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An Efficient Computational Scheme for the
Two-Dimensional Overcomplete Wavelet Transform
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Abstract—We have studied the computational complexity asso- [12], [13], texture characterization [14], and object recognition
ciated with the overcomplete wavelet transform for the commonly [15], [16].
used Spline wavelet family. By deriving general expressions for the Despite its ability to provide a meaningful representation, the

computational complexity using the conventional filtering imple- . ith th let tation is it
mentation, we show that the inverse transform is significantly more iNaif CONCET Wi € Overcompiete representation Is iis com-=

costly in computation than the forward transform. To reduce this ~Putational complexity. Unlike the subsampling wavelet, where
computational complexity, we propose a new spatial implementa- the computational time decreases with the number of decompo-

tion based on the exploitation of the correlation between the low- sijtion levels [17], [18], the computational time increases linearly
pass and the bandpass outputs that is inherent in the overcomplete with the number of decomposition levels in the overcomplete

representation. Both theoretical studies and experimental findings - .
show that the proposed spatial implementation can greatly sim- case [19], [20]. Therefore, computational complexity becomes

plify the computations associated with the inverse transform. In & Major issue in its practical implementation. In addition, it is
particular, the complexity of the inverse transform using the pro- generally conceived that the inverse wavelet transform is com-

posed implementation can be reduced to slightly less than that of putationally more expensive than the forward wavelet transform

the forward transform using the conventional filtering implemen-  gince the reconstruction filters are always longer than the for-
tation. We also demonstrate that the proposed scheme allows the ) . . :
ward filters in the Spline wavelet family [2]-[5].

use of an arbitrary boundary extension method while maintaining A ' ) )
the ease of the inverse transform. In this paper, we provide an analysis of the computational

complexity for the Spline wavelet family with an arbitrary order
n and find that it is significantly higher for the inverse trans-
form compared with the forward transform. In fact, it asymp-
totically approaches five times for a large In order to reduce
. INTRODUCTION the computations, we use the fact that the overcomplete wavelet

OINTS of sharp variation such as edges and discontinti@nsform provides a redundant representation of an image. This

ities in multiple scales are usually one of the most immplies that a correlation exists between the Iowpas; and the
portant features for analyzing properties associated with sRaNdpass outputs at a number of scales. Indeed, this correla-
nals and images. It was conjectured that the basic represefi@ information has been explored in many applications ranging
tion (the primal raw sketch) furnished by the retinal system fg§0m discontinuity-preserving surface reconstruction, contrast
a succession of contour sketches at scales that are in geomé&fffe@ncement, and denoising to artifact removal [6]-[14]. We
progression [1]. The wavelet transform modulus maxima reag\;lopose to study the correlation between the lowpass and the
resentation proposed by Mallat [2] provides such a multisc ndpass outputs to reduce the computations, especially for the
contour representation of an image. This representation is ¢herse transform.
tained by retaining the local maxima of the continuous dyadic BY studying this correlation, a new spatial interpretation for
wavelet transform. It has been shown that the wavelet transfoli¢ Overcomplete wavelet transform is obtained, which greatly
modulus maxima correspond to locations of discontinuities fgduces the computational complexity associated with the in-
an image. It thus provides a compact but meaningful descrifrse transform. In fact, the complexity of the inverse transform
tion of an image. This representation has been used in varié{§g the proposed spatial implementation turns out to be even
applications, including the image compression [3]-[5], edge astightly less than that of the forward transform using the fil-
discontinuity characterization [6]-[10], contrast enhancemel§fing implementation. Besides the reduction in the computa-

of medical images [11], artifact removal for image restoratiofPnal complexity, this spatial interpretation provides us with a
flexible and straightforward way of dealing with the boundary

extension problem. Unlike the conventional filtering approach
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Fig. 1. jth-level forward overcomplete wavelet transform with= 27—1,

of its computational complexity is also described in Section lll. The jth-level inverse overcomplete wavelet transform is

Section IV provides the design examples for commonly usetiown in Fig. 2. The original signal is reconstructed by

low-order Spline wavelets using the new spatial implementa-

tion scheme. An analysis of the computational complexity aXo(71, 72) = K (21)L(#2)Di (21, 22) + L(21)K (22)

sociated with these low-order Spline wavelets is also provided. xD¥(z1,2) + H(z))H(22)X1(21,22)  (4)
Sections II-1V provide a theoretical analysis of both the con-

ventional filtering implementation and the proposed spatial inftn€rét (z) is the time reverse af (), andK (») andL(z) are
the bandpass reconstruction filters. Similar to the forward trans-

plementation. Section V consists of an experimental analysis - SHSH g '
these two approaches. In particular, we compare their com orm, the inverse filter is applied separately to the horizontal and

tational times using software implementations. Section VI thé€ vertical directions. By substituting (1)—(3) to (4), the perfect
concludes the paper. reconstruction constraint can be found as

Il. OVERCOMPLETEWAVELET REPRESENTATION Klz)lz)Go) + L) K (z2)G(2)
’ +H(21)H(ZQ)H(21)H(ZQ) =1. (5)

An overcomplete wavelet representation for an image is ob- _ o N
tained by applying filters to both the horizontal and the vertic&iquation (5) is a necessary and sufficient condition for perfect
directions [2]-[6]. There are three outputs from a Sing|e_|evéqzconstruction. There is considerable freedom in choosing these
decomposition: the lowpass approximation of the original imad@ur filters when the orthogonal, the biorthogonal, and the sub-
and two bandpass outputs. One bandpass output shows the $@pling requirements are dropped from the filter design.

