
JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 1

Evolving a Multiagent Controller for Micro
Aerial Vehicles

Max Salichon, and Kagan Tumer, Senior Member, IEEE

Abstract—Micro Aerial Vehicles (MAVs) are notoriously
difficult to control as they are light, susceptible to minor
fluctuations in the environment, and obey highly non-linear
dynamics. Indeed, traditional control methods, particularly
those relying on difficult to obtain models of the interaction
between an MAV and its environment have been unable
to provide adequate control beyond simple maneuvers. In
this paper, we address the problem of controlling an MAV
(which has segmented control surfaces) by evolving a neuro-
controller and fine-tuning it using multiagent coordination
techniques. This approach is based on a control strategy
that learns to map MAV states (position, velocity) to MAV
actions (e.g., actuator position) to achieve good performance
(e.g., flight time) by maximizing an objective function. The
main difficulty with this approach is defining the objective
functions at the MAV level that allow good performance.
In addition, to provide added robustness, we investigate a
multiagent approach to control where each control surface
aims to optimize a local objective. Our results show that this
approach not only provides good MAV control, but provides
robustness to (i) wind gusts by a factor of six; (ii) turbulence
by a factor of four; and (iii) hardware failures by a factor of
eight over a traditional control method.

Index Terms—Multiagent Control, Evolutionary Control,
Neuro-Evolution, Micro Aerial Vehicles

I. INTRODUCTION

Micro Aerial Vehicles (MAVs) offer a great alternative
to piloted vehicles in many tasks such as surveillance
[1], reconnaissance, sensing [2], search and rescue [3],
and automatic target recognition [4], [5]. MAVs can
accomplish such missions without endangering human
lives, giving an important edge to the organization using
them. Many MAV platforms and control systems have
been studied [6]–[12], and this remains an active area of
research. In this paper, we address the problem of con-
trolling an MAV with segmented control surfaces using
a neuro-controller which is fine-tuned using multiagent
coordination techniques.

As opposed to larger Unmanned Aerial Vehicles
(UAVs), MAVs are small, and typically range from insect
to bird size (15 to 60 cm). The flight speed of these MAVs
is typically between 10 to 50 mph [13], [14]. They are
typically unstable and difficult to control due to highly
non-linear dynamics [7]. Additionally, MAVs are much
more sensitive to wind gusts and turbulences due to

Max Salichon and Kagan Tumer are with the School of Mechan-
ical, Industrial, and Manufacturing Engineering, Oregon State Uni-
versity, Corvallis, OR, 97331 USA. e-mail: max.salichon@gmail.com ,
kagan.tumer@oregonstate.edu

Manuscript received xxx

their size [15], [16]. As such, an MAV control system has
to be fast, flexible and robust in order to achieve stable
and reliable flight characteristics.

A. Contribution of this Work
In this paper, we show that evolving direct policies in

the form of neural networks allows the robust control of
micro aerial vehicles. In particular, the key contributions
of this work are to:
(i) show that neuro-evolutionary techniques can control
an MAV effectively;
(ii) show that the neuro-evolutionary controller is signif-
icantly more robust to wind gusts and turbulence than
a traditional PID controller;
(iii) show that using segmented control surfaces and
multiagent control not only improves MAV performance,
but these improvements are obtained with smaller ad-
justments to aileron positions, leading to both more
efficient and more responsive controllers.

The paper is organized as follows: Section II outlines
the key work related to this research. Section III describes
the MAV platform used in this work. Section IV presents
the control algorithms and simulator. Section V presents
the experimental results, where the performance and ro-
bustness of the neuro-evolutionary controllers are com-
pared with a PID controller. Section V also discusses
the results for a multiagent controller for MAVs with
segmented control surfaces. Finally, Section VI presents a
discussion on the relevance of the results and highlights
directions for future work.

II. RELATED WORK

Flexible-wing MAV designs have recently been used
to improve vehicle stability, wind gust resistance, and
payload capacity. In Flex-wing designs, the wing de-
forms to absorb energy from wind irregularities leading
to better performance and flight characteristics as a
form of passive control. It is also possible to use wing
deformations as a form of active control by using an
actuator to change the shape of the wing during flight,
where roll control of an MAV was achieved by actively
morphing the wing [12], [17]. Carbon fiber prototypes
have been under development for several years [13]
and show important advantages of the flexible-wing
MAV concept that allows important design and control
advantages. For example, flexible wings can lead to a
higher maximum airspeed, higher climb rate, improved

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 2

maneuverability, and a higher lift to drag ratio which
is particularly important for MAVs as it improves their
gliding capabilities. Although flexible-wing designs have
many benefits, they are often difficult to implement.

Segmented control surfaces offer a more practical
approach than wing morphing for increasing aircraft
controllability. A segmented control surfaces approach
was implemented on a 5.5ft wingspan remote controlled
UAV in [18], where wing ailerons were divided up into
16 independent actuated control surfaces. A reconfig-
urable controller was developed to actuate all 16 con-
trol surfaces and flight tests showed promising results
and improved performance over an unmodified aircraft.
Those tests provided good preliminary results for the use
of segmented control surfaces, but provided no method
for finding an optimal actuation mode for the system.

Traditional control techniques such as PID control
have been used successfully for many control problems
including aircraft control [2], [10], [11], [19]–[24]. These
model based techniques perform well for large aircraft,
where linear approximations of the system’s dynamics
produce good results. Unfortunately, model-based tech-
niques are typically inadequate for MAV control due
to inherent model inaccuracies and a failure of linear
approximation techniques due to highly nonlinear dy-
namics and susceptibility to environmental disturbances.
MAVs require more flexible controllers that can automat-
ically adapt to model error and environmental changes.

