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Tree Induction
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Abstract—This paper presents a survey of evolutionary algo-
rithms designed for decision tree induction. In this context, most
of the paper focuses on approaches that evolve decision trees
as an alternate heuristics to the traditional top-down divide-
and-conquer approach. Additionally, we present some alternative
methods that make use of evolutionary algorithms to improve
particular components of decision tree classifiers. The paper
original contributions are the following. First, it provides an up-
to-date overview that is fully focused on evolutionary algorithms
and decision trees and does not concentrate on any specific
evolutionary approach. Second, it provides a taxonomy which
addresses works that evolve decision trees and works that design
decision tree components using evolutionary algorithms. Finally,
a number of references is provided that describe applications of
evolutionary algorithms for decision tree induction in different
domains. The paper ends by addressing some important issues
and open questions that can be subject of future research.

Index Terms—Evolutionary algorithms, decision tree induc-
tion, soft computing classification, regression.

I. INTRODUCTION

ADECISION tree is a classifier depicted in a flowchart-
like tree structure which has been widely used to rep-

resent classification models, due to its comprehensible nature
that resembles the human reasoning. Decision tree induction
algorithms present several advantages over other learning
algorithms, such as robustness to noise, low computational cost
for generating the model, and ability to deal with redundant
attributes. Besides, the induced model usually presents a good
generalization ability [1], [2].

Most decision tree induction algorithms are based on
a greedy top-down recursive partitioning strategy for tree
growth. They use different variants of impurity measures,
like, information gain [3], gain ratio [4], gini-index [5] and
distance-based measures [6], to select an input attribute to
be associated with an internal node. One major drawback of
greedy search is that it usually leads to sub-optimal solutions.
Moreover, recursive partitioning of the data set may result in
very small data sets for the attribute selection in the deepest
nodes of a tree, which in turn may cause data overfitting.

Several alternatives have been proposed to overcome these
problems, including the induction of an ensemble of trees.
Ensembles are created by inducing different trees from training
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samples and the ultimate classification is frequently given
through a voting scheme (see [7], [8]). However, a disadvan-
tage of ensembles is that the comprehensibility of analyzing
a single decision tree is lost. Indeed, classification models
being combined in an ensemble are often, to some extent,
inconsistent with each other; an inconsistency that is neces-
sary to increase the predictive accuracy of the ensemble [9].
Therefore, ensembles are not a good option for applications
where comprehensibility is crucial.

Hence, an approach that has been increasingly used is the
induction of decision trees through Evolutionary Algorithms
(EAs). Instead of local search, EAs perform a robust global
search in the space of candidate solutions. As a result, EAs
tend to cope better with attribute interactions than greedy
methods [10]. They are essentially algorithms inspired by the
principle of natural selection and genetics. In nature, individu-
als are continuously evolving, adapting to their living environ-
ment. In EAs, each “individual” represents a candidate solution
to the target problem. Each individual is evaluated by a fitness
function, which measures the quality of its corresponding
candidate solution. At each generation, the best individuals
have a higher probability of being selected for reproduction.
The selected individuals undergo operations inspired by genet-
ics, such as crossover and mutation, producing new offspring
which will replace the parents, creating a new generation of
individuals. This process is iteratively repeated until a stopping
criterion is satisfied [11], [12]. Figure I presents a common
algorithmic framework for both Genetic Algorithms (GAs) and
Genetic Programming (GP), well-known EAs.

1: Create initial population of individuals
2: Compute the fitness of each individual
3: repeat
4: Select individuals based on fitness
5: Apply genetic operators to selected individuals, creating

new individuals
6: Compute fitness of each new individual
7: Update the current population (new individuals replace

previous individuals)
8: until (stopping criteria)

Fig. 1. Generic algorithmic framework for both GA and GP [10].

The number of EAs for decision tree induction has grown in
the past few years, mainly because they report good predictive
accuracies whilst keeping the comprehensibility of decision
trees. In this context, we provide a detailed survey of EAs
to evolve decision trees for classification (Section IV) and
regression (Section V). Furthermore, we discuss EAs designed
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Fig. 2. Taxonomy of evolutionary algorithms for decision tree induction.

to improve specific components of decision tree classifiers
(Section VI). For instance, we discuss EAs for finding the
optimal hyperplane in oblique decision trees [13]–[16], and
for improving tree pruning [17], [18] and other components
related to decision tree induction [19], [20]. Finally, we re-
view applications of evolutionary algorithms for decision tree
induction in different domains, such as software estimation
[21], software modules protection [22] and cardiac imaging
data [23] (Section VIII). We end this paper by addressing
some important issues and open questions for future research
(Section IX).

It is important to stress that comprehensive surveys on deci-
sion trees have been previously published, such as the papers
by Safavian and Landgrebe [24], Murthy [25], and Rokach and
Maimon [26]. Also, another paper has been recently published
addressing EAs in classification [27]. Nevertheless, to the best
of the authors’ knowledge, none of them have been fully
devoted to address evolutionary induction of decision trees
for classification and regression, as well as their respective
applications.

II. TAXONOMY

We propose a taxonomy of EAs for decision tree induction
that is divided into two main threads: evolutionary induction
of decision trees and evolutionary design of decision tree
components. Regarding the former, each individual of the
evolutionary algorithm is a decision tree, whereas in the latter,
individuals are components of decision tree classifiers. This
taxonomy is presented in Figure 2.

Evolutionary induced decision trees for classification can
be either axis-parallel, when there is a single attribute that
splits the training data per node, or oblique, when there is a
(non-) linear combination of attributes per split. Decision trees
for regression can be divided into regression trees, when each
leaf-node assigns a value to a test instance, and model trees,
when the leaf-nodes contain (non-) linear regression models
that are used to predict a value for a new test instance.

Evolutionary design of components can be divided into:
• Hyperplane evolution, where, at each tree node, an EA

evolves a near-optimal (non-) linear combination of at-
tributes for oblique trees;

• Pruning method evolution, where an EA is used to handle
pruning over an induced decision tree;

• Evolution of other methods, such as parameters of the
impurity measure used to split nodes.

Throughout this paper, we will use the following notation.
A data set consists of a set of m instances. Each instance
xj is a n-dimensional attribute vector xj = [xj1, x

j
2, ..., x

j
n],

(j = 1, 2, ...,m), (xj ∈ <n).

III. EVOLUTIONARY ALGORITHMS BACKGROUND

In this section we present some punctual remarks over EAs
which are important for the further discussion of using EAs
for decision tree induction.

A. Solution Encoding Issues

The type of solution encoding in an EA usually defines
the type of EA used. For instance, if solutions are encoded
in a fixed-length linear string a Genetic Algorithm (GA)
is normally used. Conversely, tree-encoding schemes usually
imply Genetic Programming (GP). Although solution encoding
can differentiate between GAs and GP, the main question is
not what the representation is (e.g. a linear string or a tree)
but rather how the representation is interpreted [28].

In this sense, Woodward [29] recommends defining GAs
and GP according to the genotype-phenotype mapping: if there
is a one-to-one mapping, the EA in question is a GA; if there
is a many-to-one mapping, the EA is a GP. Nevertheless, this
definition is tricky. For instance, assume a feature selection
problem in data mining, where an individual (chromosome)
consists of n genes, one for each attribute. Now assume that
each gene contains a real value in the range [0, 1], representing
the probability of the corresponding attribute being selected.
Assume also that, for decoding a chromosome, a threshold is
predefined, and an attribute is selected only if the value of its
gene is larger than that threshold. In this case, we have a many-
to-one mapping, because there are many different genotypes
(different arrays of probabilities) that may be decoded into
the same phenotype (the same set of selected features). This
particular many-to-one mapping does not indicate we are
dealing with GP. Actually, we can use the same set of genetic
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operators and remaining parameters of a typical GA for this
scenario.

We believe that a good distinction between GA and GP
is whether a solution encodes data only (GA) or data and
functions (GP). Notwithstanding this point, in this survey we
review both GAs and GPs indistinguishably.

B. Selection Methods and Genetic operators

Selection is a procedure that chooses which individuals
will undergo crossover and mutation. It is usually performed
with a bias towards higher fitness in the belief that good
solutions have higher potential of generating better individuals
for the next generation. Some well-known selection methods
are: tournament selection, roulette wheel selection and rank-
based selection.

Tournament selection works as follows: a predefined num-
ber of individuals (known as tournament size) is drawn from
the population, and the fittest of them is chosen to be a part
of the reproducers pool. This procedure is repeated until the
pool of reproducers is full.

The roulette wheel selection, also known as stochastic sam-
pling with replacement, is analogous to the use of a casino’s
roulette wheel, with each slice of the wheel proportional in
size to the fitness of an individual. As a result, the probability
of an individual being chosen is proportional to its fitness.

Rank-based selection, unlike fitness-proportional selection
(e.g., roulette wheel), rank individuals according to their fitness
(absolute fitness values are discarded). The individuals are
then selected based on the value of their rank positions. This
method overcomes the scaling problems of fitness-proportional
assignment, e.g. premature convergence when few individuals
with very high fitness values dominate the rest of the popula-
tion.

Crossover is the operator responsible for exchanging genetic
material - usually between two individuals - for the creation
of mixed individuals for the next population. Regarding the
fixed-length binary string encoding, a common approach for
crossover is the well-known 1-point crossover. Each parent
binary string selected to reproduce is split into two (in a
predefined position, the “1-point”) and the parents generate
two new offspring by concatenating the substrings before and
after this position from different parents.

Finally, mutation is the operator responsible for modifying
the genetic structure of a given individual to allow any solution
to be reached. In doing so, it reduces the chances of premature
convergence to local optima. Usually, the mutation operator
operates over a single randomly selected individual, changing
its genotype accordingly (e.g., flipping a bit in a binary string
or growing a new branch in a tree-based genotype).

C. Multi-Objective Optimization

A crucial issue in data mining is how to evaluate the quality
of a candidate model. EAs naturally allow the evaluation of a
candidate solution as a whole, in a global fashion, through the
fitness function. This is in contrast with data mining paradigms
which evaluate a partial solution [11]. For instance, a conven-
tional greedy decision tree induction algorithm incrementally

builds a decision tree by partitioning one node at a time. When
the algorithm is evaluating several candidate divisions, the tree
is still incomplete, being just a partial solution, so that the
decision tree evaluation function is somewhat shortsighted.

In decision tree induction, it is often desirable to maximize
both the predictive accuracy and the comprehensibility of the
induced tree [30]. Once again, EAs seem to be a natural
choice for this task, since they naturally allow the evaluation
of a candidate solution by simultaneously considering different
quality criteria. This is not so easily performed in other
data mining paradigms [11]. Three general approaches are
used multi-objective optmization: weighted-formula, Pareto
dominance, and lexicographic analysis.

In the weighted-formula approach, a weight (typically a
user-defined parameter) is assigned to each objective (mea-
sure) to be optimized, according to its importance within
the application domain. Next, these weighted objectives are
summed or multiplied accordingly, reducing multiple objec-
tives into a single objective.

