
1

Initial Profile Generation in Recommender Systems
using Pairwise Comparison

Lior Rokach, Slava Kisilevich
Department of Information System Engineering, Ben Gurion University of the Negev, Israel

{liorrk,slaks}@bgu.ac.il

Abstract—Most recommender systems, such as collaborative
filtering, cannot provide personalized recommendations until a
user profile has been created. This is known as the new user
cold-start problem. Several systems try to learn the new users’
profiles as part of the sign up process by asking them to provide
feedback regarding several items. We present a new, anytime
preferences elicitation method that uses the idea of pairwise
comparison between items. Our method uses a lazy decision tree,
with pairwise comparisons at the decision nodes. Based on the
user’s response to a certain comparison, we select on-the-fly what
pairwise comparison should next be asked. A comparative field
study has been conducted for examining the suitability of the
proposed method for eliciting the user’s initial profile. The results
indicate that the proposed pairwise approach provides more
accurate recommendations than existing methods and requires
less effort when signing up newcomers.

I. INTRODUCTION

Recommender systems — systems that recommend items to
users — can be found in many modern Web sites for various
applications such as helping users find Web pages that interest
them; recommending products to customers at e-commerce
sites; recommending TV programs to users of interactive TV;
and showing personalized advertisements [2]. Probably the
most commonly used technique for providing recommenda-
tions is collaborative filtering. The collaborative filtering (CF),
user-to-user approach looks for users with similar preferences.
In order to provide personalized recommendations to a user,
it recommends the items that were highly rated by the users
whose tastes/purchase history/rating of items are similar to her.

Most recommendation techniques use some type of a user
profile or user model [3] but these techniques cannot provide
personalized recommendations until a user profile has been
created. This is known as the new user, cold-start problem.
Despite the importance of new users very few studies in
recommender system research face up to this matter [5].

One way to address the challenge is to ask newcomers
to fill-in a simple questionnaire that will lead them to an
immediately beneficial recommendation.

This paper tries to improve the initialization of the profile
generation by using a questionnaire. Our questionnaire is
created as an interactive, easy-to-use process. At each stage the
user is presented two items and asked to select the preferred
item. The items are presented as pictures to make the an-
swering process intuitive. The underlying process is ”anytime”
in the sense that although the user may choose to abandon
the questionnaire at any stage, the system is still able to
create a profile. The more answers the user provides, the more

specific her profile becomes. We suggest to perform pairwise
comparison because previous research shows that users are
more accurate when making relative indirect judgments than
when they directly rank items using a linear scale Pairwise
comparison is a well-known method in decision making. But
there are only a few attempts to use it in recommendation
systems [1] and none of them have been used in the context
of the collaborative filtering setting presented in this paper.

While pairwise comparison is considered to be accurate, it is
time consuming and thus hardly used in real-time applications.
Instead of comparing items, we suggest to cluster the items,
for accelerating and simplifying the pairwise comparison. In
this way we can trade accuracy with time consumption.

The contribution of this paper is twofold: In existing profile
elicitation methods, users are asked to provide feedback to a
few, carefully selected pair of items. The proposed method
produces a viable user profile for Singular Value Decom-
position (SVD)-based, collaborative filtering even for users
who only interacted with the system a few times. The second
contribution of this paper relates to the evaluation process. In
recent researches simulation methods were used to evaluate the
profile elicitation method. In our research, we conducted a user
study which allowed us for the first time to compare a pairwise
comparison approach with a single item based approaches.

II. RELATED WORKS

Initial profile generation for new users in the context of
recommender systems was first examined in [11]. It would
seem apparent that a user’s preferences could be elicited by
simply asking her to define her preferences on various aspects
(such as genera in the movie domain). However this simplistic
approach usually does not work, mainly because users have
problems in expressing their preferences and may not have the
domain knowledge to answer the questions correctly. Thus
another approach is to ask the user to provide feedback
regarding several items presented to her. Roughly speaking
there are two types of item-based methods: static and dynamic
methods. With static methods, the system manage a seed set
of items to be rated by the newcomer. This set is preselected
regardless of the feedback provided by the current during the
elicitation process [11], [6]. The methods are described as
static because they use the same items for all users. On the
other hand, with dynamic methods, the questions are adopted
to feedback from the current user [5].