Learning based control techniques (e.g., neuro-
controllers where control policies are neural networks)
are flexible, do not require a model of the system, can
adapt to different platforms and dynamic environments,
and are robust to noise and/or failures. In this work,
we utilize a combination of neural networks and evolu-
tionary computation techniques, which have been used
successfully to solve a number of benchmark control
problems including the inverted pendulum [25], the ball
and beam problem [26], as well as different types of
autonomous robot problems [27]–[29]. These techniques
have also proven to be robust and efficient for complex
control problems such as multi-robot control problems
[30]–[33]. Using learning based techniques for control-
ling segmented control surfaces was presented in [29],
[34], [35], where the control technique was based on
the theory of collectives [36], [37]. Here, basic collec-
tives were implemented, where agents consisted of a
actuator, sensor, and logic package. The collectives based
approach produced encouraging results for multiagent-
based UAV control [34], [35].

III. MAV PLATFORM: GENMAV

The platform selected for these experiment is GEN-
MAV [16], an MAV developed by the Air Force Re-
search Laboratory Munition Directorate (AFRL/RW).
GENMAV is a flexible platform that could be modified
depending on a particular application or technology.
Characteristics of GENMAV (Figure 1) include a 24 inch

Fig. 1. GENMAV illustration reflecting the segmented control surfaces.

wingspan with a 5 inch chord, circular fuselage 17 inches
long, and a dihedral angle of 7 degrees. The weight
of the platform is approximately 500 grams. The wing
design was modified from previous versions in order
to improve low speed performance. Additionally, the
model of GENMAV was modified in order to test the
impact of segmented ailerons. Six ailerons were added
to each wing. In span, ailerons extend from the 50% to
the 90% span points on the wing with each aileron 1”
wide and 20% chord. The tail section was not modified.
Aerodynamic characteristics were obtained using the
vortex-lattice method aeroprediction code AVL (Athena
Vortex Lattice [38]–[41]) and detailed data can be found
in [16]. Similarly to other MAV platforms, GENMAV was
designed for a flight speed of between 10 and 50 mph
with an average flight speed around 30mph.

IV. NEURO-CONTROL FOR MAVS

The control of GENMAV is achieved through a feed-
forward neural network using a neuro-evolutionary al-
gorithm [32], [33], [42], [43]. The neural network learns
the optimal control commands through the system ob-
jective function that is designed to minimize the error
between the desired parameter value and the actual pa-
rameter value. The near optimal neural network control
system is then saved and used for flight control where
different desired altitudes and headings are achieved.

A. Neuro-Controller
A simple neuro-evolutionary algorithm was devel-

oped using the techniques outlined in [32], [33]. The
algorithm maintains an initially empty pool of neural
networks that are paired with some measure of their
utility. While the pool is not full, the algorithm generates
new random networks as seeds for future mutation,
using values sampled from a Cauchy distribution. After
this initial seeding period, the algorithm uses ε-greedy
selection from the pool of networks and selectively
mutates the chosen network using a different Cauchy
distribution. In both cases, the new network is stored
in the pool only after an agent has used it and sampled
their resulting performance, with the poorest performing
network being discarded.

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 3

The single hidden-layer, feed forward neural net-
works [44] used in these experiments have 2 inputs
which correspond to the parameter value and parameter
derivative (e.g altitude and altitude rate) retrieved from
JSBSim. The single output of the neural networks is
the control command or desired roll angle (e.g elevator
down 20%). The experiments were conducted with three
neural networks for the basic configuration (no segmen-
tation): altitude control, roll control, and heading con-
trol. Each neural network output provides the elevator
command, aileron command, and desired roll angle. For
the segmented version of GENMAV, two different setups
were used. The central controller setup is similar to the
basic configuration except that the roll controller has 12
outputs corresponding to the 12 aileron segments. The
multiagent controller setup includes additional neural
networks so that each control surface is adjusted by its
own independent controller. A total of 14 neural net-
works are used for the control surfaces and an additional
neural network is used for heading control.

A sweep of the neural network parameters was con-
ducted as a preliminary study in order to find values of
the neural network parameters that provided satisfactory
results in terms of learning and optimization of the
objective functions. The neural networks are configured
with 8 hidden units, a pool size of 20, an epsilon-greedy
selection probability of ε = 0.05, a level of initial weights
of γ = 0.1, a level of mutations of mutate γ = 0.05,
and a probability that a weight will be mutated of
0.02. Those parameters were then kept constant for the
experiments described in section V. Altitude, roll, and
heading neural network controllers were trained using
the objective functions from Section IV-B. Training time
for the altitude and roll neural network controllers was
5 seconds while training time for the heading neural
network controller was 12 seconds (doubling or halving
these times had little impact).

B. Objective Functions
An important part of using neural networks consists

of designing an objective function that allows the neu-
ral network to learn at a satisfactory rate and at the
same time achieves the system’s objective. The objective
functions used for these experiments are designed to
minimize the error between the control parameter (al-
titude, roll, and heading) and its desired value. Since
it was not possible to achieve proper control with a
single neural network using the objective functions and
conditions of our training environment, three different
controllers were created. Each controller uses its own
objective function that is specifically designed for that
particular controller. The three controllers are for alti-
tude, roll, and heading control. Their respective objective
functions are GZ for the altitude controller, GΦ for the
roll controller and GΨ for the heading controller. For
the multiagent system, a neural network controls each
individual control surface and receives its own specific
fitness. This fitness is presented in Equation 4.

