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Environmental Issues for MIMO Capacity

Daniel W. Bliss, Keith W. Forsythe, Alfred O. Hero, JIFellow, IEEE and Ali F. Yegulalp

Abstract—Wireless communication using multiple-input mul-
tiple-output (MIMO) systems enables increased spectral efficiency
for a given total transmit power. Increased capacity is achieved
by introducing additional spatial channels that are exploited using
space—time coding. In this paper, the environmental factors that af-
fect MIMO capacity are surveyed. These factors include channel
complexity, external interference, and channel estimation error.
The maximum spectral efficiency of MIMO systems in which both
transmitter and receiver know the channel (using channel estimate
feedback) is compared with MIMO systems in which only the re-
ceiver knows the channel. Channel complexity is studied using both
simple stochastic physical scattering and asymptotic large random
matrix models. Both uncooperative (worst-case) and cooperative
(amenable to multiuser detection) interference are considered. An Fig. 1. Spectral efficiency bound as a function of noise density normalized
analysis for capacity loss associated with channel estimation error energy per bit £,/N,) comparison ofM x A MIMO systems assuming
at the transmitter is introduced. channel matrices with flat SVD.
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Index Terms—Channel capacity, channel phenomenology, infor-

mation theory, interference cancellation, MIMO communication, Second per Hertz transmitted from one array to the other.

multiuser detection, space-time coding. Capacity increases linearly with signal-to-noise-ratio (SNR) at

low SNR but increases logarithmically with SNR at high SNR.

A given total transmit power can be divided among multiple

spatial paths (or modes), driving the capacity closer to the linear
ULTIPLE-INPUT multiple-output (MIMO) systems are regime for each mode, thus increasing the aggregate spectral
a natural extension of developments in antenna arrajficiency. As seen in Fig. 1, which assumes an optimal high

communication. While the advantages of multiple receive agpectral efficiency MIMO channel [a channel matrix with a

tennas, such as gain and spatial diversity, have been known gagsingular value distribution (SVD)], MIMO systems enable

exploited for some time [1]-[3], the use of transmit diversithigh spectral efficiency at much lower required energy per bit.

has more recently been investigated [4], [5]. Finally, the advaBecause MIMO systems use antenna arrays, interference can

tages of MIMO communication, exploiting the physical channgle mitigated naturally.

between many transmit and receive antennas, are currently re-

ceiving significant attention [6]-[9]. While it is possible for theA. Environment

channel to be so nonstationary that it cannot be estimated in anythe environmental factors that affect MIMO system capacity,
useful sense [10], in this paper, a quasistationary channel ggmely channel complexity, external interference, and channel
sumption is employed. stationarity, are addressed in this paper in Sections IlI-V, re-
MIMO systems provide a number of advantages ov@pectively. The first category (channel complexity) is a function
single-antenna communication. Sensitivity to fading is reducggine richness of scatterers. In general, capacity increases as the
by the spatial diversity provided by multiple spatial pathssingylar values of the channel matrix increase. The distribution
Under certain environmental conditions, the power requirgs singular values is a measure of the usefulness of various spa-
ments associated with high spectral efficiency communicatigg paths through the channel.
can be significantly reduced by avoiding the compressive The second category (external interference) adversely affects
region of the information theoretic capacity bound. Hergne ysefulness of paths through the channel. Given that the most
spectral efficiency is defined as the total number of bits pg&eful portion of the channel lives in a subspace of the channel
matrix, capacity loss is a function of the overlap of the inter-
Manuscript received June 12, 2001; revised May 28, 2002. This work wEgrence with this subspace. Generally, interference is assumed
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estimates than the receiver, one would expect the channel estiFhe capacity is defined as the maximum of the mutual infor-
mation error to be greater at the transmitter. mation [22]

B. Channel Estimation Feedback I(z, x|H) = <10g2 [P(zlx, H)}> 2

In implementing MIMO systems, one must decide whether p(z[H)
channel estimation information will be fed back to the trangver the source probability densipéx|H) subject to average
mitter so that it can adapt. Most MIMO communication researeransmit power constraints, where the expectation value is indi-
has focused on systems without feedback. A MIMO systeoated using the notatiofi- -}. Noting that the mutual informa-
with an uninformed transmittefwithout feedback) is simpler tion can be expressed as the difference between two conditional
to implement, and at high SNR, its spectral efficiency bourghtropies
approaches that of anformed transmittefwith feedback).

I(z, x|H) = h(z|H) — h(z|x, H) 3)

C. Space-Time Coding
thath(z|x, H) = h(n) = ng.log,(reo?), and thath(z|H)

n

The focus of this paper is the environmental sensitivity maximized for a zero mean Gaussian soutcthe capacity
of MIMO communication; however, for completeness, %given by

few space-time coding references are discussed. In order

to implement a MIMO communication system, a particular |o-,2LIan +H(xxT>HT|

coding scheme must be selected. Most space-time coding ¢= &1}1(% log, 02T, | (4)
schemes have a strong connection to well-known single-input ’

single-output (SISO) coding approaches and assumeam where

formed transmitterSpace—time coding can exploit the MIMO |---| determinant;

degrees of freedom to increase redundancy, spectral efficiency} Hermitian conjugate;

or some combination of these characteristics [11]. PreliminaryL,,  identity matrix of sizeng,,.

ideas are discussed in [6]. A simple and elegant solution thiEtiere are a variety of possible constraintsgs’), depending
maximizes diversity and enables simple decoupled detectiorois the assumed transmitter limitations. Here, it is assumed
proposed in [12]. More generally, orthogonal space—time blothat the fundamental limitation is the total power transmitted.
codes are discussed in [13] and [14]. A general discussionTdie optimization of their,, X nr, noise-normalized transmit
distributing data across transmitters (linear dispersive codesg@wariance matrixP = (xx')/o2 is constrained by the
given in [15]. High SNR design criteria and specific examplestal noise-normalized transmit powé},. Allowing different

are given for space—time trellis codes in [16]. Unitary codes opransmit powers at each antenna, this constraint can be enforced
timized for operation in Rayleigh fading are presented in [17lising the form P} < P,. The channel capacity is achieved
More recently, MIMO extensions of turbo coding have beeifi the channel is known by both the transmitter and receiver,
suggested [18], [19]. Finally, coding techniques foformed giving

transmittersystems have received some interest [20], [21].
Crr= sup log, |Inm + HPHT| . (5)
P; trp)=r,
[I. INFORMATION THEORETIC CAPACITY

The information theoretic capacity of MIMO systems had® avoid radiating negative power, the additional constiint
s imposed by using only a subset of channel modes.

been widely discussed, for example, in [7]. The development%]‘j e ; : X
theinformed transmittefwater filling” and uninformed trans- Substltu_tl_ngUSW , the magnltu_de-ordered singular value
gcomposition, foH, (5) can be written as

mitterapproaches is repeated here. This is useful as an introdf}
tion to MIMO capacity and to the notation used in this paper. In

