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The Geometry of Weighted
Low-Rank Approximations

Jonathan H. MantgrMember, IEEERobert Mahony, and Yingbo Hu&ellow, IEEE

Abstract—The low-rank approximation problem is to approx-
imate optimally, with respect to some norm, a matrix by one of
the same dimension but smaller rank. It is known that under
the Frobenius norm, the best low-rank approximation can be
found by using the singular value decomposition (SVD). Although
this is no longer true under weighted norms in general, it is
demonstrated here that the weighted low-rank approximation
problem can be solved by finding the subspace that minimizes a
particular cost function. A number of advantages of this param-
eterization over the traditional parameterization are elucidated.
Finding the minimizing subspace is equivalent to minimizing a
cost function on the Grassmann manifold. A general framework
for constructing optimization algorithms on manifolds is pre-
sented and it is shown that existing algorithms in the literature
are special cases of this framework. Within this framework, two
novel algorithms (a steepest descent algorithm and a Newton-like
algorithm) are derived for solving the weighted low-rank ap-
proximation problem. They are compared with other algorithms
for low-rank approximation as well as with other algorithms
for minimizing a cost function on a Grassmann manifold.

Index Terms—Grassman manifold, low-rank approximations,
optimization on manifolds, reduced rank signal processing.

|. INTRODUCTION
T o
arg min X - RI3,1X - RIG
rankiry<-

=ved/X — R}TQved X — R} (1)

for a given data matrixXX € R™*™ and positive definite
symmetric weighting matrix) € R™™*™"  Here, ve¢-}

Q 1, then (1) reduces to the well-studied unweighted
low-rank approximation problem. This paper analyzes the
geometry of the low-rank approximation problem, drawing
connections between the weighted and unweighted cases. It
then uses this analysis to construct efficient algorithms for
locally minimizing (1).

The weighted low-rank approximation problem has received
less attention in the literature than the unweighted low-rank
approximation problem [16]. Presumably, this is because a
closed-form solution does not exist for the weighted low-rank
approximation problem in general. Furthermore, existing
algorithms for the weighted case only converge to a local
minimum of (1) in general. Despite this though, the following
applications illustrate that it is still beneficial to consider the
weighted low-rank approximation problem.

A. Applications

One application that benefits from the use of a weighted low
rank matrix approximation is the two-dimensional (2-D) filter
design problem. The approach in [17] and [30] to the 2-D filter
design problem is to start with a matriX whose elements
correspond to samples of the desired frequency response and

HE weighted low-rank approximation problem is to COMg,ay gecompose the 2-D design task into a set of simpler

one-dimensional design tasks by applying the singular value
decomposition (SVD) toX . A disadvantage of using the SVD
to decompose the desired frequency respdfsethat it treats

all entries ofX equally, which in some cases leads to degraded
designs. In order to discriminate between the important and
unimportant elements ok, the idea of replacing the SVD
with a weighted low-rank approximation was proposed in [16],
[27]. (See [16] for a design example.)

denotes the vec operator [18], and it is important to note thatAlthough finding the global minimum of (1) is ideal, it may
the norm|| - || is more general than the usual weighted normtill be the case that a filter design resulting from finding a local
||X||2Q = tr{XTQX}, where t{-} is the trace operator. The minimum of (1) outperforms the unweighted filter design. Fur-

minimizing R in (1) is the best rank approximation ofX
under the norm)| - ||o. If @ is the identity matrix, denoted

thermore, since the performance of the resulting filter is readily
measurable, if it so happens that the weighted design is worse
than the unweighted design, the weighted low-rank approxima-
tion can be recomputed with a different initial condition in the
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resulting convolutive reduced-rank Wiener filter can be readily
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calculated and compared with that of the standard (noncon- Contributions

lutive) reduced-rank Wiener filter [3], [14], even a suboptimal The main contributions of this paper can be summarized as
solution of (1) can lead to a convolutive reduced-rank Wien%llows

filter whose performance is verifiably better than that of the '

standard reduced-rank Wiener filter. * We introduce a novel reformulation of the weighted

low-rank approximation problem, which is more natural
] than theR = AB reformulation traditionally used in
B. Known Properties and Related Work rank-reduced problems [16], [28].
In (1), if @ = I, then|| - || is the Frobenius norm. The * We determine conditions on the.weighting maii}xor a
low-rank approximation problem with respect to the Frobenius ~ closed-form solution of (1) to exist.
norm was first studied by Eckart and Young [7]. They proved * We derive efficient numerical algorithms that converge to

that if X = UXVT is the compact SVD [12] ofX, then a local minimum of (1). _ o .
the best rank: approximation ofX is R = UY, VT, where * We compare the existing alternating projection algorithm
¥, is obtained from¥ by setting all but the first singular with the novel algorithms proposed here for solving (1).