Researches recently published discuss the criteria for select-
ing the items about which the user should be queried. Among

2

the ideas that have emerged are the use of controversial items
that are also indicative of their tendencies. The contention of
an item is frequently estimated using the Entropy measure.
However, selecting non-popular items may not be helpful
because the users might not be able to rate them [6]. On the
other hand, selecting items that are too popular and that many
people like, may not provide us with sufficient information
regarding the user’s taste. Thus, in order to steer a clear course
between selecting non-popular items and ones that are too
popular, the appropriate way seems to be to query users about
popular but controversial items.

Nevertheless combining entropy and popularity is not al-
ways sufficient to learn about the user’s general taste. The
queried items should be also be indicative to other items.
Golbandi et al. [6] refer to the movie Napoleon Dynamite as
a concrete example of a highly popular controversial movie
that does not possess predictive power on other items.

According to [6] using the three criteria above – popular-
ity, controversiality and predictiveness – is not sufficient for
obtaining a good user profile due to two reasons. First, the
interactions among the items are ignored. Namely two queried
items with high criteria values can also be highly dependent.
Thus querying the user regarding both items will usually
contribute relatively little information compared to asking the
user about only one item.

Instead of using ad-hoc criteria, The GreedyExtend al-
gorithm explicitly accounts for the end goal of optimizing
prediction accuracy during the construction of the seed set.
Being a greedy algorithm it begins with an empty seed set
and incrementally adds items to this set. The items that are
added attempt to minimize the predictions errors (e.g., RMSE)
made by a particular recommendation algorithm.

The IGCN (information gain through clustered neighbors)
algorithm [10] selects the next item by using the information
gain criterion while taking into account only the ratings data of
those users who match best with the target newcomer’s profile
so far. Users are considered to have labels corresponding to
the clusters they belong to and the role of the most informative
item is treated as helping the target user most in reaching her
representative cluster.

In this sense, the method presented here most resembles
the method presented in [10], [5]. All methods are dynamic
and adopt questions based on the current user’s feedback. All
methods employ decision trees to guide the user through the
elicitation process. Moreover, in all cases each tree node is
associated with a group of users. This makes the elicitation
process an anytime process.

III. NOTATION AND PRELIMINARIES

Recommender systems rely on various types of input.
Most important is explicit feedback, where users express their
interest in items. We consider a set of m users denoted as U
and a set of n items denoted as I . We reserve special indexing
letters to distinguish users from items: u, v for users and i, j
for items. A rating rui indicates the rating of user u to item i,
where high values indicate a stronger preference. For example,
the ratings, usually presented in terms of stars accorded the
preference, can be integers ranging from 1 star indicating no

interest to 5 (stars) indicating a strong interest. Usually the
vast majority of ratings are unknown. As the catalog of items
may contain millions of items, the user is capable to rate only
small portion of the items. This phenomena is known as the
sparse rating data problem.

Following [7] we denote by µ the overall average rating. The
parameters bu and bi indicate the observed deviations from the
average of user u and item i, respectively. For example, let
us say that the average rating over all movies, µ, is 3 stars.
Furthermore, Toy Story is better than an average movie, so
it tends to be rated 0.7 stars above the average. On the other
hand, Alice is a critical user, who tends to rate 0.2 stars lower
than the average. Thus, the baseline predictor for Toy Story’s
rating by Alice would be 3.5 stars by calculating 3+0.7−0.2.

