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Abstract—In chemometrics, data from infrared or near-infrared
(NIR) spectroscopy are often used to identify a compound or to an-
alyze the composition of a material. This involves the calibration of
models that predict the concentration of material constituents from
the measured NIR spectrum. An interesting aspect of multivariate
calibration is to achieve a particular accuracy level with a minimum
number of training samples, as this reduces the number of labora-
tory tests and thus the cost of model building. In these chemometric
models, the input refers to a proper representation of the spectra
and the output to the concentrations of the sample constituents.
The search for a most informative new calibration sample thus has
to be performed in the output space of the model, rather than in the
input space as in conventional modeling problems. In this paper, we
propose to solve the corresponding inversion problem by utilizing
the disagreements of an ensemble of neural networks to represent
the prediction error in the unexplored component space. The next
calibration sample is then chosen at a composition where the indi-
vidual models of the ensemble disagree most. The results obtained
for a realistic chemometric calibration example show that the pro-
posed active learning can achieve a given calibration accuracy with
less training samples than random sampling.

Index Terms—Active learning, chemometrics, design of experi-
ment, ensemble of models, error prediction, inverse model, model
building, multivariate calibration, near infrared (NIR), spectra,
spectrometer, spectroscopy.

1. INTRODUCTION

NFRARED (IR) or near-infrared (NIR) spectroscopy is a

method used to identify a compound or to analyze the com-
position of a material by studying the interaction of IR light with
matter. Chemometrics is the application of mathematical and
statistical methods to analyze chemical data, e.g., multivariate
calibration, signal processing/conditioning, pattern recognition,
experimental design, etc. [1].

The process of finding appropriate model parameters that lead
from the spectrum to the desired information on the composition
of the material is called calibration. In chemometrics, calibration
is achieved by using the spectra as multivariate descriptors to
predict concentrations of the constituents. The sequential steps
in multivariate calibration are described in [2] and [3].
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The corresponding calibration model can be linear (e.g., lin-
ear regression from standard software like GRAMS/AI [4],
Unscrambler [5]), HORIZON MB [6], etc., or nonlinear. In
the nonlinear calibration category, neural networks (NNs) have
been widely used, as reported in the works [7]-[9], also for par-
ticular spectroscopy applications, e.g., prediction of cleaning
solution component concentrations [3], identification of amino
acid [10], gasoline applications [11], [12], polyethylene density
prediction [13], etc.

A. Motivation

In chemometrics, depending on the application, the chemical
lab tests typically cost around 500-1000 USD per sample [3].
Therefore, it is of particular interest to achieve a given cali-
bration accuracy with minimal number of training samples to
minimize the cost of model building. For this, one often uses
fixed experimental designs [14], where the entire set of train-
ing samples is determined in one step. Nonlinear calibration
techniques, particularly using NN [3], [7]-[13], try to achieve
a faster convergence to a particular accuracy level, basically
replacing the linear methods.

B. Problem to be Solved

In this paper, however, we shall primarily be interested in a
sequential determination of optimal training samples, i.e., by ac-
tive learning techniques. Our main objective will be to evaluate
use of an ensemble of NN models for active learning in the cal-
ibration of chemometric models. However, due to the particular
nature of the calibration in chemometrics, one cannot directly
apply the state-of-the-art active learning methods. Instead, one
has to solve an inverse problem for the active learning, which
will be explained later. It is also interesting to verify whether
such inverse modeling-based active learning method yields any
tangible advantage over the standard direct methods.

The remainder of this paper is organized as follows. Section 11
gives an overview of different state-of-the-art active learning
techniques. The inverse problem that has to be solved when ac-
tive learning is applied, in particular, to chemometrics calibra-
tion problems is explained in Section III. Experimental results
are described in detail in Section IV and discussed in Section V,
followed by conclusions in Section VI.

II. ACTIVE LEARNING

A. What is Active Learning

In industrial research, one is frequently confronted with the
task of exploring the relationship between a number of in-
put variables x = (x1,22,...,x,) and some response y. In



chemometric calibration problems, x may, e.g., refer to the prin-
cipal components (PCs) of a measured IR spectrum and y to the
concentration of a constituent in the corresponding sample.

In most cases, these relationships are so complex that it is im-
possible to model them reliably from physical principles, i.e.,
they can only be explored through a combination of experimen-
tation and empirical modeling. The main objectives of such a
process are the following:

1) to achieve an acceptable fit of the experimental data;

2) to obtain reliable information about the relationship be-

tween y and x in a predefined x-region of interest;

3) to minimize the necessary number of experiments.