Objective Function for Altitude Control: GZ

GZ was designed to minimize the error between the
desired altitude and the actual altitude:

GZ =
αZ

T∑
t=0

[
βZ |Zd − Za|+ γZ |

dZ

t
|+ δZ |ΘE |

] (1)

where αZ is a scaling constant, βZ , γZ , and δZ are tuning
constants, Zd and Za are the desired and actual altitude,
T is the simulation time, and ΘE is the elevator position.

Objective Functions for Roll Control: GΦ

Similarly, GΦ is designed to minimize the error be-
tween the desired roll and the actual roll:

GΦ =
αΦ

T∑
t=0

[
βΦ|Φd − Φa|+ γΦ|

dΦ
t
|+ δΦ|ΘA|

] (2)

where αΦ is a scaling constant, βΦ, γΦ, and δΦ are tuning
constants, Φd and Φa are the desired and actual roll, and
T is the simulation time, and ΘA is the aileron position.

Objective Function for Heading Control: GΨ

GΨ was designed to minimize the error between the
desired heading and the actual heading:

GΨ =
αΨ

T∑
t=0

[
βΨ|Ψd −Ψa|+ γΨ|

dΨ
t
|
] (3)

where αΨ is a scaling constant, βΨ and γΨ are tuning
constants, Ψd and Ψa are the desired and actual heading,
and T is the simulation time.

Multiagent Objective Functions
Objective functions GZ and GΨ for altitude and head-

ing control remain the same but GΦ changes to reflect
the aileron segmentation. Aileron controllers receive a
custom fitness GΦi that includes the angle of the aileron
segment that they control.

GΦi
=

αΦ

T∑
t=0

[
βΦ|Φd − Φa|+ γΦ|

dΦ
t
|+ δΦ|ΘAi

|
] (4)

Where αΦ is an arbitrary constant, βΦ, γΦ, and δΦ are
tuning constants, Φd and Φa are the desired and actual
roll, and T is the simulation time, and ΘAi

is the aileron
segment position.

C. System Dynamics: JSBSim
To conduct the experiments, the neural network and

PID controllers were coupled to JSBSim [45], a 6 DOF
(Degrees Of Freedom) flight dynamics model (FDM)
software library. JSBSim is a lightweight, data-driven,
non-linear, six-degree-of-freedom (6DoF), batch simula-
tion application aimed at modeling flight dynamics and

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 4

control for aircraft. JSBSim is a simulator that models
physical entities such as the atmosphere, a flight con-
trol system, or an engine. In addition, it encapsulates
mathematical constructs such as the equations of motion.
Put together, JSBSim takes control inputs, calculates and
sums the forces and moments that result from those
control inputs and the environment, and advances the
state of the vehicle (velocity, orientation, position, etc.)
in discrete time steps.

The simulation runs consist of providing the error
between desired heading and actual heading as well as
the error between desired altitude and actual altitude
as inputs to the neural network, obtaining angles for
the control surfaces from its outputs, running JSBSim to
provide the MAV state for the next time step, computing
the objective function, and having the neural network
learn from the objective function. Figures 2 and 3 show
the overall control system setup and the neural network
training diagram respectively.

D. MAV Controller
The MAV PID control is achieved through three dif-

ferent controllers, one for altitude, one for roll, and one
for heading control. The altitude control PID uses the
error between desired and actual altitude as well as
altitude rate for its inputs, and it outputs the elevator
command. Similarly, the roll and heading PID controllers
take the error between desired and actual roll, and the
roll rate as inputs for the roll control PID and the error
between the desired and actual heading as inputs for
the heading control PID. The outputs of the roll and
heading PID controller are aileron command and desired
roll respectively.

Fig. 2. Navigation Controller

1) Model and PID control: the control command for
the PID controller is calculated with three separate
parameters: the proportional, integral, and derivative
values. The proportional term (Equation 5) is directly
proportional to the error, the integral term (Equation 6)
is based on the sum of previous errors and is used to
correct small drift over time, and the derivative term
(Equation 7) is based on the error rate of change. The
weighted sum of these terms is the control command.
Tuning of the PID controller is achieved by adjusting the

three constants, KP , KI , and KD which are PID gains,
and e(t) is the error:

P = KP .e(t) (5)

I = KI .

∫ t

0

e(τ)dτ (6)

D = KD.
de(t)
dt

(7)

Figure 2 shows the control system block diagram that
includes interactions with the simulator and the user
or navigation algorithm. The user or navigation algo-
rithm provides the desired altitude and heading to the
controllers as well as the throttle command to JSBSim.
The elevator and aileron commands are provided by the
controllers. The elevator command deflects the elevator
up or down, while the aileron command deflects the
ailerons in opposite directions. In this work, the moving
surfaces are “elevons” which combine the function of the
elevators and ailerons. The elevator command deflects
the elevons up or down, while the aileron command
deflects the elevons in opposite directions. The final
elevon position is achieved by summing and scaling the
elevator and aileron commands.

Fig. 3. Neural network training

2) Neuro-Evolutionary Control: Neural network control
is done similarly with the same inputs and outputs as the
PID controllers. Training the neural networks is achieved
using the different objective function from Section IV-B.
Figure 3 shows the training cycle for one controller.
The evolutionary algorithm selects and mutates a neural
network from its pool, and that neural network controls
the system for a short period of time. The objective
function is then used to determine “fitness” of that
neural network’s flight performance. The neural network
performing the worst is then deleted form the pool. This
cycle is repeated until a good solution is found. That
neural network controller is then saved and used directly
in the control loop with JSBSim.