izontal edges, whereas the other shows the vertical edges in thiallat and Zhong have constructed the wavelet function in

image' Mathematica”y, the |owpass output is given by such a way that it is the derivative of a Smoothing function
[2]. The local extrema of the resultant wavelet representation
X1(21,22) = H(z1)H(22) X021, 22)- (1) then characterizes the multiscale edges in the image. This rep-
resentation allows the processing and manipulation of images
The two bandpass outputs are written, respectively, as with edge-based algorithms. Examples include the edge-based
image coding, discontinuity-preserving surface reconstruction,
D1i(z1, 22) =G(21)Xo(21, 22) (2) contrast enhancement for medical images, and structural-based
D2(2y, ) =G(22)Xo(21, 22) 3) texture characterization [3], [6]-[14]. The set of wavelet func-

tions is commonly known as the Spline wavelet family. The 1-D

where H(z), G(z), and Xo(z1,2,) denote, respectively, thelpwpass and bandpass filters for orderare written, respec-
one—dimensional (1-D) lowpass filter, the 1-D bandpass filtdively as

and the original image. Fig. 1 shows jh-level forward pro ot
overcomplete wavelet transform. It can be seen that the lowpass H(z) :m(l +270)7" (6)
and the bandpass filters are applied separately to the horizontal andG(z) =2(21 — 1). @)

and the vertical directions. The lowpass output is obtained
by applying the 1-D lowpass filter in both the horizontal antlsing the perfect reconstruction constraint from the 1-D frame-
the vertical directions. The bandpass outputs are obtainedvyrk [2], [22], the reconstruction filteK (z) can be expressed
applying the bandpass filter in either the horizontal or thas
vertical directions. This is different from the subsampling y 20, 1y, 1/ 2H
scheme in which each subimage is associated with filters iy ) 1-HE" _z-1 <Z Tz ) . (8)

k=0

both the horizontal and the vertical directions. S Gz 8 2
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Fig. 2. jth-level inverse overcomplete wavelet transform with= 27-1.

Substituting (8) to the perfect reconstruction constraint in (5), for some constants This suggests that
the expression foL(z) can be obtained. For completeness, its o )
expression is summarized as in Lemma 1. L(z) =c+ 1, <1 B c) |H ()]
Lemma 1: To achieve perfect reconstruction, it is required 2 2 2 ,
1 1 H(z
that andL(zl):_c+§—|— <§+C> %
L(z) = L+ HEE
2 Letting » = 2; = 22, the requirement becomed (2)|? = 1,
Proof: Substituting (8) into (5), it can be seen that which is impossible. Therefore
2
L(z) [1 = [H()P] + L(z1) [1 = |H ()] L) — £ =HHEE g
HH ()P [H(z2)? = 1. (9) STITRY
L(Zl) _ = :| (21)|
Rearranging (9), we obtain 2 2
1 |H(z)l2 which completes the proof. O
[L(@) -5~ T} [1—|H(z1)?] By using Lemma 1 and (6),(#) can be expanded as
1 |H(=)? 2 _ 1 L1/2) 4 - (1/2)) 2
+ [L(zl) — 5= e L H)P] = 0. (20) Lo =1 |1+ ( - ) ay

As outlined by an anonymous reviewer, there are three possibl
cases for (10) to be satisfied.

Case 1)

%pon comparing the forward and the inverse filters shown in
(6)—(8) and (11), it can be seen that the number of filter coef-
ficients for G(z) is always two, regardless of the order of the
1— |H(z)? =1 |H(z)P =0. Spline wavelet. The numbers of filter coefficients fi(z),
K(z),andL(z) are2n + 2, 4n + 2, and4n + 3, respectively.
This is not possible sincéf(z) is not an allpass As the inverse filters are significantly longer than the forward

function. filters, the computational complexity associated with the in-
Case 2) verse transform would be much higher than that associated with
5 ) the forward transform. A detailed analysis of the computational
L(zy) — 1_ M = L(z) — 1_ M =0. complexity is carried out in Sections II-A and B.
2 2 2 2
This will give the desired form foL(z). A. Filter Complexity

Case 3) Assume thgt(z2) = L(z2)—1/2— |H(22)[?/2 # In order to study the computational complexity associated

0 andga(z1) = L(21) — 1/2 — |H(21)|?/2; then, it with the Spline wavelet, we need to expand the filters expres-

follows that sions and find out the numbers of additions and multiplications
Filz2) go(21) involved. This complexity metric is of interest for both hard-
= - =c ware and software realizations. The form@®f(z) given in (7)
Fa(22) 91(#2) is simple and requires only one addition and one multiplication.
where Its complexity is thus given by
fQ(ZQ) =1- |H(22)|2 andgl (Zl) =1- |H(21)|2 Complexny[G] = Costaa + Costnultiply (12)
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where Coslya and Costuuipty define the cost for an addition B. Computational Complexity

and a multiplication operations, respectively. The fornidk)
shown in (6) is expanded using the Binomial theorem as

1 - ko nah
H(Z) _ W {Z 2n+10k [Zn k +z +k 1]} (13)
k=0
where
m!
"y = . 14
Cr K(m — k)! (14)

Equation (13) shows that the number of additiongH() is
2n + 1 and that the number of multiplicationsns+ 1, i.e.,
ComplexityfH] = (2n 4 1)CoStaa + (n + 1)COStyuitiply -
(15)
In reconstruction, the complexities &f(z), K(z), and L(z)
need to be determined{(z) is the time reverse oH(z). Its
expression can be obtained from (13) simply by replagingh
271 e,

— 1

{Z 2n+lck [an-f—k + an-l—l]} ) (16)
k=0

Thus, the complexity off (z) is the same as that éf (=) given

in (15). In calculating the complexity o (), we expand the
summations in (8) and use the Binomial theorem [21] to obta.ilr}1e complexity in obtainingD
1