The first two of these points, in particular, the choice of the
empirical model and of the statistical procedures are used to
estimate the unknown model parameters. The third of the above
objectives, the minimization of the required number of experi-
ments, refers to the field of “experimental design” [14], i.e., to
the choice of the x-values at which the experiments are to be
made.

Most of the literature on experimental designs is concerned
with fixed designs, i.e., the number of experiments to be per-
formed is fixed in advance. The problem is then to determine at
which input values the experiments should be made in order to
extract as much information as possible about the relationship
between y and x.

Here, however, we are rather concerned with the problem that
an experimental approach is very expensive and time consum-
ing. If this is the case, we usually do not want to fix the number of
experimental runs in advance. Sometimes, we can start from an
already existing set of experimental data, and it may then be de-
sirable or even necessary to perform the additional experiments
sequentially.

Under these circumstances, we want to know “where to look
next” in order to learn as much as possible about the relationship
to be explored. In other words, we want to determine at which
x-values the next experiment has to be performed so that the
expected information gain is maximal. This problem of “active
data selection” or “active learning” has a long history, and it
has gained renewed interest in connection with NN learning
[15]-[21].

In the following sections, we briefly summarize some active
learning strategies that have been described in the literature.
These strategies are adaptive in the sense that the decision of
where to perform the next experiment depends on the outcome
of all previous experiments, i.e., on our present knowledge about
the relationship to be explored.

B. Maximal Information Gain

‘We want to model the relationship between a vector x of input
variables and a response y(x) by a functiony = f(x, w), where
w denotes a vector of parameters.

The outcome of an experiment is represented as an input—
response pair {x;, t; }, where ¢; is the measured response at input
x;, and py (w) denotes the probability distribution of the model
parameters w after N measurements {x;,¢;},7=1,2,..., N,
have been analyzed.

The information gain associated with making a new experi-
ment at x is then equal to the expected entropy decrease

AS(x) = / dtpn (H)[Sx (W) — Sx 1 (wl{x t1)] (D)
where
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and where p(t|x, w) is the probability density that the model
with parameter values w predicts a response ¢ if the measure-
ment is made at input x. According to the strategy of maximal
information gain, the next experiment should then be made at
that x-value for which the expected entropy decrease AS(x) is
maximal.

C. Maximum Modeling Uncertainty

If we assume that the empirical model y = f(x, w) is capable
of representing the experimental data {x;,¢;} up to a zero-
mean Gaussian noise with standard deviation o, an approximate
evaluation of AS(x) leads to the following expression [16]:

AS(x) = %log[l +V(x,wy)/0?] (6)
where wy refers to the parameter values estimated from the
first N experiments, and V' (x, w ) measures the corresponding
modeling uncertainty. This result tells us that we obtain maximal
information gain if we make our next experiment at the x-value
with the largest modeling uncertainty.

For nonlinear models, e.g., NN, the evaluation of V' (x, wy )
is computationally quite expensive and can create numerical
problems. The modeling uncertainty can, however, be esti-
mated empirically by the variance of a set of randomly gen-
erated model approximations, and there exist several straight-
forward procedures for a suitable generation of different model
approximations.

1) One possibility is to add Gaussian noise with variance o2,
to the existing experimental data, creating different sets of
pseudomeasurements with which the empirical model can
be trained (o refers to the known or estimated experimental
error).

2) In the case of NNs, there exist a number of additional
methods to create different model approximations from
a given set of experimental data. We can, e.g., start the
training process from different, randomly chosen, initial
weights w, or use bootstrapping [3] to generate different
sets of training samples, etc.



D. Space-Filling Strategies

A completely different approach to active learning is space-
filling strategy. In space-filling, the next experiment is simply
performed at the x-value that has the largest “distance” d(x)
to the existing training data. As a measure of distance, one can
usually choose the Euclidean distance in x-space

%) = min || x = x| ™

where the minimum is taken over the current set of training
samples. This will be discussed in detail later with respect to
calibration problems.

E. Discussion and Comparison of Active Learning Strategies

The performance of active learning strategies has been tested
on a number of (mostly academic) problems [15]-[21]. Hu
et al. [17] proposed unsupervised active learning using graph-
theoretic approach. Xingquan et al. [18] used ensemble of dif-
ferent classifiers for active learning from streaming data. Basak
and Gupta [19] used feedforward NN for active learning. Krogh
and Vedelsby [20] compared NN ensembles for active learning.
Poland and Zell [21] have used five simple test functions to com-
pare the performance of different active learning strategies with
that of random data selection. In their tests, the variance-based
methods (maximal modeling uncertainty) always led to a con-
siderably faster decrease of the modeling error (with increasing
number of training samples) than random or space-filling strate-
gies. Only for low-dimensional input spaces, space-filling led
to a significant improvement over random strategies.