3) Segmented Control Surfaces and Multiagent Control:
Finally, we explore the impact of segmented control
surfaces, where the control of the segmented aileron
is similar to the unsegmented version except that the
roll control neural network includes six outputs corre-
sponding to the control commands sent to each aileron

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 5

segment. Altitude and heading control do not change
and are achieved with a two inputs, one output neural
network for each controlled parameter.

For this scenario, we also investigate the use of a
multiagent system where each control surface is con-
trolled by an independent neural network controller. The
inputs to the controllers are the same as those discussed
above, but the output directly control the position of
a control surface. Twelve neural networks control the
aileron segments while two control the elevons for a total
of fourteen neural networks giving maximum flexibility
to the control system.

V. EXPERIMENTAL RESULTS

In this section we present simulation results showing
the effectiveness of the proposed approach robustly con-
trol an MAV. In particular, we systematically investigate:
(A) Altitude control by neuro-evolutionary algorithm
(B) Heading control by neuro-evolutionary algorithm
(C) Wind gust resistance
(D) Turbulence handling
(E) Multiagent control of segmented surfaces
(F) Response to two types of failures
In each case, we compare the neuro-evolutionary algo-
rithm to a PID controller and present results in system
performance and the positions of the control surfaces.

(a) Neuro-evolutionary controller

(b) PID controller

Fig. 4. Desired and actual altitude: the neuro-evolutionary controller
achieves desired altitude faster than the PID controller with minimal
overshoot

A. Altitude Control
The altitude control PID was fairly straightforward to

implement but required a significant amount of manual

(a) Neuro-evolutionary controller

(b) PID controller

Fig. 5. Altitude rate: The change in altitude is higher for the neuro-
controller, confirming the observed performance.

tuning to achieve the desired results. Figure 4(b) shows
the MAV altitude with the dashed line representing the
desired altitude and the solid line representing the actual
altitude. The PID controller is able to track the desired
altitude well with no overshoot. Here, the MAV gets
within a foot of the target altitude in a few seconds.
Further tuning decreased performance, therefore the PID
altitude gains producing these results were maintained
throughout these experiments.

Figure 4(a) shows the MAV altitude when using neural
network control. Objective function GZ from Equation 1
was used in the training of the neural network. The train-
ing consisted several thousand 5 second flights where
the altitude control neural network was flying the plane.
Looking at the altitude from Figure 4(a), the altitude con-
trol neural network performs well. The target altitude is
reached quickly and efficiently with minimal overshoot.
The neural network’s behavior is more aggressive than
the PID’s, which allows for better and faster tracking of
the desired altitude without compromising the behavior
of the system and without creating instabilities.

The altitude rate for both neural network and PID
controllers is shown in Figure 5. This provides additional
information regarding the behavior of the system and
is helpful when designing the controllers. The altitude
rate should be kept within acceptable limits to avoid
destabilizing the system and having too sharp of a
response. The PID controller keeps the altitude rate with
10ft/sec (Figure 5(b)) while the neural network keeps it
within 16ft/sec (Figure 5(a)). The difference between the
two controllers is explained by the fact that the neural
network has learned a more aggressive policy.

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 6

(a) Neuro-evolutionary controller

(b) PID controller

Fig. 6. Elevon Positions for altitude control: The neuro-evolutionary
controller is slightly more aggressive in changing elevon positions but
still performs with little to no oscillations.

The elevon positions corresponding to the altitude
changes for both neural network and PID controllers are
shown in Figure 6. These graphs provide information on
the amplitude and frequency of the controller’s response,
which is critical for understanding performance. Both
controllers keep the elevon positions within ±30 degrees
while keeping oscillations to a minimum.

GENMAV’s characteristics tend to pitch it up when
the electric motor is on which makes it gain altitude.
In the PID controller case, a constant trim value needs
to be added to the elevator control input to keep the
MAV flying at the desired altitude. This trim value
was found by experimental trial and error. This ne-
cessitates additional tuning time before the MAV can
fly correctly. In the neural network case, however, no
trim constant is needed. Once the neural network is
properly trained, no additional tuning or training is
necessary to achieve good flight behavior. This is an
advantage of the neural network implementation where
the neural network adapts to the exact specifics of a
platform and where tuning and adjustments are made
automatically during training. This reduces the amount
time required to achieve MAV flight capability which
becomes invaluable when several different variations of
a platform are considered.

B. Heading Control

As mentioned in section IV-D, heading control is
achieved with two cascaded controllers. The first one
uses heading information to produce the desired roll

angle while the second one uses the roll information to
produce the aileron control input. Figure 7 shows the
results for both neural network and PID control, with
several random desired headings.

The heading control PID was tuned in an analogous
fashion as the altitude control PID from Section V-A.
Heading and roll control neural networks were trained
using GΦ1 and GΨ from Equations 2 and 3. Both con-
trollers were able to track the desired heading closely
while providing good system behavior. Both responses
are fast with the desired heading reached within sec-
onds. The neural network was once again more ag-
gressive and reached its target a quicker than its PID
counterpart, but with a minimal amount overshoot while
the PID controller did not have any overshoot.

(a) Neuro-evolutionary Controller

(b) PID controller

Fig. 7. Desired (dashed) and actual heading (solid): The performance
is similar, but the neuro-controller has slightly faster response.