. . . i Cir = log, |L.... 6
addition, the spectral efficiency bounds in the presence of inter- " Q;tr[Q(Ssll‘lg)—l}:Po 8z [T, € ©)
ference are introduced. Q =SWIPWST (7)
A. Informed Transmitter (IT) where S is a diagonalniy, X fmin Matrix, ng, =

For narrowband MIMO systems, the coupling between thein(nrz, nr.), andU andW aren g, X numin aNdnrg X nmin
transmitter and receiver for each sample in time can be modef®étrices containing the selected columns of unitary matrices.
using The maximum under the total power constraint can be found

by differentiating with respect tg an arbitrary parameter &
z=Hx+n (1) P
= {108, [Tu, + Q) - Xr{QS'S) T} =0 @®)
where dq

z  complex receive array fUtqu , where) is the undetermined parameter associated with the La-
H  nprs x nrs (r_lumber of receive by transmit antennabrangian constraint. Evaluating the derivative
channel matrix;

x  transmit array vector; r {(In,,,i,, Q) 3_Q} o {(STS)la—Q} )

n zero mean complex Gaussian noise. dq dq
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this relationship is satisfied for allQ/9q if Q is a diagonal tempt to optimize its output to compensate for the channel, the

matrix given by maximum spectral efficiency is given by
P, +
Q= sTs L. . (10) Cur =logy | I, + —HH'|. (18)
Tz

This discussion assumes ti@is full rank. The additional pos- This a common transmit constraint as it may be difficult to pro-
itive power constraint is satisfied by employing only a subset gfde the transmitter channel estimates.
channel modes. This intuitively satisfying but arbitrary enforce-
ment of the positive power constraint is justified with greats- Capacity RatiaC;r/Cyr
precision in the Appendix. The total power is given by At high SNR,C;r andCy converge. This can be observed
in the largeP, limit of the ratio of (17) and (18)
tr{Q(s’s)™'} =P,

PoAHIr{(sts)='3 o
L. log, |2+ s s‘
:tr{—;\““ - (STS)—l} (11) Crr_, min
Cot ™ o[ + 2= 18]
1 P, +tr{(S'S)""} 12) T .
A B Timin ’ 10g2(P0) - 1Og2(nmiﬂ) + %
- log. (P log: log, |S1S|
The constrainP > 0 is enforced by employing only the tep, 0g,(Fs) — logy(nra) + Mmin
modes of thex,,in channel modes. The optimu@; is given — 1. (19)
b
y If np,. > ng., then the convergence to one is logarithmically
A0 slow.
Qrr = < 0 0) (13) At low SNR, the ratioCrr/Cyr is given by
PO tr D_1 C 1 2 PO 1 dlnax dlnax
A = <y> D-— In+ (14) T _, ogy[(F, +1/ ) ]
et Cur log, [La,, + 2= HHY
where the entried,,, in the diagonal matribXD contain then _ log(1 + P,maxeig{ HH'})
top eigenvalues d8S’ (or, equivalently, o HH). The values "t Lo Lo fE
d,, must satisfy { o8 ( nne + g )}

__ maxeig{HH'}
AD™ ! >0 (15) T _Lu{HHT}
nra

n4
A > ——F——. 16
> P, +tr{D-1} (16)

(20)

using (17) withn = 1 and (18). Given this asymptotic result,
a few observations can be made. The spectral efficiency ratio is
If (16) is not satisfied for somé,,,, it will not be satisfied for given by the maximum to the average eigenvalue ratiH GH.

any smallerd,,,. The resulting capacity is given by If the channel is rank one, such as in the case of a multiple-
input single-output (MISO) system, the ratio is approximately

Crr = log, P, +tr{D™'} bl (17) equal tonz,.. Finally, in the special case wheEE"H has a flat
Ny eigenvalue distribution, the optimal transmit covariance matrix

is not unique. Nonetheless, the rafipr /Cy approaches one.
The receive and transmit beamforming pairs are given by the
columns ofU andW associated with the selected eigenvaluds. Interference
contained inD.

In this discussion, it is assumed that the environment is s}
tionary over a period long enough for the error associated wi
channel estimation to vanish asymptotically. In order to stu isen, which was considered previously. The mutual informa-
typical performance of quasistationary channels sampled frqmn is élgain given by (2) and (3), where entropz|x, H) in
a given probability distribution, capacity is averaged over an eflie presence of the external interference becomiast )
semble of quasistationary environments. Under the ergodic as-
sumption (that is, the ensemble average is equal to the time av- h(z|x, H) < log,{re|o?I + o2R|} (21)
erage), the mean capaci§/;r) is the channel capacity.

Extending the previous discussion [8], [23], capacity is calcu-
ted in the presence of uncooperative (worst-case) external in-
ference) in addition to the spatially-white complex Gaussian

ando? R is the spatial interference covariance matrix. Equality
B. Uninformed Transmitter (UT) is achieved if and only if the interference amplitudes have a

If the channel is not known at the transmitter, then the Of_ausman dlstrlbu_n(_)n. Thus,tthel _w;)rst-ctal_slbrmedcapacny
timal transmission strategy is to transmit equal power with ea We maximum-—minimum mutual information)

antennd = F, /nraL,,., [7]. Assuming that the_ receiver can Cins = sup inf Z(z, x|H) (22)
accurately estimate the channel but the transmitter does not at- p(z|H) P(1)
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becomes
L = 0 i
Crrime = sup  logy ‘I + HPHT‘ (23) g -
B; tr(P)=r, o - 10 <
o V4
using 2 Re
i g -20 '-
H=(I+R)"Y2 H. (24) & p
E - 30 '
Gaussian interference corresponds to a saddle point of the 1
mutual information at which the maximum—minimum capacity 0 02 04 06 08 1
is achieved. The capacity in the presence of Gaussian inter- Generalized Beamwidth Separation

ference ~has a form identical to (17) under the E'ra:nSfOrmaticl)zliq 2. Eigenvalues dHH? for a 2 x 2 line-of-sight channel as a function of
D — D, whereD contains the eigenvalues #IH'. The 3 sgparaﬁon_ 9

transmitted noise-normalized power covariance makRixs

calculated usingH. Similarly, the uninformed transmitter
spectral efficiency bound in the presence of noise is given by
the same transformation #1 — H.

