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Unsupervised Frequency Tracking beyond the
Nyquist Frequency using Markov Chains

Jean-François Giovannelli, Jérôme Idier, Redha Boubertakh and Alain Herment

Abstract— This paper deals with the estimation of a sequence
of frequencies from a corresponding sequence of signals. This
problem arises in fields such as Doppler imaging where its speci-
ficity is twofold. First, only short noisy data records are available
(typically four sample long) and experimental constraintsmay
cause spectral aliasing so that measurements provide unreli-
able, ambiguous information. Second, the frequency sequence
is smooth. Here, this information is accounted for by a Markov
model and application of the Bayes rule yields thea posteriori
density. The maximuma posteriori is computed by a combination
of Viterbi and descent procedures. One of the major features
of the method is that it is entirely unsupervised. Adjusting
the hyperparameters that balance data-based andprior-based
information is done automatically by ML using an EM-based
gradient algorithm. We compared the proposed estimate to a
reference one and found that it performed better: variance
was greatly reduced and tracking was correct, even beyond the
Nyquist frequency.

Index Terms— Frequency tracking, aliasing inversion, reg-
ularization, Bayesian statistic, maximum a posteriori, Viterbi
algorithm, hyperparameter estimation, maximum likelihood, EM
algorithm, Forward-Backward procedure, ultrasonic Doppler
velocimetry, meteorological Doppler radar.

I. I NTRODUCTION

FREQUENCY TRACKING (or mean frequency tracking)
is currently of interest [1–6], especially in fields such as

the ultrasonic characterization of biological tissues, synthetic
aperture radar, and speech processing. Our main interest is
its use in Doppler imaging (radars [7], ultrasound blood flow
mapping [8–10]). There are two main features in this area.

1) One is that only short noisy data records are available
(typically four sample long) and they are in a vecto-
rial form. Moreover, the constraints on the sampling
frequency may cause spectral aliasing, so that measure-
ments provide small amounts of ambiguous information.

2) The second is that there is information on the smooth-
ness of the sought frequency sequence. Thisa priori
information is the foundation of the proposed construc-
tion. It allows robust tracking, even beyond the Nyquist
limit.

The most popular methods used for spectral characterization
rely on periodogram and empirical correlations. The mean fre-
quency is usually estimated by computing the mean frequency
of the periodogram [8] over the standardized frequency range
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ν ∈ (−0.5,+0.5]. Another popular estimate is proportional to
the phase of the first empirical correlation lag [11, 12]. It is
also provided by a first-order autoregression in a least squares
framework [13]. But better accuracy is obtained by using
all the available estimated correlation lags in a Taylor series
expansion of the correlation function [12, 14]. The resulting
estimate is also the mean frequency of the periodogram.
However, the estimated parameters vary greatly, particularly
when short data records are used. Moreover, the estimated
frequency approaches zero when the true frequency becomes
near the Nyquist frequencyν ≃ ±0.5, (due to the periodogram
1-periodicity) [8]. To reduce this bias, [15] uses the maximum
of the periodogram instead of its mean (and yields a maximum
likelihood estimate, see Section III-A and [16, p.410]), and [8]
iteratively shifts the frequency of the data. This results in
greater variance so that no frequency tracking remains possible
beyondν = ±0.5.

Thus, all the current methods have two drawbacks. First,
the tracking problem is tackled by a (necessary sub-optimal)
two-step procedure:

1) estimate frequencies in the aliased band(−0.5,+0.5];
2) detect and inverse aliasing.

Second, they are clearly based upon empirical second-order
statistics that perform poorly with short data records inde-
pendently processed. Unfortunately, the inverse aliasingin
step 2 often fails due to the great variations in the estimated
aliased frequencies of step 1. This is usually compensated
for by post-smoothing the aliased frequency sequence. This
provides spatial continuity but affects the aliased frequency
discontinuities, so limiting the capacity to detect aliasing. The
proposed method copes with the great variation and aliasing
in a single step; it models the whole data set (by noisy cisoids)
and the smoothness of the frequency sequence (by a Markov
random walk) in the regularization/Bayesian framework. It
then becomes possible to smooth frequency sequence and
invert aliasing at the same time, so avoiding the pitfalls of
chaining these operations.

We have found few papers [3, 17, 18] that adopt such a
framework, and this study provides four additional features.

1) First, it deals with vectorial data records as they occur
in Doppler imaging (see Section II).

2) Second, it enables tracking beyond the Nyquist fre-
quency, whereas others have not investigated this prob-
lem.