The concept of Pareto dominance can be formally defined
as: A solution A = {a1, a2, ..., ao} is said to dominate solution
B (for a set of objectives o), symbolically expressed by A ≺
B, when the following conditions hold:

(A ≺ B)⇔ (∀i)(ai ≤ bi) ∧ (∃i)(ai < bi) (1)

Thus, the Pareto optimal set is said to be the set of solutions
that are not dominated by any other solution, i.e.

{A = (a1, a2, ..., ao)|¬(∃B = (b1, b2, ..., bo),B ≺ A)} (2)

Unlike the weighted-formula approach, the Pareto dominance
provides a set of non-dominated solutions instead of a single
“best” solution.

The lexicographic approach determines priorities among the
objectives, and the best solution is the one that is significantly
better according to a higher-priority objective. If no such best
solution is found, the next objective is chosen following a
priority order. To better understand this approach, consider
the following example. Let x and y be two decision trees and
a and b two evaluation measures. Besides, consider that a has
the highest priority between the measures and that ta and tb
are tolerance thresholds associated with a and b respectively.
The lexicographic approach works according to the following
analysis: if |ax − ay| > ta then it is possible to establish
which decision tree is “better” considering objective a alone.
Otherwise, the lower-priority measure b must be evaluated.
In this case if |bx − by| > tb then the fittest tree between x
and y can be decided by considering measure b alone. If the
difference between values falls within the assigned threshold
tb, the best value of the highest-priority measure a is used to
determine the fittest tree.

For a critical review of the pros and cons of each multi-
objective strategy discussed in this section, see [30]. For
further information on multi-objective optimization, we rec-
ommend reading [31], [32].

IV. CLASSIFICATION

This section reviews EAs that evolve decision trees for
classification tasks, where each individual is a classification
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Fig. 3. Axis-parallel (a) and oblique (b) decision trees, and their respective
two-dimensional partitioning. (Adapted from [33].

)

tree. We divide this section into two parts: EAs that evolve
axis-parallel decision trees and EAs that evolve oblique de-
cision trees. The difference between these approaches is that
whereas axis-parallel trees make use of a single attribute to
split each node (e.g., wixi < 0), oblique trees use a linear
(or some times a non-linear) combination of attributes (e.g.,∑n
i=1 wixi < 0). Figure 3 presents both axis-parallel (a) and

oblique (b) decision trees.

A. Axis-Parallel Decision Trees

Axis-parallel decision trees are the most common type
found in the literature, mainly because this type of tree is
usually much easier to interpret than an oblique tree. We
divide our analysis on axis-parallel decision trees according
to the main steps of the evolutionary process. That is, we
analyze how solutions are encoded; which methods are used
for initializing the population of decision trees; the most
common strategies for fitness evaluation; the genetic operators
that are designed to evolve individuals; and other related
issues.

1) Solution Encoding: In Section III-A, we have explained
some terminology issues which are usually dictated according
to the EA solution encoding scheme. Nomenclature aside,
decision tree encoding is usually either tree-based or non-tree
based. We comment on both next.

Tree-based encoding is the most common approach for
coding individuals in EAs for decision tree induction, and it
seems a natural choice when we are dealing with decision
trees. In [34], the author applies competitive co-evolution
for decision tree induction and uses a tree-encoding scheme.
The system designs binary decision trees where each node is
represented by a 4-tuple (Figure 4). Each component in Figure
4 is a numeric (integer or real) value that can be modified
during the evolutionary process. The first element of the 4-
tuple is an integer that indexes each data set attribute; the
second one is an integer that indicates whether the node is non-
terminal or terminal; the third one is an integer that indexes

Fig. 4. Node representation in tree-encoding [34]. A tuple of 4 elements
that defines (1) the data set attribute to be tested or predicted; (2) the type
of node (non-terminal or terminal); (3) the operator to be used; and (4) the
value to be tested by the attribute in (1) according to the operator in (3) or,
alternately, the binary classification value.

which operator is to be used (<,>,=); and the fourth one
is a real number that indicates the value to be tested (in a
non-terminal node) or the binary classification (in a terminal
node). It is not clear how the linkage of nodes is handled, but
we assume each node described in Figure 4 has two pointers
for the children nodes (which assume null values for terminal
nodes).

A similar approach is presented in [35]–[37], where the
authors use a tree-encoding solution in which each node is
a 7-tuple: node = {t, label, P, L,R,C, size}, where t is the
node number (t = 0 is the root node), label is the class label of
a terminal node (meaningful only for terminal nodes), P is a
pointer for the parent node, L and R are pointers to the left and
right children, respectively (null for terminal nodes), and C is
a set of registers, where C[0] stores the attribute id and C[1]
the threshold value for the test featureC[0] < C[1], whose
possible outcomes are “yes” (path to the left-child node) or
“no” (path to the right-child node).

Zhao’s genetic programming system [38] also encodes in-
dividuals as trees. Zhao defines terminal and function nodes.
Terminals can be integer (attribute ids), real (attribute values)
or binary (a class label or a function node) values. Each func-
tion node takes four arguments and returns a binary result. Its
signature is N : integer×real×binary×binary → binary.
It can be represented as a four-tuple, N = {a, v, L,R}, where
a is an attribute terminal, v is a value terminal, and L and R
are class terminals or node functions. Note that since both the
type of a class terminal and the output type of a node function
are binary, L and R can be either class terminals or function
nodes.

Papagelis and Kalles [39] defend the use of the tree-
encoding scheme in EAs for decision tree induction. They
state that whereas GAs use binary strings to represent points
in search space, such representations do not appear well
suited for representing the space of variable-size decision trees.
Furthermore, they affirm that it is natural to use a tree structure
to represent decision trees and that the mutation-crossover
operators can be efficiently altered to match this structure.
For other tree-encoding scheme examples, see [22], [28], [40]–
[47].

Even though the tree-encoding scheme is the most used ap-
proach for decision tree evolution, several works use different
approaches for coding individuals. Most of these approaches
adopt a fixed-length string representation, an inheritance from
the misconception that GAs are defined by their representa-
tions. Fixed-length string representations, also called “linear
chromosomes”, are typically tricky to implement for non-
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Fig. 5. Mapping decision trees in linear chromosomes [48]. a) decision tree.
b) subtrees mapped into caltrops. c) chromosome resulting from the union of
caltrops.

binary decision trees. Thus, most works propose EAs that
evolve binary decision trees, arguing, for instance, that any
non-binary decision tree can be converted into a binary tree.

In [48], linear chromosomes are composed by genes, named
caltrops, an allusion to the spiked devices used in medieval
warfare to disable charging horses. Caltrops are subtrees
formed by a root node and two child nodes. Each caltrop is
represented by three integers, where non-terminal nodes are
identified by an attribute index and terminal nodes by the value
0 (zero). Figure 5 shows how a decision tree (a) is divided into
subtrees, which in turn are mapped into triples of integers
named caltrops (b), genes that will form the individual’s
chromosome (c). Notice that caltrops do not encode tests over
the attributes. This representation assumes that each data set
attribute is boolean, and assigns the left (right) child node
when the attribute value is true (false).

Bandar et al. [49] provide a GA for induction of multiple
decision trees. Linear chromosomes are formed by integers
that correspond to attribute indexes. The total number of genes
in a chromosome is 2depth− 1, where depth is the maximum
number of attribute split levels, a variable parameter. To create
the decision tree, one must select the attribute corresponding
to the first gene of the chromosome. This attribute will be used
to split the root node in left and right children. Afterwards, a
binary branching is performed using the training set instances
contemplated by the node (for the root node, all instances are
used). The measure used to perform the binary branching is
not mentioned in their work. The procedure is recursive, and
the binary branching is performed until the tree has reached
its maximum depth.

Smith [50] also designs binary decision trees coded through
linear chromosomes. Even though his strategy for evolving
decision trees is domain-specific (RNA search acceleration),
it could easily be extended to a generic framework. Each gene
of the chromosome consists of two integers: a node type n (in
reality the correspondent to an attribute index), which varies
in the interval [1, 5] (domain constraint), and a type/index v,

which is the threshold value for which the test n ≥ v is
performed. Once again, the instances resulting from the test
are filtered to the left (right) node if the result is false (true).

In spite of the fact that decision trees encoded as linear
chromosomes seem to be easier to handle than those encoded
by tree-encoding schemes, fixed-length linear chromosomes
have some disadvantages, such as: (i) the need of constant
mapping between genotype and phenotype for fitness eval-
uation; (ii) difficulty in handling non-binary decision trees
and (iii) difficulty in defining a maximum number of genes
for fixed-length structures. For instance, chromosomes with
a large number of genes may have several genes with null
values, which can in turn harm operations like one-point
crossover. Conversely, structures with a low number of genes
can ultimately restrain the size of the trees to be discovered
in the evolutionary process. Dynamic-length string structures,
on the other hand, may add an unnecessary complexity to the
EA design. Genetic operations, like crossover, may have to
be modified when chromosomes with different sizes are to be
reproduced.

2) Population Initialization: An EA’s initial population has
to provide enough diversity of individuals so that the genetic
operators can search for solutions in a more comprehensive
search-space, avoiding local optima. Nonetheless, a large
search-space may result in very slow convergence, preventing
the EA from finding a near-optimal solution. In this case, task-
dependent knowledge constraints may speed-up convergence
by avoiding the search in “dead zones” of the solution space.
It is clear that there is a thin line between the precise amount
of diversification for avoiding local optima and task-dependent
knowledge constraints for speeding-up convergence.

Most works on evolutionary induction of decision trees
propose a partially random initialization of trees. We use
the term “partially” because the randomness of individuals is
constrained to the data set attributes and their possible values
within the training set. Some approaches propose additional
constraints during initialization in order to to guarantee the
logic validity of the created decision trees. For instance,
DeLisle and Dixon [51] state that their method initializes
decision trees “at random based upon the training set and given
mild constraints on the minimum number of observations
allowed in terminal or leaf nodes”.

For the cases where each decision tree is encoded as a
fixed-length string, a random initialization is often used ( [48],
[52], [53]). When the decision tree is encoded as a tree,
a common strategy for initialization is randomly choosing
attributes and split values from a predefined list and halting
the decision tree growth when the tree reaches a depth that is
randomly selected from an interval, typically [2,maxDepth].
This strategy usually creates fully balanced trees (the distance
from the root to any leaf node is the same). This generation
procedure is called the full method [35]–[38], [54]. The
full method has the disadvantage of not providing enough
diversification of tree shapes, which may demand an increased
number of generations for convergence to a good solution.

Trees can be generated with varying distances from root
to the leaves, namely the grow method [55]. Finally, the
population can be a mixture of trees generated by either the
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full or the grow method, a procedure named ramped half and
half [56]–[60]. Random initialization of decision trees encoded
as trees is further discussed in [40], [61]–[64].

Another approach for initializing decision trees in an EA is
to restrain the initial population to 2-level decision trees, i.e.,
a root node and its respective leaves [34], [39], [65], [66]. EAs
that implement this strategy rely on the further application of
genetic operators to obtain deeper trees.