values to zero. This result is commonly referred to as tHéne other contributions, arising from the reformulation of the
Eckart—Young—Mirsky Theorem (Mirsky [21] proved the resultveighted low-rank approximation problem as a constrained

also holds under the 2-norm). optimization problem on the Grassmann manifold, are the
The best unweighted rankapproximationR is also readily following.

computed from the eigenvector decomposition (EVDXdfX . » We derive a general framework for minimizing a cost func-

If Ve R™X" contains the normalized (so th&t’'V = 1) tion on a Grassmann manifold.

eigenvectors associated with thiargest eigenvalues df 7 X, * We prove that the algorithms in [8] are a special case of

thenR = XVVT. This follows almost immediately from the this framework.

Eckart-Young-Mirsky Theorem and the fact that the eigenvec- « We discuss the advantages this framework has over the

tors of X7 X are the right singular vectors &f. In a sense to be narrower Riemannian framework in [8] and, in particular,

made precise later, this result is generalized in the present paper why it is misleading to interpret the algorithms proposed

to the weighted case. here as approximations of the Riemannian-based algo-

An alternative to performing an SVD or EVD and one that  rithms in [8].

immediately extends to the weighted case, is to first over-pppese contributions are now discussed in relation to existing
rameterize the problem to remove the rank constraint and thea, ,its in the literature.

apply an alternating projection algorithm [16]. Specifically, the aq already mentioned, the traditional approach to re-
algorithm proposed in [16] works as follows. Replagen (1) gyced-rank problems is to write the rankmatrix R as the
with the matrix producti 3, whereA € R™*", andB € R"™™.  yroductR = AB of two matrices, wheret hasr columns, and
Fix a value forA and minimize ovei, then fix B, minimize  p pas;- rows. The potential disadvantage of this approach is
over 4, and repeat until the produet3 converges. It can be ¢ the decompositioR = AB is not unique, or equivalently,
shown that, in generaly = AB converges to a local minimum 45 many parameters are used to represent rankatrices.
of (1). ] o The novel idea in this paper is to use a parameterization that
Remark : If @ = I'in (1), then it is known [13] that (1) 5 gne-to-one, thus reducing the number of parameters and ac-
has no local minimum other than the global minimum. It doegqgingly reducing the dimension of the optimization problem.
however, have saddle points. ' This is achieved by reformulating (1) as an unconstrained op-
_ Copious works deal with the unweighted low-rank approimization problem on a Grassmann manifold. (A Grassmann
imation problem and applications thereof. This is becaugganifold is the collection of all subspaces of a given dimension
appropriate usage of reduced-rank approximations can resgit [13].) The authors believe this reformulation to be more
in increased computational efficiency and robustness agaifgtyral than the? = AB reformulation not only because the
noise and model errors. Fundamental results on optimal fgyameterization is one-to-one but because conditions for (1) to
duced-rank estimators and filters can be found in [3], [9], [10have a closed-form solution become readily apparent as well.
[15], [23]-{26], [28], and [29]. Other algorithms for solving  The reformulated problem of minimizing a cost function on
the (adaptive) unweighted low-rank approximation proble® Grassmann manifold can be solved numerically using the re-
include [6], [14]. However, the only algorithm the authors argent algorithms in [8], and indeed, it is candidly stated that such
aware of for solving the weighted low-rank approximationn approach leads to algorithms that perform comparably with
problem is the alternating projection algorithm presented {Re proposed algorithms in this paper. Nevertheless, for reasons
[16]. ] o given in Section Ill, the approach taken here is to derive first
A variant of the low-rank approximation problem appears i§ more general framework for optimizing a cost function on a
[4] and references therein. Specifically, [4] uses a modified ifyanifold and then specialize it to the weighted low-rank approx-
verse power method to solve (1) under the extra constraints jmation problem. Although the resulting algorithms might be
i)r=m-—1, interpreted by some as “flat space approximations” of the al-
i) R is restricted to have some affine structure. gorithms in [8], Section Il explains why this interpretation is
iii) @ is diagonal. This variant is discussed further in Secenisleading; the algorithms in [8] can just as well be interpreted
tion Il. as approximations of the algorithms proposed here.
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Remark : If @ = I, then the resulting cost function on thesection to derive conditions for (1) to have a closed-form so-
Grassmann manifold takes a special form (specifically, it islation, and it is used in subsequent sections to derive efficient
generalized Rayleigh quotient cost function) for which dedalgorithms for converging to a local minimum of (1). Connec-
cated minimization algorithms have been proposed in [1] atidns with the Riemannian SVD [4] are also discussed.