K(2) = By [22"F! — 272] ZEk 2 — 27 @)
where
14 1
— 2k
Brn —g Z 2? k—m (18)
k=m
andEi =B, 1 — B;. (19)

A one-level forward transform involves filtering in both the
horizontal and the vertical directions (see Fig. 1). Substituting
the filter expression foH(z) in (13) to (1), the lowpass output
X1(z1, 22) can be rewritten as

1 2n+1 —k —n+ky—1
24n+2 Z C |: ' +7 " :|

k1=0

% Z 2n—|—10k2 |:22 ko +7—n+k2 1:| Xo(Zl,ZQ)- (24)
ko=0

Xi(z1, 22) =

Two multiplications inH (z;) and H(z2) are merged into
one multiplication in (24); thus, the complexity of obtaining
X1(z1, 22) equals to two times the complexity &f (z) minus
one multiplication, i.e.,

Complexity X1 (21, z2)] = (4n + 2)CoSt,qa

+(27’L + 1)Costnu1tip1y- (25)

The bandpass outputs can be found by substituting (7) with (2)
and (3)

D%(2'172'2) =2 (Zl_l — 1) Xo(Zl, ZQ)
D%(Zl,ZQ) =2 (Z;l — 1) Xo(zl, 22).

(26)
(27)

L2, 22) or D3(21,20) is then
equal to the complexity in obtaining(z), i.e

Complexity D1 (z1, z2)] =Complexity DI (21, z2)]

ICOSde + Costnultipl}P (28)

For the inverse transform, its complexity can be obtained
by considering the complexities oK (z1)L(z2)D1(z1, ),
L(Zl)K(ZQ)D%(Zl,ZQ) and H(Zl)H(ZQ)Xl(Zl,ZQ) (See
Fig. 2). Using the filters expression in (17) and (21),

Equation (17) shows that the numbers of additions and multipfic (#1)L(22) D1 (21, 22) can be expanded as

cations inK (=) aredn + 1 and2n + 1, respectively, i.e.,

Complexity K] = (4n + 1)Cost,qa

+(27’L + 1)Costnultiply- (20)

By employing the Binomial theorem, an expressionff¢z) can
be obtained by expanding (11) as

1
L(z) =P+ 55 24n+3
> Z {4n+20 2n+1 k 72n71+k:|} (21)
where
1 20,41
P1:§|:1+W:| (22)

K(21)L(22) Dy (21, 72)

2n
_J Bop 2204 o] By, Mkt
T ) o4n+3 71 “1 24n+3 |1 “1
k=1

{24n+3P + Z4n+20 |: n+1— k2+ —2n— 1+k2:|}

ko=0

x Di(z1, 7). (29)

The complexity ofK (z;)L(z2) D3 (21, 20) is thus equal to the
sum of the complexities if (=) and L(z), i.e

Complexity[K(zl)L(ZQ)Di (21, ZQ)]

= (871 + 3)C05de + (47’L + 2)COStnu1tip1y. (30)

The complexity ofL(z1) K (22)D3(21, 22) is also equal to the

An analysis of (21) shows that the numbers of additions as§™M Of the complexities i (=) and(z) and is thus the same

multiplications inL(z) aredn + 2 and2n + 2, respectively, i.e.,

ComplexityL] = (4n + 2)CoStaa + (2n + 2)CoStuuttiply -

(23)

as the complexity o (z1)L(z2) D3} (21, 22), i.e.,

Complexity[L(zl)K(zQ)Df(zl, ZQ)]

= (871 + 3)C05de + (47’L + 2)COStnu1tip1y. (31)
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Using (16), the expression fdd (z,) H(#2)X1(#1,72) can be [ll. PROPOSEDSPATIAL IMPLEMENTATION FOR THE
written as OVER-COMPLETE WAVELET REPRESENTATION
The overcomplete wavelet representation provides a redun-
H(2)H(22)X (21, 22) dant representation of an image. There exists a correlation be-
1 n _ . — tween the Iowpass_ am_j the bandpass oquuts gt d_ifferent sca_\les.
= Stz Z Ch, [zl Ly } Indeed, many apphc_anons, such as the dlscont|nuny—preser_w_ng
k1 =0 surface reconstruction, contrast enhancement, and denoising,
2n have benefited from this correlation in solving their problems
X { Z O, [z; nthz g zg—’“2+1] } [6]-[14]. We propose to study this correlation in the calculation
k2=0 of the wavelet transform. This can provide an alternative im-

x Xi(z1,22)- (32) plementation structure that is able to reduce the computational
B B complexity associated with the inverse transform.
Two multiplications in H(z;) and H(z;) are combined
into one multiplication in (32); thus, the complexity ofA. One Stage of Wavelet Transform
ggg)niﬁsﬁs))érig}rﬁt)lp;ﬁci\?%il t:)etwo times the complexity i e consider a single stage of wavelet transform in this sub-
: B section. The first-level lowpass output is given in (24). We could
~ rewrite this equation using Lemma 2.