3) Third, exact frequency likelihood functions are com-
puted whereas [17] uses a detection step and [3] uses
an approximation.

http://arxiv.org/abs/0908.3258v1
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4) Lastly, the tracking method is entirely unsupervised,
with a maximum likelihood hyperparameter estimation.
This is not a straightforward task in the context of
frequency tracking, since the non-linear character of the
data as functions of frequencies prevents the explicit
handling of the likelihood function of the hyperparame-
ter. We have developed an EM-like gradient procedure,
inspired by [19–21]. It can be derived only after dis-
cretizing the frequencies on a finite grid.

The paper is organized as follows. The notation, signal
model and assumptions are defined in Section II. Section III
contains the proposed regularized method and Section IV
gives a discrete approximation. Section V is devoted to the
estimation of hyperparameters. The performance of the pro-
posed method is demonstrated by the computer simulations
in Section VI, while Section VII gives our conclusion and
describes possible extensions.

II. STATEMENT, NOTATIONS AND ASSUMPTIONS

In Doppler imaging, the signals to be analyzed occur as a set
of complex signalsY = [y1, . . . ,yT ] juxtaposed spatially, inT
range bins [22, 23]. The data recordyt = [yt(1), . . . , yt(N)]t,
(“t” denotes the matrix transpose) is extracted from a cisoid
in additive complex noise. The amplitude and the frequency
of the cisoid areat ∈ C andνt ∈ R:

yt = at z(νt) + bt = at [1, . . . , e
j2πνt(N−1)]t + bt . (1)

The vectorsν = [ν1, . . . , νT ]
t anda = [a1, . . . , aT ]

t collect
the frequencies and corresponding amplitudes. Finally, the true
parameters are denoted with a star. This paper builds a robust
estimateν̂ for ν⋆ on the basis of data setY (see Fig. 1 for a
simulated example).
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Fig. 1. Simulated observations overT = 128 range bins withN = 4
samples per bin. From top to bottom: real parts, imaginary parts of the data
yt, and the true frequency sequenceν⋆

t
.

Remark 1 — Model (1) is frequently used for spectral prob-
lems; it has three main features. First, while it is linear w.r.t.
at, it is not so w.r.t.νt: the problem to be solved is non-
linear. Second,z(νt) is a 1-periodic function w.r.t.νt and

this causes the difficulties of aliasing, frequency ambiguity,
likelihood periodicity, etc. . . Lastly, this periodicity is also the
keystone of the paper: aliasing is inverted using a coherent
statistical approach that takes periodicity in consideration.

The following definition of periodicity is used throughout
the paper.

Definition 1 — LetA ⊂ R

T and ϕ : A → R. Let us note
1 = [1, . . . , 1]t ∈ RT . ϕ is said:

• separately-1-periodic(S1P) if ∀u ∈ A, ∀k ∈ ZT (such
that u+ k ∈ A): ϕ(u) = ϕ(u+ k).

• globally-1-periodic(G1P) if ∀u ∈ RT , ∀k0 ∈ Z (such
that u+ k01 ∈ A): ϕ(u) = ϕ(u + k01).

The proposed estimation method deals with periodicity and
aliasing inversion thanks to the following assumptions. They
are stated for the sake of simplicity and calculation tractability
as well as coherence with the applications under the scope of
this paper.

• Parameter dependence.
– H1: a, ν and thebt are independent

• Law for measurement and modeling noisebt.

– Ha
2: eachbt is N (rbIN )

– Hb
2 : the sequence ofbt is itself white

• Law for parametersa andν.

– Ha
3: a is N (raIT ), i.e., white

– Hb
3 : ν is, on the contrary, correlated:N (Rν)

whereN (R) stands for a complex zero-mean Gaussian vector
with covarianceR, andIP , P ∈ N∗ denotes theP×P identity
matrix.

The first assumptionH1 is quite natural since no information
is available about the relative fluctuations of noise and objects.
The assumptionsHa

2, andHb
2 are also natural since no corre-

lation structure is expected in noise. Similarly, we have no
information about the variation of the amplitude sequence,so
an independent law is used. A Gaussian law is preferred (Ha

3)
to make the calculations tractable. Contrarily, the smoothness
of the frequency sequence is modeled as a positive correlation.
A Markovian structure (specified below) is a simple, useful
way to account for it. Several choices are available, but the
Gaussian one is also stated for the sake of simplicity (Hb

3).

III. PROPOSED METHOD

A. Likelihood

AssumptionHa
2 yields a parametric structure for each like-

lihood functionf(yt | νt, at):

f(yt | νt, at) = (πrb)
−N exp

[
−

1

rb
CLL(νt, at)

]

involving the opposite of the logarithm of the likelihood
function (up to constant terms)i.e., the Co-Log-Likelihood
(CLL):

CLL(νt, at) = [yt − atz(νt)]
†
[yt − atz(νt)] .

From a deterministic standpoint,CLL(νt, at) is clearly the
Least Squares (LS) estimation criterion.
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Considering the whole frequency vectorν and the whole
data setY, assumptionHb

2 yields:

f(Y |ν,a) = (πrb)
−NT exp

[
−

1

rb
CLL(ν,a)

]
(2)

where the global CLL is a global LS criterion:

CLL(ν,a) =
T∑

t=1

CLL(νt, at) .