Space-filling strategies, on the other hand, are simpler to im-
plement and, in general, more robust than strategies based on
information gain or modeling uncertainty. Another problem with
the variance-based active learning is that these strategies rely on
the assumption that the model used is capable of representing
the (unknown) relationship between the input x and the response
y (up to measurement noise). If the approximation model is too
simple, the modeling uncertainty may give a misleading an-
swer to the question of where to choose the next experiment. A
nonuniform measurement uncertainty, e.g., much higher mea-
surement errors in some regions of the input space, can also lead
to problems with variance-based strategies.

III. ACTIVE LEARNING IN CALIBRATION PROBLEMS
A. Inverse Problem

All of the active learning strategies discussed in the previous
section refer to a learning problem where the training samples
are constructed by performing an experiment (i.e., measuring the
output y) for a chosen value of the input x. In this paper, however,
we are concerned with a different type of learning problems.
These refer to the calibration of chemometric models [1], [3]
that predict, e.g., the concentration of some constituent (output
y) from a condensed representation (input x) of the IR spectrum
(PCs, partial least squares [1], or wavelet components) of a
heterogeneous material. The search for a most informative next
experiment thus has to be performed in the output space, rather
than in the input space as in conventional modeling problems. As

one cannot measure the “next spectrum,” one has to choose the
sample constituents to get the next composition, the spectrum
of which is then measured.

For space-filling strategies, a corresponding adaptation is
straightforward. The space-filling selection of new training sam-
ples is simply performed in the output space, i.e., in the space of
concentrations and other measurement characteristics. Space-
filling methods can thus be used both for the construction of an
optimal initial training set and for the sequential addition of new
training samples [14].

The adaptation of variance-based active learning strategies
for calibration, on the other hand, leads to a number of chal-
lenging problems. In particular, we have to solve an inversion
problem, i.e., to transform the information about modeling un-
certainties from the input (spectra) to the output (concentration)
space. We can, however, not simply sample the input space (e.g.,
uniformly) for data points with high uncertainty and then trans-
fer this information to the output space. The reason is that a
given region in the concentration space, e.g., is mapped in an
unknown and perhaps very nonuniform way into the space of
PCs.

One possibility to approach the inversion problem is to mea-
sure the modeling uncertainty for the training samples, for which
the concentrations are known, and then use this information to
train an “inversion model” that predicts an estimation of the
modeling uncertainty for all points in concentration space.

B. Algorithm

The inverse problem of active learning in calibration prob-
lems is described in the foregoing section. In the following,
we describe our proposed algorithm to solve this inversion
problem. The models used in the algorithm all refer to feed-
forward NNs [22], [23] that are trained by error backpropaga-
tion [22], [23].

For simplicity, we formulate our active learning algorithm
for models that predict the concentration of a single component.
The variance-based active learning algorithm is described as
follows.

1) Step 0: Choose an initial set of [V calibration samples.
Each sample consists of the measured concentration and
of the corresponding IR spectrum (characterized, e.g., by
a number of PCs).

2) Step 1: Train an ensemble of “prediction models” (mod-
els that predict the concentration of a sample from the
measured IR spectrum) with the current set of calibration
samples. Bootstrapping [3] is used to create the individual
models of the ensemble.

3) Step 2: Determine the concentration prediction (= average
over the individual predictions) and the “modeling uncer-
tainty” (= variance of the predictions of the individual
models in the ensemble) for all calibration samples.

4) Step 3: Train an “inversion model” (prediction of the mod-
eling uncertainty for a given concentration) with the cor-
responding data for the current set of calibration samples.



5) Step 4: With the “inversion model,” predict the modeling
uncertainty for an appropriately chosen set of concentra-
tion values.

6) Step 5: From this set, choose the ny concentration val-
ues (e.g., ng = 1,5, or 20), where the predicted “model-
ing uncertainty” is highest. Then, prepare corresponding
samples and measure their IR spectra. Add these samples
to the set of calibration samples and go back to Step 1.

Iterate the algorithm until the number of calibration samples is
sufficient to achieve an acceptable accuracy of the concentration
prediction.

If the concentrations of several components have to be pre-
dicted, the above active learning algorithm can be applied sep-
arately for each component. Alternatively, one can define an
overall “modeling uncertainty” that adequately combines the
modeling uncertainties for the different concentrations.

IV. NUMERICAL RESULTS
A. Dataset

To validate the proposed active learning algorithm of Sec-
tion III-B, we use the “Tecator” dataset [24]. The dataset consists
of 240 NIR-spectra of several cuts of meat, along with param-
eters like fat, protein, and water content of each meat sample.
We used all the 240 spectra and selected the fat concentration
as the parameter of interest. We noticed that there are some
repeated data, with identical spectra and concentration values.
Nevertheless, we included all data in the models.

