO-MNCC can 

maintain 100% successful rates for finding an optimal solution in all WSNs in Set B except 

for B10. The greedy algorithm can only find an optimal solution on B3, B7, and B9 with a 

successful rate lower than 50%. Results of Set C in Table V show that the greedy algorithm 

can find one or even no connected cover on C1, C2, C4, C6, and C9. In contrast, ACO-

MNCC can still obtain the optimal or near-optimal solutions in these networks. 
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Concluded from the above, ACO-MNCC comprehensively outperforms the greedy 

algorithm. For all tested networks, ACO-MNCC is able to find the optimal solution or a near-

optimal solution with an error no more than two connected covers. Such a promising 

performance confirms the effectiveness and efficiency of the proposed approach.  

In order to further analyze the computational time of the approach, Table VI tabulates the 

average CPU time for ACO-MNCC to obtain the above results. From the table, it can be 

known that the CPU time is not only affected by the network scale but also its redundancy. 

Removing redundant devices reduces the network scale. However, the decrement in 

redundancy may also increase the difficulty in solving the problem. When the time cost by 

the increased difficulty overtakes the time saved by the decreased scale, ACO-MNCC may 

need to spend more time on finding an optimal or near-optimal solution. Nevertheless, ACO-

MNCC can solve most test cases in a short period of time. Among the thirty-three tested 

networks, ACO-MNCC can find satisfying solutions for twenty networks within one second. 

Twelve of the remaining thirteen networks can be solved within one minute. Only C8, which 

has not only a large scale but also small redundancy, takes the ACO-MNCC more than one 

minute to solve. 

 

D. Effectiveness of Pheromone, Heuristic Information, and Local Search 

Pheromone, heuristic information, and local search are three important components in 

the proposed ACO-MNCC. In this part, we validate their effectiveness by comparing the 

results of ACO-MNCC with its variants without these components. The variants without 

pheromone, heuristic information, and local search are termed ACO-noPhe, ACO-noHeu, 

and ACO-noLS, respectively. The settings of these variants are exactly the same as ACO-

MNCC except that one of the three components is not applied. The following study takes C2, 

C4, C5, and C8 as an example. The situations on the other networks are similar. 
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Table VII shows the results of the four algorithms averaged over thirty independent runs. 

It can be observed that ACO-MNCC obtains the best results, followed by ACO-noLS and 

ACO-noPhe, whereas ACO-noHeu performs the worst. The difference between ACO-noPhe 

and ACO-noLS is insignificant, but there is a large gap between ACO-noHeu and the other 

three algorithms. The advantages of ACO-MNCC over the other three algorithms confirm 

that the three components are indeed effective for finding high-quality solutions. Moreover, 

the results in Table VII show that the heuristic information is significantly influential to the 

algorithm performance. However, the algorithm comparison in Section IV-C shows that the 

greedy algorithm using the same heuristic information is still far less efficient than ACO-

MNCC. The advantage of the solution construction behavior in ACO-MNCC is thus 

confirmed. 

Fig. 7 displays the convergence curves of ACO-MNCC, ACO-noLS, and ACO-noPhe. 

The convergence curves of ACO-noHeu are not drawn because its performance is so poor 

that the convergence curves are out of the ranges of the graphs. It can be observed from Fig. 7 

that the convergence curves of ACO-MNCC generally rise above the other two, showing that 

ACO-MNCC can find satisfying solutions of C2, C4, C5, and C8 at a faster speed. Such a 

phenomenon reveals the advantage of ACO-MNCC in search efficiency. All the results in 

Table VII and Fig. 7 show that pheromone, heuristic information, and local search are 

necessary and important components in the proposed approach. 

 

V. Conclusion 

With the objective of maximizing the network lifetime, this paper considers the problem 

of finding the maximum number of connected covers in a heterogeneous WSN. An ACO-

based approach, termed ACO-MNCC, is proposed to solve the problem. The approach 

searches for the optimal solution by always pursuing one more connected cover than the best-
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so-far solution. This way, the approach not only avoids building excessive subsets but also 

improves the search efficiency by setting an explicit goal for the ants. Pheromone and 

heuristic information are also designed to accelerate the search process. A local search 

procedure is proposed to refine the best-so-far solution in the end of one iteration. 

Experimental results on thirty-three heterogeneous WSNs with different characteristics 

validate the effectiveness and efficiency of the approach, indicating that ACO-MNCC is a 

promising method for prolonging the lifetime of heterogeneous WSNs.  