[5]. This specific case has also been studied in detail in [8].  Without loss of generality, it is assumed throughout that

The algorithms proposed for solving (1), which are a modn, wheren andm are the number of rows and columns of the
ified steepest descent method and a modified Newton methddta matrixX . [If n < m, simply replaceX by X7 and adjust
are shown to have the following advantages over the alternatign (1) accordingly.]
projection algorithm in [16]. The alternating projection algo- The underlying idea in this paper is to reformulate (1) as the
rithm asymptotically has a linear rate of convergehogganing double-minimization
that often, a significant number of iterations are required to

achieve an acceptable accuracy. The moqmed Newton r_nethoq . min || X — R||2Q . )
presented here overcomes this problem since, asymptotically, it NeRmX(m=r) | Rermxm
NIt N=1I =

has a quadratic rate of convergence in general and a cubic rate
of convergence if) = I. Furthermore, simulations show thatClose inspection shows that¥ and R are the minimizing ar-
closely spaced eigenvalues &f' X adversely affect the con- guments of the two minimizations in (2), the®d is the solu-
vergence rate of the alternating projection algorithm, wheretisn of the low-rank approximation problem (1); the restriction
they do not seem to affect the algorithms in this paper. [This oR®N = 0 enforces the constraint rahR} < r since every
servation is mathematically substantiated in [19] for the spec@lumn of N must belong to the null space & Theorem 1
case ofQ = I andr = 1 orr = m — 1in (1).] Yet another below shows that the inner minimization has a closed-form so-
advantage is that here the optimization algorithms work over anion. Moreover, because the inner minimization depends only
r(m — r) dimensional space (assuming> m), whereas the on the span of the columns &f and not on the individual el-
alternating projection algorithm works overan+mr-dimen- ements ofN, it will be shown in subsequent sections that the
sional space [see (1) for the definitionssaf »,r]. Whenn is  outer minimization reduces to one of dimensidm — r).
much larger tham andr is small, the reduction in dimensionis Theorem 1: For any given data matriX € R™*™ and posi-
very significant. For instance, if = 100, m = 10, andr = 3, tive definite symmetric weighting matrig € R»™*"™ define
thennr + mr = 330, yetr(m — r) = 21.

f(N)= min |IX - R[[} ®)

RERTXmM

D. Organization of Paper RN=0

The rest of this paper is organized as follows. Section Il shows ) ) )
how the low-rank approximation problem can be solved by fird¢hereN € Rﬁm_n_r) and|| - |[?, is defined in (1). Then, the
computing the minimizing subspace of a certain cost functioffinimizing R is given by
It also derives conditions for (1) to have a closed form solution.
Section Il derives a general framework for finding a minimizing€c{ R} = vec{X} - Q~'(N © I,,)
subspace of a cost function. It highlights the advantages of this . [(N® L)TQ ' (N ® L)] -1 (N ® I,)Tvec[X} (4)
more general framework over the Riemannian-based framework
presented recently in [8]. This framework is used to derive NoMghere & is Kronecker’s product [18]. Furthermorg(N) is
steepest descent algorithms in Section IV and Newton meth%en by
in Section V for solving the weighted low-rank approximation
problem. These algorithms are not standard steepest descent _ T
Newton algorithms; the cost function changes at each iteratiﬁ?\g) = ved X} (N @ In) _
A numerical study in Section VI demonstrates that the algo- - [(NV © 1,)" QT (N ® I,)] (N ® I,)"vec[X} (5)
rithms are superior to the classical alternating projection algo-
rithm, which is the only other algorithm the authors’ are awand depends only on the range spaceVoffor any invertible
of for solving the weighted low-rank approximation problemmatrix S € Rm=m)x(m=r) f(NS) = f(N).