B. Models

The NNs used in the different steps of the active learning
algorithm are described below. The MATLAB NN toolbox [25]
was used for the network design and for the experiments.

1) The “prediction networks” used in Step 1 (models to pre-
dict the fat value of the training samples) has a 10-7-3-1
architecture. That is, it has an input layer of ten nodes (ten
PCs of the spectra are used as input), two hidden layer,
consisting of seven and three neurons, respectively, and
one output (fat content). The nonlinear transfer function
between the input and the first hidden layer is a tangent-
sigmoid function [22], [23], [25], and a linear transfer
function is used between the first and the second hid-
den layer and between the second hidden layer and the
output. These network design parameters have been opti-
mized in a series of experiments. In order to avoid over-
fitting [22], [23], an early stopping criterion is used, each
network being trained for 100 epochs.

2) The network used as “inversion model” in Step 3 (predic-
tion of modeling uncertainty) has a simpler architecture of
1-2-1, in order to avoid overfitting. That is, it has an input
layer with one input (fat content), one hidden layer with
two neurons, and one output for the modeling uncertainty
(standard deviation of ensemble of prediction models).
The transfer function between the input and the hidden
layer is tangent-sigmoid and that between the hidden and

the output layer is linear. This network was trained for 20
epochs.

3) We note that to predict the fat content (prediction models),
a relatively complex network structure is used. This is be-
cause we need a good accuracy in predicting the values out
of which the prediction uncertainty is estimated. However,
to predict the modeling uncertainty (inversion model), a
relatively simple network is used. If the inversion model
is chosen too complex, it would model perfectly for the
training set, i.e., for data for which we have the true values,
but it would generalize badly to data with unknown mod-
eling uncertainty, which is the really important purpose
of the model. Therefore, the structure of the “inversion
model” is kept simple intentionally so that it might model
not too well for the training set, but would predict gener-
ally well the modeling errors in the unexplored part of the
component space, where we do not have the true values.

C. Experiments

With the aforementioned network structures, the following

experiments have been performed.

1) Out of the 240 samples, a fixed set of 40 samples is used
as a validation set which is never used in the training. The
validation set is used to see whether active learning is pro-
viding any advantage over, say, random sample addition.
Therefore, after each run of choosing the next sample(s)
from our active learning principle, the same number of
samples is chosen randomly. For each new training set,
both for active and for random sample addition, prediction
on the validation set is done to compare the performances.
One experiment is performed with space-filling and active
learning to choose the next samples.

2) Different experiments are performed with different sizes
of the starting training set (with 20, 40, and 80 starting
samples out of the available 200 samples). That is, for 20
starting samples, e.g., 20 samples are randomly chosen
out of the 200 existing samples, and the remaining 180
samples are kept as the buffer, from which the next samples
are chosen.

3) For each number of starting samples, five different ran-
domly chosen sets are used, and the results represent cor-
responding averages.

4) Different experiments are performed in terms of how many
samples are added in each active learning step (5 or 20
samples per iteration). The predicted ensemble standard
deviations are sorted in descending manner and the 5 or 20
values with the highest model disagreements are chosen.

5) Different experiments are performed with different ensem-
ble sizes. Bootstrapping [3] is used for the construction of
the ensembles, and the different networks in the ensemble
have different initializations.

6) For comparison on the validation dataset, the root mean
square error (RMSE) of the different artificial NN predic-
tions is chosen, where RMSE is defined as

e =y 22W ) ®)

n



—+— Active

—=—Random
g
w
1=
=
=
=
3
w
w
=
-
o o o O 0 0 o 0 o o o0 o o
N O T W O M~ 0 0 0O — N OO T 0 O M~ 0 O
No. of samples in training set
Fig. 1. RMSE of fat content prediction on the validation set for active learning

and random sample addition. Addition of five samples per iteration, starting with
20 initial training samples.

—e—Active
—a—Random
6.5
6
_ 55
s
L
=
= 5
g fv’\‘
2 45 2
e ey
: 4 == = e = =
L g
3 +-r—r—rrr—r—r—rrrrr——r—rrr-rr-r-r-r-rrrrrrrr
R I T SR RS O R O O
No. of samples in training set
Fig.2.  RMSE of fat content prediction on the validation set for active learning

and random sample addition. Addition of five samples per iteration, starting with
40 initial training samples.

where y is the calculated output of the network, ¥, is the
desired output, and n is the number of validation samples.

D. Results

Figs. 1-3 show a comparison of the RMSE results on the
validation set for data addition via active learning and random
sampling, for an addition of five samples per iteration, starting
with 20, 40, and 80 initial training samples, respectively. After
several experiments, the optimal size of bootstrap models turned
out to be 100 networks.