One could say the only task-dependent knowledge that the
previously commented EAs employ is related to the choice
of possible split values. Although most of them claim to
randomly choose split values, most of the times these values
are not really random, i.e. they are a set of observed values
from the training set. This is the most rudimentary use of
task-dependent knowledge in the initialization process. For
instance, Ma and Wang [67] reduce the impact of randomness
by backtracking a “bad” random choice and replacing it by
a “better” random choice. The definition of good and bad
choices, in this case, is given by the amount of training data
that are filtered to each child node of the currently generated
node. If no random choice is considered to be good enough,
a leaf node stops the growth of that particular path.

A more robust approach for generating task-dependent
knowledge-based initial trees is executing a greedy traditional
algorithm, e.g. C4.5 or CART, in samples from the training
set and incorporating the resulting decision trees in the initial
population. This strategy is implemented in [41], [44], [68],
where C4.5 is used for generating the initial population of
trees. Kretowski and Grzes [69]–[71] also implemented this
approach but instead of using a well-established split measure
such as the gain ratio or the gini index, they opted for a dipolar
split measure.

Basgalupp et al. [28], [45] also proposed a task-dependent
knowledge based initialization for their EA for decision tree
induction. It generates ten 2-level decision trees for each data
set attribute, where each one of these ten trees per attribute will
possibly have different split values, since they are calculated
using the information gain measure upon a different subsample
of the training set. After the generation of all 2-level decision
trees, they are combined according to the growing method
previously described.

3) Fitness Evaluation Methods: Evolutionary decision tree
induction algorithms can be roughly divided into two threads
regarding fitness evaluation: single-objective optimization and
multi-objective optimization.

EAs that perform single-objective optimization use a single
measure to guide the search for near-optimal solutions. The
most common measure for evaluating individuals in evolu-
tionary algorithms for decision tree induction is classification
accuracy (or its complement, classification error):

acc =
c

m
(3)

where c is the number of correctly classified instances and
m is the total number of instances. An accuracy-based fitness
function is used in [41]–[43], [49], [61], [67], [72].

In [55], [73], the authors propose using acc2 in the fitness
function, because it provides “a non- linear bias toward cor-
rectly classifying instances in decision tree T while providing

differential reward for imperfect decision trees”. Folino et al.
[62], [63] propose the use of the J-Measure, which is used to
measure the quality of the disjunction of rules (paths from the
root to the leaf) that describe each class. More specifically, for
a k-class problem, there are k rules of the kind (if Yi then ωi),
where Yi is a set of disjunctions among paths that are used to
label instances as belonging to class ωi. The J-Measure can
be thus defined as

J =

k∑
i=1

p(Yi)p(ωi|Yi) log

(
p(ωi|Yi)
p(ωi)

)
(4)

where p(Yi) is the fraction of instances satisfying condition
Yi, p(ωi) is the fraction of instances belonging to class ωi,
p(ωi|Yi) is the fraction of instances that both satisfy Yi
and belong to class ωi divided by the fraction of instances
satisfying Yi, and k is the total number of classes. The higher
the J-Measure value, the higher the tree’s predictive accuracy.

Aitkenhead [34] proposes a distance score for evaluating
individuals which is a measure of how close a decision tree
came to the correct classification. We assume that this score
can only be applied to problems where the class attribute is
ordinal and is converted to sequential integers that preserve
the order among values. The distance score is given by

Dscore =
1

m

m∑
i=1

1−
(

yi − y′i

ymax − ymin

)2

(5)

where m is the number of instances, yi is the actual class
value for the ith instance, y′i is the predicted value for the
same instance and ymax (ymin) is the maximum (minimum)
value of the class attribute (thus the necessity of converting
categories into integers).

Kennedy et al. [48] use the number of decisions necessary to
classify all the members of the instance set as a fitness measure
to be minimized. Finally, Fu et al. [44] propose a bilinear loss
function that, according to a given parameter, selects one of the
possible percentiles of the classification accuracy distribution
to estimate tree accuracy.

Works using a single-objective fitness function usually do
not defend this choice for decision tree induction against a
multi-objective strategy. A small number of works, however,
argue that a multi-objective approach that seeks a compromise
between predictive accuracy and solution complexity (tree
size) as a form of parsimony pressure is not as beneficial
as it may sound. Ma and Wang [67], for instance, argue
that this compromise reduces the search space and leads to a
slower overall increase in accuracy. Moreover, they reckon that
the search may get stuck in regions containing less accurate
trees of the same size as those produced without using the
complexity penalty in the multi-objective fitness function,
and that, as a result, the parsimony pressure would be a
disadvantage instead of an advantage.

In works where multi-objective optimization is performed, it
is argued that the balance between accuracy and parsimony is
very important for efficient evolutionary search. The argument
is centered on the fact that the use of accuracy alone may result
in an arbitrarily complex classifier that fits the noise within the
data set. Such a classifier would have high accuracy on the



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART C: APPLICATIONS & REVIEWS , VOL. X, NO. X, JANUARY 20XX 7

training set but would likely perform poorly on previously
unseen data. Based on this assumption, most EAs try to
optimize both predictive accuracy and simplicity (which is
usually assumed to be inversely proportional to the number
of nodes in a decision tree). Other works seek a compromise
between distinct measures, such as sensitivity and specificity in
cost-sensitive approaches, which also demands the application
of a multi-objective optimization strategy.

Three general approaches are used for coping with multi-
objective optimization in EAs for decision tree induction: (a)
weighted-formula; (b) Pareto dominance; and (c) lexicographic
analysis.

Works on (a) are by far the most common. A typical strategy
is to combine accuracy (acc(I)) and tree size (size(I)), as
follows:

f(I) = α× acc(I)− β × size(I) (6)

where α and β are weights and the formula has to be
maximized. This approach or minor variations of it are found
in [39], [60], [65], [66], [74].

Tsakonas and Dounias [75] also propose a weighted-
formula that combines accuracy and a simplicity component,
though the idea is to penalize for smaller-sized trees due to
domain constraints. Kretowski and Grzes [54] propose a small
variation of (6) where the complexity component takes into
account the number of leaves and the number of features
associated to each test in non-terminal nodes (for the case
of oblique decision trees). In [70], [71], the authors propose
a cost-sensitive approach that replaces accuracy in (6) by the
misclassification cost, which is summed to the tree size in an
equation whose value should be minimized. Other similar cost-
sensitive approaches, which usually consider measures like
sensitivity and specificity, are reported in [69], [76]–[81].

Haizhou and Chong [68] introduce a weighted-formula
that combines classification error, tree depth and number of
attributes used in each path of the tree. Similarly, Reynolds and
Al-Shehri [52] propose a fitness function based on accuracy,
number of nodes, number of attributes used and homogeneity
of each partition. Nikolaev and Slavov [82] offer a variation
of Quinlan’s pruning strategy presented in [83] as a stochastic
fitness function, and perform a detailed analysis of the fitness
landscape structure.

DeLisle et al. [51] propose the evaluation of accuracy and
complexity of decision trees by using minimum description
length (MDL) as fitness function, defined as follows:

MDL = errorCL + treeCL (7)

errorCL =
∑

l∈leaves

log2

(
ml

el

)
(8)

treeCL = (ni+ nt) + ni log2 s+ nt log2 k (9)

where ml is the number of instances in leaf node l, el is the
number of misclassified instances in leaf node l, ni is the total
number of internal nodes, nt is the total number of terminal
nodes (leaves), s is the total number of splits and k the number
of classes.

The error coding length (errorCL) is based upon the
binomial distribution and represents the number of possible

combinations given the total number of observations (m) and
the number of incorrectly predicted observations (e). This
relates to the likelihood of a particular (m, e) combination
arising by random chance, and this value should be minimized.
The tree coding length (treeCL) is dependent upon the overall
size of the decision tree and should also be minimized. The
authors of this particular application state that only the number
of nodes and the number of leaves were actually used in
the tree coding length component, since the removal of the
remaining terms resulted in no alterations in performance apart
from a reduced computational cost.

For the evaluation of each rule extracted from the evolved
decision tree, Garcia-Almanza and Tsang [59] propose a
fitness function based on recall and a slightly variation of
precision that severely penalizes the false positive cases. Since
no complexity penalty is proposed, the authors suggest a
pruning method to simplify the evolved decision trees.

A smaller number of works investigate the use of the two
other multi-objective strategies (namely Pareto dominance and
lexicographic analysis). In one of these works, Kim [64]
and Zhao [38] implement a Pareto dominance approach that,
instead of providing a single optimal solution based on the
weighted combination of objectives, provides an optimal set
of non-dominated solutions.

The Pareto multi-objective strategy proposed by Kim [64]
tries to minimize two objectives: classification error rate and
tree size (measured by the number of decision rules). For
ranking the individuals and discovering the Pareto optimal
set, Kim implements a dominating rank method [84], where
the rank of a given solution in a Pareto distribution is given
by the number of elements dominating that solution. Hence,
the highest possible rank is zero, for an element that has no
dominator. The Pareto optimal set is given by all elements
whose rank is zero. Each non-dominated solution in a discrete
space of tree size represents the minimized error fitness for
each number of decision rules.

Zhao [38] also proposes a Pareto dominance approach for
minimizing two conflicting objectives (e.g., false negative rate
vs. false positive rate). This approach allows the decision
maker to specify partial preferences on the two conflicting ob-
jectives in order to further reduce the number of alternative so-
lutions. This trade-off can be similarly adopted on other pairs
of performance measures, such as sensitivity vs. specificity or
recall vs. precision, which have been typically employed in
domains such as medical diagnosis and information retrieval.

The lexicographic approach for multi-objective optimization
has also been employed for evolutionary induction of decision
trees. Eggermont et al. [56], [57] propose a lexicographic
fitness1 whose highest-priority measure is misclassification
error, followed by tree size. In that work, there are no tolerance
thresholds, i.e., only in cases where the misclassification error
of two individuals is exactly the same the tree size measure
will be used to choose the best individual. Zhao et al. [35]–[37]
also propose a lexicographic fitness2 that evaluates accuracy

1In both references ( [56], [57]), the authors refer to the lexicographic
analysis as “multi-layer fitness function”.

2No mention of the term “lexicographic analysis” is made throughout the
three references ( [35]–[37]).
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(highest-priority measure) and tree size (total number of tree
nodes). Again, there are no tolerance thresholds.

Basgalupp et al. [28], [45] propose LEGAL-Tree (Lexico-
graphic Genetic Algorithm for decision Tree induction), a GA
whose fitness function implements the lexicographic approach.
Once again, the objectives that will guide the search for the
best individual are accuracy and tree size. The authors use both
validation-set and training-set accuracy (highest and second
highest priority measures, respectively), aiming to avoiding
both overfitting (validation-set) and underfitting (training-set).
The last objective in the priority rank is tree size, measured
by the total number of tree nodes.