The SVD CF methods transform users and items to a
joint latent factor space, Rf where f indicate the number of
latent factors. Both users u and items i are represented by
corresponding vectors pu, qi ∈ Rf . The cosine similarity

The final rating is created by also adding baseline predictors
that depend only on the user or item [7]. Thus, a rating is
predicted by the rule:

r̂ui = µ+ bi + bu + qTi pu . (1)

We distinguish predicted ratings from known ones, by using
the hat notation for the predicted value. In order to estimate
the model parameters (bu, bi, pu and qi) one can solve the
regularized least squares error problem using a stochastic
gradient descent procedure [7]:

min
b∗,q∗,p∗

∑
(u,i)∈K

(rui −µ− bi − bu − q
T
i pu)

2
+λ4(b

2
i + b

2
u + ∥qi∥

2
+ ∥pu∥2) . (2)

IV. PAIRWISE COMPARISONS

We use a pairwise comparison for eliciting new user pro-
files. The main idea is to present the user two items and ask
her which of them is preferred. Usually, she has to choose the
answer from among several discrete pairwise choices.

A. Converting pairwise comparisons into items ratings

While we are using pairwise comparisons to generate the
initial profile, we still assume that the feedback from existing
users is provided as a rating of individual items (the rating
matrix). As the preferences are expressed in different ways,
they are not directly comparable. Mapping from one system
to another poses a challenge. Satty [14] explains how a rating
scale can be converted into a pairwise comparison and vice
versa. We illustrate the mapping process with the following
example. We are given four items A,B,C,D rated in the scale
[1, 5] as following ruA = 5, ruB = 1, ruC = 3, ruD = 2. The
pairwise comparison value between two items is set to:

Cuij = rui/ruj (3)

Based on Eq. 3 we can prepare a square judgment matrix,
where every element in the matrix refers to a single, pairwise
comparison. Table I presents the corresponding table.

A B C D
A 1 5/1 5/3 5/2
B 1/5 1 1/3 1/2
C 3/5 3/1 1 3/2
D 2/5 2/1 2/3 1

TABLE I
ILLUSTRATION OF 4× 4 JUDGMENT MATRIX CORRESPONDING TO

RATINGS rA = 5, rB = 1, rC = 3, rD = 2 USING EQ. 3

3

Once the matrix is obtained, the original rating of the
items can be reconstructed by calculating the right principal
eigenvector of the judgment matrix [14]. It follows from the
fact that, for any completely consistent matrix, any column
is essentially (i.e., to within multiplication by a constant) the
dominant right eigenvector. The eigenvector can be approxi-
mated by using the geometric mean of each row. That is, the
elements in each row are multiplied with each other and then
the k-th root is taken (where k is the number of items).

Recall that the user selects a linguistic phrase such as ”I
much prefer item A to item B” or ”I equally like item A and
item B”. In order to map it into a five stars rating scale, we
first need to quantify the linguistic phrase by using a scale.
Satty [14] suggests matching the linguistic phrases to the set
of integers k = 1, ..., 9 values for representing the degree
to which item A is preferred over item B. Here the value
1 indicates that both of the items are equally preferred. The
value 2 shows that item A is slightly preferred over item B,
etc. In order to fit the five stars ratings to Satty’s pairwise
scores, we need to adjust Eq. 3 to:

C∗
uij =

round
(

2rui
ruj
− 1

)
if rui ≥ ruj

1\round
(

2ruj

rui
− 1

)
if rui < ruj

(4)

This will generate the judgment matrix presented in Table
II. The dominant right eigenvector of the matrix in Table II is
(3.71; 0.37; 1.90; 1). After rounding, we obtain the vector of
(4, 0, 2, 1). After scaling we successfully restore the original
ratings, i.e.: (5, 1, 3, 2). The rounding of the vector’s compo-
nents is used to show that it is possible to exactly restore the
original rating values of the user. However for obtaining a
prediction for a rating, rounding is not required and therefore
is not used from here on. Note that because we are working
in a SVD setting, instead of using the original rating provided
by the user, we first subtract the baseline predictors (i.e.
rui − µ − bi − bu) and then scale it to the selected rating
scale.