From Figs. 1-3, we see that at the end of the sample additions,
i.e., at a training set size of about 195 samples, all the three
experiments achieve similar RMSE levels. Minor differences
are due to reasons like the difference in datasets, randomization
in NN training.

—— Active
—=— Random
65
6
e SO
B
w
£ 5
=
=
245
2
E 4 ﬁ;h‘!\l FoR—
‘\:3;\\ g s iy g - -
/'_H-.,__.-‘_‘*/‘
35 P
S PSPPI
No. of samples in training set
Fig.3. RMSE of fat content prediction on the validation set for active learning

and random sample addition. Addition of five samples per iteration, starting with
80 initial training samples.

—— Active
—=— Random

475

.
(o]
F>

RMSE (validation set)
(5] FoN
-4 o]
o £ o

I
//
|/
o
Fi
X
\\.
u

~————S a
- N ”
3325
3 T T T T T T
40 B0 80 100 120 140 160

No. of samples in training set

Fig.4. RMSE of fat content prediction on the validation set for active learning
and random sample addition. Addition of 20 samples per iteration, starting with
40 initial training samples.

Figs. 4 and 5 show a comparison of the RMSE results on the
validation set for data addition via active learning and random
sampling, for an addition of 20 samples per iteration, starting
with 40 and 80 initial training samples, respectively.

Let us consider a target RMSE of 3.5 for the validation set,
with five samples addition per iteration. From Fig. 1, we can see
that with 20 starting samples, it is achieved by active learning
with about 160 samples, and by random sampling with about 175
samples. From Fig. 2, we can see that with 40 starting samples,
it is achieved by active learning with about 140 samples, and
by random sampling with about 180 samples. From Fig. 3, we
can see that with 80 starting samples, it is achieved by active
learning with about 145 samples, and by random sampling with
about 180 samples.
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For the target RMSE of 3.5 for the validation set, with 20
samples addition per iteration, from Figs. 4 and 5, we see that
it is achieved by active learning with about 150 and 140 sam-
ples, respectively, while it is never quite achieved with random
sampling.

Therefore, we can see that with active learning, a good accu-
racy is obtained with a smaller number of training samples than
with random sample addition.

Fig. 6 shows a comparison of the RMSE results on the vali-
dation set for data addition via active learning and space-filling,
for an addition of five samples per iteration, starting with 80 ini-
tial training samples. For space-filling, the total data range (%
of fat content) was divided into ten equispaced regions, and the
initial samples were chosen to cover the ranges uniformly. The
same starting dataset was used for the active learning. As the

Active learing:20 starting samples

B0

50 1

40 2

30 b

Fat value (%)

20 B

I ! | ! !
0 20 40 B0 80 100 120 140 160 180

5 samplesfiteration

Random leaming:20 starting samples

80 T T . . . . . T
50 ) ]
g wof “ J l .
2 af N d l .
o l il Ll A
10} 1 h“ﬁ,_ I+ ALy | j ! dilllgalt: ] i
%y 20 10 & 0 100 12 140 80 180
5 samples/iteration
Fig. 7. Data addition via active learning and random sampling. Addition of

five samples per iteration, starting with 20 initial training samples.

Active learning:40 starting samples
B0 T T T T T T T

Fat value (%)

1 i 1 1
0 20 40 B0 80 100 120 140 160
5 samplesfiteration

Random leaming:40 starting samples
T

60 . . . . . T
S0 l l j 1
o 40F -
3 |‘ 1
2 30 J y _
é B rj | i + ) i
% off 4 | I |
“ o AR | riy
10 3 1: 2 1’ : "‘ _i L] .l g i [ y I F
D 1 + 1 & 1 1 1 1 1
0 20 40 60 80 100 120 140 160
5 samplesfiteration
Fig. 8. Data addition via active learning and random sampling. Addition of

five samples per iteration, starting with 40 initial training samples.

results converged to required accuracy level, the learning was
continued till about 120 samples. From Fig. 6, we can notice
that the target RMSE of 3.5 can be achieved via active learning
with about 90 samples, while space-filling requires about 95
samples.

E. Comparison of Sample Trend

We further kept a track of the added samples in order to
observe the trend. Comparative data addition via active learning
and random sampling are shown in Figs. 7-9 (corresponding to
Figs. 1-3) for an addition of five samples per iteration, starting
with 20, 40, and 80 initial training samples, respectively, and
in Figs. 10 and 11 (corresponding to Figs. 4 and 5), for an
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addition of 20 samples per iteration, starting with 40 and 80
initial training samples, respectively. Fig. 12 (corresponding
to Fig. 6) shows comparative data addition via active learning
and space-filling for an addition of five samples per iteration,
starting with 80 initial training samples. In Figs.7—12, the Y-axis
represents the fat value as a percentage.