4) Selection Methods and Genetic Operators: Selection is
the procedure that chooses which individuals will undergo
crossover and mutation. In evolutionary induction of decision
trees, the most frequently used approach for selection is
tournament selection.This selection method is used in [28],
[38], [45], [48], [51], [52], [56]–[59], [64], [66], [67], [75],
[76], [85].

Another popular choice in EAs for decision tree induction is
the roulette wheel selection.Works that implement this strategy
for evolving decision trees are [35]–[37], [42]–[44], [48], [51],
[55], [60]–[63], [73], [82], [86], [87].

A less-common selection method in EAs for decision tree
induction is rank-based selection. This selection method in
decision tree induction is used in [70], [71], [74], [77], [78],
[80], [81].

Two operators normally used to evolve a population of
individuals are crossover and mutation.

In EAs for decision tree induction, crossover is usually per-
formed in two different ways (with small variations) according
to the individual representation. For fixed-length binary string
encoding, it is a common approach to perform the well-known
1-point crossover. It is used in [48]–[50], [53], [68].

Nonetheless, the vast majority of EAs encode decision
trees in a tree representation, and as a result implement the
standard GP crossover. This crossover selects nodes in two
individuals and exchanges the entire subtrees corresponding to
each selected node, generating two offspring. This operator is
used in [28], [35]–[45], [51], [55]–[58], [61]–[67], [69], [73],
[77]–[82], [85]–[88]. Two small variations of this strategy are
found in the literature. In [74] the authors add the constraint
that selected nodes from the two parents must represent a test
over the same data set attribute in order to be exchanged.
Kretowski and Grzes [54], [70], [71] introduce a “test-only
exchange crossover”, in which instead of replacing the entire
subtrees, only the test represented by an attribute-value pair
is replaced. This type of crossover demands the number of
outcomes of the selected nodes to be the same in order to
preserve the original tree structure.

EAs for induction of decision trees usually implement more
than one mutation strategy. Recalling that most such EAs deal
with tree-based encoding, two strategies are most used: (i)
replacing a subtree by a randomly generated one; and (ii)
replacing information regarding the test corresponding to the
selected node. In (i), a randomly selected subtree is replaced
by a randomly generated one. Usually no further details are
given on how the new subtree is randomly generated. This

approach is used in [38], [51], [56]–[58], [61]–[64], [67],
[79], [81], [82], [85], [86]. In a more restricted version of this
approach a subtree is replaced by a random leaf node or a leaf
node is replaced by a random subtree [28], [45], [54], [64],
[69]–[71], [77], [78], [80], [82]. In (ii), instead of replacing
subtrees (a structural mutation), a test-based modification (a
semantical mutation) is performed. EAs implementing this
strategy usually allow the replacement of either the attribute,
the corresponding test value or both [35]–[37], [51], [54], [55],
[64], [66], [67], [69]–[71], [73], [77], [78], [80], [81], [87],
[88]. In [39], [65], [74], this strategy is restricted by allowing
mutation of the test-value only.

A few alternative mutation strategies are as follows. Fu et
al. [41]–[44] propose a “self-contained” mutation strategy, in
which a randomly selected (non-)terminal node is replaced
by another (non-)terminal node already present in the tree, so
there is no need for randomly generating a new subtree during
mutation, saving processing time. Sorensen and Janssens [40]
propose two types of mutation: switch and translocation. The
first switches children from the same parent and the second
exchanges children from different parents in the same tree
level. Both can be seen as special cases of self-contained
mutation, since nodes are replaced by nodes already present
in a tree. Rouwhorst and Engelbrecht [66] propose a relational
mutation, which modifies the test operator corresponding to the
randomly selected node. This strategy allows multiple types
of operators, not only the traditional ≤ and >. For instance,
suppose a node contains the test x > 5. A relational mutation
over this node could replace the operator > by 6=, resulting in
x 6= 5.

In fixed-length strings [48], [53], mutation is performed by
simply altering a randomly chosen value in the string, which
may change the attribute being used, its test value or both,
depending on the approach. Hence, mutation in fixed-length
strings is mainly semantical, i.e., it does not affect the decision
tree structure. Nevertheless, in cases where the node type (non-
terminal or terminal) is also encoded in the gene/chromosome,
it is possible that the structure of the decision tree is modified
by mutation.

5) Parameter Setting: The parameter values of an EA
can largely influence whether the algorithm will find a near-
optimum solution, and whether it will find such a solution
efficiently. Choosing correctly the parameters, however, is a
time-consuming task and considerable effort has been dedi-
cated to the development of good heuristics able to overcome
this problem [89]. Espejo et al. [27] state that the large number
of parameters that must be defined in order to have a working
system is in fact one of the pitfalls of GP-based classifiers (an
argument easily generalizable for other EAs).

The most common parameters in EAs for decision tree
induction are population size, number of generations, prob-
abilities of application of different genetic operators and
maximum size of decision trees at initialization or during the
evolutionary process. In practice, several preliminary runs are
usually required in order to tune these parameters. In some
works, parameters are fine-tuned to suit each data set employed
in the experiments [66], [67]. However, most authors prefer
to present a set of default parameter values followed by a
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sentence like “parameter values were empirically defined”. We
believe this is due to the fact that no work has exhaustively
investigated the influence of different parameter settings in
EAs for decision tree induction, like De Jong and Spears
have for function optimization [90]. A possible explanation
is that decision tree induction is data dependent, which means
different classification data sets may present very distinct error
surfaces, favoring particular sets of parameter values.

The population size parameter influences the number of
candidate solutions evaluated by the EA. Some values for this
parameter used in the literature are 50 individuals in [49],
[82]. 100 individuals in [41], [56]–[58], [66], 200 individuals
in [35]–[37], [39], [65], 400 individuals in [61]–[63], 500
individuals in [28], [45], [64], [85] and 1000 individuals in
[51], [59].

Another parameter, the number of generations, is usually the
EA’s stopping criterion. A popular choice in EAs for inducing
decision trees is evolving individuals for 1000 generations
[51], [64], [70], [71], [78]. However, in some EAs the number
of generations is as small as 10 [42], 30 [76] or 50 [41], [43],
[44], [49], whilst in other EAs it is as large as 5000 [36], [37]
or 10000 [38], [54]. A useful strategy is to set a secondary
stopping criterion to identifying cases of fast convergence. For
instance, if the EA does not improve the best individual during
a pre-determined number of generations, it can be stopped,
being assumed that it has already converged to the (near)
optimal solution. Once again, there is no consensus on the
most suitable value for this parameter. Values like 3% [28],
[45], 10% [54], 20% [70], [71] and 25% [60], [65] of the
number of generations have been used.

Crossover is the main genetic operator for evolving individ-
uals. Most EAs use a high probability of crossover, such as
60% [49], [64], [75], 80% [59], [60], [66], [82], [85] or 90%
[28], [39], [45], [56]–[58], [61], [65], [76]. Mutation, on the
other hand, usually occurs much less often. The most common
value for mutation rate is 1% [35]–[37], [41], [43], [43], [44],
[60], [61], [76]. Other popular values range from 2 to 10%
[28], [38], [39], [45], [49], [59], [64], [65], [78], [85].

In the popular tournament selection method, the size of
the tournament is yet another parameter that needs to be
set. Blickle and Thiele [91] claim that typical values for
tournament size are 2 and 3, and that there is a great loss
of diversity when the value is higher than 5. However, there is
no clear consensus on tournament size in EAs for decision tree
induction research. Some works seem to follow the suggestion
of Blickle and Thiele by setting a tournament size of up to
5 individuals [56]–[59], [64], [76]. Others choose arbitrary
values such as 6 [75], 7 [38], 8 [67], 10 [66], 30 [28], [45],
80 [36], [37] or 100 [35]. None of these works make a detailed
analysis on the effects of different tournament sizes.

Most EAs for decision tree induction are generational, i.e.,
individuals of the current population are replaced by their
offspring at each generation (iteration). In order to avoid losing
good solutions in this process, it is a common practice to keep
the best individual(s) from the current generation to the next,
which is named elitism. The number of individuals to be kept
is yet another parameter that needs to be set. A popular choice
is a small number of individuals to be part of the elite (1 to

5 individuals) [59], [67], [78].
Finally, most EAs use a maximum tree size at initialization

or during the evolutionary process. This maximum size is
usually defined in terms of tree depth. Trees are usually
size-limited during initialization in order to speed-up the
algorithms’ running time. Typical initialization size limits are
3 levels [28], [45], 4 levels [61]–[63], [76], 7 levels [60] and
10 levels [38]. Some EAs also limit the tree depth during
evolution; for instance, with a limit of 17 levels in [76] or 30
levels in [38] in 30 levels.

Note that parameter setting in EAs is itself a research field
and it goes way beyond trial and error analysis. However, none
of the EAs for decision tree induction reviewed so far make
a detailed analysis on parameter values. Ma and Wang [67]
suggest a heuristic method to set some EA parameters. The
idea is to use a neural network a priori of the EA execution. For
instance, the maximum number of generations can be defined
as the maximum number of iterations a feed forward neural
network needs in order to find an acceptable result. They also
state that setting parameters in an EA is no more difficult
than choosing the numbers of layers and hidden neurons in
feed forward neural networks.

B. Oblique Decision Trees

Oblique decision trees, also referred to as (non-) linear
decision trees, are a common alternative to the traditional axis-
parallel approach. Oblique decision trees are usually much
smaller and often more accurate than axis-parallel decision
trees, though at the expense of more computational effort
and loss of comprehensibility. In oblique decision trees, an
hyperplane that divides the feature space into two separate
regions can be formally defined as

H(w, θ) = {x : wTx = θ} (10)

where w = [w1, w2, ..., wn]T , w ∈ <n is a weight vector,
θ is a threshold and w · x is the inner product between the
weight vector and the data set instances. If wTxi − θ > 0, it
means that the instance xi is in the positive side of hyperplane
H(w, θ). Conversely, wTxi − θ ≤ 0 means that the instance
is in the negative side of the hyperplane.

Several approaches based on EAs have been proposed to
evolve oblique decision trees. Bot and Langdon [33], [92]
propose a GP for evolving oblique decision trees. In this
work, each GP individual is encoded as a tree with function
nodes and terminals. A function node has as its children a
tuple ({wi, xi}, threshold, ifTrue, ifFalse), where wi and
xi are the ith weight constant and attribute pair, respectively.
Depending on the function node type, there can be n pairs
{wi, xi}. Still in this tuple, threshold is a constant terminal
and ifTrue (ifFalse) can be either classification terminals
or other function nodes. Terminals are either constants
(doubles), variables (integers) or classifications (integers).
Nodes are evaluated as follows:

if
∑n
i=1 wixi ≤ threshold then

return value of ifTrue branch
else
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return value of ifFalse branch
end if

This GP is strongly typed [93], i.e., the data types of
functions and terminals are specified to ensure that only valid
individuals are generated. A terminal of variable type is an
integer ranging from 0 to the number of data set attributes −1
(an attribute index). A terminal of constant type is a floating-
point within a predefined range. A terminal of classification
type is an integer ranging from 0 to the number of classes −1
(class index). The function set allows up to 3 attributes to be
tested within each node of the decision tree.