All proofs are relegated to Appendix A. By considering the unweighted cage= I, it will be seen
that (2) is the generalization of the EVD approach, which is

, ) . ) Corollary 2: Define f(N) asin (3). IfQ = I'in (3), then (5)
This section derives a novel reformulation of the IOW'ra”Becomes

approximation problem (1). This reformulation is used in this
-1
N)=tr {NTXTXN NTN } . 6
1A linear rate of convergence means that the logarithm of the error decreases f( ) ( ) 6
linearly or, equivalently, that the number of correct digits in the answer increases
by approximately a fixed amount per iteration. Similarly, a quadratic rate of co _ TAT _
vergence means that the logarithm of the error decreases quadratically, impl)ﬁ;é’2 = T'andN" N = I, then (4) and (5) become
that the number of correct digits approximately doubles each iteration. It is a
standard result that steepest descent methods asymptotically have a linear rate R=X — XNNT (7)

of convergence, whereas Newton methods asymptotically have a quadratic rate T T
of convergence [22]. f(N)=tr {NTXTXN}. (8)
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The cost function (6) is called ttgeneralized Rayleigh quo- More detailed comparisons with the Riemannian SVD have
tient[13] since it is a generalization of the usual Rayleigh quaiot been made because the Riemannian SVD is not used in prac-
tient [12]. Furthermore, it is known that the minimum of (6), otice to solve (1). Instead, it is used to solve (1) subject to the
of (8) subjecttaV?' N = I, occurs when the columns 8f cor-  extra constraint that the rank-reduced maftikas a particular
respond to then — » smallest eigenvectors of”X. That is, affine structure [4]. Although not pursued here, it may be pos-
(2) is precisely the EVD approach; if the columngdkE R™*"  sible to incorporate this structural constraint into (2), leading to
are ther largest eigenvectors df 7' X and if the columns oV modified steepest descent and Newton methods having superior
are them — r smallest eigenvectors, thdn- NNT = VVT; performance to the modified Inverse Power method in [4].
therefore, (7) becomeR = XVV7T,

The traditional approach [16], [28] to reduced-rank problem#. OPTIMIZATION ALGORITHMS ON GRASSMANN MANIFOLDS
is to enforce the rank constraint onk by replacingR by AB,
whereA hasr columns and3 hasr rows. The interpretation is fin
that matrices with rank at mostare being parameterised by th irectly minimizing f(V) is anm(m — r) dimensional opti-

many-to-one map(A, B) = AB. Reasons for believing the mization problem becaus¥ is m by m — r. However, f(NV)

reformulation (2) tol be more natural than the traditional ref%’nly depends on the range space\band not on the individual
mulation are now given. elements ofV. As recognized in [8], this symmetry can be ex-

1) The implicit mapping in (2) from a null space representegioited to reduce the dimension of the optimization problem to
by N to amatrixR = arg min pcpnxm | X —R|[% of rank p(m—r) parameters (see Section Il1-A for an elementary proof).
at mostr is a one-to-one map?ﬁﬁ?é. Moreover, the algorithms in [8] can be used to minimjZeV)

2) As shown above, if) = I, then (2) is equivalent to the (once the necessary derivatives have been calculated), thus re-
EVD approach for computing a low-rank approximationsulting in efficient algorithms for solving the weighted low-rank