A B C D
A 1 9 2 4
B 1/9 1 1/5 1/3
C 1/2 5 1 2
D 1/4 3 1/2 1

TABLE II
ILLUSTRATION OF 4× 4 JUDGMENT MATRIX CORRESPONDING TO

RATINGS rA = 5, rB = 1, rC = 3, rD = 2 USING EQ. 4

B. Profile Representation

Since we are working in a SVD setting, the profile of the
newcomer should be represented as a vector pv in the latent
factor space, as is the case with existing users. Nevertheless,
we still need to fit the pv of the newcomer to her answers
to the pairwise comparisons. For this purpose we match the
newcomer’s responses with existing users and to build the
newcomer’s profile based on the profiles of the corresponding
users. We assume that a user will get good recommendations
if like-minded users are found. First, we map the ratings of
existing users into pairwise comparisons using Eq. 4. Next,
using the Euclidian distance, we find among existing users
those who are most similar to the newcomer. Once these users
have been identified, the profile of the newcomer is defined as
the mean of their vectors.

C. Selecting the Next Pairwise Comparison

We take the greedy approach for selecting the next pairwise
comparison, i.e. given the responses of the newcomer to
the previous pairwise comparisons, we select the next best
pairwise comparison. Algorithm 1 presents the pseudo code
of the greedy algorithm. We assume that the algorithm gets
N(v), as an input. N(v) represents the set of non-newcomer
similar users that was identified based on pairwise questions
answered so far by the newcomer v.

In lines 3-15 we iterate over all candidate pairs of items.
For each pair we calculate its score based on its weighted
generalized variance. For this purpose we go over (lines 5-10)
all possible outcomes C of the pairwise question. In line 6 we
find N(v, i, j, C) which is a subset of N(v) which contains all
users in N(v) that have rated items i and j with ratio C, where
C∗

uij is calculated as in Eq. 4. Since in a typical recommender
system we cannot assume that all users have rated both item
i and item j, we treat these users as a separate subset and
denote it by N(v, i, j, ∅).

In lines 7-9 we update the pair’s scores. We search for the
pairwise comparison that best refines the set of similar users.
Thus, we estimate the dispersion of the pu vectors by first
calculating the covariance matrix (Line 7). The covariance
matrix Σ is a f × f matrix where f is the number of latent
factors. The covariance matrix gathers all the information
about the individual latent factor variabilities. In Line 8 we
calculate the determinant of Σ which corresponds to the
generalized variance of the users’ profiles. The usefulness of
GV as a measure of the overall spread of the distribution
is best explained by the geometrical fact that it measures
the hypervolume that the distribution of the random variables
occupies in the space.

Algorithm 1 Selecting the Next Pairwise Comparison
Require: v (the newcomer user), N(v) (set of existing users that so

far answered the same as v), pu (the latent profiles of all users),
I (set of items).

1: BestPair ← ∅
2: BestPairScore←∞
3: for all pair of items (i, j) such that i, j ∈ I and i ̸= j do
4: PairScore← 0
5: for all possible outcomes C of the pairwise (i, j) do
6: N(v, i, j, C)← {u ∈ N(v)|C∗

uij = C}
7: Get covariance matrix Σ from N(v, i, j, C) profiles
8: GV ← det(Σ)
9: PairScore← PairScore+ |N (v, i, j, C)| ·GV

10: end for
11: if PairScore < BestPairScore then
12: BestPairScore← PairScore;BestPair ← (i, j)
13: end if
14: end for
15: return BestPair

In summary, the proposed greedy algorithm select the next
pairwise comparison as the pair of items minimizing the
weighted generalized variance:

NextPair ≡ argmin
(i,j)

∑
C

|N (v, i, j, C)| ·GV (N (v, i, j, C)) (5)