The present framework of ACO-MNCC can be dedicated to discrete point coverage by 

researching an appropriate objective function. It is expected that the implicit parallelism of 

the ACO framework can also be utilized for further reducing the computational time of ACO-

MNCC when tackling large-scale WSNs. 
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Appendix 

Proposition. The objective function in (8) guarantees the objective value of a solution to 

increase with the number of connected covers if the positive weights ω1 and ω2 satisfy 

 2

1

Ĉω
ω

≥ . (A.1) 

Proof. First, we would like to point out a general fact that for any solution S={S1,S2,…,SN} 

with C connected covers, its objective value satisfies 

 1 2 1 2( ) ( )C N Cω ω ω ω+ ≤Φ < +S . (A.2) 
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(1) (1) (1) (1)

1 2{ , ,..., }
N
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1 2{ , ,..., }
N

=S S S S . Suppose S(1) has 

more connected covers than S(2), i.e., C(1)>C(2)≥0. Then according to (A.2), the lower bound 

of the difference between their objective values can be estimated as 
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Thus, a sufficient condition for ensuring Φ(S(1))>Φ(S(2)) is 

 ω2 (C
(1) −C (2) )−ω1(N

(2) −C (1) ) ≥ 0 . (A.4) 

Both ω1 and C(1)−C(2) are positive, thus 

 
(2) (1)

2
(1) (2)

1

N C
C C

ω
ω

−≥
−

. (A.5) 

As N(2) is clamped to the range of [1,Ĉ +1]  by the ants’ solution construction behavior, 

C(1)≥1, and C(1)−C(2)≥1, the upper bound of the right part of (A.5) is Ĉ . Therefore, Φ(S(1))> 

Φ(S(2)) can be guaranteed with 

 2

1

Ĉω
ω

≥ . (A.6) 

The proposition has been proven. □ 
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Figure Captions 

Fig. 1. Illustration of a connected cover that satisfies the three constraints of coverage, 

collection, and routing. Dots and triangles represent sensors and sinks respectively. Any two 

devices connected by a dash can directly communicate with each other. 

Fig. 2. Illustration of fields in the target area. Each dot represents a sensor and the circle 

centered at the dot indicates the sensing range of the sensor. Each Fi (i=1,2,...,15) denotes a 

field in the target area. A field in darker shade is covered by more sensors. 

Fig. 3. An example of the construction graph with |SE|=5, |SI|=3, and Nt=5. 

Fig. 4. Pseudocode of the local search procedure in ACO-MNCC. 

Fig. 5. Flowcharts of the proposed ACO-MNCC. (a) The overall flowchart. (b) The detailed 

flowchart of an ant’s solution construction procedure. 

Fig. 6. Pseudocode of the greedy algorithm to compare with the ACO-MNCC. 

Fig. 7. Convergence curves of ACO-MNCC, ACO-noLS, and ACO-noPhe on (a) C2, (b) C4, 

(c) C5, and (d) C8. 
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Table Captions 

Table I Notations Used in Section III 

Table II Test Cases 

Table III Comparison of ACO-MNCC and the Greedy Algorithm on Set A 

Table IV Comparison of ACO-MNCC and the Greedy Algorithm on Set B 

Table V Comparison of ACO-MNCC and the Greedy Algorithm on Set C 

Table VI Average CPU Time of ACO-MNCC 

Table VII Comparison of ACO-MNCC and Its Three Variants 
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Fig. 1. Illustration of a connected cover that satisfies the three constraints of coverage, 

collection, and routing. Dots and triangles represent sensors and sinks respectively. Any two 

devices connected by a dash can directly communicate with each other. 



 31 

F3 F5F2
F4

F13
F15

F12
F14

F1 F9
F7 F11

target area T

field

rs

sensor

F6
F8

F10

 

Fig. 2. Illustration of fields in the target area. Each dot represents a sensor and the circle 

centered at the dot indicates the sensing range of the sensor. Each Fi (i=1,2,...,15) denotes a 

field in the target area. A field in darker shade is covered by more sensors. 
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Fig. 3. An example of the construction graph with |SE|=5, |SI|=3, and Nt=5. 
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Procedure LOCAL_SEARCH 
Begin 
1 S′←Sbs; 
2 For every critical field Fv∈F 
3  For i=1 to Nbs 
4   Ci←∅; 
5   For every sensor SEj∈Si

bs 
6    If SEj covers Fv Then Ci←CiU SEj; 
7   End For 
8  End For 
9  For i=1 to Nbs 
10   If Ci=∅ Then 
11    For k=1 to Nbs 
12     If |Ck|≥2 Then 
13      For every SEj∈Ck 
14       If SEj is redundant Then 
15        Sk

bs←Sk
bs−SEj; 

16        Ck←Ck−SEj; 
17        Si

bs←Si
bsU SEj; 