Complexity[H (z)H (z2) X1 (21, z2)] Lemma 2: The expression
= (471 + 2) COSde + (271 + 1)Costnultiply- (33) n
Y(z)= Ity [nh 4 Rl X (2 34
From the complexities expression in (25), (28), (30), (31), and () kz=0 , [ ] (=) (34)
(33), we arrive at Theorem 1.
Theorem 1:A one-level overcomplete forward waveletcan be rewritten as
transform obtained using the filtering approach as shown in

Fig. 1 has a complexity of Y(2) = 22" Xo(2)

1 n

- 22n An, ) V—k _ Vk D (z
Complexity, g [Forward = (4n + 4)Costaa +2 { + ; el ? ]} 1(2)

+(27’L + 3)Costnu1tip1y-
where
The inverse transform using the filtering approach as shown in .
Fig. 2 has a complexity of Di(2) =2 (27" = 1) Xo(2) (35)
k
andA4; = ntlo . 36

Complexityy g[Inversé = (20n + 10)Cost,qq » g;o (36)

+(107’L + 5)Costnultiply- . .
Proof: The proof starts by forming two recursion for-

Proof: A one-level forward wavelet transform consists offulae from (35)

three outputs: m
o Xi(z1,22); 2™ Xo(2) =Xo(z) — Du(2) Z 2F (37)
* Di(z1,22); 2 k=1
. D%(Zl, 2,“2). Dl(Z) m—1 N
The complexity of the forward wavelet transform can thus be andz"""Xo(z) =Xo(z) + 5 z (38)
obtained by summing their complexities as shown in (25) and k=0
(28). The operations in the inverse transform involve three partsr an arbitrary integer. Expanding the summations in (34)
* K(z1)L(#2)Di (21, 22); and using (37) and (38), we obtain
* L(z1)K(22)D{(21, 22);
b H(Zl)H(ZQ)Xl(Zl,ZQ). Y(Z) — 1
The inverse complexity is thus obtained by summing their 22n 1
oy . ) . n D P
;c:(;r(;;;lemhes shown in (30), (31), and (33). This completés the y {2X0(z) ZQ"HCk _ %
As shown in Theorem 1, the inverse transform is significantly N h=0 .
more complex than the forward transform. The inverse trans- % Z bl Z ok
form is nearly five times more complicated than the forward — =

transform in the wavelet transform. This is undesirable, and " .
we need to reduce the computational complexity in the inverse + Di(z) Z mtlo Z 2R3 (39)
transform. 2= k=0
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2n _ n 2 1 . . . . .
As 2" =30 L0y, (39) becomes Proof: The proof starts by substituting (43) into (24), i.e.,
X1(z1,22) =H(21)Xo(21, 22)

y X 2n+10 B
(2) = Xo 22n+2 {Z 127 _|_H( ){22"+ZA K [72’“2—7;2}}
92n+2 nThe |

ko=1
2n+1
Z C,_ Z;« }Dl - (40) x D (21, 22)
:XO (2’1,22) +

Upon expanding the summations in (40), it can be shown that 22n+2

n n—k n - I
ZQn-{—lCn lz Z Z 2n+107n7 k (41) X {22 +k§1An—k1 |:Zl ! _7flj| }

k=0m=0
D?(z,
n n—k XD% (21722)+ 1(71772)

and Z o Z =33 o,k (42) N 24743
k=1 m=0 y {Z 2+l [21 —ky +7fn+k1 1}}

Substituting (41) and (42) into (40) completes the proof.[J

Using Lemma 2, it can be seen that kjo n . .
H(ZQ)X0(71,72) { 27" 4+ ,g;l An ks, [22 2 — 722} } . (46)
= 22n+1 { Z Ity [ —he 4 22_"'”“2_1} } Note that the last term in (46) can be expressed as
ko =0
x Xo (21, 22) , D124Z:372 { Z o [V?fkl +Zln+k11:|}
= k1=0

Xo (Zl, 22) + —

22n—|—2 n
n 2n —k2 k2
n —ky ks x 927 + Ap [752 — % }
X {22 + E An_k, [zQ — 2 }} { g;l 2

ko=1

X D% (21722). (43) = 2T1+2{D% (Zl,ZQ)
Equation (43) implies that the transform is applied alaag n
(the column) for every row of the image. Substituting (43) into + o |22 S A, [zl_k‘ _ 7{“1}
(24), we arrive at Theorem 2. This theorem provides an alterna- 22n+2 el
tive method for the implementation of the overcomplete wavelet
transform. x 2 (27" = 1) D} (2, ZQ)}
Theorem 2: The first-level lowpass output of the overcom-
plete wavelet transform using the Spline wavelet family with an
arbitrary ordem can be rewritten as { 22" + Z An—k, [755 - 732} }
ko=1

1
X1 (71, 22) = Xo (21, 22) + 2202 {Fl [Df (71, 752)] Y7 (71, 22)

= 92nt2

+F5 [D} (21, 22) . Y1 (21, 22)] } L I
where + oanr1 |2 +1§=:1 An—iy [751 -7 ”
F [D%(zl,ZQ)] =Y (21, 22) X2 (Zfl - 1) Y1 (21,22) . (47)
_ {22,,, I kzn:l Anr [z_ - 752}} S;;rsetistgggi §47) to (46), the first-level lowpass output can be
-
x D} (21, 22) (44) Xy (21, 2) =Xo!( 71,72)
and 22n+2 92n Z Ani [21 - 751}}
Fy [Di (21,22), Y1 (21, 22)] ’“—1
) o (' —1) 24n+4 22" 12_:1 An—iy [71 o Zfl} }
X [Dl (21,22) + Wlﬁ (21,22)] . (45) ‘2 71 )Y (1)
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Xy (21, 22) =Xo (21, 22) + 22n+2Y1 (21, 22) Since the design is separable, (59) implies that
1 R e My(z) =H(z) (60)
+ omrz {2“’ 30 A [ - Zi“]} H(z) -1
k=1 Mg(z) :W = Ml(Z). (61)