For this discussion, three approaches will be explored:
« line-of-sight toy physical model;

« large dimension random matrix model;

E. Other Performance Metrics « stochastic physical single scattering model.

The information-theoretic capacity is not the only possibl&. Toy 2x 2 Channel Model
metric of performance. As an example, another useful perfor-

tic is the “out itV 1161, “Out ity Because the distribution of channel matrix eigenvalues is
mance metric is the “outage capacity” [16]. “Outage capacilyssential to the effectiveness of MIMO communication, a toy

is the achievable spectral efficiency bound, assuming a givi )Qample is employed for the purposes of introduction. The
probability of error-free decoding of a frame. In many practicaei

ituati thi i be the best f perf genvalue distribution of a & 2 narrowband MIMO system
situations, tis metric may be the best measure of perormangey, . ncance of environmental scatterers is discussed. To

. . : Wistalize the example, one can imagine two receive and two
of data. However, this metric is dependent on particular systt% nsmit antennas located at the corners of a rectangle. The

ch_0|ces (allowgble prol_aablllty of (_)utage a_nd_ frame size). I:Pgltio of channel matrix eigenvalues can be changed by varying
this paper, the information theoretic capacity is employed. the shape of the rectangle. The columns of the channel matrix
H can be viewed as the receiver array response vectors (one
vector for each transmit antenna)

A variety of techniques are used to simulate the channel ma-
trix [24]. The simplest approach is to assume that all the entries H=V2 (a1v1 azv2) (26)

in thel channel matrix are sarr?{aleg_from |den';:c_al independephereq, anda, are constants of proportionality (equal to the
fcompﬁx GaussmpH “]: G. ]}N ! _et IS arp.roacl ISI cpnvementroot mean squared transmit-to-receive attenuation for transmit
rom the perspective of performing analytic calculations, it May,.onnas 1 and 2 respectively) that take into account geometric
provide a channel eigenvalue distribution that is too flat. At thétattenuation and antenna gain effects, andand v, are unit
other eXFre”.‘e' channe_ls can be characte_nzed by "’?d"’efs'?y Orﬁi&rm array response vectors. For the purpose of this discussion,
[25], which is used to indicate an effective cutoff in the €i9€Nt is assumed that = a; = a,, which is valid if the rectangle

value distribution induced by spatial correlation. A number Qoo mation does not significantly affect overall transmitter-to-
approaches that introduce spatial correlations have been S%siver distances

gested. One approach uses the form

I1l. CHANNEL COMPLEXITY

The capacity of the 2 2 MIMO system is a function of
H=RY2 g RY? (25) the channel singular values and the total transmit power. Eigen-
TTteft right’ values ofHH' are given by

The above model results in a covariance matrix of the Kronecker
product formRy. s+ @ Ry, ,, for the entries in the channel ma-
trix H. This product structure can arise from a spherical Greenigere the absolute value norm is denoted|by- ||. The sep-
function model of propagation such as that used in Section lll-gation between receive array responses can be described in a

provided several additional conditions are met. First, scattergesnvenient form in terms of generalized beamwidths [26]
are concentrated around (but not too close to) the transmitter and

receiver. Second, multiple scattering of a particular kind (from bio = 2 arccos{||vIvQ||}. (28)
transmitter element to transmitter scatterer to receiver scatterer .

to receiver element) dominates propagation. Third, scatter&ar small angular separations, this definition of beamwidths
are sufficiently separated in angle when viewed by their assdesely approximates margd hocdefinitions for physical ar-
ciated array. Finally, all transmitter scatterers couple with all reays. The eigenvalugs andu, are displayed in Fig. 2 as afunc-
ceiver scatterers. Ray-tracing models of urban propagation fion of generalized beamwidth separation. When the transmit
dicate that the latter assumption, in particular, is often violateaind receive arrays are small, as indicated by small separation

pir,2 = 2031 £ [[viva|)) (27)
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10 - In complicated multipath environments, small arrays employ
oy - scatterers to create virtual arrays of a much larger effective aper-
g 5 o ture. The effect of the scatterers on capacity depends on their
E g P number and distribution in the environment. The individual an-
=3 2 /, tenna elements can be resolved by the larger effective aper-
£€ 1 A7 ture produced by the scatterers. As was demonstrated in Fig. 2,
g 05 (727 the ability to resolve antenna elements is related to the number
@ 'l of large singular values of the channel matrix and, thus, the

capacity.
(-0 s 101520 1) Received PowerThe choice ofa2P, for the horizontal
aZI;, (dB) axis of Fig. 3 is convenient because it can be employed to easily

compare performance using different constraints and environ-
Fig. 3. Informed transmittercapacity of a 2x 2 line-of-sight channel, ments, This choice corresponds to the typical noise-normalized
assuming antenna beamwidth separations of 0.1 (solid) and 0.9 (dashed). . . . . .

received power for a single receive and single transmit antenna

radiating powero2 P,. However, this choice can be mildly
in beamwidths, one eigenvalue is dominant. As the array apeiisleading because the total received power will, in general,
tures become larger, which is indicated by larger separation, as& much larger tham?P,. In general,a? is defined by the
array’s individual elements can be resolved by the other arr@&robenius norm squared of the channel matrix normalized by
Consequently, the smaller eigenvalue increases. ConverselytH®number of transmitters and receivers
larger eigenvalue decreases slightly.

Equations (16) and (17) are employed to determine the ca- a? = @ (32)
pacity for the 2x 2 system. The water-filling technique first NTs" R
must determine if both modes in the channel are employed. Bothrhe total received noise-normalized power produced by a
modes are used if the following condition is satisfied: set of orthogonal receive beamformers is given BHPH! 1.
9 Theuninformed transmitterate is maximized by sending equal
P2 > ———1 1 power to all transmit antennas so thaf fPH'} becomes
Potr + i P,/nr tr{HH'} = ng.a?P,. Itis worth noting thafP is not,
P> 1 1 in general, optimized by thiaformed transmitteto maximize
M2 pi received power but to maximize capacity. For the 2 toy ex-
||VIV2 I ample, the total received power is given2{y + ||vIv2||)a2Po

(29)  and2a2P, + 2|[vival|2/(1 = ||viva||?) when using one or two
modes, respectively. In both cases, the total received power is
assumingu; > jio. much larger thar?P,.
If the condition is not satisfied, then only the stronger channel The total received power for the capacity-optimizeftrmed
mode is employed, and the capacity, from (17), is given by transmitter given an arbitrary channel matrix, is

a?(1 — [|vva||?)

P, +tr(D7!
C[T = 1Og2(1+LL1P0) tr{QIT}:tr{<#>D—In+}
— N 2 T +
= log,(1 4 2a°[1 + ||viva||]P)- (30) WD) N tr{D~ Jtr{D} - n2 @)
Otherwise, both modes are used, and the capacity is given by © oy N+

using (14). The first term in (33) is bounded from below by

Pt (O
Crr =logy | ===y, D}, w{HH}
Pt 2  ny T °min{nr., nr.}
= log, H1k270 T 1 T B2 > max{nr,, nrs} a°P,. (34)
2 12

—2log,{a?(1 — ||VIV2||2)PO +1) The second term in (33)_is bounded_from below by zero. Con-

) tne : sequently, the total received power is greater than or equal to

—logy {1 — [[viv2|"}. (31) max{nre, nretaP,.