3) The fact that the SVD or EVD can be used to solve (Bpproximation problem.
for certain weighting matrice@ is not apparent fromthe ~ For reasons given later though, this paper prefers to use the al-
R = AB reformulation. However, as is shown belowgorithm in Section Ill-A for minimizingf (V). The motivation

conditions OrQ for (2) to have a solution in terms of anfor ConSidering alternatives to the algorithms in [8] is that [8]
SVD or EVD are easily found. introduces an artificial structure, namely, a Riemannian struc-

fiire, into the optimization problem that, depending on the ac-

If Q is chosen so that (2) is equivalent to the minimizatio ¥ . be minimized be detri |
of a generalized Rayleigh quotient, then (1) has a closed—fogfp‘fl unction to be minimized, may or may not be detrimental,

solution in terms of an SVD or EVD. Such@must make (5) ecifically, unlesg (V) possesses properties that make it nat-

a quadratic function whel is appropriately restricted, cf., (8). lrj,gatgindii'i;ablree;cﬂtrfodﬂzesi.Rs'ggn%rggﬁgns,t{ Egtu;%;:]eigerés
For (5) to be quadratic, it is necessary to “remove” ffjg! peling ' ' k

o o can o enerot o s, TN I8 Seton I ke e ey of o,
Note that ifQ = Q1 ® Q2, then|| X||3, = tr {XT Q. X QT }.

. serendipitously appears to be better suited to the specific cost
Theorem 3:1n (1), if @ = Q1 ® Q2, Where@; € R™*™ . . . . ]
andQ, € R™™ are both positive definite and symmetric, thefunctlon (5). It is candidly stated, however, that the improve

i o . Thent over the algorithms in [8] for the specific cost function (5)
the solutionz? ?f/§1) |slt7:12|ven by the following closed-form ex- appears to be relatively minor and has not been rigorously estab-

el LS?? X »y UV be the compact SVD [12] |igheg; the reasons then for presenting this alternative approach

of @' "X Q1" whereQ,"" is the unique positive definite sym- gre that this approach is more accessible to readers since it does

metric matrix such thap,’* Q1> = @, and similarly forQ,’*.  not require knowledge of differential geometry, and moreover,

Then,R = Q;l/QUZTVTQfl/Z, where}.,. is obtained from the secondary aim of this paper is to correct the possible miscon-

> by setting all but the first singular values to zero. ception that only geodesic-based optimization algorithms are
For completeness, connections with the Riemannian SVD [#{atural” or “correct” algorithms.

are discussed briefly. The Riemannian SVD can be used to solve

(1) only in the special case of a rank one reductioe:(m —1). A. Elementary Optimization Algorithm

(It also requiresy) to be diagonal.) IfY = I, then the algo-  This section derives an algorithm for the constrained mini-
rithm in [4] for computing the Riemannian SVD reduces to thaization of a functionf (V) subject toN” N = I and under
standard inverse power method, whereas the steepest desgRnhssumption that the value pfat any pointV depends only
algorithm in Section 1V-B specializes to the algorithm in [19]on the range space of. The algorithm itself is not new but its
As shown in [19], the steepest descent algorithm is preferalptgerpretation is; previously, the algorithm was thought to be a
to the inverse power method since it is not sensitive to closefyat space approximation” of the geodesic-based algorithms in
spaced eigenvalues. Furthermore, the Newton method in Sgg; whereas Section I1I-B shows that it is just as valid as the
tion V asymptotically has a cubic rate of convergence wheflgorithms in [8].
Q = I, whereas the inverse power method only has a linearHenceforth NV, is used to denote the orthogonal complement
rate of convergence asymptotically. of N, thatis,N, € R™*" is any full column rank matrix satis-
2Speci . _ _ fr}/ing NTN, = 0. SinceN_ is not uniquely defined, implicit
pecifically, it induces a one-to-one mapping from points on the Grassmann

manifold to matrices with rank at most Since the mapping is not onto, it uses!! an_y Statem_em involvingV_ is that the statement holds for
even fewer parameters than the traditioRa= A B parameterization. any fixed choice ofV, .