Remark 2 — According to Definition 1, the likelihood func-
tion CLL( · ,a) is S1P for alla ∈ CT . So, two configurations
ν and ν + k (k ∈ ZT ) for the frequency sequence areequi-
likelihood. As a consequence, an ML approach suffers fromT
independent frequency ambiguities.

B. Amplitude law and marginalization

The parameters of interest are the frequencies, while the
amplitudes are nuisance parameters. These are integrated out
of the problem in the usual Bayesian approach.

Given separability assumptionH1 one hasf(ν,a) =
f(ν)f(a) and the marginal law can easily be deduced:

f(Y,ν) = f(ν)

∫

a

f(Y |a,ν)f(a)da = f(ν)f(Y |ν) .

The joint law for the amplitudes is separable according
to assumptionHa

3. Since likelihood (2) is also separable,
marginalization can be performed independently.

f(Y |ν) =
T∏

t=1

∫

at

f(yt | νt, at)f(at)dat. =
T∏

t=1

f(yt | νt).

(3)
The Gaussian amplitude assumptionHa

3 results in analytic
derivations and yield the marginal likelihood for the datayt

given νt: a zero mean Gaussian vector. Its covarianceRt is
given in Appendix B as well as its determinant (23) and its
inverse (24).f(yt | νt) then reads:

f(yt | νt) = β exp [−γt] exp [αPt(νt)] (4)

with α = Nra/(rb(Nra + rb)), β = π−Nr1−N
b /(Nra + rb),

γt = y
†
tyt/rb, andPt is the periodogram of vectoryt

Pt(νt) =
1

N

∣∣∣∣∣

N∑

n=1

yt(n)e
−2jπνtn

∣∣∣∣∣

2

.

The joint law for the whole data set given the frequency
sequence is obtained by the product (3):

f(Y |ν) = βT exp [−γ] exp [−αCLML(ν)] (5)

whereγ is the sum of theγt for t ∈ N∗
T = {1, . . . , T } and

where CLML is the Co-Log-Marginal-Likelihood

CLML(ν) = −
T∑

t=1

Pt(νt) (6)

the opposite of the sum of the periodograms of datayt at
frequencyνt, in gatet.

Remark 3 — This remark is the marginal counterpart of
Remark 2. As well asCLL( · ,a), CLML( · ) is S1P: there are
still many ambiguities as in the non-marginal case. This was
expected since no information about the frequency sequence
has been accounted for inCLML(ν) w.r.t. CLL(ν,a). In
contrast, periodicity will be eliminated in the next subsection
by accounting for the frequency sequence smoothness.

C. Prior law for frequency sequence

Unlike amplitudes, the frequency sequence is smooth. A
Markovian structure accurately accounts for this information,
and there are many algorithms suited to computing this struc-
ture. The choice of the family law is not crucial for using these
algorithms, but we have used the Gaussian family:

f(νt+1 | νt) = (2πrν)
−1/2 exp

[
−

1

2rν
(νt+1 − νt)

2

]
.

The complete law for the chain also involves the initial state.
It is assumed to be uniformly distributed over a symmetric set
K defined byK ∈ N

∗: K = [−K/2;+K/2]. So f(ν1) =
(1/K)10K(ν1) where10K is 1 inK and 0 outside.

The recursive conditioning rule immediately yields:

f(ν) = (2πrν)
−(T−1)/2 exp

[
−

1

2rν
CLP (ν)

]
, (7)

whereCLP (ν) is the Co-Log-Prior:

CLP (ν) = K̃1∞K (ν1) +

T−1∑

t=1

(νt+1 − νt)
2 , (8)

K̃ = 2rν logK and 1∞K is 1 in K and+∞ outside. In the
deterministic frameworkCLP (ν) is a quadratic norm for the
first-order differences, namely a regularization term [24–26].

D. Posterior law

Fusion of prior-based and data-based information is
achieved by the Bayes rule, which provides thea posteriori
density forν:

f(ν | Y) = f(Y |ν)f(ν)/f(Y) .

The marginal lawf(Y) for the whole data setY is not
analytically tractable, essentially due to the non-linearity of
the periodogram w.r.t.νt and the correlated structure of
ν. Fortunately, this p.d.f. does not depend onν, so thea
posteriori density remains explicit up to a positive constant.
Prior structure of Eq. (7-8) and likelihood structure of Eq. (5-
6) immediately yield theposterior law:

f(ν | Y) ∝ exp [−αCLPL(ν)] (9)

where the Co-Log-Posterior-Likelihood function (CLPL)
reads:

CLPL(ν) = −
T∑

t=1

Pt(νt) + λ

T−1∑

t=1

(νt+1 − νt)
2 + 1∞K (ν1)

(10)
with λ = 1/2αrν , up to irrelevant constants. In the determin-
istic framework,CLPL is a Regularized Least Squares (RLS)
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criterion. It has three terms, one measures fidelity to the data,
the second measures fidelity to theprior smoothness and the
third enforces the first frequencyν1 ∈ K. The regularization
parameterλ (depending on hyperparametersr = [ra, rb, rν ])
balances the compromise betweenprior-based and data-based
information.