18        Ci←CiU SEj 
19        Break; 
20      End For 
21     If |Ci|>0 Then Break; 
22    End For 
23  End For 
24 End For 
25 For i=1 to Nbs 
26  If κi=χi=λi=1 Then 
27   For every sink SIj∈Si

bs 
28    If SIj is redundant Then 
29     Si

bs←Si
bs−SIj; 

30     If Cbs<Nbs Then  
31      Randomly select a subset k with at least one constraint unsatisfied; 
32     Else k←Nbs+1; 
33     Sk

bs ← Sk
bsU SIj; 

34   End For 
35 End For 
36 If Φ(Sbs)<Φ(S′) Then Sbs← S′; 
End 

Fig. 4. Pseudocode of the local search procedure in ACO-MNCC. 
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Fig. 5. Flowcharts of the proposed ACO-MNCC. (a) The overall flowchart. (b) The detailed 

flowchart of an ant’s solution construction procedure. 
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Procedure GREEDY 
Begin 
1 For i=1 to Ĉ +1 
2   Si←∅; 
3 End For 
4 Shuffle the set of sensors SE; 
5 Shuffle the set of sinks SI; 
6 For every device J in SEU SI 
7   flag ← FALSE; 
8   For i=1 to Ĉ +1 
9    Calculate the heuristic information ηi(J) according to (11); 
10    If ηi(J)>0 Then flag←TRUE;  
11   End For 
12   If flag=TRUE Then ˆ1 1

argmax ( )kk C
i Jη

≤ ≤ +
← ; 

13   Else i←rand(1, Ĉ +1); 
14   Si←SiU J; 
15 End For  
16 Evaluate the solution S={S1,S2,…, ˆ 1C+

S } 
End 

Fig. 6. Pseudocode of the greedy algorithm to compare with the ACO-MNCC. 
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Fig. 7. Convergence curves of ACO-MNCC, ACO-noLS, and ACO-noPhe on (a) C2, (b) C4, 

(c) C5, and (d) C8. 
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Tables 

Table I Notations Used in Section III 

Symbol Description 
|⋅| Operator returning the size of a set 
||x−y|| Operator returning the distance between two points x and y 
rand(a, b) Function returning a random integer in [a,b] 
Φ(⋅) Objective function 
ω1, ω2 Weights used in the objective function 
L, W Length and width of deploy area 
T Target area 
SE={SE1,SE2,…,SE|SE|} Set of sensors 
SI={SI1,SI2,…,SI|SI|} Set of sinks 
rs, rt Sensing and transmission ranges of sensors 
Rt Transmission range of sinks, Rt>rt 

F={F1,F2,…,F|F|} Set of fields in the target area 
Fi Set of fields covered by SEi, Fi⊆F, i=1,2,…,|SE| 
Ĉ , Cmax Upper bound and actual value of the maximum number of 

connected covers 
m Number of ants in ACO-MNCC 
q0 Parameter in the solution construction rule of ACO-MNCC, 

q0∈[0,1] 
q Uniform random number, q∈[0,1] 
β Parameter controlling influence of heuristic information 
ρ Evaporation rate in local pheromone update 
ξ Evaporation rate in global pheromone update 
τ0 Initial pheromone value 
Δτ Pheromone increment in global pheromone update 
S, S(a), Sbs Solution, solution built by ant a (a=1,2,…,m), best-so-far solution  
N, N(a), Nbs Number of subsets in S, S(a), Sbs 

C, C(a), Cbs Number of connected covers in S, S(a), Sbs 

Si, Si
(a), Si

bs Subset i in S, S(a), Sbs(t), i=1,2,…,N/N(a)/Nbs 

Ui, Vi Numbers of sensors and sinks in Si, i=1,2,…,N 
Gi Communication graph derived from sinks in Si, i=1,2,…,N 
Bi Size of the largest connected subgraph in Gi, i=1,2,…,N 
Hi Number of collected sensors in Si, i=1,2,…,N 
κi, χi, λi Criterion for the coverage, collection, and routing constraints on Si, 

i=1,2,…,N 
Nt Number of available subsets in iteration t, t=1,2,… 
vij Vertex on row i and column j of the construction graph, i=1,2,…,Nt, 

j=1,2,…,|SE|+|SI|, 
τ(J, K) Pheromone between devices J and K, J, K∈SEU SI 
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Symbol Description 
ηi(J) Heuristic value for assigning an unassigned device J to Si, 

i=1,2,…,Nt, J∈SEU SI 
Τi(J) Average pheromone between an unassigned device J and the 

existing devices in Si, i=1,2,…,Nt, J∈SEU SI 
pi(J) Probability for assigning an unassigned device J to Si, i=1,2,…,Nt, 