This GP has the following parameters. Individuals are
selected by tournament selection with size 7. A population
of 250 individuals evolve during 1000 generations. The initial
population is created through the ramped half and half method
[94], [95]. Crossover and mutation rates were empirically set
to 0.5 each. The fitness function is a weighted-formula that
includes validation set accuracy and a penalty factor to lower
the fitness value, multiplied by either the tree depth or the total
number of nodes. The penalty factor is used to alleviate the
bloat problem [96].

In [97], Bot expanded his work from [92] by introducing
limited error fitness (LEF) [98], Pareto scoring and fitness
sharing [99]. LEF is a technique for speeding up fitness calcu-
lation in supervised learning problems where each individual
is evaluated on a number of training cases. If the error score
achieved by the individual in these training cases is above a
given threshold, all the remaining training cases are counted
as errors. This is to prevent poorly-designed individuals to
be tested over the entire training set, wasting computational
time. Individuals whose number of errors is below the given
threshold are evaluated over the entire training set.

Pareto scoring and fitness sharing are also introduced. Since
the use of Pareto scoring leads to populations that tend to
converge to a few (and possibly suboptimal) solutions [99],
fitness sharing is used to ensure that more different local
minima are found. It is a niching technique that avoids
premature convergence by penalizing solutions with many
“neighbors”, i.e. individuals very similar to others. For such,
a sharing function s(i) =

∑
j s(i, j) is calculated for each

individual i in the Pareto front. The distance (similarity) of
individual i to every other individual is computed and, the
more similar an individual j is to i, the higher the value of
s(i, j) and thus of s(i). Finally, the individual of the Pareto
front with the lowest value of s(.) is selected to reproduce.

Another work, by Kretowski and Grzes [100], introduced
GEA-ODT (Global Evolutionary Algorithm for Oblique De-
cision Tree induction). GEA-ODT encodes each decision tree
as a tree with splitting hyperplanes in non-terminal nodes
and class labels in the leaves. Each hyperplane is represented
by a (n + 1)-dimensional table, accounting for w and θ.
The population of individuals is initialized by generating
each individual through a top-down algorithm that searches at
each node for the best hyperplane. Hyperplanes are randomly
generated based on randomly chosen mixed dipole (xi,xj). A
dipole [101] is a pair of instances (xi,xj), and it is referred as
a mixed dipole if and only if its instances belong to different

Fig. 6. Initializing a hyperplane with randomly selected mixed dipole.
Adapted from [100].

classes. Thus, a hyperplane H(w, θ) splits the dipole (xi,xj)
if and only if:

(wTxi − θ)× (wTxj − θ) < 0 (11)

which means that xi and xj are on opposite sides of the
dividing hyperplane.

For generating random hyperplanes, a dipole (xi,xj) is
randomly selected and the Hij(w, θ) hyperplane is generated
by setting w and θ as:

w = xi − xj (12)
θ = δ(wTxi) + (1− δ)(wTxj) (13)

where δ ∈ {0, 1} is a random coefficient that scales the
distance to the opposite ends of the dipole. Figure 6 presents
this rationale.

The fitness function in GEA-ODT is a weighted-formula
that penalizes model complexity (tree size). It is given by

f(I) = Q(I)− (α× size(I)) (14)

where Q(I) is the quality measure over the training set
(we assume accuracy is a suitable quality measure for the
purpose of maximizing f(I)), and size(I) is the size of
individual I (total number of nodes). The parameter α scales
the importance of the penalty term.

In GEA-ODT, mutation occurs with a 1% probability. It can
either alter the node role or its corresponding hyperplane. More
specifically, a non-terminal node can be pruned to a leaf or
have its hyperplane modified. A hyperplane can be modified by
either standard mutation (perturbation of the weights that form
the hyperplane) or by the dipole operator. The dipole operator
is a task-dependent knowledge based operator that seeks to
shift the hyperplane in order to divide mixed dipoles or unite
pure dipoles. Finally, when dealing with a leaf node, the
mutation operator can swap this node for a new non-terminal
node. Standard one-point crossover in trees is performed.
Selection is performed through linear ranking with elitism.

V. REGRESSION

Decision trees for regression are an effective approach for
predicting continuous values while enabling the analysis of
the variables responsible for that particular prediction. They
are usually regarded as either regression trees or model trees,
according to the content of their leaf nodes. We review EAs
for inducing regression or model trees next.
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A. Regression Trees

A regression tree is a special type of decision tree where
the target attribute is continuous. Thus, each leaf node of the
regression tree holds a continuous value instead of a class
label. This continuous value is the average value for the target
attribute of all instances that reach that particular leaf node.

TARGET (Tree Analysis with Randomly Generated and
Evolved Trees) [102], [103] is an EA that evolves regression
trees where each candidate solution is an axis-parallel regres-
sion tree of variable size and shape. The initial population
consists of 25 randomly created trees. The authors report that
experiments performed with forest sizes between 10 and 100
trees, showed no apparent impact on the outcome. The random
generation of trees starts with a single root node, that has a
probability psplit of becoming a split. Otherwise, it will be a
leaf. If the node bocomes a split, an attribute from the data set
and a split value are randomly chosen from a pool of candidate
attributes and split values and two child nodes are created. This
procedure is repeated until no more nodes can be split.

For evaluating the trees, TARGET measures their fitness by
using the Bayesian information criterion (BIC), a statistical
model selection criterion based on likelihood [104]. It is a
weighted-formula that penalizes model complexity (size of the
tree). It is expressed as

BIC = −m
2
ln 2π − m

2
ln
SSE

m
− m

2
− 1

2
p logm (15)

where p is the effective number of parameters in the tree
model, m is the size of the training set and SSE is the residual
sum of squares. The last term in (15) is the model complexity
penalty, which is a function of both the effective number of
parameters p and the training sample size m.

One critical problem of using the BIC criterion in TARGET
is determining the value of p, an essential part of the model
complexity penalty term. Large values of p may lead to smaller
trees with less predictive performance. The authors defined
p = nt + 1 to account for estimating the constant error
variance term and a mean parameter within each of the nt
terminal nodes. Even though they acknowledge the fact that
the effective number of parameters estimated is actually much
higher than nt + 1, due to split rule selections made during
the tree construction process, they state that further research is
required to determine the appropriate adjustment of the model
complexity penalty term.

Kretowsky and Czajkowski [105] propose an EA for re-
gression tree induction called GRT (Global induction of Re-
gression Trees). Each candidate solution is an axis-parallel
regression tree. The trees in the initial population are initialized
through traditional top-down regression tree algorithms such
as M5 [106], [107] and CART [5] on random subsamples from
the original data set. The recursive partitioning of the initial
trees stops when: (i) all training objects in a node have the
same predicted value; (ii) the number of instances in a node is
lower than a predefined value; or (iii) the predefined maximum
tree depth is reached.

GRT’s crossover operation has three variants: (i) subtrees
are swapped between two individuals, with random selection

of nodes; (ii) the split test between two non-terminal nodes of
different individuals are swapped, though keeping their subtree
structures; and (iii) branches from two randomly selected
nodes in two different individuals whose subtrees have the
same size are swapped.

Mutation is stochastically performed (the default probability
is 0.8) in either non-terminal nodes or leaves. In non-terminal
nodes, nodes in higher levels of the tree are mutated with a
lower probability than those in lower levels. Among nodes in
the same level, the absolute error is calculated for the node
subtree in order to rank nodes: a higher value of absolute
error increases the probability a node being mutated. The
same ranking procedure is applied to leaf nodes (except for
pure nodes). For non-terminal nodes, mutation can assume the
following variants: (i) replacement of a split test according
to a traditional split search mechanism; (ii) shifting splitting
thresholds (for continuous attributes) or regrouping attribute
values (for nominal attributes); (iii) replacement of a split test
by a pre-existing test; (iv) replacement of a subtree by another
subtree from the same node; (v) replacing a subtree by a leaf
node. Mutation may transform leaf nodes into non-terminal
nodes if the instances contemplated by that particular node
are heterogeneous.

The selection mechanism adopted by GRT is linear ranking,
and the best individual of each generation is kept to the
next (elitism). The fitness function searches for a compromise
between mean absolute error and tree size, as follows:

f(I) =
MAE(I)

MAEmax
+ α(size(I)− 1) (16)

where MAE(I) stands for the mean absolute error of in-
dividual I over the training set, MAEmax is the mean
absolute error of the entire learning set, and size(I) is the
size of individual I . The parameter α weights the relative
importance of the complexity penalty and subtracting 1 from
the complexity term eliminates the penalty factor for trees that
consist of a single leaf.

Hazan et al. [108], [109] propose a strongly-typed GP
approach (STGP)3 for axis-parallel regression tree induction.
Although they focus on inducing regression trees for modeling
expressive performance (musical computation), their approach
is easily generalized to any domain. In STGP function nodes
can be either a test over an attribute (e.g., a “less than”
operator, hereby called LT), an if-then-else construct (IF)
or a constant generator of either attribute or regression val-
ues, namely EFV and ERV, respectively. The LT construct
operates over two arguments of fixed types: FeatValue and
RegValue, and returns a boolean value. IF operates over three
arguments: a boolean, resulting from the constructor LT and
two arguments of RegValue type. IF returns a RegValue value,
that can be either a constant or any other construct. Terminal
nodes are constants representing either attribute values or
regression values (target attribute outputs), generated by either
EFV or ERV functions. Figure 7 demonstrates a typical tree
from STGP.

3STGP was designed within the Open Beagle Framework for evolutionary
computation [110].
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Fig. 7. STGP regression tree example. Typed connections are presented.
Adapted from [109].

The population size of STGP is fixed in 200 individuals, and
the algorithm halts when either the limit of 500 generations has
been reached or the best solution fitness is ≥ 0.95. Tournament
selection is the strategy for selecting individuals to reproduce.
A typical subtree swap crossover is performed with a 0.9 rate.
Mutation can either swap a subtree with a newly generated one
(0.01 rate), replace a branch by one of its children (0.05), swap
subtrees from the same individual (0.1) or disturb constant
values (rate not informed). A maximum depth of 10 levels is
set, though the authors state that they do not search for low
complexity (smaller sized) solutions.

STGP’s fitness function is given by the inverse of RMSE
(root mean squared error), f(I) = 1/1 + RMSE(I), where
RMSE is taken over the training set and predicted duration
ratio, averaged over the notes of a musical fragment, itself
averaged over all the training fragments. For more conven-
tional applications, the RMSE could be taken directly over the
predicted values of the individual I . The authors also present
domain-specific fitness functions not presented here due to
space constraints.

B. Model Trees

Model trees are a special case of decision trees also devel-
oped for regression problems. The main difference between
a model tree and a regression tree is that whereas each leaf
node in a regression tree outputs a single continuous value, in
model trees each leaf node holds a (non-) linear model whose
output is the final prediction value.