E. Point estimate

As a point estimate, a popular choice is the MaximumA
Posteriori (MAP) i.e., the maximizer of theposterior law of
Eq. (9) or the minimizer of the RLS criterion (10):

ν̂
MAP = argmax

ν∈R

f(ν | Y) = argmin
ν∈R

CLPL(ν) . (11)
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Fig. 2. Typical form of criteria. From top to bottom:CLML(ν) (peri-
odic), CLP (ν) (quadratic) andCLPL(ν) as a function ofνt (t = 50).
Regularization breaks periodicity.

Remark 4 — This remark is the posterior counterpart of
Remarks 2 and 3. Whereas CLL and CLML are S1P, CLPL
is not: regularization breaks periodicities, favors solutions
according to prior probabilities, and enables some ambigu-
ities to be removed. Nevertheless, a global indetermination
remains:CLPL is a G1P function. This is essentially due
to (i) the marginal likelihood CLML is a S1P function and
(ii) the regularization term CLP is a G1P function (since
it only involves frequency differences). As a consequence,
two frequency profiles, different from a constant integer level
remain equi-likelihood. Finally, the latter indeterminacy can
be removed by choosing an appropriateK: K = 1 enforces
the first frequencyν1 to remain in (−0.5,+0.5] and the
correspondingCLPL is no longer G1P.

Proposition 1 — With the previous notations and definitions,
the MAP estimate is such that:

|ν̂MAP

t+1 − ν̂MAP

t | 6 1/2 for t ∈ N∗
T−1 (12)

Proof: See appendix B.

F. Optimization stage

The proposed approach allows ambiguous periodicity to
be removed at the expense of accepting local minima in
the built energy (10). A gradient procedure [27] can achieve
local minimization of (10) andCLPL gradient involves the
periodograms derivatives

P ′
t (νt) = 2jπ

N−1∑

n=1−N

nĉt(n)e
2jπνtn

when rewritingPt(νt) as a function of empirical correlation
lags ĉt(n) of the signalyt. It is also possible to calculate the
second-order derivative

P ′′
t (νt) = −4π2

N−1∑

n=1−N

n2ĉt(n)e
2jπνtn

and to implement second-order descent algorithms.
There are several ways of coping withglobal optimization,

e.g., graduated non-convexity [28, 29], stochastic algorithms
such as simulated annealing [30, 31]. We have used a dynamic
programming procedure for computational simplicity. It is
based on a discrete approximation of theprior law for the
frequencies. This approximation allows global optimization
(on an arbitrary fine discrete frequency grid) and provides a
convenient framework for estimating hyperparameters.

IV. D ISCRETE STATEMARKOV CHAIN

This section is devoted to a discrete approximation to

1) maximizeposterior law for the frequency sequenceν
2) build an ML procedure for estimating hyperparameters.

We have therefore introduced an equally spaced discretization
of the frequency range[νm; νM] in P statesν1, . . . , νP (νM =
−νm = 2.5 andP = 128 in our simulations).

A. Probabilities

Discretization and normalization of thea priori law (7)
yields the state transition probabilities:

Pt(p, q) = Pr[νt+1 = νp | νt = νq]

=
exp

(
−(νp − νq)2/2rν

)
∑P

p=1 exp (−(νp − νq)2/2rν)
. (13)

Note thatPt does not depend upont, i.e.,the proposed chain is
homogeneousPt = P. The full state model also includes the
initial probabilitiesp(p), chosen constant over(−0.5,+0.5]
(see Remark 4).

The marginal (w.r.t. amplitudes) likelihood function for the
observation sequence given by Eq. (4) yields the observation
probability distributionOt(p) = f(yt | νt = νp).

B. Available algorithms

The Markov chain is now convenient for using algorithms
given in [32, 33], the Viterbi and the Forward-Backward algo-
rithms. They enable us to compute

• the MAP and
• the hyperparameters likelihood as well as its gradient.
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1) The Viterbi algorithm: The Viterbi algorithm, Ap-
pendix E, has been implemented to cope with global opti-
mization (on a discrete grid), and performs a step-by-step
optimization of theposterior law. The required observation
probabilities are also readily pre-computable by FFT.