—1
zi —1
X [Di (21,22) + ( ;2n+1 _) Y1 (21, 22)] (48) Therefore, for any other choices of wavelets besides the Spline
wavelet family, the overcomplete wavelet representation with

which completes the proof. O G(z) andH(z) that satisfy (57) can be implemented using the
Theorem 2 provides a way to relate the first-level lowpag¥0P0Sed spatial implementation as described in Theorem 2 or

output with the original signal and the two bandpass output§. (49). ) o _
Employing the concept of filtering, Theorem 2 can be restated Theorem 2 not only provides an alternative implementation

as scheme for the forward transform but also simplifies the compu-
tation for the inverse transform. In particular, the inverse trans-
X1 (21,29) = Xo (21, 29) + M1(21) D} (21, 22) form can be easily calculated as

+M2(21)M3(22)D2 (Zl, ZQ) . (49) 1
' Xo(z1,22) = X1 (21, 22) — GEEED] {F [D? (21, 22)]
For the Spline wavelet family, the filterdf, (z), M>(z), and VF [DY (21,22) Vi (1, 22)] . (62)

M;3(z) can be written as

" The inverse transform is very similar to the forward transform
M; (%) 1 {22n + ZAn—k [z~ - 7k]} (50) in Theorem 2. The proposed implementation scheme for both
k=1

22 the forward and the inverse transforms according to Theorem 2
My(z) =1+ Mi(2)G() (51) and (62) is shown in Fig. 3. It can be seen that a simple spatial
Ms(z) =M (2). (52) implementation is used for image reconstruction. It greatly sim-

plifies the computation involved in the inverse transform.

Since a separable wavelet scheme is used in the design, all fil- _ .

ters are 1-D, as can be seen in (50)—(52). Note that all filtdps COMPutational Complexity

including G(z), Mi1(z), M2(z), and M3(z) are FIR in struc-  In analyzing the computational complexity associated with
ture. This implies that the proposed implementation in (49) the proposed scheme, the complexitiedin D3 (z1, z2)] and

in Theorem 2 will not produce errors or noise amplification anélz[D1 (#1, #2), Y1 (21, 22)] given in (44) and (45) can be written
is stable. In fact, (49) can be extended to other wavelet fanais

lies with different choices ab/; (z), M2(z), andMs5(z). To see

this, we could firstly look at the 1-D case due to the similarity Complexity [F} [D7 (z1,22)]]
between the designs of the 1-D and the 2-D cases [such as (8)]. = (2n) Costaa + (1)COStuuttiply (63)
In the 1-D case, we have Complexity [F» [Di (21,22) Y1 (21, 22)]]
X1(2) = Xo(2) + M(2)Dy(2) (53) = (2n +2)Costyq + (n + 1)CoStuutsiply.  (64)
where Using both (63) and (64), the complexities for the forward and
the inverse wavelet transforms can be defined as in Theorem 3.
X1(z) =H(2)Xo(2) (54) Theorem 3: The overcomplete forward wavelet transform
Di(2) =G(2)Xo(2) (55) using the proposed implementation scheme described in

Theorem 2 has a complexity of

Placing (54) and (55) in (53), it can be seen that .
Ing (54) (55)in (53). 1 Complexity; [Forward = (4n + 6)C0oStaa
M(Z) = % (56) +(27'L + 4)Costnultiply
z
) o S o and the inverse transform has a complexity of
A stable implementation is obtained¥f (=) is in FIR structure,

ie., Complexitys[Inversé = (4n + 4)Costyq

H(z) — 1is divisible byG(=). (57) +(2n + 2)COSttcipry-

Proof: The forward transform has three outputs: the
two bandpass output®i(z1,z2) and D?(z1,22) and the
My(2) = M(2). (58) lowpass outputX;(z1,z2). The co.mple>.<|t|es for obtammg
the two bandpass outputs are given in (28). According to
Placing (58), (56), and (1)—(3) in (49), it can be seenthat  the new implementation scheme in Theorem 2, the low-
pass output involves the calculation &t [D? (2, 2;)] and
H(Zl) [H(ZQ) — 1] = MQ(Zl)Mg(ZQ)G(ZQ). (59) Fy [D% (Zl, ZQ) ,Yi (21722)] . Its cost would include two

In the 2-D case, we could consider [cf. (8)]
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Fig. 3. Proposed spatial domain 2-D overcomplete wavelet transform. (a) Forward transform. (b) Inverse transform.

additions: one multiplication and the complexities in oband inverse transforms. As the prediction terms are unchanged,

taining £y [DI (21,22)] and Fy [Di(z1,22),Y1(21,22)]. thereis no need to do boundary correction after reconstruction.

By summing up these complexities, the forward complexitiny boundary extension scheme can be used while maintaining

can be determined. In reconstruction, there is no need ttee ease of the inverse transform.

calculate D} (21, 72) or D?(z1,72). Thus, the inverse com- _ -

plexity would only involve two additions: one multiplicationC- Multiple-Level Wavelet Decompositions

and the complexities in obtaining?y [Df (z1,22)] and  The correlation between the lowpass and the bandpass out-

Fy [D} (21, 22) , Y1 (21, 22)] O  puts is explored to provide an alternative implementation for
In the filtering approach, the complexity of the forwardhe first-level overcomplete wavelet transform. In this section,

transform is much smaller than that of the inverse transform, @e extend the proposed scheme to the multiple decomposition

shown in Theorem 1. In contrast, the complexity of the forwardamework. As in Fig. 1, the second-level wavelet transform in-

transform is slightly higher than that of the inverse transforwolvesG (2?), H (2?), K (2*), andL (2?). The two bandpass

in the proposed implementation scheme (Theorem 3). @uotputs and the lowpass output are written as

comparing the two approaches, we see that the complexity of

the forward transform of the proposed scheme is slightly higher D3 (21,22) =G (73) X1 (21, 22) (65)
than that of the filtering approach. However, the complexity of D3 (21, 22) =G (23) X1 (21, 22) (66)
the inverse transform of the proposed scheme is much lower Xo (21, 2) =H (712) H (73) X1 (71, 7). (67)

than that of the filtering approach since no filtering is required

for the reconstruction of the original signal. Instead, a simple Let us first analyze the computational complexity involved in
spatial implementation is used for the reconstruction, asalculating the second-level outpl¥ (=~ ,z>) compared with
therefore, its computational complexity is greatly reducethe first-level outpuDi (21, z2). Equation (65) can be rewritten
It can be seen that the inverse transform using our proposisd

scheme is one multiplication less than the forward transform 1 5 5

in the filtering approach. Dy (21,22) = G (21) X even (1, 22)