The elevon positions corresponding to the heading
changes for both neural network and PID controllers
are shown in Figure 8. Results here are alike except for
the elevon angle range that the controllers use. Even
though the heading/roll control neural networks are a
more aggressive in trying to achieve their objective, the
neural network controllers kept the elevon angle range
within ±30 degrees while the PID controllers used a
wider range of elevon motion that is a little over ±40
degrees. The difference is likely due to the speed and
magnitude of the controller’s response to a change in
the error between the desired and actual heading.

Figures 8(a) and 8(b) show that the position of the
left and right elevon is not at exactly zero in between
the changes in altitude. This offset is necessary to com-
pensate for the torque created by the electric motor so

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 7

that straight and level flight can be achieved. This is
similar to the altitude control case where an altitude
trim constant had to be added to the elevator control
input from the PID controller. Since the heading and roll
controllers are cascaded to achieve heading control, two
different trim constants need to be added to the desired
roll angle obtained with the heading control PID and to
the aileron control input obtained from the roll control
PID. The heading and roll neural network controllers
automatically adjust and do not need tuning beyond the
basic neural network training.

(a) Neuro-evolutionary controller

(b) PID controller

Fig. 8. Elevon Positions for heading control: The PID controller here
needs large corrections (±45 degrees) to compensate its slow response,
which is both wasteful and potentially dangerous.

C. Response to Wind Gusts
Wind gusts were created at 4 second intervals with the

intensity of the wind gust increasing by 10% at every
step. The objective of the controllers was to keep the
MAV altitude and heading as close as possible to the
constant desired values which were in this case 2000
feet for the altitude and 90 degrees for the heading.
Wind gusts start after 20 seconds of normal flight at an
intensity of 2 m/s. Results for maintaining the altitude
constant are shown in Figure 9 where the dashed line
represents the desired altitude. Here, the neural network
control system was trained as described in Sections V-A
and V-B using Equations 2.

The neural network and PID controller altitude curves
have a similar shape, the main difference is in the
altitude value itself. The neural network control system
is able to maintain the MAV altitude within 1 foot
from the desired altitude, while the PID control system

(a) Neuro-evolutionary controller

(b) PID controller

Fig. 9. Desired and actual altitude: Wind gusts start at t = 20s and
repeat with increasing frequency every 4 seconds. The neuro-controller
achieves 6 times better performance than the PID controller.

can only maintain it within about 6 feet. The neural
network control system was more robust to wind gusts,
demonstrating its effectiveness at stabilizing the MAV.

One can argue that similar results could be obtained
by tuning the PID control system differently and in
similar conditions as what has been used for training the
neural network control system. It is in theory possible
to do this, but it would require not only an accurate
model of the wind gusts, but significant amounts of
experimenting and tuning. The neural network control
system required several thousand simulation runs to
achieve these results but the changes to the controller
were done automatically using the neuro-evolutionary
algorithm. No additional modeling or knowledge of the
wind gusts were required.

D. Response to Turbulence

Experiments including turbulences were also con-
ducted. Turbulence is simulated on JSBSim as a set of
external forces and moments on the vehicle, based on
randomly parametrized sinusoidal functions. In these
experiments, the amplitude of the forces acting on the
MAV varied randomly between 1 and 5 % of the craft’s
airspeed. Results showing the MAV altitude and heading
with increasing turbulences for both the neural network
and PID controllers are presented in Figure 10 and 11.

Altitude remains fairly constant throughout the exper-
iment and no significant difference is seen between the
neural network and PID controllers. Figures 10(a) and
10(b) show the altitude within half a foot of its desired

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 8

(a) Neuro-evolutionary controller

(b) PID controller

Fig. 10. Desired and actual altitude: Turbulence is added randomly
and increases throughout the simulation. The neuro-controller is nearly
unaffected whereas the PID controller suffers significantly.

value for both neural network and PID controllers. The
small variations are not relevant and altitude can be
assumed near constant for both controllers.

A difference is however visible for heading control
where neural network controllers were able to remain
closer to the desired heading. Figure 11(a) shows that
the heading stays within about a degree from the desired
heading for the neural network controllers while Figure
11(b) shows a difference of about three degrees. This dif-
ference between the two control systems is not large, but
could make a difference depending on the application.

E. Multiagent Control of Segmented Surfaces

In this section, we present the results on segmented
control surfaces. In these experiments, the multiagent
controller uses one neural network for each control
surface and the “single agent” controller uses a single
neural network to control multiple control surfaces (as
described in Section IV-D3. Figure 12 shows the perfor-
mance of the multiagent control of segmented ailerons,
and Figure 13 shows the corresponding aileron positions.
Each control surface moves independently in the case
of the multiagent controller while control surfaces move
in a symmetric fashion for the single neural network
controller. Benefits of control surface segmentation is not
apparent when these results are compared to those in
Sections V-A and V-B due to the simplicity of the task.
In the next section, we discuss the impact of multiagent
control in cases of actuator failures.

(a) Neuro-evolutionary Controller

(b) PID controller

Fig. 11. Desired and actual heading: Turbulence is added randomly
and increases throughout the simulation. The neuro-controller main-
tains course longer but is eventually knocked off-course. The PID
controller goes off-course sooner and cannot recover.

F. Actuator Failure

Actuator failures are not expected to happen on every
flight but the risk is however there and failures caused
by mechanical or electrical breakdown due to bad envi-
ronmental conditions or factory defects can still occur.
Some MAV missions can be of critical importance where
failure is not an option and could mean the difference
between life and death. For such missions, it is essential
that the MAV platform is able to recover from potential
failures. Results in this section show different failures
of an actuator for different models: the standard system
controlled by a PID controller and the segmented aileron
model controlled by a single neural network as well as
a multiagent controller.