4

D. Clustering the items

Searching the space of all possible pairs is reasonable
only for a small set of items. We can try to reduce running
time by various means. First, if the newcomer user v has
already responded on some item pairs, then these pairs should
be skipped during the search. Moreover, we can skip any
item that was not rated by a sufficiently large number of
users in the current set of similar users. Their exclusion
from the process can speed execution time. Moreover, the
searching can be easily parallelized because each pair can
be analyzed independently. Still, since typical recommender
systems include thousands of rated items, it is completely
impractical or very expensive to go over all remaining pairs.

A different problem arises due to the sparse rating data
problem. In many datasets only a few pairs can provide a
sufficiently large set of similar users to each possible compar-
ison outcome. In the remaining pairs, the empty bucket (i.e.
C = ∅) will populate most of the users in N(v).

One way to resolve these drawbacks is to cluster the
items. The goal of clustering is to group items so that intra-
cluster similarities of the items are maximized and inter-cluster
similarities are minimized. We perform the clustering in the
latent factor space. Thus the similarity between two items can
be calculated as the cosine similarity between vectors of the
two items, qi and qj . By clustering the items, we define an
abstract item that has general properties similar to a set of
actual items.

Instead of searching for the best pair of items, we should
search now for the best pair of clusters. We can still use Eq.
5 for this purpose. However we need to handle the individual
rating of the users differently. Because the same user can
rate multiple items in the same cluster, her corresponding
pairwise score as obtained from Eq. 4 is not unequivocal.
There are many ways to aggregate all cluster-wise ratings into
a single score. Here we implement a simple approach. We first
determine for each cluster l its centroid vector in the factorized
space q̀l. Then the aggregated rating of user u to cluster l is
defined as r̀ul ≡ q̀i

T · pu. Now the cluster pairwise score can
be determined using Eq. 5.

After finding the pair of clusters, we need to transform the
selected pairs into a simple visual question that the user can
easily answer. Because the user has no notion of the item
clusters, we propose to represent the pairwise comparison of
the two clusters (s, t), by the posters of two popular items that
most differentiate between these two clusters. For this purpose
we first sort the items in each cluster by their popularity
(number of times it was rated). Popular items are preferred
to ensure that the user recognizes the items and can rate
them. From the most rated items in each cluster (say the top
10 percent), we select the item that maximizes the Euclidian
distance from the counter cluster. Finally, it should be noted
that the same item cannot be used twice (i.e., in two different
pairwise comparisons). First, this avoids boring the user. More
important, we get a better picture of user preferences by
obtaining her response from a variety of items from the same
cluster. While the above selection of items is ad-hoc, the reader
should take into consideration that this is only a secondary

criterion that follows pairwise cluster selection. We focus on
finding good enough items in an almost instantaneous time.

V. A LAZY DECISION TREE

We utilize decision trees to initiate a profile for a new user.
In particular we are using the top-down lazy decision tree
(LazyDT) described in [4] as the base algorithm. However we
are using a different splitting criterion described in Eq. 5 as
the splitting criterion. The pairwise comparisons are located
at the decision nodes. Each node in the tree is associated with
a set of corresponding users. This allows the user to quit the
profile initialization process anytime she wants. If the user
does not wish to answer more questions, we take the list of
users that are associated with the current node and calculate
the mean of their factorized vectors. The more questions the
user answers, the more specific her vector becomes. But even
with answering only a few questions we can still provide the
user a profile vector.

Figure 1 illustrates the root of the decision tree. Each inner
node represents a different pairwise comparison. Based on
the response to the first (root) question, the decision tree
is used to select the next pairwise comparison to be asked.
Note that one possible outcome is ”unknown”, this option is
selected when the user does not recognize the items. Every
path in the decision tree represents a certain set of comparisons
that the user is asked. Assuming that there are k clusters,
then the longest possible path contains k·(k−1)

2 inner nodes
(comparisons).