The previous section showed that (1) can be solved by first
ding the matrixV, which minimizes the cost function (5).
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Take an arbitrary matridy € R”*("~7) satisfyingN” N = Remark: A consequence of Proposition 5 is that, will
I, and consider a perturbation mateéixe R™*("~")_For cer- never appear on its own but always in the fod N7 in
tain Z, the range space @f + Z is the same as the range spacalgorithm 4. This fact can be exploited for a more efficient
of N (written rangé N + Z} = rangg N}), and in this case, implementation (cf., [8]) but is not done here for clarity of
f(N+ Z) = f(N). Itis therefore not necessary to consider affresentation and because computing the derivatives( i)
m(m — r) search directions when trying to minimiéxN). in (5) and not computingv, is the most complex computation
For fixed N andN ., a perturbatiorZ € R™*(™~") uniquely per iteration.
decomposes a8 = NL + N, K, whereL € R(m—7)x(m—r)
and K € R"™(™~7), Since rangéN + NL} c rangg N}, B. Discussion
it suffices to consider only search directiofds = N, K. It
is necessary to consider these directions because {fAnge
N, K} =rangdN + N, K-} impliesK; = K. SinceK has

This section first states a general framework for deriving op-
timization on manifold algorithms and then shows that the Rie-
o ; . mannian framework in [8] is a special case of this more general
r(m —r) elements, minimizing’(N) is anr(m — r)-dimen- ¢ owork This general framework is used to explain the simi-

SIO_P:I prgblem. ts the following iterati inimizati larities and differences between Algorithm 4 and the algorithms
€ above suggests he loflowing iterative minimizatiop, [8]. Readers only interested in the low-rank approximation

scheme. problem are advised to skip this section.
Minimizing a function f(N) whose value only depends on
Algorithm 4 the range ofV can be posed as an optimization problem on a
Let f(N) be a function that only depends Grassmann manifold [8]. There is no unique way of general-
on the range of  N. A locally minimizing izing Newton’s method in Euclidean space to a Newton method
N, subject to N'N = 1, can be found as on a manifold. One way is to continue to use Newton’s formula
follows. by treating the first and second derivatives in Newton’s formula
1) Choose a starting position N satis- as the gradient and Hessian of the cost function on the mani-
fying N'N =1 fold; this necessitates endowing the manifold with a Riemannian
2) Choose N, such that [N N.]J'[N Ni] = I. structure and is the approach taken in [8]. Another way is to use
Use the local parameterization from the manifold structure to form a local cost function at each itera-
K e R™(m=r) into R™*(m=") defined by tion and apply Newton’s method to this local cost function; this
is the approach taken here and is discussed in detail below. Yet
HK)=N+ N, K (9)  another way is to generalize the property that a Newton method
approximates the cost function by a quadratic function at each
to form the local cost function iteration and then moves to the minimum of this quadratic ap-
proximation; this generalization is different from the above two
g(K)=f(¢(K))=f(N+NLK). (10)  generalizations and is a topic for future research.
The general framework (but not the only possible framework)
3) By applying a standard optimization proposed here for minimizing a functighon ann dimensional
technique (such as steepest descent or manifold M is the following. (For this section only, the symbols
Newton’s method) to g(K) at the point n andp have a new meaning.) For every pagintn the manifold
K =0, compute a descent step AK. M, choose a particular local parameterizatign, : R* — M
4) Set N to any matrix such that centred orp, that is,¢, is a diffeomorphism, an¢,(0) = p.
range {N} = range {¢(AK)} and NTN = [. Differentchoices oflocal parameterizations lead to different op-
(Gram—Schmidt orthogonalization or the QR timization algorithms in general. Given the current itergite,
algorithm [12] can be used to compute such the next iterate(+1) is obtained as follows. Define the local
an N.) cost functiong(z) = f(¢,x(z)) that mapsR™ to R. Apply to
5. Repeat steps 2—-4 until convergence. g a single iteration of an ordinary optimization algorithm (such

as Newton’s method in Euclidean space) at the origin (recall

_ @) ; i
The descent step K typically is a function of the first and (/’g?i(jr)l()o)__ p'*) to obtain & such thay () < g(0). Finally, set
second derivatives of(K). The following proposition gives ” . b_ Py (2). orithm which be written in the ab
formulae for the first and second differentials of (10). (For th or r_et:/lty,Nany algorit rzn(\;\’ Ic dcan f N vv_rltten”mdt € above
definition of differentials, see [18]. See also Example 7 in Se’%rm (with a Newton metho use o !rm) Is called atrue
tion 111-B.) ewtqn methadClearly, Algorithm 4 (with Step 3 a Newton
Proposition 5: Fix N andN, , and defing;(K) as in (10). If step) IS a true_ Newton methqd. L
df(dN) andd>f(dN, dN) are the first and second differentials An interesting and nontrivial observation is that the Newton

of f about the pointV, then the first and second differentials oﬁ:goﬂthm in [|8] ‘? halsc_) a8trl_Je I\lievx_/tor(; ;neth(')Adl. S_pﬁcifiéclagly,
g(K) aboutK — 0 are given by the Newton algorithm in [8] is obtained from Algorithm 4 by