2) Forward – Backward algorithm:We have used a nor-
malized version of the procedure, as recommended in [34, 35]
to avoid computational problems. It is founded on forward and
backward probabilities:

Ft(p) =
Pr[Yt

1, νt = νp]

Pr[Yt
1]

and Bt(p) =
Pr

[
YT
t+1 | νt = νp

]

Pr
[
YT
t+1 | Y

t
1

] ,

where Yt′

t = [yt, . . . ,yt′ ] denotes the partial observation
matrix from timet to t′.

The (count-up) Forward algorithm, given in Appendix F,
computes non normalized probabilitiesF t(p), normalization
coefficientsNt and theFt(p) themselves. As a result, the
observation likelihood can be deduced:

Pr[Y] =
P∏

t=1

Nt . (14)

It is useful for estimating ML hyperparameters in Section V.
The (count-down) Backward step, described in Appendix G,
yields marginala posterioriprobabilities (see [32, p.10]):

pt(p) = Pr[νt = νp | Y] = Ft(p)Bt(p) (15)

and double marginala posterioriprobabilities (see [32, p.11])

pt(p, q) = Pr[νt−1 = νq, νt = νp | Y]

= Nt Ft−1(p)Bt(q)P(p, q)Ot(q) , (16)

both needed to calculate the likelihood gradient.

V. ESTIMATING HYPERPARAMETERS

The MAP estimate of Eq. (11) depends upon a unique
regularization parameterλ, function of three hyperparameters
r = [ra, rb, rν ]. This section is devoted to their estimation
using the available data setY.

Estimating hyperparameters within the regularization frame-
work is generally a delicate problem. It has been extensively
studied, several techniques have been proposed and compared
[36–41] and the preferred strategy is founded on ML.

The ML estimation consists of(i) expressing the Hyper-
parameter Likelihood (HL) asHLY(r) = f(Y) and (ii)
maximizing the resulting function. Although we have chosena
simple Gaussian law,ν cannot be marginalized in closed form
becauseν entersf(Y|ν) in a complex manner. Fortunately,
the discrete state approximation of Section IV provides a
satisfactory solution to this problem. It also allows us to devise
several kinds of algorithms for local maximization of the likeli-
hood. One such scheme is the acknowledged EM (Expectation-
Maximization) algorithm, although its application reveals un-
easy in the present context of a parametric model of hidden
Markov chain ([19] provides a meaningful discussion of such
situations, see also [20, 21]). Subsection V-B is devoted to
the EM framework, within which a gradient procedure is
proposed. Subsection V-A deals with the computation of
the likelihood and proposes a simple coordinatewise descent
procedure.

A. Hyperparameter likelihood

The hyperparameter likelihoodHLY can be deduced from
the joint law for (ν,Y) by frequency marginalization:

HLY(r) =

P∑

p1,...,pT=1

Pr[Y, ν1 = νp1 , . . . , νT = νpT ]

but the indices run overPT states, so the above summation
is not directly tractable. However, the Forward procedure effi-
ciently achieves a recursive marginalization: it yieldsHLY(r)
according to Eq. (14) and requires aboutTP 2 calculations.

Let us introduce the Co-Log-HL (CLHL) to be minimized
w.r.t. hyperparameters vectorr:

r̂ML = argmin
r

CLHLY(r).

One possible optimization scheme is a coordinatewise descent
algorithm, with a golden section line search [27]. But a more
efficient scheme may be a gradient algorithm [27].

B. Likelihood gradient

The EM algorithm relies on an auxiliary function, usually
denotedQ [42, 43] built on two hyperparameter vectorsr and
r′ by completing the observed data setY with parameters to
be marginalizedν:

Q(r, r′) = Eν

[
log(Pr[ν,Y; r′])

∣∣∣Y; r
]

=
∑

ν

logPr[ν,Y; r′] Pr[(ν | Y; r)].

With the proposed notations, usual hidden Markov chains
calculations yield:

Q(r, r′) =

T∑

t=2

P∑

p,q=1

pt(p, q) logP
′(p, q) (17)

+

P∑

p=1

p(p) logp′(p) +

T∑

t=1

P∑

p=1

pt(p) logO
′
t(p)

where:

• (p′,P′,O′) and (p,P,O) are parameters of the model
under hyperparametersr′ andr, respectively.

• pt(p) andpt(p, q) denote thea posteriorimarginal laws
defined by (15) and (16), under hyperparametersr.