Fig. 1. An illustration of the pairwise decision tree.

Note that if there are s possible outcomes in each pairwise
comparison and there are k clusters, then the complete decision
tree will have sk∗(k−1)/2 leaves. Even for moderate values
of k this becomes impractical. Thus, instead of building
the entire decision tree, we take the lazy approach. If the
current newcomer has reached a leaf and is willing to answer
additional questions, only then do we expand the current node
using the suggested splitting criterion. In this way, the tree
expands gradually and on-demand. Given a limited memory
size, we keep only the most frequent visited nodes.

A. Predicting ratings

Since each tree node is associated with a set of users, we
can create a new user profile vector for each node by taking
the mean of the vectors of the corresponding users. When a
user decides to terminate the profile initialization, we generate

5

her profile vector pu based on the node she has reached on
the tree. Then Eq. 1 can be used to predict ratings. But for
that we need to know the user bias. To do this, we first
reconstruct the user’s supposed individual ratings ˜ru,i. We
distinguish supposed ratings from original ones by using the
tilde notation. Supposed ratings are pairwise responses that
are converted to ratings using the right dominant eigenvector
mapping procedure presented above.

In order to estimate bu, we solve the least squares problem
presented in Eq. 2 by replacing ru,i with ˜ru,i. Note that in
this case the parameters pu, qi, bi and µ are fixed. Thus we
need to minimize an univariate function with respect to bu
over the domain [−5,+5] (when ratings range from 1 to 5).
Minimization is performed by the golden section search.

VI. EXPERIMENTAL STUDY

In order to evaluate the proposed method for eliciting initial
preferences and to examine its effect on recommendations,
we conducted an extensive field study on real users. The
main goal of this study was to examine the efficiency of the
questionnaire-based, pairwise model for eliciting user profiles.
The performance of the proposed method was compared to
alternative elicitation methods.

Since previous researches utilized individual item ratings,
it was sufficient to use a simulation over existing datasets in
order to evaluate the method being studied. In our case we
use pairwise comparisons that could not be obtained directly
from publicly available datasets. Thus we took the following
approach. We first used the Netflix dataset for creating the
initial SVD model. Then we conducted a field study in which
we asked more than 400 subjects to respond to a set of 100
pairwise questions and to rate 250 items that were selected
from the Netflix item catalog. We compared the profiles that
were derived from the pairwise responses with the profiles
induced from the simple ratings. In order to present users with
as lively a questionnaire as possible, we had to display movie
posters. To this end, we used the Internet Movie Database.

Our approach was compared to the three top methods
for generating initial profiles: GreedyExtend , IGCN and
Popularity. In addition we compared our process for selecting
the pair of clusters with random selection of the pairs.

A. Values of the experimental parameters

As in [7] we used the following values for the SVD
meta parameters: γ = 0.005, λ4 = 0.02. The parameter γ
indicates the learning rate of the gradient descent optimization
method used for solving Eq. 2. We also used 200 factors (i.e.
f = 200). While accuracy is improved as more factors are
used, it has been shown that for NetFlix data, using more
than 200 factors would slow running time without significantly
improving performance [7]

As with the clustering phase, any clustering algorithm can
be used. This work employs the popular k-means algorithm
[8]. We group the items into k=100 clusters. In a preliminary
pilot we also tested two other k-values: k=50 and k=200.
The preliminary results indicate that using higher values
of k slightly improve the performance. Thus one can use
additional clusters and potentially improve the perceptivity of

the system. However setting k to a moderate value, ensures
that it is possible to search the pairwise space with a limited
computational effort and thus can be performed online.

B. Data collection

In order to compare the various methods, 418 users from
two countries (Israel and Germany) participated in the study.
Two thirds of the participants were undergraduate students.
Sixty two percent of the participants were male.