For very smalla?P,, far from the nonlinear regime of the
hannon limit, the optimal solution is to maximize received

Zi?mWIth; S(?[Earatlons_to.l and. (19d 'S.thSplai/leg N Flgdt ower. This is done by transmitting the best mode only, setting
oW a”l%, the capacily associated with smafl beamwidly} —_ ; 1 thig regime, the total received power is given by

separation performs best. In this regime, capacity is lineat
with receive power, and small beamwidth separation increases tr{Qrr} = P, maxeigHH'}. (35)

the coherent gain. At high?P,, large beamwidth separation

produces a higher capacity as the optimal MIMO systeifhis result is bounded from above by, 7 r.a?P,, which is
distributes the energy between modes. achieved if there is only a single nontrivial mode in the channel.

The resulting capacity as a function efP, for two E
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B. Large Dimension Gaussian Channel 0.08
. . 2007 N\
A common channel modeling approach is to construct a ma- Z 0.06 )4
trix G by independently drawing matrix elements from a unit- a 0.05 /
variance complex Gaussian distribution, mimicking indepen- 50.04
dent Rayleigh fading < 0.03
£ 0.02 // -
0 /
H — aG. (36) =001 |

-20 -15 -10 -5 0 5 10

This matrix is characterized by a relatively flat distribution of Eigenvalue (dB)

singular values and is an appropriate model for very rich mul-
tiple scattering environments.

In the limit of a large channel matrix, the eigenvalugig 4. Eigenvalue probability density function for the complex Gaussian
probability density function fo(l/nTx)GGT asymptotically channel((1/nr,.)GGT), assuming an equal number of transmitters and
approaches a variant of the Wigner distribution [27]-[31]eceversr = 1) in the infinite dimension limit.

Of course, implemented systems will have a finite number of
antenna elements; however, because the shape of the typical

eigenvalue distributions quickly converges to that of the 0 ~

asymptotic distribution, insight can be gained by considering -5 S~

the infinite-dimensional case. The probability that a randomly a2

chosen eigenvalue of theg, x ng, matrix (1/nr,)GG' is § -10

less than is given byF,.(11). Here,G is anng, X nr, matrix, g -15

and the ratio of g, t0 nr,, is given byr = ng./nr.. In the §, =20 \

limit of ng, — oo, the probability measure is = 28 \
fr(p) + e b(p) 37) 0 02 04 06 08 \ i

. . . . Fraction of Eigenvalues
where the constant associated with the “delta function” at 0 is

given by
Fig. 5. Peak-normalized eigenvalue spectrum for the complex Gaussian

1 channel ((1/nr.)GG1) assuming an equal number of transmitters and
¢, =max [0,1—=}. (38) receiver(r = 1) in the infinite dimension limit.
r

The first term of the probability measuye(u) is given by

where the continuous form is asymptotically exact. This integral

(1 —a) (b — p) is discussed in [31]. The normalized asymptotic capacity as a

< < b, : o
Folp) = D pur e Spsh (39) function ofa®P, andr, Cyr/nre ~ ®(aP,; r)is given by
0; otherwise ) )
C) — (* P e
where O(x; ) =v {10g2 (1/ w.,.) + P log, <1 — w_)
: 2 . 2 _ w_
a, = (\/7_ — 1) , b. = (\/7_4— 1) . (40) pln(2)
The eigenvalue probability density function for this matrix ex- wy = 1 + Py Yy 1 \/(1 Yot 3)2 _4p
pressed using a decibel scale is displayed in Fig. 4. Using the 22 2z 2 T
probability density function, the large matrix eigenvalue spec- p = min <7,’ 1) ’ - 1 (42
trum can be constructed and is depicted in Fig. 5. max(1, r)

1) Uninformed Transmitter Spectral Efficiency Bounid: ] o
the large matrix limit, theuninformed transmitterspectral " the special case o¥/ = nr. = nr., the capacity is given
efficiency bound, which is defined in (18) and discussed in [55]3’
and [31], can be expressed in terms of a continuous eigenvalue

distribution Cur ., &L, sFh([1, 1, 3/2], 2, 3], —4a®F,)  (43)
M 111(2) ? ? ? ? ?
P,
Cur = logy (Lng, + ny HHT‘ where, I, is the generalized hypergeometric function [32].
‘ 1 2) Informed Transmitter CapacitySimilarly, in the large
= logy |In,, + 0P, GGT‘ matrix limit, theinformed transmittecapacity, which is defined
Ny

in (17), can be expressed in terms of a continuous eigenvalue

1Equation (42) is expressed in terms of bits rather than nats as it is in [31].

~ s / dpfo()logo(1+ pa®P,) (A1)
0



2134 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2002

distribution [9]. To make connection with the continuous eigen-

value probability density defined in (371 from (17) is re- e
placed withD = a?nr, A, where diagonal entries & contain § S
the selected eigenvalues @f/nz,)GG?. & %
T2
P+ i —trA™? £ E
Crr = log, e a‘nr. A g
n4 177]
2 B / N1 7
~ gng. 10g, anrebo 4 nns Ju, IG5 30 20 -10 0 10 20
9N Ra a*P, (dB)

OO
—i-an/ dpef (1) logy (1) (44) Fig. 6. Asymptotic large dimension Gaussian channel antenna-number-
1 normalized spectral efficiency bound€';+/M (solid) and Cyr/M
(dashed) (b/s/Hz/M) as a function of attenuated noise-normalized power
whereg is the fraction of channel modes used by the transmitt@r’ P.), assuming an equal number of transmitters and receivers=( 1,

M = Ny = TlRa;).

cut

ny _ >
9= NRe / dpfr(pe) (45)  To calculate the capacity, the following integral must also be
Howt evaluated:
and ji.,; is the minimum eigenvalue used by the transmitter, [<° )
given by the continuous version of (16) /H dyef1(pe) logy(1)
111 3 3 :
n4 _ Heut
Ay =nrzap > = = {43F2 <{—7 = —} ) [—7 —} ) —>
Pyt npe g [ dpfr (1) 2'27 2|22 4
oo 4 2
r di f- (1) + <\/4 — Peut — ——— arcseC{ D
Heut = Feul (46) i AV Heut RV Heut

a?P, +7r f::d duf,,(u)% '

1n<ucut>} View (60)

X (1 - hl[ucut]) - I 111[4] )

27

The approximations are asymptotically exact in the limit of large VHeut
MRz Implicitly solving for ..., capacity as a function ef? P, is

For a finite transmit power, the capacity continues to increaggplayed in Fig. 6. Theininformed transmittespectral effi-
as the number of antennas increases. Each additional antefleacy bound is plotted for comparison. For sSmalP,, jicu:
increases the effective area of the receive system. Eventuadlyproaches the maximum eigenvalue supported’,ify). In
this model breaks down as the number of antennas becomeg$® regime, the ratio of’;;/Cy approaches 4. Conversely,
large that any additional antenna is electromagnetically shieldgdiargeq? P,, the normalizednformed transmitterand unin-
by eXiSting antennas. However, finite random channel matriCWmed transmittespectra| efﬁciency bounds converge.
quickly approach the shape of the infinite model. Consequently,
it is useful to consider the antenna-number normalized capadBy Stochastic Physical Scattering Model

as a function of,” P, andr, Cyr/nr., which is given by For many physical environments, the random channel matrix
o 2P, 41 foo () S aslsumption may be i_nappropriatg pec_agse it produces an eigen-
~ glog, Hont 7 ] value speptrum that is ov_erly opt|m|st|c in terms pf the number
N Rz rg of large eigenvalues. To investigate more realistic channel ma-
o0 trices, a simple scattering model is employed. This model was
+ / dpfr(1)logy().  (47)  relatively successful in matching the spatial decorrelation of
Heut antenna elements measured at cellular phone frequencies and