GPMCC [111] (Genetic Programming approach for Mining
Continuous-valued Classes) is a framework proposed to evolve
model trees with non-linear models in their leaves. Its structure
is divided into three different parts: (1) GASOPE [112], a
GA that evolves polynomial expressions; (2) K-Means [113],
a traditional clustering algorithm used to sample the training
set; and (3) a GP to evolve the structure of model trees. Trees
are generated by randomly expanding a node and randomly
selecting attributes and split values. Tree growth is dictated
by a parameter that indicates the maximum tree depth. The
fitness function used by GPMCC is an extended form of the

adjusted coefficient of determination (17)

R2
a = 1−

∑m
i=1(yi − y′i)2∑m
i=1(yi − y)2

× m− 1

m− d
(17)

where m is the size of the set, yi is the actual output of the
ith instance, y′i is the predicted output for the same instance,
y is the average output of all instances and d is a complexity
factor that penalizes both the size of an individual (number
of nodes) and the complexity of each model of the terminal
nodes (number of terms and their corresponding order). The
higher the value of complexity factor d, the lower the value
of R2

a. The best individuals are those with the higher values
of R2

a.
One important remark is that GPMCC has a total of 42 con-

figurable initialization parameters that control several steps of
the algorithm. The authors claim that the influence of GPMCC
parameter values on the performance obtained was empirically
investigated and that it was shown that the performance was
not significantly affected by different parameter values. Based
on these results, it is not clear the real utility of so many
configurable options. As a second point of criticism, GPMCC
seems to be overly-complex, and the results do not seem to
justify all the choices made during its development.

Barros et al. [46], [47] propose an EA called E-Motion
(Evolutionary MOdel Tree InductiON) for axis-parallel model
tree induction, where each individual is represented as a tree
of variable shape and size.The initialization of individuals is
domain knowledge-based, as it combines single nodes whose
attribute tests are dictated by the expectation of standard
deviation reduction (SDR), given by

SDR = sd(D)−
k∑
i=1

|Di|
|D|
× sd(Di) (18)

where sd(.) stands for the standard deviation, D is the data
set that reaches the node to be divided, Di is the data resulting
from the ith split (in a total of k splits) and |.| is the size of
a specific data partition. It is easy to notice that the split rule
that yields the lower standard deviation values for the child
nodes will maximize (18). E-Motion generates a split rule for
each data set attribute that maximizes (18). The initial trees
are random combinations of these basic trees that consist of a
single node (attribute + split rule).

E-Motion allows the user to choose between two types
of multi-objective optimization in the fitness function. The
first one is a weighted-formula that accounts for RMSE (root
mean squared error), MAE (mean absolute error) and tree size,
where each measure has a user-defined weight. The second one
involves a lexicographic analysis, where these three measures
are ranked based on the user’s priorities. In this case, user-
defined thresholds may define whether the highest-priority
measure is enough to select the best individual or if the
subsequent measures should also be evaluated.

E-Motion implements standard one-point crossover in trees.
Two different mutation strategies are used to variate individ-
uals’ sizes: a shrinking mutation, where a subtree is replaced
by a leaf node, and an expanding mutation, where a leaf node
is replaced by a two-level subtree. Finally, a filter is applied to
guarantee consistency of the linear models at each leaf node.
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VI. DECISION TREE COMPONENTS

All EAs reviewed so far evolve individuals which represent
decision trees. In this section, we discuss EAs with a different
purpose: to improve a decision tree classifier’s component.
Hence, they do not evolve decision trees per se, but compo-
nents of decision tree classifiers. We divide such EAs into 3
groups, according to the type of component being evolved: (i)
Hyperplanes; (ii) Pruning Methods; (iii) Other Components.

A. Hyperplanes

EAs evolving full oblique trees were reviewed in Section
IV-B. However, some EAs evolve only a hyperplane for each
node of the oblique tree. More specifically, each individual in
these EAs is a combination of attributes and constants that
define a hyperplane.

In [13], [14], Chai et al. propose a binary linear decision tree
approach for piecewise linear classification, named BTGA.
At each non-terminal node of the tree, a GA searches for a
linear decision function, optimal in the sense of maximum
impurity reduction. We can formalize the impurity reduction
as follows. Assume Xt = {x1,x2, ...,xmt} as the training
subset that falls at the current node t with sample size mt and
xi = {xi1, xi2, ..., xin, 1}

T the augmented attribute vector with
dimension n. Besides, assume that Xt = Xt1∪Xt2∪...∪Xtk ,
where k represents the total number of classes and Xti

represents all instances in Xt that belong to class ωi. Thus
the impurity of subset Xt can be defined as:

i(Xt) =

k∑
i=1

∑
j 6=i

p(ωi|Xt)p(ωj |Xt) (19)

where

p(ωi|Xt) =
|Xti |
|Xt|

. (20)

Notice that a pure division, i.e. i(Xt) = 0, will only happen
when all instances in Xt belong to a same class. Assume now
that a linear decision function wTx is responsible for splitting
Xt into two subsets, XtL and XtR , i.e.,

Xt = XtL ∪XtR (21)

and

XtL = {x|x ∈ Xt ∧wTx < 0} (22)
XtR = {x|x ∈ Xt ∧wTx ≥ 0} (23)

where w = {w1, w2, ..., wn, wn+1}T is the weight vector with
dimension n + 1. The total impurity of splitting Xt in XtL

and XtR is

i′(Xt,w) = p(XtL |Xt)i(XtL ,w)

+p(XtR |Xt)i(XtR ,w) (24)

where

p(XtK ) =
|Xtz |
|Xt|

, for z = {L,R}. (25)

The impurity reduction is finally defined as

∆i(Xt,w) = i(Xt)− i′(Xt,w). (26)

Hence, we can formalize the problem of inducing a binary
linear decision tree as finding the vector w∗ that maximizes
the impurity reduction at node t, i.e.,

w∗ = arg max
w

∆i(Xt,w). (27)

A GA is applied to globally search the solution-space for
the best possible combination of values in w, which is w∗. In
this GA, w is encoded as a binary-string, such that the gene
Ai encodes the ith possible value of w and the chromosome
A consists of the union of genes, i.e., A = A1∪A2...∪An+1.

The fitness function is given by the impurity reduction (26),
calculated for each chromosome. The selection scheme is the
roulette wheel, where chromosome Aj is assigned a selection
probability f(Aj)/

∑nc
i=1 f(Ai), where nc is the total number

of chromosomes and f(.) is the fitness function. The selected
chromosomes participate in a two-point crossover, an effective
alternative to the traditional one-point crossover, since more
chromosome substructures can be preserved and combined.
Mutation is given by simply bit-flipping genes with a low-
probability.

Palaniappan et al. [114] extended BTGA (BTGA+) by
implementing three different impurity measures (namely Gini
index, information gain and twoing rule). Besides, they inves-
tigated a Bayesian initialization of the individuals (weights)
with randomization process. The Bayesian initialization uses
the common covariance weighted vector between the means
of the dominant class, ω0, and the remaining node examples,
ω1, with w = Σ−1(µ0 − µ1) and an independent parameter,
w0, given by:

w0 = −1

2
[(µT0 × Σ−1 × µ0)− (µT1 × Σ−1 × µ1)]

+ ln
p(ω0)

p(ω1)
(28)

where Σ−1 is the inverse covariance matrix (concentration
matrix).

Kim et al. [15], [16] propose a hybrid approach that uses a
GA for selecting hyperplanes in each node of a binary oblique
decision tree. In this work, the GA performs feature selection
so as to reduce the classification error rate in a binary decision
tree. The GA looks for the optimal linear combination of
features able to divide the instances in two disjunct subsets.
This process is carried out at each node of the binary tree that
is being created. Thus, for each node, a linear combination
of features selected by the GA divides the attribute space into
two different subsets until each subset has instances belonging
to a unique class.

Each individual in the GA is a n-dimensional linear decision
function. A binary string representation encodes the linear
decision function, and each string has n2× γ bits, where n is
the number of dimensions and also the number of segments
necessary to encode a single feature, and γ is the length of
each segment. The fitness function is given by:

f(I) =
1

1 + (we × error) + (wb × balance)
(29)
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and

balance =

√∑2
j=1 (mj − m

2 )2

(m2 )2
(30)

where m is the total number of instances, mj is the number
of instances that reach the jth node, error is the classification
error and we and wb are weights associated to error and bal-
ance, respectively. In these equations, balance is the balance
coefficient whose values tend to decrease when the number of
instances in each group become similar.

Cantu-Paz et al. [115], [116] also investigate the use of EAs
for designing optimal hyperplanes. They propose two different
strategies for expanding OC1 [117] (an oblique decision tree
induction algorithm): (i) a (1+1) evolution strategy (ES) with
self-adaptive mutations (named OC1-ES); and (ii) a GA with
real-valued genes (named OC1-GA).

OC1-ES evolves a single individual4, a vector of real-valued
coefficients, w1, w2, ..., wN+1, for a n-dimensional data set.
The individual is initialized with the best axis-parallel split
found by OC1. For each hyperplane coefficient, there is a
corresponding mutation rate, σ1, σ2, ..., σn+1, initially set to
1. At each iteration of the evolution strategy, the mutation
rates are updated and so are the coefficients, according to the
following rule:

υ = N(0, 1)

σt+1
i = σtiexp(τ

′υ + τυ) (31)
wt+1
i = wti + σt+1

i υ

where N(0, 1) is a realization of a unitary normal variate,
τ = (

√
2
√
n)−1 and τ ′ = (

√
2n)−1. The ES is run for 1000

iterations.
OC1-GA evolves a population of individuals represented

by a real-valued set of coefficients (the same used in OC1-
ES). Tournament selection without replacement selects the
individuals that will be subjected to uniform crossover (prob-
ability of 100% to happen). No mutation is implemented
in OC1-GA. The population size is set to 20

√
n, along the

lines of a population-sizing theory described in [118]5. To
generate the initial population of individuals, the best axis-
parallel hyperplane is assigned to 10% of the individuals,
and the remaining 90% are randomly generated in the range
[−200, 200]. The fitness is evaluated by the calculus of the
impurity measure twoing (Itwo) [5], given by:

Itwo =
mL

m
× mR

m
×

(
k∑
i=1

Li
mL
− Ri
mR

)2

(32)

where m is the total number of instances under consideration
in each node, mL (mR) is the number of instances in the
left (right) portion of the split, and Li (LR) is the number of
instances belonging to class i on the left (right) portion of the
split.

4Note that this ES, unlike GAs or GP, evolves a single individual instead
of a population

5Harik et al. state that the population size required to reach a solution of a
particular quality is O(

√
n)

Kretowsky [119] proposes an EA that evolves hyperplanes
for oblique decision trees. The proposed approach is based on
the dipole concept (see Section IV-B). The oblique decision
tree is built through a top-down approach, and the ”optimal”
decision functions is selected at each tree node. For evolving
decision functions, a fixed-length real-valued chromosome of
size n+1 represents the hyperplane (n weights and θ). For gen-
erating the initial population, a random mixed dipole (xi,xj) is
selected and the hyperplane Hij(w, θ), which is perpendicular
to the segment that connects the opposite sides of the dipole
(placed in halfway), is formed by setting w = xi − xj and
θ = 1/2[(wTxi + wTxj)]. The fitness function is given by

f(x) = f(w, θ)× [(1− β) + β
n′

n
], where (33)

f(w, θ) = fmixed + α(1− fpure) (34)

where fmixed (fpure) is the fraction of divided mixed (pure)
dipoles, α controls the importance of pure dipoles, β ∈ {0, 1}
defines the complexity of the test (in terms of number of
parameters), n′ is the number of non-zero weights and n is
the dimensionality of the problem.