Each subject was asked to complete a six-part questionnaire
via a Web-based application. The first part contained 50
pairwise questions. These questions cover a small portion of
the judgment matrix. Since we partitioned the items in this ex-
periment into 100 clusters, there were exactly 99*100/2=4950
different pairs. The questions were determined by the system
(based on a lazy decision tree). Thus in this first part, each user
answered a potentially different set of questions. In the second
part, an additional 50 pairwise questions, randomly selected,
were presented to the user. Note that the clusters were selected
randomly. But once they were selected we chose representative
items according to the same procedure presented in section
IV-D. Parts 3, 4 and 5 contained 50 single-item rating (1 to 5
stars) requests each. The requests corresponded to the top 50
items obtained from each compared method: GreedyExtend ,
IGCN and Popularity. The last part contained 100 single-item
rating questions that were used as a test set for evaluating the
efficiency of the elicitation processes. The items in the test
set and the items presented in the other parts were mutually
exclusive.

All users responded to all parts of the questionnaire but in a
certain permutation that was determined using a Latin square
design in order to reduce the risk of a carryover effect.

C. Measuring the Performance

We measured the quality of the results by the root-mean-
square error (RMSE). We performed the entire procedure for
each method for every participant. We computed an average
RMSE across all participants equally, rather than biasing the
results towards participants with more ratings. In addition to
the quality aspect, we also measured how many questions the
users have skipped.

D. Results and Discussion

Figure 2 presents the RMSE performance of five different
methods: Popularity; GreedyExtend; IGCN and three pairwise
methods. The label PWDT refers to our technique which uses
pairwise clustered items whose order of presentation is defined
by the proposed lazy decision tree procedure. The PWRandom
algorithm refers to usage of pairwise clustered items presented
in a random order.

The results indicated that all methods improved as more
information became available. The plots of Figure 2 show
that even with a small number of pairwise comparisons, it
was possible to obtain good quality. The proposed method
demonstrated a major accuracy improvement when compared
to static methods (such as Popularity and GreedyExtend).
The improvement is also illustrated when PWDT is compared
to a dynamic algorithm (IGCN) although in this case the

6

improvement is less prominent. Additionally, PWDT signif-
icantly outperformed PWRandom, indicating that pairwise
comparisons should be chosen carefully. Although the idea
of clustering the items gives up the fine granularity advantage
of item-based pairwise comparison, it still obtains low RMSE.

Fig. 2. Comparison of initial profile generation methods. Accuracy is
measured by RMSE. Lower values indicate better performance.

To examine the effects of the total number of questions
and of the elicitation method, a two-way analysis of variance
(ANOVA) with repeated measures was performed. The de-
pendent variable was the mean RMSE. The results of the
ANOVA showed that the main effects of the number of
questions F (49, 20433) = 17.3, p < 0.001 and the algorithm
F (4, 1668) = 12.66, p < 0.001 were both significant. The
post-hoc Duncan test was conducted in order to examine
whether the proposed pairwise technique outperformed the
four other methods. With α = 0.05, starting from the third
question our method was significantly better than randomly
selecting the pairwise questions. From the fifth question our
technique was significantly better than all single-item algo-
rithms. One can safely conclude that the proposed pairwise
questionnaire for preference elicitation is efficient if a user
answers a relatively small number of questions.

Figure 3 specifies the number of users that skipped a
question as a function of the progress in the elicitation process.
All methods except PWRandom showed a moderate increase
in the number of users that skipped the question. The random
method was approximately constant across all iterations. In
respect to the skipping rate, the proposed pairwise method
was slightly worse than single-item rating methods. This can
be partially explained by the fact that in pairwise cases the user
might skip the question if she did not know one of the movies.
Theoretically if the probability for not knowing a single movie
is p, then the probability for not knowing at least one movie
in a pair is: p2 = 1 − (1 − p)(1 − p) = p(2 − p) ≥ p. With
p = 0.2 (which is the approximate skip rate in our experiment),
we expect p2 = 0.36 which is significantly higher than p.
Nevertheless, in the current experiment the differences were
not so noticeable. This might indicate that users can provide
a pairwise feedback even if they are not able to accurately
rate each item separately. This happens, for example, when
the user has clear opinions about the known item (i.e., she
either extremely likes or dislikes the item).