Using the asymptotic eigenvalue probability density functiop@ndwidths [33]. Assuming a particular density, a field of point
given in (39), the integrals in (46) and (47) can be evaluate¥fatterers is generated randomly, and the channel matrix is cal-

The relatively concise results for= 1 are displayed here as  culated explicitly using
G_QWi[dRaa m(n)+dr, (n)]

o0 Hy~ 51
[t LD D Y PR 1)
Heut
(&= Jtowt)ioms + 4 arcsin (\/ﬁ) where distancegg.. ., (n) anddy.. (n) between antennas and
1 _ 2 (48) scatterers are expressed in terms of wavelengthsyarddand
27 n index the receive antenna, transmit antenna, and scatterer, re-
and 0o 1 spectively. The model does not include multiple scattering.
/ dpfi(p)= Given an ensemble of matrices constructed using this tech-
Heut H nigue, the distribution of channel matrices is primarily a func-

L v A —pew 1 L Heut (49) tion of the number of transmit and receive antennas and the
T2 * Ut * 7 arcsi 2 ) density of scatterers in units af L2, where is the distance

v
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Fig. 7. (a) Median eigenvalue distribution BFH for 2 x 2, 4 x 4, 8 x  Fig. 8. (a) Median eigenvalue distributions HFH for an 8 x 8 channel
8, and 16x 16 channel MIMO systems, assuming a dense field of scatterd'MO systems, assuming scatterer densities/ k2, 10/ L?, and100/ L? for
(10/(L)?) and an antenna array separatién The median eigenvalue antenna array separationsiof The median eigenvalue distribution for arx8
distribution for a 16x 16 random matrix MIMO system is provided for 8 random matrix MIMO system is provided for comparison. (b) Capacity ratio
comparison. (b) IT capacity ratio with respect to thex1@6 random Gaussian With respect to 8 8 random Gaussian channel.
channel.
two reasons for this. First, the typical ratio of the maximum to

between the arrays. If the field of scatterers is large compan@ihimum of a set of random numbers grows as the number in
with L, the size of the field does not overwhelm the contribthe set grows. Second, as the number of antennas increases,
tion to an element in the scattering matrix. At some large digore scatterers are required to take advantage of the new
tanceR ~ dgr; m ~ drs, i, the contribution of a scatterer todegrees of freedom. Thiaformed transmittercapacity ratio
an entry in the channel matrix is attenuated by the inverse fof each array size to the 16 16 random matrix is displayed
the distance squardd k2. The number of scatterers in a differ-in Fig. 7(b). Over a wide range of SNR, the performance is a
ential annulus increases linearly with distance, but the effecisnple function of the number of antennas.
of the scatterers combine incoherently so that the contributionThe median eigenvalue distribution as a function of scatterer
grows more slowly thaii, and the integrated contribution fromdensity is displayed in Fig. 8(a). At low density, the relatively
radiusR to o is finite. low number of scatterers dominate the channel matrix with

The local distribution of antenna elements has a subtle strong spatial correlation at the transmit and receive arrays. This
fect on the channel SVD. As was discussed in Section llI-Aauses the eigenvalue distribution to decrease quickly. As the
the eigenvalue distribution depends on the ability of one arrdgnsity of scatterers increases, the environment becomes more
to resolve the individual elements of the opposing array. In tlhandom, and the eigenvalue distributionH' moves closer
presence of scatterers, the issue is whether or not the virtt@aithe random matrix distribution. However, the distribution
array (consisting of scatterers) can resolve the antennas in dioes not converge to the random matrix distribution. In the
opposing array. However, the effect is dominated by the densityure, it can be observed that once the density of scatterers (in
of scatterers. Assuming that the array is not oversampled spaits of 1/L?) has exceeded the number of antennas, there is
tially, the dependence on intra-array spacing is weak. little effect on the distribution. The channel matrix in the high

1) Eigenvalue Spectrum Example¥he sensitivity of scatterer density limit is affected by two fields of scatterers:
eigenvalue spectra and capacity to variations in the dominamte near the transmit array and one near the receive array.
parameters (number of antennas and scatterer density)Thfs is because at high density, there are a large number of
the model are analyzed here. The median eigenvalues ofsaatterers near both the transmit and receive arrays, and the
ensemble of eigenvalue spectra are displayed with the largesntribution increases inversely with distance. A scatterer near
eigenvalue normalized to 0 dB in Figs. 7(a) and 8(a). &tle one of the arrays is necessarily far from the other. The field
point in the median eigenvalue distribution indicates the mediaf scatterers near the transmit array is spatially uncorrelated
of the nth eigenvalue for each spectrum in the ensemble. Them the transmit array’s perspective, but this field of scatterers
median eigenvalues are a helpful diagnostic tool but cannotfigbtends a small angle from the receiver’s perspective and
used as an input to other calculations because of correlatigm&onsequently highly correlated. Similarly, there is a dense
between eigenvalues. In Figs. 7(b) and 8(b), the correspondfiedd surrounding the receive array. These scattering fields
capacities are displayed. contribute low rank components to the channel matrix. This

The median eigenvalue distribution as a function of theffect competes with the much larger number of scatterers
number of MIMO antenna elements is displayed in Fig. 7(&r from both arrays. The correspondiimgormed transmitter
for the same total aperture (16 wavelengths). As the numhmsysical scatterer to thimformed transmitterandom matrix
of antennas increases, in a fixed environment, the value sfectral efficiency bound ratios and theinformed transmitter
the smallest eigenvalue in each spectrum decreases. Therephayssical scatterer to theninformed transmitterandom matrix
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capacity spectral efficiency bound ratios are displayed in 1 J R
Fig. 8(b). At low SNR, the relative performance of ihéormed & 09 =0
transmitteris better in simpler environments, taking advantage ; § 08
of the dominant mode. At higher SNR, channels with higher 838 | __ _
complexity perform better. g% &7 I
E? 0.6 y=0.5 ——
—