V. DISCUSSION

With respect to the above results, we would like to add the
following comments.
1) An interesting aspect for data addition is to achieve a
particular accuracy level (in our case, over the validation
dataset) with a minimum number of training samples, as
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this reduces the number of laboratory tests and thus the
cost of model building [3]. From Fig. 1, we see that starting
with 20 initial samples, the active learning is not much
better than random sample addition. From Fig. 2, one
can see that active learning performs even worse than
random sample addition up to about 110 training samples.
After that, however, it converges to a particular accuracy
level faster than random addition of samples. The effect
of active learning is even more prominent in Fig. 3 for
the case of 80 starting samples. Overall, active learning
performs well and converges faster to a particular accuracy
level (e.g., in our case target RMSE of 3.5 for validation
set) than random sample addition.
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We notice that when we start with a low number of ini-
tial training samples, e.g., 20, there is not much gain with
active learning over random sampling in the initial part.
This is probably due to the fact that active learning when
employed from the very beginning without a consider-
able knowledge about the system might drive the system
in a very special direction, e.g., concentrating on difficult
samples, and thereby failing to achieve a good overall gen-
eralization ability for the validation samples. However, if
we first choose a larger amount of initial samples and then
employ our model-inversion-based active learning, we no-
tice a consistently better performance, getting down to a
particular accuracy level significantly faster than random
sampling. Therefore, the proposition would be to start with
anot too small set of initial samples before applying active
learning for better convergence. For the “Tecator” dataset,
we observed an optimal starting set of about 40-80 sam-
ples. The lower this number, the better is active learning
for the overall cost of model building.

For an addition of 20 samples per iteration, we also ob-
serve a better convergence capability of active learning
over random sampling (see Figs. 4 and 5). There, we also
notice that starting with 80 initial training samples is more
advantageous for active learning than starting with a lower
number of samples.

From the nature of the added samples (see Figs. 7-11),
we can see that in contrast with random sampling, active
learning in general shows a specific systematic pattern in
choosing the samples. Note that we perform the inverse
modeling based on the highest discrepancies in the ensem-
ble of the prediction models. Therefore, active learning
tries to systematically cover the ranges where the models
disagree most, i.e., where they are less certain. For the
“Tecator” set, it seems that the prediction of the higher fat
values is more difficult, which is seen in Figs. 7-9, where
the active learning process tries to cover the ranges from
the higher to lower fat values.

From the nature of the added samples via active learning
and space-filling (see Fig. 12), we can notice that space-
filling tries to fill data uniformly (in the range of 0-60% fat
content) in each iteration of sample addition. The active
learning, as mentioned before, tries to cover the ranges
from the higher to lower fat values, which is different than
straight forward space-filling. As discussed before and
from Figs. 1-6, we can see that active learning is quite
advantageous over random sample addition, and bit more
advantageous than space-filling in this example case.
From Fig. 6, we can see that if the initial set is chosen via
space-filling instead of random sampling (see Figs. 1-5),
the target accuracy can be achieved faster (e.g., in this case
with about 90 samples).

Due to the particular nature of the calibration in chemo-
metrics, one cannot directly apply the state-of-the-art ac-
tive learning methods [15]-[21]. As one cannot measure
the “next spectrum,” one has to choose the sample con-
stituents to get the next composition, the spectrum of
which is then measured. Therefore, one has to solve an

8)

9)

10)

11)

12)

13)

inverse problem for the active learning, as demonstrated
in this paper. Nevertheless, this is very specific to the spec-
troscopy and chemometrics field.

Comparing Figs. 7-9, one can see that even with active
learning, there are some variations (automatically invoked
by the active learning scheme) in choosing the samples.
For example, in Fig. 7, for 20 starting samples, the first
85 chosen samples show quite some fluctuations in their
values, while these fluctuations are much less pronounced
for 80 starting samples (see Fig. 9). This probably indi-
cates that 80 starting samples is an optimal number for the
“Tecator” dataset.

For an addition of 20 samples per iteration (see Figs. 10
and 11), the variation in the values of the added samples is
smaller. For example, the first 20 samples added in Fig. 11
(one iteration with 20 samples) all have a small fat content.
In Fig. 9 (four iterations with five samples per iteration),
for comparison, only the first five samples have a low fat
content, while the next 15 samples have a high fat content.
It is to be noted that in both cases, the initial 80 training
samples are identical.