Besides a decrease in computational complexity of the +G(zf) X1,0dd (25722) (68)
inverse transform, the proposed implementation handles thﬁ
boundary in a more flexible way than the filtering approach.Ai’TV] er d the odd af As the | h of
images are of finite length, the boundary needs to be extendeeljﬁ1 even and the odd parts @h,(z1,2;). As the length o

e . I er X1 even(21,22) OF X1 oaa(#1,22) is only half of that
a practical implementation [23]. Under the filtering approac%,f X1(z, 7). the total number of computations involved in

there are two common ways of dealing with the boundary * " 1 "
extension problem for perfect reconstruction: The image (i};btamngQ(zl’@) would be the same as that Bk, (1, z,).

extended before filtering, or the boundary pixels are correcttlar?jfad’ for any arbitrary number of decomposition level
i i i—1
after the inverse transform. The former would increase the D2 (21, 20) :G( 2 )Xz;l (21, 22)

. . . . 21
computational time, especially for a large image, whereas

€ X1 even(21,22) and X cqa(z1,22) are, respectively,

the latter involves the design of nontrivial filter-dependent 21 1 1
boundary correction rules for different boundary extension = G(Zf )Xz{fl,k (7f 7752) (69)
methods. However, using our proposed implementation, it k=0
can be seen that the prediction termis [D? (z1,22)] and where
Fy [Df (21, 22) , Y1 (21, 22)], remain the same in both forward ‘
.’Eli?k (711,712) =Zik (27’711 + /{},712) . (70)
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An analysis of (69) shows that the number of computationghere
involved in obtainingD} (21, z2) remains the same as that of

D1 (21, 2). Using (66), a similar conclusion can be arrived Fy [Df (21, 22)] =Yi (21, 22)

for D? (21, z2). Therefore, the computational complexities of R

the two bandpass outputs remain unchanged, regardless of the =427+ Z Ap—k,
ko=1

number of decomposition levels. _ _
The lowpass outpuKy(z, z;) in (67) can be obtained by % [2527’1’“2 _ zg”’%}}
substituting (13) in (67) as

X D} (z1,72) (72)
1 Ko and
X (21, 22) =itz Z ? +10k1
h =0 Fy [Dj (21, 22) , Yi (71, 22)]
2(n—k1) 2(—n+k1—1)
X |:Zl + 2 :| { " i1 i—1

_Jom Z A 27270 2

> A | ]

n
% Z 2n+10k2 [zg(n—kz) +Z§(—n+k2—1):| |
_gi—1
ko =0 (22 -1

x X1 (21, 22). (71) x | Dj (21, 72) + Wyi (z1,22)| . (73)

Upon_comparlng (67). a_nd (.24)’ it can be SeQe.n that both Proof: The proof relies on the fact thatis replaced by
expressions look very similar i is replaced by:" in (24). = -1 in the filter H for theith decomposition level. The lowpass
The analysis in Theorem 2 can thus be extended to OCIJ)l]t Ut can be written as '
tain X, (z1,22) by replacing Di (z1,22) with D3 (21, 22), P
D3 (z1,22) with D3 (21, 22), and z with 2%, This takes into - (21,2) = H (72f—1>H (727-_1) Xi 1 (21,2).  (74)
account the filter interpolation in the subsequent decomposition ~* * 72 1 2 e
levels. Mathematically, the second-level lowpass output can B8ing Lemma 2, (74) can be rewritten as
obtained as

Xi (21, 22)

1 i—1
X (Zl,ZQ) =X (7517752) + 5912 {Fl [Dg (Zl, 22)] gio1 H (Z% )
2 . =H (zl ) Xi—l (Zl,zg) =+ W
+F [Dy (21, 22) , Ya (21, 22)] } .
where X {22” - kE An—ts [22_2 R kz}}
co=1
X D7 (21, 2)
Py [D3 (21,22)] =Ya (21, 22) 1

= Xi1(21,22) + Stz

S Y A, [ - ] . | |
% {22n+ Z A [7727*%1 _727%1}}
n—ki [#1 “1

ko=1
X Dg (Zl, 22) k1=1

D? (21,2
XDil(zth)JrM

and 4n+3
- 2n+1 27 (n—k1)
Fy [D3 (21, 22) , Y2 (21, 22)] s {kz_:o G [Zl
n i—1 L
= {22" +3 Ak [z;”“l _ 212’“1}} I 1)}}
k=1 n
—2 2n —2i= g 2i-1g
2 =1 X <27 + Ap ks, [22 2 — 25 2} } (75)
[t G ] 59>
Following the analysis in (47) and (48), we will arrive at the
Using this result, we arrive at the following theorem for angxpressions shown in (72) and (73). O
arbitrary number of decompositions. Theorem 4 provides a general expression for the lowpass
~ Theorem 4:For an overcomplete wavelet transform, thgutput. By comparing Theorem 4 and Theorem 2, it can be seen
ith-level lowpass output can be written as that the number of computations remains unchanged. Therefore,