IV. INTERFERENCEEFFECTS 05 |=—

A. Interference Model -10 0 10 20 30
A given MIMO communication system may be required to a’f; (dB)

operate in the presence of other MIMO or wireless commu-
nication systems. This is certainly true in the case of wireleBg. 9. Asymptotic interference loss capacity raior/Cr (dashed) and
local area networks operating in the uncontrolled industrial, s¢jv7/Cvr (solid) assuming an equal number of transmitters and receivers
- . . r = 1) for the surviving degree of freedom fraction = 0.9 (gray) and
entific, and medical (ISM) bands [34]. The effects of interferg 5 (plack).
ence will be addressed using random infinite dimension and sto-
ChaStI.C physical scatte_rlng mOO,'e'S- . bound is explicitly calculated. For theninformed transmitter
. While one can certalnly imagine a nearly I|m|tless number he spectral efficiency bound is given by
interference scenarios, three interference regimes are of partic-
ular interest: - P, - i
« small number of strong interferers; Cur = logz | Lynn, + e GG
. uncooperatl\(e competmg MIMO system; %’ynRx@(aQPo; yr) (55)
* cooperative interfering MIMO system.
1) Strong Interferencein an environment populated bywhereG is a(yn r.) x nr, matrix with entries sampled from a
a relatively small number of strong interferers, the spatiahit-norm complex Gaussian distributich(z; r) is defined in
whitening performed in (24) can be replaced with a prq42), andr is defined in Section I1I-B. For thformed trans-
jection operator, removing the spatial subspace associatgitter, the spectral efficiency bound is given by modifying (44)
with the interferers. Noting that the Hermitian interferencgs
matrix R can be expressed as some power scaling multi-

plied by the outer product of two matricesVV' so that O — log Pyt i trA™! i
I+ R)™! = I+ aVVH)~L in the limit of high power, T = 1082 ny a"nre
I+ R)~' becomes oo
e PPy [ () &
~§ nre vlog, " e
lim (I+aVVH)™ = lim I-aV({I+aViV)"vT gry
=I-Vv(viv)y"lvi=p+ (52 + NR2Y / dpfr (1) logy (1) (56)
Heut

whereP is a projection matrix, which projects onto the comwhere then .~ diagonal elements ak contain the selected
plement of the column space ¥t. Because projection matricesgigenvalues o(l/nTx)CN-}CN-}T
are idempotent, this is also the solution @+ R)~1/2.

The strong interference-mitigated spectral efficiency bound ooy [T
can be written as 9= = dpfr (1) (57)
Heut
C =log, L., +2PGPGIPL. (53) @Ndficus is given by

_ o ) ry foe ! fo (1)
The effect of strong interference on capacity is calculated, ex- Heut = 2P 1 foo A L (58)
ploiting the fact that unitary transformation of independent iden- 0TIV ey ST

tically distributed (i.i.d.) Gaussian matrices produces matric%e spectral efficiency loss ratio is depicted in Fig. 9 foof

with the same Gaussian statistics and that there exists a unitgey .14 0 5. In the limit of large2P,, the ratioC’/C' converges
matrixK that transforms the projection matrix to a diagonal mq-' T ] o
0 vmax(1, 7)/ max(1l, rv).

trix with the form 2) Competing MIMO SystemsA reasonable model for the
I 0 interference is to assume that it is associated with a channel
KPiK! = < Ty ) (54) matrix that is statistically independent of, but otherwise has
0 0 characteristics similar to, the channel matrix associated with

the intended transmitters. Using the statistical scattering model,
where the projection removés — v)n g, degrees of freedom. an ensemble of channel matrix pairs is constructed. The first
Using the large dimension limit discussed in Section I1I-B, thisf the pair is associated with the intended transmitter, and the
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Fig. 10. Median eigenvalue distribution 8fH' for an 8 x 8 channel for E =20 -10 | =~ Random UT [10 20
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(a) 20 dB and (b) 40 dB total noise-normalized power. 8 - =« Dense UT
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second is associated with the interfering MIMO system. De-
pending on the nature of the interference, the received signal
can be much stronger or weaker than the intended signal. In
Fig. 10, the median eigenvalue distribution is displayed for envi- :
ronments that contain competing MIMO systems with total in- 0 R i
terference-to-noise ratiosRrof 20 and 40 dB. The eigenvalue -20 -10 0 10 20
distributions are peak-normalized in the absence of interference.
The effect of interference changes the shape of the distributi,ggl 11. Spectral efficiency bound ratio of 8 8 MIMO to 1 x 8 SIMO
and causes an overall downward shift. systems for random, dense, and sparse scattering fields, assuming (a) no
In the case of the interfering MIMO system displayed ifpterference, (b) interference of 20 dB, and (c) 40 dB total noise-normalized
Fig. 10, the story is somewhat complicated. As one wouR§er for bothinformedanduninformed transmitter
expect, the adverse effects of the interference on the eigenvalue | . . ,
spectra become worse for stronger interference. Because thi Fig- 11, the sensitivity of MIMO capacity to environment

interfering MIMO system uses multiple transmit antennas, tﬁ_%glemonstrated. Atvery high SNR, theinformedspectral ef-

interference affects all of the modes of the channel matriic/€Ncy bound andnformed transmitteccapacities converge.

Interestingly, the loss of large eigenvalues for the sparse fid!0% SNR, theinformed transmitteavoids modes with small
matrix is less severe than that for the random channel matri¥agular values, whereas theinformed transmitterandomly
because the dominant portions of both the signal of interédt'€@ds energy between modes. The loss is most significant for
and the interference occupy smaller fractions of the total Spa%réwronments with relatively few large channel matrix singular
in the sparse scatterer environment. This decreases the tpr@'cl[lI‘eS' . ) _ )
overlap between the associated subspaces and thus reduces thke INfinite-Dimension Competing MIMO Systenihe max-
detrimental effects of mitigation. Of course, the channel matrifium spectral efficiency for thaninformed transmitten the

associated with the sparse scatterer environment had feRESence of an uncooperative (worst-case) interfering MIMO
useful modes to lose. system [9] is given by

It is interesting to compare the capacity of axx@8 MIMO . P
communication system with a & 8 SIMO system under the Cur = logy | L+ — “(I+ R)lHHT‘
constraint that the total transmit power is equal. It is common Te P
to compare the capacity of MIMO systems to single-antenna =log, I+ R+ —= HHT‘ —log, |T+ R|
transmit and receive systems. However, in the presence of strong T
. . H tA-ci 1 Pzn PO
interference, the capa_lc!ty of single-to ;lngle antenna systems is — log, [T+ ty3t 4 2o gt
poor. The spectral efficiency bound ratio Nint nry
R -Pint ¥
(C(8 x 8 [P} = P,)) (59) Sl b ‘ 0

(C(Ax8 PL=PF,)) . o . _
where the noise-normalized interference plus noise covariance

is displayed in Fig. 11 for botimformedanduninformed trans- matrix is given by

mitter bounds, where the expectation is evaluated over an en- P

. . . _ g3t
semble of scatterers and interferers for a given environment. R= Ping JJ. (61)
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The notationC' indicates the spectral efficiency bound in the
presence of interference. The interference transmitter-to-re-
ceiver channel matrix ig = a;,.I', which is similar to the
channel matrix defined in (36). The,,, interfering transmitters
have total power;,,;.