1) Response to Actuator Stuck in Benign Position: Figure
14 shows the altitude and heading for the multiagent
controller and the heading for the single agent and PID
controllers, when failure 1 occurs. Failure 1 corresponds
to actuator 4 on the left side of the MAV failing and
remaining stuck at around 5 degrees. The flexibility of
the multiagent system allows it to adapt and reconfigure
itself so that the control objective is achieved. In this
case the multiagent controller was still able to track the
desired heading that was generated randomly every 20
seconds (Figure 14(a)). It is important to note that the
altitude control is not affected by the aileron failure since
the controllers and control surfaces are independent
(Figure 14(d)).

The control response is not as smooth as before when

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 9

(a) Multiagent controller

(b) Single agent controller

Fig. 12. Desired and actual heading for segmented surfaces. In the
basic case, single vs. multiagent control give similar results.

all actuators were working correctly but the target value
is achieved, the behavior of the system is good and
the performance is significantly better than what was
obtained using the other controllers/configurations. Fig-
ures 14(b)-14(c) show the desired and actual heading
for the single neural network controller paired with the
segmented aileron model and the PID controller. The
single agent still performs adequately (within half a
degree) but the PID controller has difficulty remaining
within 2 degrees of the desired heading.

2) Response to Actuator Stuck in Difficult Position: A
different failure scenario was also tested where the failed
actuator is the same as in failure 1 but the failure
angle is around -5 degrees. This new failed position
creates bigger differences between the controllers and
the benefits of the multiagent system combined with the
aileron segmentation becomes even more apparent.

Figure 15 shows the desired and actual heading of the
MAV, the corresponding aileron positions, as well as the
heading of the single agent and PID controllers. As dis-
cussed previously, the control response is not as smooth
when a failure is present but once again, the multiagent
controller achieves good target heading and acceptable
system demonstrate a good behavior. The heading error
is however much more pronounced this time for the
single neural network and PID controllers. The error is
over a degree for the neural network controller while it
is now close to 5 degrees for the PID controller.

3) Recovery Range from stuck Actuator: Finally, a com-
parison between the PID and multiagent controllers was
done with a wide range of failure positions. Figure 16

(a) Multiagent controller

(b) Single agent controller

Fig. 13. Aileron position is segmented control surfaces. Even though
performance was similar the multiagent controller achieves this with
much smaller corrections than the single agent controller.

shows the heading error plotted as a function of the fail-
ure angle for both, the PID and multiagent controllers.

Unless the failed actuator angle remains around 2
degrees which is its normal position for straight and
level flight, the failure affects the PID controller for all
possible angles with the heading error increasing with
the higher angles of actuator failure. The last 2 angles
of failure of -18 and -20 degrees are not shown on the
graph for the PID controller because the system becomes
unstable in these cases, which is partly due to significant
drag and reduced velocity created by the relatively large
aileron deflections.

The multiagent controller performs much better and
remains unaffected by actuator failures that remain
within ±10 degrees of position for straight and level
flight. Within this boundary, the multiagent control sys-
tem performs up to 8 times better than the PID controller.
Beyond this limit, the heading error is still kept within
the reasonable values of 0 to 4 degrees which is still a
minimum of 4 times better than the PID controller.

VI. DISCUSSION

Micro Aerial Vehicles present a new and encouraging
platform for collecting information in new and in some
cases previously inaccessible environments. Yet, they
typically present a challenging control problem which
limits their applicability to the domains in which they
are the most needed (e.g., dangerous search and rescue
or reconnaissance). This paper presents a novel approach
to the MAV control problem and provides improvements

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 10

(a) Heading multiagent controller

(b) Heading single agent controller

(c) Heading PID controller

(d) Altitude multiagent controller

Fig. 14. Desired and actual heading (Failure 1). The multiagent
controller performs significantly better than the single agent controller
in this difficult task. Both learning algorithms outperform the PID
controller that is unable to control the MAV in this failure mode.
Altitude control is also shown for the multiagent controller.

of the flight characteristics of such platform by introduc-
ing a larger number of control surfaces on the aileron
section. Robustness to actuator failure is also added to
the platform and allows the MAV to stay in flight and
perform maneuvers with up to two actuator failures.

Sections V-A and V-B showed that training a neu-

(a) Heading multiagent controller

(b) heading single agent controller (Failure 2)

(c) Heading PID controller (Failure 2)

(d) Left Aileron positions multiagent controller

Fig. 15. Desired and actual heading (Failure 2). The multiagent con-
troller significantly outperforms both the single agent controller and
the PID controller in this difficult task, and both learning algorithms
outperform the PID controller in this failure mode. Aileron positions
corresponding to multiagent control (Fig 15(a)) are also shown.

ral network controller on an MAV with a neuro-
evolutionary algorithm was possible and required less
tuning than a PID controller. Additional trim constants
were also not necessary for the neural network con-
trollers as these controllers automatically adapted to the
specifics of the platform. The neural network controllers

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 11

Fig. 16. Heading error vs failure angle: The PID heading error linearly
correlates to the failed position of the elevon. The multiagent controller
on the other hand compensates for a wide variety of failed positions
and gracefully degrades after the failed position exceeds ± 10 degrees.

were also ready to use right after training without
any further adjustments. Unlike model based control
methods, no model analysis was needed to create these
controllers which gives great flexibility in the implemen-
tation as they are not platform specific and could auto-
matically reconfigure themselves to the particularities of
a different platform.