VII. CONCLUSIONS AND FUTURE WORK

We presented a pairwise comparison method for initially
generating user profiles. The method uses a decision tree-like

Fig. 3. Number of users that skipped a question as a function of the progress
in the elicitation process.

algorithm that adapts the questions to the user. Our empirical
study showed an improvement in accuracy when compared to
single item rating methods (either static or dynamic).

Due to time and space limitations, our proposed model can
be calculated in advance only for a small set of clusters. Hence,
for large scale systems certain computations must still be done
online. We are planning to introduce a caching mechanism
that will reduce these computational effort to a minimum.
Moreover, we are in the process of extending our algorithm
to account for implicit feedback. Finally the proposed method
was compared to several methods. However to get a complete
picture the method should also be compared to other latent
factor pairwise preferences elicitation methods. [1], [9], [12].

REFERENCES

[1] Balakrishnan S., Chopra S.: Two of a Kind or the Ratings Game?
Adaptive Pairwise Preferences and Latent Factor Models. ICDM 2010:
725-730

[2] Choi, S.H. and Jeong, Y.S. and Jeong, M.K., A hybrid recommendation
method with reduced data for large-scale application, IEEE Transactions
on Systems, Man, and Cybernetics, Part C, 40(5):557-566, 2010.

[3] Frias-Martinez, E. and Chen, S.Y. and Liu, X., Survey of data mining
approaches to user modeling for adaptive hypermedia, IEEE Transactions
on Systems, Man, and Cybernetics, Part C, 36(6):734-749, 2006.

[4] Friedman, J.H. and Kohavi, R. and Yun, Y. (1996), Lazy decision trees,
Proc. of AAAI. pp. 717–724.

[5] Golbandi, N. and Koren, Y. and Lempel, R. (2011), Adaptive bootstrap-
ping of recommender systems using decision trees, Proc. 4th ACM inter.
conf. on Web search and data mining, pp. 595–604.

[6] Golbandi N. and Koren Y. and Lempel R.(2010), On bootstrapping
recommender systems., CIKM’10, pp. 1805–1808.

[7] Koren Y., Bell R. (2011), Advances in Collaborative Filtering, In Rec-
ommender Systems Handbook, Springer, pp. 145-186.

[8] Lloyd., S. P. (1982). Least squares quantization in PCM, IEEE Transac-
tions on Information Theory 28 (2): 129137.

[9] Liu N. N., Zhao M., and Yang Q., Probabilistic latent preference analysis
for collaborative filtering. In CIKM 09, pages 759 766, New York, NY,
USA, 2009. ACM.

[10] Rashid A.M., Karypis G., Riedl J., Learning preferences of new users
in recommender systems: an information theoretic approach, SIGKDD
Explorations, 2008, 10(2): 90-100.

[11] Rashid A.M., Albert I., Cosley D., Lam S.K., McNee S.M., Konstan
J.A., Riedl J. (2002), Getting to know you: learning new user preferences
in recommender systems, IUI, pp. 127–134.

[12] Rendle S., Freudenthaler C., Gantner Z., and Schmidt-Thieme L., BPR:
Bayesian Personalized Ranking from Implicit Feedback. In UAI 09, 2009.

[13] Sarwar, B. and Karypis, G. and Konstan, J. and Riedl, J., Incremental
singular value decomposition algorithms for highly scalable recommender
systems, Proc. of the 5th Inter. Conf. in Computers and Information
Technology(2002).

[14] Satty T.L., The Analytic Hierarchy Process: Planning, Priority Setting,
Resource Allocation, McGraw-Hill (1980).