The kth iteration of the EM scheme maximizes
Q(r(k−1), r′) as a function ofr′, to yield r(k) as the
maximizer. Unfortunately, it seems impossible to derive
an explicit expression for such a maximizer. However, an
alternate route can be followed, given the key property:

∂Q(r, r′)

∂r′

∣∣∣
r′=r

= −
∂CLHLY(r)

∂r
.
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As suggested by [19], this property enables us to calculate the
gradient ofCLHLY(r) as the derivative of (17) :

∂Q

∂r′a
=

T∑

t=1

P∑

p=1

pt(p)
∂ logO′

t(p)

∂r′a
(18)

∂Q

∂r′b
=

T∑

t=1

P∑

p=1

pt(p)
∂ logO′

t(p)

∂r′b
(19)

∂Q

∂r′ν
=

T∑

t=2

P∑

p,q=1

pt(p, q)
∂ logP′(p, q)

∂r′ν
. (20)

The encountered derivatives∂ logO′(p)/∂r′a, ∂ logO′(p)/∂r′b
and∂ logP′(p, q)/∂r′ν respectively read:

−N

Nr′a + r′b
+

N

(Nr′a + r′b)
2
Pt(ν

p)

1−N

r′b
−

1

Nr′a + r′b
+

y
†
tyt

r
′2
b

−
Nr′a(Nr′a + 2r′b)

r
′2
b (Nr′a + r′b)

2
Pt(ν

p)

1

2r′2
ν

(
(νq − νp)2 −

P∑

r=1

(νr − νp)2P′(p, r)
)

by derivation of (4) and (13). Finally the likelihood gradient
is readily calculated and a gradient procedure can be applied.

VI. SIMULATION RESULTS AND COMPARISONS

The previous Sections introduced a regularized method for
frequency tracking and estimating hyperparameters. This Sec-
tion demonstrates the practical effectiveness of the proposed
approach by processing1 simulated signals shown in Fig. 1.

A. Hyperparameter estimation

The hyperparameter likelihood functionCLHL was first
computed on a fine discrete grid of25×25×25 values resulting
in the level sets shown in Fig. 3. The function is fairly regular,
and has a single minimum.

The hyperparameters are tuned using two classes of descent
algorithms:

• a coordinate-wise descent algorithm
• a gradient descent algorithm.

The latter employs several descent directions: usual gradi-
ent, bisector correction, Vignes correction and Polak-Ribière
pseudo-conjugate direction. Two line search methods have also
been implemented: usual dichotomy and quadratic interpola-
tion. The starting point remains the empirical hyperparameter
vector described in Appendix G.

All the strategies provide the correct minimizer and they are
compared Table I and Fig. 3. The usual gradient generated zig-
zagging trajectories and was slower than the other strategies.
The three corrected direction strategies were 25 to 40 % faster
than the uncorrected ones, with the Polak-Ribière pseudo-
conjugate direction having a slight advantage. In contrast,
interpolation did not result in any improvement within the
corrected direction class.

1Algorithms have been implemented using the computing environment
Matlab on a Personal Computer, Pentium III, with a 450 MHz CPU and
128 MB of RAM.

The coordinate-wise descent algorithm performed well,
since it does not require any gradient calculation. Gradient
calculus needs much more computation than the likelihood
itself, due to summations in Eq. (18)-(20). Likelihood calculus
took 0.05 s, while gradient calculus required0.2 s., i.e.,about
four times more.

We have therefore adopted the two fastest methods:
coordinate-wise and Polak-Ribière pseudo-conjugate gradient,
which took less than3.5 s. Fig. 3 also illustrates the conver-
gence.

B. Frequency tracking

The optimization procedure used to compute the MAP
(given ML hyperparameters) consisted of applying the Viterbi
algorithm (described in Section IV-B.1). The solution was used
as the starting point for the gradient or the Hessian procedure
(described in Section III-F). The Viterbi algorithm explored the
whole set of possible frequencies (on a discrete grid) and found
the correct interval for each frequency, while the gradientor
Hessian procedure locally refined the optimum. Table II shows
the computation times. We adopted the Hessian procedure,
since it performed almost 10 times faster.

Method Time (s)
MAP Viterbi 0.13

MAP Gradient 4.82
MAP Hessian 0.51

TABLE II

COMPUTATION TIMES COMPARISON FOR FREQUENCY ESTIMATE.

F
re

qu
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ν
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−0.5
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Depth t

Fig. 4. Comparison of frequency profile estimates. From top to bottom:
ML estimate (i.e.,periodogram maximizer), unwrapped ML estimate, Viterbi-
MAP estimate and Hessian-MAP estimate.

Fig. 4 illustrates typical results. The ML strategy:

– lacked robustness for two reasons: estimation was per-
formed independently at each depth andN was small;

– could not be corrected by an unwrap-like post-proces-
sing since the ML solution was too rough (as already
mentioned).
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Fig. 3. Hyperparameter likelihood: typical behavior. Level sets ofCLHL are plotted as dashed lines (- -). The minima are located by a star (∗), starting
points (empirical estimates) by a dot (.) and final estimate by a circle (o). First row gives coordinate-wise algorithm and second row gives gradient algorithm.
First column:CLHL(brML

a , rb, rν), second column:CLHL(ra, brML

b
, rν), third column:CLHL(ra, rb, brML

ν ). Each figure islog10-scaled.