In our example of the “Tecator” dataset, we had a total of
200 preacquired samples. Then, we started with 80 sam-
ples, and kept 120 in buffer from which we chose actively.
In practice, this would be analogous to asking the exper-
imenter to make the next samples there. For example, in
Fig. 9, starting with 80 initial samples, for the next round’s
five sample addition, one would ask the experimenter to
choose low fat samples, e.g., in the range of 0-5% (value
along the Y-axis). This would be the idea of the active
learning.

From Fig. 3, if one assumes a realistic target RMSE of 3.5
for the given application, one can achieve this with about
145 samples with active learning, while one would require
about 180 samples using random sampling. This means a
saving of 35 samples. In chemometrics, the cost of model
building depends on the number calibration samples, as
one has to perform lab tests to determine the actual values.
Depending on the application, the typical costs of chemical
lab tests could be in the range of 500-1000 USD/sample
[3]. Therefore, active learning can provide a significant
advantage in cost-effective model building.

Our active learning algorithm, which uses the disagree-
ments in the ensemble of model predictions, proposes the
next optimal samples automatically by solving the inverse
modeling problem in chemometrics. This does not require
any particular system background knowledge, as is typi-
cally required to design the experiments [14]. However,
in order to optimally use the proposed active learning
method, one does require a realistic number of initial sam-
ples; therefore, one actually uses a considerable amount
of system knowledge to estimate the uncertainties in the
remaining component space. For the “Tecator” dataset,
our experiments indicate that the optimal initial starting
set size is about 80 samples.

As demonstrated, one can keep the number of samples to
be added as a parameter. In principle, one can set it to one



sample per iteration. However, we skipped this choice as
it would have taken a five times higher computation time
than an addition of five samples per iteration. In addition,
in chemometrics, one typically is not interested in a single
next sample, but rather a bunch of samples to utilize the
chemical lab tests in a cost-optimal way. Five samples
seem to be an acceptable value for a sample bunch to be
added.

VI. CONCLUSION

In a multivariate calibration process, one finds the optimal
model parameters that lead from the spectrum to the desired
information on the composition of the material. An interest-
ing aspect for data addition is to achieve a particular accuracy
level with a minimum number of calibration samples, as this re-
duces the number of laboratory tests and thus the cost of model
building. In chemometric calibration models, the input refers
to a proper representation of the spectrum and the output to
the concentrations of the sample constituents. The search for a
most informative next experiment thus has to be performed in
the output space, rather than in the input space as in conven-
tional modeling problems. In this paper, we have proposed an
inverse modeling technique that uses the disagreements of an
ensemble of prediction models to determine the next samples in
the unexplored component space. We propose to choose the next
sample(s) where the models disagree most, i.e., calibration sam-
ples for which the prediction models are most uncertain. This
algorithm was tested using the “Tecator” dataset [24]. The com-
parative results show that the proposed active learning algorithm
can be beneficial in terms of attaining a particular accuracy level
with a smaller number of samples than for the case of random
sample addition. It is also observed that the better convergence
using the active learning algorithm can only be obtained if we
have accumulated a minimum amount of system knowledge,
i.e., if we use a minimal amount of initial calibration samples.

REFERENCES

[11 R.G. Brereton, Chemometrics: Data Analysis for the Laboratory and
Chemical Plant. Chichester, U.K.: Wiley, 2003.

[2] M. Blanco and I. Villarroya, “NIR spectroscopy: A rapid-response ana-
lytical tool,” Trends Anal. Chem., vol. 21, no. 4, pp. 240-250, 2002.

[3] A.Ukil, J. Bernasconi, H. Braendle, H. Buijs, and S. Bonenfant, “Improved
calibration of near-infrared spectra by using ensembles of neural network
models,” IEEE Sens. J., vol. 10, no. 3, pp. 578-584, Mar. 2010.

[4] Thermo Scientific. (2004). “GRAMS® Spectroscopy Software Suite,”
[Online]. Available: http://www.thermo.com/com/cda/product/detail/
0,1055,22290,00.html

[5] Camo. (2007). “The Unscrambler®9.7,” [Online]. Available: http://

unscrambler.camo.com

ABB. (2011). “HORIZON MB™TM FT-IR Software,” [Online]. Available:

http://www.abb.com/product/us/9AAC100055.aspx

[71 T. Naes, K. Kvaal, T. Isaksson, and C. Miller, “Artificial neural networks
in multivariate calibration,” J. Near Infrared Spectrosc., vol. 1, pp. 1-11,
1993.

[8] F.Despagne and D. L. Massart, “Neural networks in multivariate calibra-
tion,” Analyst, vol. 123, pp. 157R-178R, 1998.

[91 N. Benoudjit, E. Cools, M. Meurens, and M. Verleysen, “Chemometric
calibration of infrared spectrometers: Selection and validation of variables
by nonlinear models,” Chemomet. Intell. Lab. Syst., vol. 70, pp. 47-53,
2004.