Standard two-point crossover is employed and the mutation
operator is slightly modified in order to increase the chances
a gene can be set to 0. Since the weights are real-valued,
chances of eliminating the importance of one attribute (i.e.,
setting it to 0) are slim, so the mutation operator is modified
to enhance the chances of feature selection (eliminating at-
tributes). Additionally, a dipolar operator is implemented, as
follows. First, the dipole type is drawn (mixed or pure). If
the mixed type is selected, one dipole is drawn from the set
of non divided mixed dipoles and the hyperplane is shifted to
separate the pair of instances. The new position is obtained by
modifying only one randomly chosen attribute. If it is the pure
type, one dipole is drawn from the set of divided pure dipoles.
The hyperplane is shifted to avoid separation of objects from
the same class by once again modifying one randomly chosen
weight. Selection is made through linear ranking and the best
individual from a generation is kept to the next (elitism).

Shali et al. [120] propose a GP, named GIODeT for evolving
combinations of attributes for each node split. The C4.5
algorithm [4] is used for constructing the decision tree in a top-
down fashion, but instead of using the typical univariate tests
at each node, a GP evolves a set of relations for combining the
data set attributes. The authors propose the following functions
for the internal nodes of GIODeT:

• Mathematical: +,−,×, /, log,
√

• Relational: ≤
• Logical: nand, not

An expression generator component is responsible for com-
bining these unary and binary functions with the set of nominal
and numeric attributes, generating a mathematical expression
with arbitrary size. Note that the GP is run once for each node
of the decision tree. Tournament selection is performed on 15
randomly selected individuals in order to choose those that
will undergo crossover and mutation. Standard GP crossover
and mutation are applied with probabilities of 0.65 and 0.2,
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respectively. The fitness function is given by

f(I) = GainRatio×
(
GainRatio+

1

size(I)

)
(35)

where GainRatio is the standard split criterion implemented
in C4.5 [4] and size(I) is a function that returns the total
number of nodes of the GP individual I .

B. Pruning Methods

Pruning is an important component of decision tree induc-
tion algorithms, because it can avoid model overfitting. Given
a hypothesis space H , a hypothesis h ∈ H is said to overfit
the training data if there exists some alternative hypothesis
h′ ∈ H such that h has a smaller error than h′ over the
training examples, but h′ has a smaller error than h over the
entire distribution of instances.

Overfitting is particularly critical in decision tree induction,
since decision trees can perfectly classify the training exam-
ples. If there is noise in the training set, the induced decision
tree will learn how to classify it and thus will perform poorly
on unseen data. Lack of representative samples in the training
data can also lead to model overfitting, because the resulting
decision tree will make its classification based on small num-
ber of instances. Common approaches for avoiding overfitting
are prepruning (halting the algorithm before generating a fully
grown tree that perfectly fits the data) and post-pruning (grow a
full decision tree and later pruning subtrees according to error
estimates). Evolutionary alternatives to decision tree pruning
are reviewed next.

Chen et al. [17] propose a GA for decision tree pruning
where each individual is a fixed-length linear chromosome.
Each gene dictates whether a subtree should be pruned or not.
More specifically, a decision tree is fully grown by a traditional
decision tree induction algorithm (ID3 [3]) and then linear
chromosomes with size equal to the number of edges of the
full tree are randomly generated. One-point crossover and bit-
flip mutation are implemented (rates are not informed). The
fitness function to be minimized is given by the sum of the
total number of nodes and the error rate. Surprisingly, during
fitness evaluation, the error rate is said to be calculated over
the test set (a serious experimental mistake, since the test set
class labels are supposed to be unknown, and can only be
used to validate the best individual of the EA, and not every
individual in each generation).

Shah and Sastry [18] propose a new pruning algorithm for
oblique decision trees in binary classification problems using
either an automata learning model (LA) or a GA. They map the
decision tree pruning as boolean-vector learning problem. For
such, each decision tree is mapped into a 3-layer feedforward
neural network. Each node in the first hidden layer consists
of one hyperplane (split rule) and its complement. Each node
in the second layer represents a leaf node labeled as class 1.
The third layer consists of a single OR unit.

Formally, the first layer has M units, and the ith unit repre-
sents a hyperplane Hi, parametrized by wi = [wi0, ..., win] ∈
<n+1, 1 ≤ i ≤ M , assuming an n-dimensional space of
attributes. The output of the ith unit over a given input instance

Fig. 8. Three-layer feedforward neural network representation. Adapted from
[18].

x = [x1, x2, ..., xn] ∈ <n is yi = 1 if
∑n
j=1 wijxj + wi0 > 0

and yi = 0 otherwise.
The second layer has L units, each one implementing an

AND function. The lth unit is connected to all first-layer units
through a weight vector vl = [vl1, vl2, ..., vlM ], where vli ∈
{0, 1}∀i, 1 ≤ i ≤ L.

The output for the lth unit is al = 1 if ∀i, yi = 1 and
vli = 1, otherwise al = 0. The third layer outputs 1 if at
least one of the second-layer unit outputs is 1, and 0 if all
second-layer outputs are 0 (OR operation).

Each second-layer unit is connected (with weight 1) to
all hyperplanes in the first layer that appear on the path
from the root to the leaf node corresponding to this unit.
All the other connections will have weight 0. It is easy to
see that the final output of the network will be 1 on all
patterns classified as belonging to class 1 by the decision
tree. Given this framework, pruning a decision tree consists of
learning the boolean-vector Vl that maximizes some measure
(e.g., accuracy). Figure 8 presents the proposed 3-layer neural
network.

Note that the hyperplanes in the first-layer are those dis-
covered during the full growth of a decision tree by any
oblique decision tree induction algorithm. Besides, note that
the number of second-layer units (L) can be fixed heuristically
according to the desired level of pruning. Different values for
Vl will lead to different ways to restructure the decision tree.
This strategy is much more sophisticated than simply replacing
a subtree by a leaf node, because it can lead to a more drastic
restructuring of the original tree. A GA is used to evolve a
set of fixed-length binary strings that represent the Vl vector.
The authors mention that they applied “standard” crossover
and mutation operations (no further details were informed).

C. Other Decision Tree Components

Turney [19] proposes a hybrid approach, ICET (Inexpensive
Classification with Expensive Tests), where a GA is used to
evolve a population of biases for a decision tree induction
algorithm (variation of Quinlan’s C4.5). ICET considers both
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the cost of tests (i.e., cost of attributes) and the cost of
classification errors.

In ICET, instead of using C4.5’s gain ratio, attributes are
evaluated by the information cost function (ICF) [121], defined
for each attribute i as follows:

ICFi =
2∆Ii − 1

(Ci + 1)α
(36)

where ∆Ii is the information gain associated to the ith

attribute when splitting a given portion of the data set, Ci
is the cost of measuring the ith attribute and α = [0, 1] is the
strength of the bias towards lower cost attributes. Note that
α = 0 means the attribute cost is ignored and maximizing
ICF is equivalent to maximizing ∆Ii, whereas α = 1 means
ICF is strongly biased by cost.

ICET evolves a population of individuals encoded as a fixed-
length binary string consisting of 12 × n + 16 bits, where
n is the number of data set attributes. Each attribute cost
Ci in (36) is encoded as a 12-bit value. In addition, each
string also encodes the parameter α in (36) and the pruning
confidence factor for C4.5, both as 8-bit values. ICET uses
a random initialization of individuals, a crossover rate of 0.6
and a mutation rate of 0.001.

The fitness function is the average cost of classification. To
calculate the cost of a particular instance, we follow its path
down the decision tree. We add up the cost of each attribute
that is chosen (i.e., each test that occurs in the path from
the root to the leaf). If the same test appears twice, we only
charge for the first occurrence of the test. The leaf of the
tree specifies the tree?s guess for the instance class. Given the
actual instance class, we use the cost matrix to determine the
cost of the classification. This cost is added to the costs of
the tests, determining the total cost of classification for the
instance. The total cost of classification of all instances are
summed, and then divided by the total number of instances,
resulting in the average cost of classification.

Bratu et al. [20] propose extending ICET by modifying com-
ponents of the original GA. By introducing elitism, increasing
the search variability factor, and extending the number of
iterations, the proposed extension manages to outperform other
cost-sensitive algorithms, even for data sets on which the
initial implementation yielded modest results. Results appear
to suggest there is an urge for a more comprehensive analysis
on the impact of varying the GA parameters, as it is empir-
ically demonstrated that such changes can lead to significant
performance improvements.

VII. PERFORMANCE ANALYSES

Many of the papers that we review include performance
comparisons of decision trees obtained by means of evolu-
tionary algorithms and other traditional approaches. The most
well-known greedy decision tree induction algorithms used
in these comparisons are ID3 [3], C4.5 [4], CART [5], M5
[106], [122], REPTree [123] and OC1 [117]. Other algorithms
used for comparison purposes include Bayesian CART [124],
[125], EG2 [121], CS-ID3 [126]–[128] and IDX [129]. Most
of these comparisons make use of public data sets from the
UCI repository [130].

TABLE I
APPLICATION AREAS OF EAS FOR DECISION TREE INDUCTION.

Application area References

Astronomy [133]
Cold Mill Strip [15], [16]
Character Recognition [35]–[37], [87], [88]
Finance [134]
Marketing [40], [42]
Medicine [23], [50], [78], [80], [135]–[138]
Natural Language Processing [139]
Software Engineering [22], [77], [140]–[142]

As it would have been expected, no work reviewed in this
paper has been shown to be superior than other methods for
every tested data set. This is coherent with the no free lunch
theorem [131], which states that learners which excel in a
certain data set will perform poorly in others.

Nevertheless, many works affirm to present similar pre-
dictive performance to baseline algorithms while providing
smaller trees (e.g., [17], [46], [47], [100], [102], [103], [105],
[111]). Only one work [120] states that the proposed EA
generates larger trees than its baseline algorithm (C4.5). The
ability of generating smaller trees is mainly due to the fitness
functions of the EAs, which usually incorporate a size penalty
for avoiding large trees. This explicit mechanism for reducing
tree size is indeed one of the advantages of using EAs for
decision tree induction.

Regarding computational time analyses, most of the re-
viewed works state that the proposed approaches are much
more time-consuming than the greedy strategy, as it is the
case of most evolutionary algorithms. Notwithstanding, very
few papers report runtimes. Among those few works, some
report a difference of seconds for growing the decision tree
(e.g., [41]), whilst others report differences of minutes (e.g.,
[42], [43], [70], [97]) or hours (e.g., [38], [44], [100]). The
time complexity of EAs for evolving decision trees is not
detailed in the reviewed papers, but it is estimated to be much
higher than the complexity of typical top-down decision tree
induction algorithms. For more details on the time complexity
of traditional algorithms such as C4.5 please refer to [132].