the computational complexity of the lowpass output is indepen-
1 dent of the decomposition level. In summary, the computational
Xi(z1,20) = Xi_1 (21, 2 ——— {1 [D} (2,2 . : - )
(21,22) -1 (71 22) + 22n+2 U [DF (21, 22)] complexity of the proposed implementation remains the same
+F, [D} (21,22),Yi (21,22)]}  asin Theorem 3 for any arbitrary number of decompositions.
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TABLE |
FILTER COEFFICIENTS FOR THEQUADRATIC AND THE CUBIC SPLINE WAVELETS

n -5 -4 -3 -2 -1 0 1 2 3 4 5
Linear
ho(n) L
2 2
g(n) -2 2
ko(n) 1 1
8 8
lo(n) 1 S 1
8 8 8
Quadratic
hy(n) 1 3 3 1
8 8 8 8
gn) -2 2
ky(n) IR A R L A
128 128 64 64 128 128
1i(n) R T . R I
128 128 128 128 128 128 128
Cubic
hy(n) L I R A T
32 32 16 16 32 32
g(n) 2 2
ka(n) 1 11 7 11| 193 | 193 | 11 | =7 | -1 -1
2048 2048 256 128 1024 1024 128 256 2048 2048
1,(n) 1 10 45 120 210 1276 210 120 45 10 1
2048 2048 2048 2048 2048 2048 2048 2048 2048 2048 2048
IV. DESIGN EXAMPLES where
The coefficients fqr some low-order wavelets in the Spline Fy [D? (2, 2)] =Y3 (21, 2)
family are tabulated in Table I. Note that the lengths of the re-
construction filtersK'(z) and L(z) are always larger than that = (44 23" — 22) D} (21, 22)

of H(z) andG(z). Three examples are given. The first one is
the linear Spline. Substituting = 0 to (44) and (45), the new
implementation for the lowpass output becomes

Fy [Df (21, 22), Y1 (21, 22)] = [4+ 27 — 1]

X | Dy (z1,22)

1
X1 (21, 22) = Xo (21, 22) + Z{Di (21, 22) 1y
2 —
+

1 —
—1—5 [Df (21, 22) + 27 "D (21, 22)] }

Y1 (21, 22)} .

r]Similarly, by substituting: = 2 to (44) and (45), the new im-

By substituting: = 1 to (44) and (45), the new implementatio ) : _
plementation for the cubic Spline wavelet becomes

for the quadratic Spline wavelet is
1
1 _ 2
Xy (21, 22) = Xo (21, 22) + E{Fl [DF (21, 22)] X1 (21, 22) = Xo (21, 22) + 6_4{F1 (D7 (21, 22)]

+ [D} (21, 22) Vi (1, 2)] } + [D} (21, 2) Vi (1, 22)] }
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(a) (b)

Fig. 4. Plots of (a) the number of additions and (b) the number of multiplications for different orders of Spline wavelet of the 2-D wavelet trahefsofid T
line represents the filtering approach, and the dotted line represents the proposed approach.

where TABLE 1l
COMPUTATIONAL COMPLEXITY OF THE QUADRATIC AND THE CUBIC SPLINE
WAVELETS OF TWO-DIMENSIONAL WAVELET TRANSFORM

Fl [D% (21, ZQ)] =Y (21, ZQ)

Filtering Approach Proposed Implementation
= [16 +6 (Z; T 22) Forward Inverse Forward Inverse
+Z;2 — Z%] D% (217 22) Linear
_ Additi 4 10 6 4
5 [D% (21, 22), Y1 (21, zQ)] = [16 +6 (zl - zl) o
5 5 Multiplications 3 5 4 2
FAE
+ L 1] Quadratic
X Di (Zla 22) Additions 8 30 10 8
Multiplications 5 15 6 4
—1
zi—1 -
+ 1Tyv1 (21722) ) Cubic
Additions 12 50 14 12
. . . Multiplications 7 25 8 6
The computational complexities for the lingar = 0), the
quadratic, and the cubic Spline wavelets are shown in Table III.
It can be seen that the saving in computation of the inverse tran:
form is significant. For the quadratic Spline wavelet, the number ~ ** ' M— ' '
.. . . —_ il v
of additions is reduced from 30 to eight, whereas the numbe | |- Forward, proposed
of multiplications is reduced from 15 to four. This corresponds ~ °'[ e s 1

to a saving of 73.3% for both the additions and multiplications.
For the cubic Spline wavelet, the number of additions is reducer "™
from 50 to 12, whereas the number of multiplications is reducec
from 25 to six. This corresponds to a saving of 76.0% for both
the additions and multiplications. Fig. 4 shows a comparisor
of the computational complexity between the filtering approach ~ **
and the proposed implementation for different orders of Spline

wavelets. It can be seen that the saving in computation asymy 5%
totically approaches five times for both the additions and multi-
plications. 5%

0.06 -

Time (sec)

Image size X 105

V. EXPERIMENTAL RESULTS i o ] ) o ]
Fig. 5. Plot of the computation times for different image sizes in a single

The theoretical analysis of both the filtering approach and tldecomposition using the linear Spline wavelet.
proposed implementation has been presented in Sections II-IV.
In this section, we will confirm the theoretical findings exwhereas the numbers of additions and multiplications are
perimentally by running Visual C++ programs on a PIlI 338iven in Table Il. Fig. 5 shows a plot of the computation times
MHz PC. The first case we considered is the linear Spliffer the filtering approach and the proposed implementation
wavelet withn = 0. Its filter coefficients are given in Table I, using different image sizes and by setting the decomposition
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Fig. 6. Plot of the computation times for different image sizes in a single
decomposition using the quadratic Spline wavelet. Fig. 7. Plot of the computation times for different image sizes in a single
decomposition using the cubic Spline wavelet.

level to one. The experimental results match very well with

the theoretical findings. The computation time for the inverggat in the filtering approach (Table II), there are other factors

transform that uses the filtering approach is much longer th#trat affect the computation time in the actual implementation.

that used in our proposed implementation. The average time forthis case, the addressing in our proposed implementation is

the computation required in a single pixel can be calculated &ightly more efficient than that in the filtering approach. This
results in a faster execution time.