—
2

[10] T. Sato, “Application of an artificial neural network to the identification of
amino acids from near infrared spectral data,” J. Near Infrared Spectrosc,
vol. 1, no. 4, pp. 199-208, 1993.

[11] R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, “Comparison of lin-
ear and nonlinear calibration models based on near infrared (NIR) spec-
troscopy data for gasoline properties prediction,” Chemometr. Intell. Lab.
Syst., vol. 88, pp. 183-188, 2007.

[12] R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, “Universal technique for
optimization of neural network training parameters: Gasoline near infrared
data example,” Neural Comput. Appl., vol. 18, no. 6, pp. 557-565, 2009.

[13] K. Saeki, K. Tanabe, T. Matsumoto, H. Uesaka, T. Amano, and K. Funatsu,
“Prediction of polyethylene density by near-infrared spectroscopy com-
bined with neural network analysis,” J. Comput. Chem. Jpn., vol. 2, no. 1,
pp- 33-40, 2003.

[14] L.Eriksson, E. Johansson, and N. Kettaneh-Wold, Design of Experiments:
Principles and Applications,3rded.ed. Umea, Sweden: Umetrics, 2008.

[15] J. Bernasconi and F. Greuter, “Adaptive design of experiments,”
Informatik-Informatique, vol. 1, pp. 18-20, 1998.

[16] D.J.C. MacKay, “Information-based objective functions for active data
selection,” Neural Comput., vol. 4, pp. 590-604, 1992.

[17] W. Hu, W. Hu, N. Xie, and S. Maybank, “Unsupervised active learning
based on hierarchical graph-theoretic clustering,” IEEE Trans. Syst. Man.
Cybern. B, Cybern., vol. 39, no. 5, pp. 1147-1161, Oct. 2009.

[18] Z. Xingquan, Z. Peng, L. Xiaodong, and S. Yong, “Active learning from
stream data using optimal weight classifier ensemble,” IEEE Trans. Syst.
Man. Cybern. B, Cybern., vol. 40, no. 6, pp. 1607-1621, Dec. 2010.

[19] J. Basak and M. Gupta, “Active evaluation and ranking of multiple-
attribute items using feedforward neural networks,” IEEE Trans. Syst.
Man. Cybern. A, Syst. Humans, vol. 36, no. 6, pp. 1135-1145, Nov. 2006.

[20] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” in Advances in Neural Information Processing Sys-
tems, G. Tesauro et al., Eds. Cambridge, MA: MIT Press, 1995, pp. 231-
238.

[21] J. Poland and A. Zell, “Different criteria for active learning in neural
networks: A comparative study,” in Proc. Eur. Symp. Artif. Neural Netw.,
2002, pp. 119-124.

[22] S.Haykin, Neural Networks: A Comprehensive Foundation.
MacMillan, 1994.

[23] A. UKkil, Intelligent Systems and Signal Processing in Power Engineering.
Berlin, Germany: Springer-Verlag, 2007.

[24] Carnegie Mellon University, “Tecator dataset,” [Online]. Available:
http://lib.stat.cmu.edu/datasets/tecator

[25] MATLAB® Neural Network Toolbox, ver. 7.2.0.232 (R2006a), The Math-
‘Works Inc., Natick, MA, 2006.

New York:

Abhisek Ukil (S’05-M’06-SM’10) received the
Bachelor of electrical engineering degree from the
Jadavpur University, Kolkata, India, in 2000, and the
M.Sc. degree in electronic systems and engineering
management from the University of Bolton, Bolton,
U.K.,, in 2004. He received the Ph.D. degree from the
Pretoria (Tshwane) University of Technology, Preto-
ria, South Africa, in 2006, working on power systems
disturbance analysis with Eskom.

From 2000 to 2002, he was a Software Engineer
with InterralT, Noida, India. In 2006, he joined the
Integrated Sensor Systems Group, ABB Corporate Research, Baden-Dittwil,
Switzerland, where he is currently a Principal Scientist. He is an author/coauthor
of more than 45 refereed papers, a monograph, two book chapters, and
inventor/co-inventor of seven patents. His research interests include signal pro-
cessing, machine learning, power systems, embedded systems, and sensors.

Jakob Bernasconi received the Diploma and Ph.D.
degrees in theoretical physics from the ETH Zurich,
Zurich, Switzerland, in 1968 and 1972, respectively.

He was a Research Fellow with the ABB Cor-
porate Research, Baden-Dittwil, Switzerland, where
he is currently a consultant. He has contributed to
more than 80 scientific papers. His research inter-
ests include disordered systems, stochastic processes,
neural networks, machine learning, and economic
modeling.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