VIII. APPLICATIONS OF EAS FOR DECISION TREE
INDUCTION

Considering that most works focus on the EAs ability for
dealing with the drawbacks of the greedy strategy, usually
these approaches are validated on public benchmark data sets
for comparison purposes, instead of focusing on a specific
application domain. Nevertheless, there are some papers that
limit their scope to a specific domain. In these cases, we can
highlight the application areas listed in Table I, whose EAs
are briefly reviewed next.

In [133], a GA for decision tree induction is applied to an
astronomy problem, the classification of galaxies with a bent-
double morphology. This EA is the same proposed in [115] for
inducing oblique decision trees. Kim et al. [15], [16] present a
method for recognizing various defect patterns of a cold mill
strip by using evolutionary binary decision trees.
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Several EAs evolve binary decision trees for character
recognition (classification). Works like [35]–[37], [87], [88]
evolve binary decision trees using GAs and later apply the
evolved decision tree to digit recognition tasks. Kuo et al.
[134] evolve decision trees through GP and analyze their
performance over a credit card data set.

Several EAs evolve decision trees for specific medical prob-
lems. For instance, Podgorelec and Kokol [135] investigate a
multi-objective weighted-formula based on GAs for decision
tree induction for detecting cardiac prolapse. Its fitness func-
tion incorporates domain knowledge by not considering all
errors equally. The most costly errors are made when a patient
with cardiac prolapse or silent prolapse is classified as with no
prolapse. Conversely, it is not so costly when healthy patients
are classified as with prolapse or silent prolapse.

In [78], the authors propose an integrated computerized
environment, DIAPRO, which is a computer tool based on
EAs for medical diagnosis. DIAPRO attempts to improve
accuracy, sensitivity and specificity for decision making using
evolutionary generated decision trees. In [80], a real-world
orthopedic fracture data set is investigated through multiple
approaches of decision tree induction, and it is shown that the
evolutionary approach presents the best compromise among
the measures evaluated.

In [136], the authors present a new outlier prediction system
for improving the classification performance in medical data
mining. Two cardiovascular data sets are investigated. The
method introduces the class confusion score metric that is
based on the classification results of a set of classifiers. These
classifiers are generated by the EA proposed in [22], and
the main idea is to verify if there is any inconsistence when
classifying a specific example through different classifiers. In
[23] a GP evolves decision trees for cardiac diagnoses. The GP
was tested by using cardiac single proton emission computed
tomography images.

In [137], a GP evolves decision trees to detect interactions in
genetic variants. Preliminary experiments using GPDTI have
been able to find a 3-marker interaction in a data set of
1000 markers and a sample size of 600 subjects. Smith [50]
evolved decision trees in a bioinformatics application, where
they used a GA for finding RNA family-specific decision
trees. This work is well adapted to the application domain, i.e.
both individual representation and fitness function are domain-
specific.

Siegel [139] proposes evolving decision trees for the prob-
lem of word sense disambiguation. The approach Siegel takes
to word sense disambiguation is to evolve decision trees which
attempt to establish word sense by looking only at immediate
context, i.e., the tokens, (words and punctuations marks)
which are located within a small distance of the word to be
disambiguated. The words being disambiguated are discourse
cue words. Results indicate that evolved decision trees often
include rules that provide insightful hints for linguists.

Many works propose evolving decision trees for software
engineering tasks. For instance, in [143] an EA for deci-
sion tree induction is used as a software fault predictive
approach. It is shown that software complexity measures can
be successfully used to evolve decision trees for predicting

dangerous modules (with many undetected faults). The authors
recommend redesigning the fault-detected modules or devoting
more testing or maintenance effort to them in order to enhance
the software quality and reliability. In [22], Podgorelec and
Kokol present a self-adapting EA for decision tree induction
and its application for predicting faults in dangerous software
modules. Khoshgoftaar et al. [140] present an automated and
simplified GP-based decision tree modeling technique for the
software quality classification problem. The proposed tech-
nique is based on multi-objective optimization using strongly
typed GP. In the context of industrial high-assurance software
system, two fitness functions are used: one for minimizing the
predictive error and another for parsimony.

Khoshgoftaar and Liu [141] propose a GP-based multi-
objective optimization modeling technique for calibrating a
goal-oriented software quality classification model geared to-
ward a cost-effective resource utilization. It is shown that the
proposed model achieves good performance in the context of
optimization of the three modeling objectives: 1) minimizing
a modified expected cost of misclassification measure for
software quality classification models; 2) enabling the number
of predicted fault-prone modules to be equal to the number of
modules which can be inspected by the allocated resources;
and 3) controlling the size of the decision tree to facilitate com-
prehensibility in model interpretation, and providing faster GP-
runs. In [142], the authors present an evolutionary approach
for decision tree induction and its application for classifying
software modules as defective or defect-free. A set of 21
predictive attributes, containing various software complexity
measures and metrics for each software module was used. The
authors concluded that the discovered decision rules are useful
for developing new rules in software defect identification.

IX. REMARKS ON EVOLUTIONARY INDUCTION OF
DECISION TREES

Decision trees are one of the most frequently used rep-
resentations for classifiers. A very large number of articles
have been devoted to their study. Whereas most well-known
algorithms for decision tree induction rely on a greedy divide-
and-conquer strategy for partitioning the tree, alternative ap-
proaches have become more and more common in the past
few years. More specifically, a fairly large amount of studies
have been dedicated to the evolutionary induction of decision
trees.

We presented in this paper a survey of articles that combine
evolutionary algorithms and decision trees. We proposed a tax-
onomy to better organise the works in this area, conveniently
separating studies that evolve decision trees from those that
evolve components of decision tree classifiers. Moreover, we
documented important steps of an evolutionary algorithm for
decision tree induction and component evolution, which can
support interested readers in the design of their own EAs for
decision tree induction according to an extensive enumeration
of design options and strategies. We presented, when suitable,
criticism over specific choices and guidelines for handling
problems that will eventually come up when designing EAs for
decision tree induction. In this section, we make a brief critical
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analysis on the advantages and disadvantages of evolutionary
induction of decision trees. We finalize this paper by pointing
out tendencies of future work in the area.

A. The Benefits of EAs for Decision Tree Induction

The main benefit of evolving decision trees is the EAs’
ability to escape from local optima. EAs are able to perform
a robust global search in the space of candidate solutions, and
thus they are less susceptible to convergence to local optima.
In addition, as a result of this global search, EAs tend to cope
better with attribute interactions than greedy methods [10],
which means that complex attribute relationships which are
not detected during the greedy evaluation can be discovered
by an EA when evolving decision trees.

Another advantage of evolving decision trees is the pos-
sibility of explicitly biasing the search space through multi-
objective optimization. EAs can naturally optimize multi-
objectives, which may be crucial in several application do-
mains. For instance, cost sensitive classification - which is the
case of most medical classification problems - can be enhanced
by explicitly optimizing measures that address different error
costs. Parsimony pressure is yet another important feature that
is easily implemented in a multi-objective EA for decision tree
induction.

B. The Drawbacks of EAs for Decision Tree Induction

The main disadvantage of evolutionary induction of decision
trees is related to time constraints. EAs are a solid but
computationally expensive heuristic. Nevertheless, progres-
sively faster computational resources have allowed EAs to be
increasingly used in a variety of applications over the years.
Advances on parallel processing have also enabled EAs to be
better explored in acceptable execution times. It should also be
noted that, in real-world problems, the time spent preparing
the data for data mining purposes tends to be much longer
than the time spent by inducing a classification or regression
model. Hence, in real-world problems, the long processing
time of evolutionary algorithms tends not to be the bottleneck
of the entire knowledge discovery process.

Another disadvantage is the large number of parameters that
must be tuned in order to run a full execution of an EA. Espejo
et al. [27] acknowledge this problem in GP-based classifiers,
though they reckon it is a secondary one. The same difficulty
occurs for genetic algorithms, since GAs and GP share much
of the same parameters.

C. What is Next on Evolutionary Induction of Decision Trees?

The theoretical assumption that evolved decision trees can
provide better predictive accuracy than greedily-designed ones
has been confirmed empirically in most of the works reviewed
in this paper. Nevertheless, this advantage comes with a price.
Most strategies reviewed here point out that evolving decision
trees is a costly, time-consuming task. Not much is said on how
this can be alleviated. Parallel implementations are usually
the suggestion for speeding up decision tree evolution, even
though very few works actually implement parallel algorithms

or care to make a comparison on the time savings. We believe
that a future trend on evolutionary induction of decision trees is
the analysis of techniques able to speed up evolution. A recent
work by Kalles and Papagelis [144] proposes time savings
in evolutionary decision tree induction algorithms through
fitness inheritance. They reckon that storing instance indices
at leaf nodes is enough for fitness to be piecewise computed
in a lossless fashion, thus leading to substantial speed-ups
within the evolutionary cycle. They show the derivation of the
expected speed-up on two bounding cases and their claims
are supported by an extensive empirical analysis. We believe
that further exploration of this kind of analysis is beneficial in
order to establish EAs for decision tree induction as a strong
alternative to greedy methods.

Evaluation of EAs on synthetic data is a methodology that
could be more investigated by researchers of the field. It allows
for a more theoretical exploration that is complementary
to the prevailing empirical evaluation of EAs for decision
tree induction. Examples of works that make use of such a
methodology are [39], [48], [54], [64], [73], [145]. In [145],
for example, instances were artificially generated in order
to produce data sets with specific characteristics, such as
representative enough categorical distributions and extreme
cases of easiness or hardness for decision tree induction.

Another future trend is the development of data-based
parameter guidelines. Researchers in the area should start
establishing the relationship between EAs’ parameter settings
and data sets’ features. For that, we believe that the study of
data set complexity measures, such as those proposed by Ho
et al. [146], [147], may be beneficial for understanding the
geometrical shape of classification data sets. Once the com-
plexity of classification data is better-understood, we believe
it would be possible for researchers to recommend parameter
values for decision tree evolution backed up by theoretical and
empirical evidence.

Finally, we believe that an important and challenging future
trend in this area concerns evolving decision tree induction
algorithms. In such an approach, the EA evolves a full
decision tree algorithm (with loops and procedures for grow-
ing, pruning and evaluating candidate decision trees), rather
than just evolving a decision tree classifier. Considering the
different procedures for growing the trees (top-down, bottom-
up, hybrid), and also the large number of splitting criteria and
pruning techniques, we believe it is possible to develop an EA
able to automatically design brand new decision tree induction
algorithms. One of the advantages of this strategy is the
possibility of tailoring an algorithm for a given domain, and
instead of using a generic decision tree induction algorithm
(such as C4.5), we can make use of an algorithm that was
explicitly designed to be efficient in specific data sets.
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