Method Reached minimum log10 brML

a log10 brML

b
log10 brML

ν Grad./Fun. Time (s)

(1a) 4.513102 0.297 -0.685 -2.424 17/59 5.55
(1b) 4.495102 0.297 -0.679 -2.519 13/87 5.92
(2a) 4.494102 0.292 -0.678 -2.537 9 /49 3.77
(2b) 4.494102 0.299 -0.681 -2.554 13/92 6.14
(3a) 4.498102 0.297 -0.695 -2.589 9 /53 4.07
(3b) 4.494102 0.298 -0.679 -2.547 13/92 6.21
(4a) 4.497102 0.283 -0.674 -2.507 7 /40 3.12
(4b) 4.500102 0.297 -0.685 -2.618 9 /75 4.84
(5) 4.495102 0.300 -0.671 -2.559 0 /81 3.41

TABLE I

DESCENT ALGORITHM COMPARISON. THE FIRST COLUMN GIVES THE METHOD AT WORK: (1) USUAL GRADIENT, (2) VIGNES CORRECTION, (3)

BISECTOR CORRECTION AND(4) POLAK -RIBIÈRE PSEUDO-CONJUGATE DIRECTION. (a) NO INTERPOLATION AND (b) QUADRATIC INTERPOLATION. (5) IS

THE COORDINATE-WISE DESCENT METHOD. THE FOLLOWING COLUMNS SHOW THE REACHED MINIMUM AND THE MINIMIZER. THE SIXTH COLUMN

GIVES THE NUMBER OF GRADIENTS AND FUNCTION CALCULUS WHILE THE LAST GIVES COMPUTATION TIMES IN SECONDS(s).

For the regularized solution (also given in Fig. 4), a simple
qualitative comparison with the reference led to three conclu-
sions.

– The estimated frequency sequence conformed much bet-
ter to the true one. The frequency sequence was more
regular, since smoothness was introduced as aprior
feature.

– The estimated frequency sequence remained close to
the true one even beyond the usual Nyquist frequency.
This was essentially due to the coherent accounting for
the whole set of data and smoothness of the frequency
sequence.

– The proposed strategy for estimating hyperparameters
is adequate. A variation of 0.1 of the hyperparameters
resulted in an almost imperceptible variation in the esti-

mated frequency sequence. This is especially important
for qualifying the robustness of the proposed method:
the choice ofr offers relatively broad leeway and can be
reliably made.

VII. C ONCLUSION AND PERSPECTIVES

This paper examines the problem of frequency tracking
beyond the Nyquist frequency as it occurs in Doppler imaging,
when only short noisy data records are available. A solution
is proposed in the Bayesian framework based upon hidden
Gauss-Markov models accounting forprior smoothness of the
frequency sequence. We have developed a computationally
efficient combination of dynamic programming and a Hessian
procedure to calculate the maximuma posteriori. The method
is entirely unsupervised and uses an ML procedure based on an
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original EM-based gradient procedure. The estimation of the
ML hyperparameter is both formally achievable and practically
useful.

This new Bayesian method allows tracking beyond the usual
Nyquist frequency, due to a coherent statistical frameworkthat
includes the whole set of data plus smoothnessprior. To our
knowledge, this capability is an original contribution to the
field of frequency tracking.

Future work may include the extension to Gaussian DSP [9],
to multiple frequencies tracking [3, 17], and to the 2D problem.
The latter and its connection to 2D phase unwrapping [44–46]
is presently being investigated.

APPENDIX

A. Preliminary results

This Section includes two useful results: foru ∈ CN

det
[
IN + uu†

]
= 1 + u†u (21)

(
IN + u†u

)−1
= IN −

uu†

1 + u†u
(22)

whereIN stands for theN ×N identity matrix.

B. Law for (yt|νt)

Linearity of model (1) w.r.t. amplitudes and assumptions
for at andbt, allow easy marginalization of(yt, at|νt): yt|νt
is clearly a zero-mean and Gaussian vector with covariance
Rt = raz(νt)z(νt)

† + rbIN . From relation (21) and (22) its
determinant and inverse reads:

R−1
t =

1

rb
IN −

α

N
z(νt)z(νt)

† (23)

detRt = rN−1
b (rb +Nra) (24)

C. Preliminary result

The proposed proof is based on the decimal part function
D : R −→ [−0.5;+0.5[ defined by

{
D(x) = x if x ∈ [−0.5;+0.5),

D is 1-periodic,
(25)

and the following straightforward properties

D(x+ k) = D(x), k ∈ Z (26)

|D(x)| 6 |x| (27)

|D(x)| 6 1/2 (28)

y = D(x) ⇒ ∃k ∈ Z such thaty = x+ k (29)