A particularly interesting interference environment occurs
when a MIMO system attempts to operate in the presence of
an uncooperative competing MIMO, where the average receive /"
power per transmit antenna is equal for the interferer and the it 00N
intended transmittes? P, /nr, = a2,,Pint/nine- I this case,
the spectral efficiency bound can be written using

&

Spectral Efficiency
(b/s/Hz/M)
. [ 3] w )
N
\
\

0 L=
-0 5 0 5 10 15 20
a*B, (dB)

Fig. 12. Infinite-dimension antenna normalized capacity for an equal number

A= (I‘ G) of transmitters and receivers & 1) given: no interference (black), cooperative
interference (dashed), and an equivalent uncooperative interfering MIMO
AAT =TT + GG' (62)  system (gray).

where the shape &k is nrs X (n7z + nine). ASSuming thal’ The MIMO extension to the MUD spectral efficiency bound
andG are independent and that the complex entries of each &gjiven by the convex hull of a set of inequalities. In particular,
selected from a unit-variance complex Gaussian distribution, #@ rates of alin users must satisfy

was previously assumed, the spectral efficiency bound can be

’p,
expressed as Ri+4---+ R, <log, L., + Z S G.G]| (65)
nry
) 2
Cur, g = log, [T+ akF, AAT‘ where R;, denotes the spectral efficiency of théh user, and
”Tﬂ; Gy, has dimensions g, x nr,, and has i.i.d. complex Gaussian
—log, [T+ a” b, rr elements with zero mean and unit complex variance. Denoting
? NTx A, = (Gy---Gy), the bound becomes
Ny + Tint AAT
= log, |T + a?P, A, Al »
gz |1 +a NTy e + Nint logs L, + maiP, =2 oy p,® <ma2Po; "R ) .
] I‘I‘T mnoy mngy
—log, |T + a®P, it : (63) (66)
NTz Tint

Using this relationship, the following asymptotic inequality is
The asymptotic form of (63) can be expressed as the diffefonstructed:
ence between two terms using (42) with two different sets of
parameters. The maximum spectral efficiency bound in the pres- Ry +--- 4 Ry < nre®(ma®P,; r/m).

ence of this interference for thminformed transmitteis given ] ] ] ) )
This asymptotic bound is achievable for a particular set of rates

b
y by a receiver employing successive interference cancellation
OUT, B g (g2p " + it . (SIC)._ Recall that SI_C detects signals (in _this case, _MIMO sig-
—_— = <a P, ; ‘ ) nals) in order, treating yet undetected signals as interference
VR e e+ Nint in the manner of Section IV-A3 and subtracting previously de-
_P <a2 p, it ”R”’> (64) tected signals. More specifically, note that
Nre TNint
. 2 A"lAIn
where®(z; ) is defined in (42). The effects of the interference logz |Lng, +ma™F, MmNT.
for an uncooperative interfering equivalent MIMO system are m—1 A, Al
displayed in Fig. 12. The effect can be significant. = <log2 L., +(m—k)a?P,——"_mk
4) Cooperative MIMO InterferenceAssuming knowledge k=0 (m — Kz,
of the interfering MIMO system parameters (for example, all
channel matrices) and cooperative control of the interfering —logy |Lng, +(m—k—1)

users, the interference treated above can be mitigated by
employing a MIMO extension to the multiuser detector (MUD) 9 AmfkflAIn_k_l

[30], increasing the capacity of each MIMO user beyond that aly (m—k— Dngs

achievable with the spatial interference cancellation alone.

A simple example is provided by a system whinformed where thekth term in the summand represents an achiev-
transmitterMIMO users, each utilizing.r,. transmitters com- able spectral efficiency boundr; after the previously
municating with a single receiver array fielding;, elements. detected (lowerk) signals have been subtracted, and the
It is assumed that2 P, is the same for all users, which can beemaining signals (highet) are treated as interference as in
achieved using power control. Section IV-A3. Thus, in the asymptotic limit, one can achieve
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> Ry ~ ng,.®(ma®P,; r/m). By averaging over all possible
SIC orderings and controlling the corresponding user rates, the
spectral efficiency bound is the same for all users:

-

e
%

—_— Iz = 0.01

i - ] B 1--- nzP =01
Cur, mup = — ®(ma®F,; r/m). (67) 0db i e JIEIR = 1
m .ot ~n. UT

et e e R T e e e e

S
N

The spectral efficiency bound of a single user of the multiuser
MIMO network described above (for two users ang, = 0
nrz), given a MIMO multiuser detector as areceiver, is depicted @ P (dB)
in Fig. 12. Note that MUD receivers substantially increase ca-

pacity at higher SNRs over the capacity achieved using spafitéh 13- Ff?]Cfion IOf stationary capacity for aﬂ>% 8 MIMO SyS_temf_V\IliC:h g
interference Cance”ation alone. transmitter channel estimation error, assuming a dense scattering field and no

interferers.

Fraction of Stationary Capacity

)
[—]
]
ot
(]

V. CHANNEL ESTIMATION ERROR are used by the optimal transmitter. It is apparently difficult for

S C ._random noise to significantly disturb the transmit beamformers

Channel estimation accuracy is limited by channel station- .
: C : N even when the channel estimation error and the channel have

arity. For the purpose of this discussion, channel estimation erpr .

. ) o e same Frobenius norm.

is modeled as a perturbing matr® with i.i.d. elements. The

estimated channel is then given By = H + ||H||X. Here,

|| - - - || indicates the Frobenius norm. The validity of this model VI. SUMMARY

depends on the details of the error source. It is assumed th

there is no correlation between the source of error and the mo

of channel matrix. While botimformedanduninformed trans-

ﬁhe sensitivity of spectral efficiency bounds to environmental
actors has been discussed. In Section I, the information theo-
retic capacity for MIMO communication systems was reviewed
. . ) "MESr both theinformedand uninformed transmitterThe spec-
tion error, theinformed transmittesuffers a loss due to using - : i
incorrect transmit spatial coding tral efficiency bounds in the presence of worst-case interfer-
The losses peculiar titmformed.transmitteMIMO svstems ence were discussed. In Section Ill, the complexity of chan-
. > P . . Y ne{s expressed in terms of channel matrix SVDs was discussed.
can be investigated by assuming that the receiver has an aceyrg g—of—sight and stochastic physical scattering models were
estimate of the channel but that the transmitter has an inaccurifﬁ\ & duced Using the stochastic physical model, channel ma-
estimate. This model is reasonable for nonstationary chann?rllsx. SVDs énd capacity sensitivity to the number, of antennas

Assuming data is transmitted in blocks, the receiver can perforarﬂd scatterer density were investigated. The asymptotic large

channel estimation using the current block of data; howev%gaussian matrix channel SVD and correspondingformed

the transmitter must wait for that information to be fed back; : - .
. e - .. transmitter spectral efficiency bound was reviewed. The cor-
Ignoring the possibility of channel prediction, the transmitter