—1 Time; Another example shown is the cubic Spline wavelet. Fig. 7
T= [7d NI (76) shows the computation times of the filtering approach and our
i=0 T proposed implementation. Consistent with the theoretical find-

ings, the inverse transform using our proposed implementation

where Time, IV;, andM; denote, respectively, the computations the fastest. The average computation time for each of the for-
time, the width, and the height of thith image.K is the total ward and the inverse transforms using the filtering approach is
number of images in the test. This metric denotes the averaggix 10~ and 1.44x 10~%, respectively. The average com-
computation time required in a single pixel. putation time for each of the forward and the inverse trans-

For the linear Spline wavelet with a single level of deforms using our proposed implementation is 4780 and
composition, the average computation time of each of ti%77x 1077, respectively. There is a 73.8% speedup in the in-
forward and the inverse transforms using the filtering approagBrse transform.
is 2.04x 107" and 3.67 107" s, respectively. The average The previous results concern a single level of decomposition.
computation time of each of the forward and the inversene theoretical findings stated in Theorems 1 and 3 concerning
transforms using our proposed implementation is 21® *  the computational complexity of the filtering approach and our
and 1.46< 10™" s, respectively. The forward transform usingroposed implementation have been confirmed experimentally.
our proposed implementation is slightly slower than that usinghe theoretical findings for multiple levels of decomposition are
the filtering approach, whereas the inverse transform usipgesented next. Fig. 8 shows the computation times when the
our proposed implementation is much faster. There is a 60.28composition level is increased to two and five for the linear
speed up in the reconstruction. Spline case. Similar to the case of the single level of decom-

Fig. 6 shows the computation times for the Quadratic Splifsition, the inverse transform using our proposed implementa-
wavelet. Similar to the linear Spline wavelet case in Fig. 5, thin is the fastest. In addition, a linear performance is observed
inverse transform from our proposed implementation is mu@fom the result. Table 1l shows the average computation times
faster than that from the filtering approach. Using the filteringalculated from (76). It can be seen that for the forward and
approach, the average computation time calculated accordifig inverse transforms using either the filtering approach or our
to (76) fOI’ each of the forward and the inverse transforms jigoposed implementation, the computation times fatlarevel
4.05x 10”7 and 9.03x 107, respectively. Using our proposedof decomposition are approximately equal times that for a
implementation, the average computation time for each of thihgle level of decomposition. This fits very well with our the-
forward and the inverse transforms becomes %38 " and oretical findings described in Section II-C.
2.97x 1077, respectively. We can see that there is a 67.1%
speedup in the reconstruction by using our proposed implemen-
tation. It is interesting to note that the forward transform using
our proposed implementation is slightly faster than that usingThe computational complexity of the overcomplete wavelet
the filtering approach. Although the numbers of additions aricansform for the Spline wavelet family with an arbitrary order
multiplications in our proposed implementation are larger thas studied in this paper. By deriving general expressions for the

VI. CONCLUSION
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TABLE Il
AVERAGE COMPUTATION TIMES FOR THELINEAR, THE QUADRATIC, AND THE CUBIC SPLINE WAVELETS

Filtering Approach Proposed Implementation
Forward Inverse Forward Inverse
Linear
Level=1 2.04x107 3.67x107 2.13x 107 1.46 x107
Level=2 4.12x107 7.86 x107 4.28 x107 2.96 x107
Level=5 1.02 x10° 2.30x10° 1.07 x10° 8.47 x107
Quadratic
Level=1 4.05 x107 9.03 x107 3.58x107 2.97 x107
Level=2 8.59 x107 1.87 x10° 7.65 x107 6.53x107
Level=3 1.36x10° 2.70 x10°¢ 1.19x10°¢ 1.04 x10°¢
Cubic
Level=1 4.31x107 1.44 x10° 478 x107 3.77 x107
Level=2 8.79 x107 2.96 x10°° 1.06 x10° 8.13x107
Level=3 1.33 x10° 4.65x10° 1.59 x10°¢ 1.23 x10°

computational complexity using the conventional filtering imeonventional filtering implementation, the spatial implementa-
plementation, we found the inverse transform to be significantiypn allows the use of an arbitrary boundary extension method
more complicated than the forward transform. In fact, it asympnd requires no boundary correction.

totically approaches five times for a large filter order. In order to
reduce the computations, we propose a new spatial implemen-
tation based on the exploitation of the correlation between the
lowpass and the bandpass outputs inherent in the overcomplete
representation. Both theoretical studies and experimental findN. F. Law thanks the Centre for Multimedia Signal
ings reveal that the new spatial implementation results in an &frocessing, Department of Electronic and Information Engi-
ficient inverse structure. We also demonstrated that the commeering, the Hong Kong Polytechnic University for the support
tational complexity associated with the inverse transform usisge receives under its research fellowship scheme. The authors
the proposed spatial implementation is slightly more efficiemtould like to thank all anonymous reviewers for their sugges-
than the complexity associated with the forward transform usitigns, in particular, to one of the reviewers who contributed to
the filtering approach. Furthermore, we showed that unlike tlige proof of Lemma 1.
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