J∈SEU SI 
 

Table II Test Cases 
Case 
No. |SE| |SI| Case 

No. |SE| |SI| Case 
No. |SE| |SI| rs rt Rt Ĉ  

A1 200 100 B1 179 76 C1 161 48 10 18 36 6 
A2 400 100 B2 295 69 C2 229 54 10 20 40 8 
A3 400 200 B3 328 154 C3 282 103 15 20 40 21 
A4 600 100 B4 444 75 C4 347 57 8 20 40 8 
A5 600 200 B5 496 156 C5 434 116 11 18 36 19 
A6 800 100 B6 464 60 C6 269 49 8 15 30 5 
A7 800 200 B7 586 137 C7 450 108 10 18 36 16 
A8 800 400 B8 639 268 C8 553 191 12 18 36 29 
A9 1000 100 B9 773 71 C9 624 54 5 18 36 6 
A10 1000 200 B10 848 147 C10 732 112 6 15 30 11 
A11 1000 400 B11 883 301 C11 763 224 9 16 32 25 

 

Table III Comparison of ACO-MNCC and the Greedy Algorithm on Set A 

Case  
No. 

ACO-MNCC Greedy Algorithm 

Best Worst Avg SR 
(%) Best Worst Avg SR 

(%) 
A1 6 6 6 100 4 0 1 0 
A2 8 8 8 100 8 7 7.87 87 
A3 21 21 21 100 21 19 20.87 90 
A4 8 8 8 100 8 6 7.27 43 
A5 19 19 19 100 19 14 17.27 13 
A6 5 5 5 100 5 4 4.9 90 
A7 16 16 16 100 16 15 15.87 87 
A8 29 29 29 100 29 28 28.87 87 
A9 6 6 6 100 5 0 2.57 0 
A10 11 11 11 100 6 1 3.5 0 
A11 25 25 25 100 24 17 20.57 0 
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Table IV Comparison of ACO-MNCC and the Greedy Algorithm on Set B 

Case  
No. 

ACO-MNCC Greedy Algorithm 

Best Worst Avg SR 
(%) Best Worst Avg SR 

(%) 
B1 6 6 6 100 1 0 0.07 0 
B2 8 8 8 100 7 5 6.03 0 
B3 21 21 21 100 21 18 20 37 
B4 8 8 8 100 6 1 3.1 0 
B5 19 19 19 100 18 11 14.83 0 
B6 5 5 5 100 4 1 2.83 0 
B7 16 16 16 100 16 13 15.07 37 
B8 29 29 29 100 29 23 26.93 10 
B9 6 6 6 100 1 0 0.2 0 
B10 11 10 10.03 3 3 0 0.6 0 
B11 25 25 25 100 20 10 16.2 0 

 
 

Table V Comparison of ACO-MNCC and the Greedy Algorithm on Set C 

Case  
No. 

ACO-MNCC Greedy Algorithm 

Best Worst Avg SR 
(%) Best Worst Avg SR 

(%) 
C1 6 5 5.1 10 0 0 0 0 
C2 8 8 8 100 3 0 0.93 0 
C3 21 21 21 100 19 8 14.23 0 
C4 8 8 8 100 2 0 0.33 0 
C5 19 18 18.80 80 11 4 7 0 
C6 5 5 5 100 1 0 0.27 0 
C7 16 16 16 100 11 2 7.33 0 
C8 29 28 28.63 63 22 13 17.2 0 
C9 5 5 5 0 0 0 0 0 
C10 10 9 9.33 0 0 0 0 0 
C11 23 23 23 0 10 1 3.5 0 
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Table VI Average CPU Time of ACO-MNCC 

Case  
No. 

Time 
(sec.) 

Case  
No. 

Time 
(sec.) 

Case  
No. 

Time 
(sec.) 

A1 0.06 B1 2.01 C1 0.95 
A2 0.03 B2 0.03 C2 1.01 
A3 0.13 B3 0.12 C3 0.42 
A4 0.07 B4 0.06 C4 14.36 
A5 0.26 B5 0.41 C5 54.59 
A6 0.07 B6 0.03 C6 0.05 
A7 0.25 B7 0.18 C7 2.80 
A8 0.59 B8 0.57 C8 164.59 
A9 0.18 B9 33.85 C9 0.23 
A10 10.41 B10 1.00  C10 47.40 
A11 1.78 B11 26.37 C11 5.11 

 

Table VII Comparison of ACO-MNCC and Its Three Variants 

Case 
No. ACO-noHeu ACO-noPhe ACO-noLS ACO-MNCC 

C2 2.6 8 8 8 
C4 2.1 7.94 7.93 8 
C5 3.68 18.44 18.37 18.77 
C8 5.8 28.28 28.37 28.63 

 