. . : ; respondinginformed transmittercapacity was introduced. In

will employ channel estimates from a previous block. Using th . : . . . )

. : R . ection 1V, three regimes of interference were investigated:
estimated channel with err&t, the “optimal” noise-normalized )
transmit covariance is constructed, solvingRyrusing (7) and ~ * Strong interference;
(13), assuming the estimated channel is the true channel. As® Uncooperative competing MIMO system;
a result, the spectral efficiency bound with channel estimation * Cooperative MIMO interference.
error at the transmitter is given by A strong interference asymptotic large Gaussian matrix capacity
result was introduced for both thieformedand uninformed
transmitter A competing MIMO interference, asymptotic large
Gaussian matrixininformed transmittecapacity result was in-
troduced. Using the stochastic physical scattering model, the
where the expectation is evaluated over an ensemble of scampeting MIMO interference spectral efficiency bounds were
terers and channel errors. investigated for both thanformedanduninformed transmitter

In Fig. 13, the fraction of the optimal capacity assumingxploiting MUD, a competing cooperative MIMO interference
transmit channel estimation error fi6€||> = 0.01, 0.1, and 1 is asymptotic large Gaussian mattixinformed transmitteca-
displayed as a function @ P,. For this analysis, an ensemblepacity result was introduced. Finally, in Section V, the effects of
of errors and realizations of the dense scatterer environmehannel estimation error on performance ofitifermed trans-
is used. For comparison, the spectral efficiency bound of thgtter was investigated using the stochastic physical scattering
uninformed transmittetis presented. At high SNR, MIMO model.
systems are very forgiving of transmit-channel estimation error
for the same reason that thminformed transmittespectral
efficiency bound approaches the optimal capacity at high
SNR. At low SNR, the spectral efficiency remains remarkably This appendix provides a more rigorous derivation of the in-
insensitive to channel estimation error. Relatively few modésrmed transmitter capacity given in (17). The starting point is

(Crapm) = <10g2 ‘I + HPH' ‘> (68)

APPENDIX
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once again (5). Applying the generic matrix identfy-XY| = rather than the full matri¥. Applying the method of Lagrange
T+ YX]|, it can be rewritten as multipliers as before leads to the diagonalized analog of (72) as

Crr=  sup  log,|L,,, +BAAT|  (69) (b — A = Abypr)pr = 0. (77)
A;traan=r,

For eachk, eitherp, = 0, orb;, — A — Abipi. = 0. DefineS
whereB = H'H, andP = AAT. The matricesA. andB both to be the set ok for which p;, # 0 in the optimal solution. For
have dimensionar, x nr.. Note that positivity for? is now % € S, pr = A~! — b, ' Applying the total power constraint
automatic. The maximum in (69) is found by adding a Lagrangé = »_, px shows that the Lagrange multiplier must satisfy
multiplier to enforce the constraint@A A’) = P, and differ- A% = (1/|S)(Ps + > jcs b '), where|S]| is the number of

entiating with respect to the componentsfofyielding elements in the sef.
The only remaining question follows: What elements are in
(I+ BAAT)—lBA = )\A. (70) S? First, supposg € S andk ¢ S. It immediately follows that

b; > by, otherwise,Crr could be increased by swapping the
values ofp; andp;. Assuming that the eigenvalues are ordered
so thatby > by > --- > b, , the setS must be given by
S=1{1,2,...ns}forsomeinteget < ny < nr,. The value
for n4. is determined by maximizing’rr while maintaining the
ositivity conditionp, = A™* — b, 1 > 0for1 < k < ny.

Multiplying on the right byA' produces
(I+BP) 'BP = \P (71)

where) is the Lagrange multiplier constant that must be chosgp. ;: o i : ;
to satisfy the constraint. Note thBP and(I + BP)~! com- Pn t|n>g:th3tp1 SR 2 P, 1L sulfices torequire that
mute so that (71) can also be Wr|ttenBP(I+BP)_—1 = AP. '+I'o see which value of ;. to choose, it is useful to define the
Multiplying by a factor of(I + BP) on the left or right as ap- ¢,,tion C(m):
propriate produces
(B—AI-ABP)P =0 and (B—AI—-APB)P =0. (72) Cm)= sup Y logo(l+bipr(m)).  (78)
Po=) pe(m) k=1
Subtracting (1) and (72) shows that Note thatC(m) is similar to the capacity function, but there
is no positivity constraint. It is clear that(1) < C(2) <
-+ C(ngy) since any set of values fer.(m) can be extended
to m + 1 by settingpi(m + 1) = pp(m) and ppg1(m +
Now, it can be shown th&P = PB. First, consider the case 1) = 0. The optimization with respect tg,(m) is performed
A = 0. From (72), it follows thaBP = 0, and thusP'BT =  sing the method of Lagrange multipliers, leading to the solu-
PB = 0 = BP. In the case\ # 0, letvy, vy, ... vn,, b€ tion p,(m) = A=(m) — b 1. Applying the total power con-
an eigenbaSiS for the Hermitian matiiX Computing the inner straint shows that the Lagrange constantis g|ven‘bym) —
product of (73) between two arbitrary eigenvectors shows that /) (P, + ST . It follows thatC(ny ) = Oy since
the values fomy, wherepy, # 0, are the same in both cases.
PV (BP — PB)v,, =0 (74)  Since theC(m) are monotonically increasing in, we need to
pick n4 to be the largest value for whigh,  (ny) > 0.
wherep,, is the eigenvalue correspondingtg,. Taking the  Itis also easily shown that,,(m) > 0 for m < n, and that
conjugate of the above equation and swappigth m yields  p..(m) < 0form > n . First, note thap, (1) = P, > 0. Next,
suppose,,(m) < 0 for somem. Plugging in the solution for

A(BP - PB)P = 0. (73)

pnvi (BP — PB)v,, = 0. (75) pm(m) gives the inequality
If p, # 0orp, # 0, it follows from one of the above two P, + Z bkfl < mb L. (79)
equations thav! (BP — PB)v,, = 0. If p, = p,, = 0, =
vi(BP — PB)v,, = 0 follows directly sinceP annihilates
both eigenvectors. Adding b;,,l+1 to both sides and factoring the right side gives

The above arguments show that the optimum valu&forust

commute withB, which means that they can be jointly diago- ml . . T
nalized. Equation (69) for the capacity can be rewritten as P+ Z b <(m+ Db +mlb,” = by)
k=1
NIy S (m + 1)b;l]:|—1
Crr = sup > log,(1+bapr)  (76)
Pe>0; Po=) pr k=1 which shows thap,,,+1(m + 1) < 0 as well. Oncep,,,(m) is

negative for somen, it must remain negative for all larget.
whereb;, andpy, are the eigenvalues & andP. The optimiza-  To connect the results here to the main body of the paper,
tion need only be performed with respect to the scalar valilies note that the eigenvaluég are the same as the entrigsin the
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diagonal matrixD. Plugging the solutions obtained fp into
(76) leads directly to (17).
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