D. Proof of proposition

Let us define a frequency sequenceν (with CLPL(ν) <
∞) which does not verify Eq. (12) of Proposition 1,i.e.,

∃t0 ∈ N∗
T−1 with |νt0+1 − νt0 | > 1/2 . (30)

Let us recursively build a new frequency sequenceν̃:

ν̃1 = ν1 (31)

ν̃t+1 = ν̃t +D(νt+1 − ν̃t) for t = 1, . . . , T − 1 (32)

and prove that Eq. (12) of Proposition 1 holds forν̃ and that
the criterionCLPL reduces fromν to ν̃:

|ν̃t+1 − ν̃t| 6 1/2 for t ∈ N∗
T−1 , (33)

CLPL(ν̃) < CLPL(ν) . (34)

• Relation (33) is straightforward: by Eq. (32), one can see

ν̃t+1 − ν̃t = D(νt+1 − ν̃t) for t ∈ N∗
T−1

and hence, by Property (28):

|ν̃t+1 − ν̃t| 6 1/2 for t ∈ N∗
T−1 .

• Proof of (34) takes three steps, corresponding to each term
of CLPL (10). By Eq. (31-32) and Property (29), one can see

∃kt ∈ Z such that ν̃t = νt + kt for t ∈ N∗
T , (35)

(with k1 = 0) so,

Pt(νt) = Pt(ν̃t) for t ∈ N∗
T . (36)

By Eq. (32) and (35) and invoking property (26) we have

ν̃t+1 − ν̃t = D(νt+1 − ν̃t) = D(νt+1 − νt)

hence, accounting for property (27):

|ν̃t+1 − ν̃t| 6 |νt+1 − νt| . (37)

Moreover, fort = t0, we clearly have

|ν̃t0+1 − ν̃t0 | < |νt0+1 − νt0 | (38)

thanks to hypothesis (30). Finally, we have:

1

∞
K (ν1) = 1

∞
K (ν̃1) (39)

Collecting (36), (37), (38) and (39) proves (34).

E. The Viterbi algorithm

• Pre-computations

D(p, q) = λ(νp − νq)2 (p, q ∈ N∗
P )

L(p, t) = −Pt(ν
p) (p ∈ N∗

P , t ∈ N
∗
T )

• Initialization (t = 1)

C1(p) = L(p, 1)1∞1 (νp) (p ∈ N∗
P )

• Iterations (t = 2, . . . , T )

C̃t(p, q) = Ct−1(q) +D(p, q) + L(p, t) (p, q ∈ N∗
P )

Ct(p) = minq C̃t(p, q) (p ∈ N∗
P )

Pt(p) = argminq C̃t(p, q) (p ∈ N∗
P )

• Termination (t = T )

p̂T = argmin
p

CT (p)

• Back tracking (t = T − 1, . . . , 1)

p̂t = Pt(p̂t+1)
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F. The Forward algorithm

• Initialization (t = 1)

F1(p) = O1(p)p(p) (p ∈ N∗
P )

N1 =

P∑

q=1

F1(q)

F1(p) = F1(p)/N1 (p ∈ N∗
P )

• Iterations (t = 2, . . . , T )

F t(p) = Ot(p)

P∑

q=1

Ft−1(p)P(q, p) (p ∈ N∗
P )

Nt =

P∑

q=1

F t(q)

Ft(p) = F t(p)/Nt (p ∈ N∗
P )

G. The Backward algorithm

• Initialization (t = T )

BT (p) = 1 (p ∈ N∗
P )

BT (p) = 1 (p ∈ N∗
P )

• Iterations (t = T − 1, . . . , 1)

Bt(p) =

P∑

q=1

Ot+1(q)Bt+1(p)P(p, q) (p ∈ N∗
P )

Bt(p) = Bt(p)/Nt+1 (p ∈ N∗
P )

This Section is devoted to theempirical estimation of
hyperparameters used as a starting point in the maximization
procedures of Section VI-A. These estimates are based on
the correlationr(n) of yt|νt and easily shown to verify:
r(0) = ra + rb , and|r(1)| = ra, for all t ∈ N∗

T . Empirical
estimateŝr(0) and r̂(1) are computed from the whole data set
Y and remain robust, sinceT is large (even ifN is small).
Finally, one can computêra = |r̂(1)| , andr̂b = r̂(0)− |r̂(1)|.

For rν , the estimation is based on the ML estimate of
the frequency sequence in each range bint ∈ N

∗
T . The

proposed empirical estimate ofrν is naturally the empirical
variance of the differences between the ML frequencies. This
procedure yields an overestimated value forrν . This result is
expected, since the sequence of ML frequencies varies greatly
and has discontinuities, as mentioned above. Nevertheless,
this estimate is a suitable starting point for the maximization
procedures of Section VI-A.
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