Section V-C presented a first set of experiments where
the neural network controllers were trained beyond the
basic flight objectives to see if they could adapt to harder
flight conditions and improve MAV robustness when
wind gusts are present. Results were encouraging and
showed improvements in maintaining the target altitude
when using a slightly more complex objective function
during training. Experiments with increasing levels of
turbulence were also presented and showed better per-
formance of the neural network controllers that were
able to stay closer to the desired heading. This flexibility
provides an important advantage as MAV control can be
improved and custom made for a particular platform or
known and unknown environmental conditions without
requiring any significant amount of tuning as long as the
objective function is designed correctly.

This work can be extended in two broad directions.
First, the results shown in this study can be imple-
mented in hardware. This transfer of simulation results
to hardware is a difficult process in general, as the dif-
ferences between simulation and hardware cause many
unexpected failures. The selected approach, though, is
naturally suited to handle such a transfer because it does
rely on models. As such, it is less sensitive to differences
betweens simulated and real environmental conditions.
Indeed, our earlier work on the transfer of navigation
algorithm from simulation to hardware for wheeled
robots showed that minimal tuning was necessary to the
algorithms [46]. The key issues however are in ensuring
sensor and actuator functionality within limited power
and weight restrictions.

Second, we can extend this work by conceptually
moving towards a “morphing” wing design by signif-
icantly increasing the number of control surfaces. The

results presented in this paper are a first step that shows
the potential of leveraging multiagent based methods
to improve MAV control implementation, performance,
and robustness. The controllers presented in this pa-
per only use the aileron and elevator controls. Adding
openings of various sizes, shapes, and locations on the
wings of MAVs have also been shown to improve the
robustness of the vehicle to wind gusts and perturbation.
A multiagent approach to selecting the location, size and
shape of those openings seems to be a natural match to
yield truly “morphing” micro aerial vehicles.

Acknowledgements: The authors would like to thank
Chris Holmes-Parker for his help editing , Megan Col-
bath for the CAD model of the segmented control surface
MAV, and Kelly Stewart for her help with the GENMAV
configuration. This work was partially supported by NSF
grant 0910358 and AFOSR grant FA9550-08-1-0187 .

REFERENCES

[1] N. Nigam and I. Kroo, “Persistent surveillance using multiple
unmanned air vehicles,” IEEE, 2008.

[2] J. Hall, D. Lawrence, and K. Mohseni, “Lateral control and
observation of a micro aerial vehicle,” in 45th AIAA Aerospace
Sciences Meeting and Exhibit, 2007.

[3] R. Kulkarni and G. Venayagamoorthy, “Bio-inspired algorithms
for autonomous deployment and localization of sensor nodes,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, vol. 40, no. 6, pp. 663–675, 2010.

[4] P. Dasgupta, “A multiagent swarming system for distributed
automatic target recognition using unmanned aerial vehicles,”
IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems
and Humans, vol. 38, no. 3, pp. 549–563, 2008.

[5] P. Scerri, R. Glinton, S. Owens, D. Scerri, and K. Sycara, “Geolo-
cation of RF emitters by many uavs,” in AIAA Infotech@Aerospace
2007 Conference and Exhibit, 2007.

[6] D. A. Jenkins, P. G. Ifju, M. Abdulrahim, and S. Olipra, “Assesse-
ment of controllability of micro air vehicles,” Proc. Sixteenth Int.
Conf. On Unmanned Air Vehicle Systems, 2001.

[7] M. R. Waszak, J. B. Davidson, and P. G. Ifju, “Simulation and
flight control of an aeroelastic fixed wing micro aerial vehicle,”
in AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2002.

[8] P. Ifju, D. A. Jenkins, S. Ettinger, Y. Lian, and W. Shyy, “Flexible-
wing-based micro air vehicles,” in 40th AIAA Aerospace Sciences
Meeting & Exhibit, 2002.

[9] A. M. DeLuca, M. F. Reeder, M. V. OL, J. Freeman, I. Bautista, and
M. Simonich, “Experimental investigation into the aerodynamic
properties of a flexible and rigid wing micro air vehicle,” in
24th AIAA Aerodynamic Measurement Technology and Ground Testing
Conference, 2004.

[10] R. Krashanitsa, G. Platanitis, B. Silin, and S. Shkarayev, “Aerody-
namics and controls design for autonomous micro air vehicles,”
in AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2006.

[11] W. J. Pisano, D. A. Lawrence, and P. C. Gray, “Autonomous uav
control using a 3-sensor autopilot,” in AIAA Conference and Exhibit,
2007.

[12] H. Garcia, M. Abdulrahim, and R. Lind, “Roll control for a
micro air vehicle using active wing morphing,” in AIAA Guidance,
Navigation and Control Conference, 2003.

[13] M. Abdulrahim and J. Cocquyt, “Development of mission capable
flexible-wing micro air vehicle,” in 53rd Southeastern Regional
Student Conference, 2002.

[14] T. Kordes, M. Buschmann, S. Winkler, H.-W. Schulz, and P. Vors-
mann, “Progresses in the development of the fully autonomous
MAV CAROLO,” in 2nd AIAA Unmanned Unlimited Systems, Tech-
nologies, and Operations Aerospace, 2003.

[15] R. K. Arning and S. Sassen, “Flight control of micro aerial
vehicles,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2004.

JOURNAL OF TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS PART C, VOL. 42, NO. X, 2012 12

[16] K. Stewart, J. Wagener, G. Abate, and M. Salichon, “Design of the
air force research laboratory micro aerial vehicle research configu-
ration,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007.

[17] J. Valasek, J. Doebbler, M. Tandale, and A. Meade, “Improved
adaptivereinforcement learning control for morphing unmanned
air vehicles,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 38, no. 4, pp. 1014–1020, 2008.

[18] M. Abdulrahim and R. Lind, “Investigating segmented trailing-
edge surfaces for full authority control of a UAV,” in AIAA
Atmospheric Flight Mechanics Conference, 2003.

[19] J. Hall, D. Lawrence, and K. Mohseni, “Lateral control of a tailless
micro aerial vehicle,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, 2006.

[20] G. Platanitis and S. Shkarayev, “Integration of an autopilot for a
micro air vehicle,” in AIAA, 2005.

[21] W. Guo and J. F. Horn, “Modeling and simulation for the devel-
opment of a quadrotor uav capable of indoor flight,” in AIAA
Modeling and Simulation Technologies Conference and Exhibit, 2006.

[22] S. Winkler, M. Buschmann, L. Kruger, H.-W. Schulz, , and P. Vors-
mann, “State estimation by multi-sensor fusion for autonomous
mini and micro aerial vehicles,” in AIAA Guidance, Navigation, and
Control Conference and Exhibit, 2005.

[23] J. Young and A. R. Price, “FPGA based uav flight controller,” in 11
Eleventh Australian International Aerospace Congress (AIAC), 2005.

[24] P. Y. Oh, W. E. Green, and G. Barrows, “Neural nets and optic
flow for autonomous micro-air-vehicle navigation,” in ASME
International Mechanical Engineering Congress and Exposition, 2004.

[25] F. Pasemann, “Evolving neurocontrollers for balancing an in-
verted pendulum,” in Computation in Neural Systems, 1998, pp.
495–511.

[26] M. A. Marra, B. E. Boling, and B. L. Walcott, “Genetic control of
a ball beam system,” in IEEE international Conference on Control
Applications, 1996.

[27] N. Bredeche, Z. Shi, and J.-D. Zucker, “Perceptual learning and
abstraction in machine learning: an application to autonomous
robotics,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, vol. 36, no. 2, pp. 172–181, 2006.

[28] J. Shepherd III and K. Tumer, “Robust neuro-control for a micro
quadrotor,” in Proceedings of the Genetic and Evolutionary Computa-
tion Conference, Portland, OR, July 2010, pp. 1131–1138.

[29] M. Salichon and K. Tumer, “A neuro-evolutionary approach to
micro aerial vehicle control,” in Proceedings of the Genetic and
Evolutionary Computation Conference, Portland, OR, July 2010, pp.
1123–1130.

[30] J. Chen and M. Barnes, M.J.and Harper-Sciarini, “Supervisory
control of multiple robots: Human-performance issues and user-
interface design,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, vol. 41, no. 4, pp. 435–454,
2011.

[31] Y. Jin, Y. Liao, A. Minai, and M. Polycarpou, “Balancing search
and target response in cooperative unmanned aerial vehicle
(UAV) teams,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 36, no. 3, pp. 571–587, 2005.

[32] A. Agogino and K. Tumer, “Efficient evaluation functions for
multi-rover systems,” in The Genetic and Evolutionary Computation
Conference, Seatle, WA, June 2004, pp. 1–12.

[33] K. Tumer and A. Agogino, “Coordinating multi-rover systems:
Evaluation functions for dynamic and noisy environments,” in
The Genetic and Evolutionary Computation Conference, Washington,
DC, June 2005.

[34] S. R. Bieniawski, “Distributed optimization and flight control
using collectives,” Ph.D. dissertation, Stanford University, 2005.

[35] S. R. Bieniawski, I. Kroo, and D. Wolpert., “Flight control with
distributed effectors,” in AIAA Guidance, Navigation, and Control
Conference, San Francisco, CA, August 15-18, 2005.

[36] K. Tumer and D. Wolpert, Eds., Collectives and the Design of
Complex Systems. New York: Springer, 2004.

[37] D. H. Wolpert and K. Tumer, “Optimal payoff functions for
members of collectives,” Advances in Complex Systems, vol. 4, no.
2/3, pp. 265–279, 2001.

[38] M. Drela and H. Youngren, “Athena vortex lattice (AVL),” 2008.
[Online]. Available: http://web.mit.edu/drela/Public/web/avl/

[39] J. Becker, Creating Vortex Lattice Aircraft Models for the Piccolo
Simulator with AVL, Cloud Cap Technology, 2621 Wasco Street,
Hood River, OR 97031, March 2008.

[40] D. M. Richwine and J. H. D. Frate, “Development of a low-aspect
ratio fin for flight research experiments,” NASA, Tech. Rep., 1994.

[41] E. G. Garcia and J. Becker, “Uav stability derivatives estimation
for hardware-in-the-loop simulation of piccolo autopilot by qual-
itative flight testing,” in 1st Latin American UAV Conference, 2007.

[42] F. Gomez and R. Miikkulainen, “Active guidance for a finless
rocket through neuroevolution,” in Proceedings of the Genetic and
Evolutionary Computation Conference, Chicago, Illinois, 2003.

[43] D. Moriarty and R. Miikkulainen, “Forming neural networks
through efficient and adaptive coevolution,” Evolutionary Compu-
tation, vol. 5, pp. 373–399, 2002.

[44] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, November 1995.

[45] J. S. Berndt, “Jsbsim: An open source flight dynamics model in
C++,” in AIAA Modeling and Simulation Technologies Conference and
Exhibit, 2004.

[46] M. Knudson and K. Tumer, “Adaptive navigation for autonomous
robots,” Robotics and Autonomous Systems, vol. 59, pp. 410–420,
June 2011.