5 dg(dK) :dJ; (NL dK) (11) 3In more general cases, the domairsgfcan be chosen to be an open subset
d°g(dK,dK) =d°f (N dK,N,dK). (12) of R rather than the whole d&™.
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making Step 3 a Newton step and by replacing the local paraimthat Algorithm 4 moves along the straight line+ N; AK

eterization (9) with the alternative local parameterization rather than along the geodes\V cos(X) + U sin(X), where

] T UXVT = N,AK. Therefore, it is possible to derive Algo-
¢(K) = NV cos(%) + Usin(2), NLE =UXV" (13) (ithm 4 by starting with the algorithm in [8] and approximating

where U € Rmx(m—n) ¥ ¢ Rm-—mxm-r) angd geodesics by straight lines and moreover; this makes Algorithm

V € ROm—7)x(m=r) gre obtained from the compact syvD? appear to be a “flat space approximation” of the algorithms in

of N K (thatis,UTU = VTV = I, and¥ is diagonal). [8]- _ _
A proof of this follows from the facts stated in the proof of However, the algorithms in [8] can equally well be thought
Proposition 6. of as apprpxmatlons of Algorithm 4;. replace _the ;tralght line
Under the local parameterization (13), the local cost functidirameterization (10) by the geodesic approximation (14). The
(10) becomes key point though is that thinking of either algorithm as an
approximation of the other is misleading because the term
g(K) = f(NV cos(X) + Usin(X)) N K =UxVvT. “approximation” has the connotation of inferiority, yet both
(14) algorithms are true Newton methods and neither can claim
Before arguing that Algorithm 4 is just as valid an algorithm asuperiority in general; for some cost functions, the algorithms in
those in [8], the derivatives of (14) are calculated. [8] may converge more quickkywhereas for others, Algorithm
Proposition 6: Let f(N) be a cost function such that4 may be faster. The following simplified example in Euclidean
f(N1) = f(N2) if rangeg{N;} = ranggN.} and space is used to explain this phenomenon.
NfN, = NfN, = 1. ChooseN and N, such that Considerthe two costfunctiorfs(z, y) = (z—2)>+(y—1)>
[N N T[N N.] = I and defineg(K), as in (14). Ifdf (dN) andfs(r,8) = (r cos §—2)*>+(rsin# —1)2. Newton’s method
and d*f(dN,dN) are the first and second differentials $f applied tof; finds the exact solution after a single iteration.
about the pointV, then the first and second differentials oHowever, it requires an infinite number of iterations to converge
g(K) aboutK = 0 are given by to the exact solution if it is applied tg,. This is because
the standard Newton method assumes that the cost function is

?

) dg(dK) :d]; (NLdK) (15) approximately quadratic in Cartesian coordinates. Conversely, a
d*g(dK,dK) =d”f (N dK,NdK) Newton method in polar coordinates converges in one iteration
—df (NdKTdK) ) (16) when applied tgf;. Clearly, the Newton algorithm in Cartesian

, . o » coordinates and the Newton algorithm in polar coordinates

The following example clarifies the notation in Proposition 6. 5, equally valid Newton algorithms, and neither can claim
Example 7: The first and second differentials ot K') will gy periority.
be computed wherf(N) is as defined in (3) and) = I. Tne difference between Algorithm 4 and the algorithms in [8]
Since Proposition 6 assumas" N = I and, furthermore, only s analogous to the above example; they merely use different co-
requires f(N'S) = f(N) to hold for orthogonal matriceS  grqinate systems (cf., (10) and (14)). Which algorithm is better
and not for invertible matr|ceT§, ;8) can be used instead ofyepends on the particular cost function to minimize. (Roughly
(6). Thus, definef (V) = tr{JT\f )T( XN} Its first differential - speaking, for a given cost functiofy if the local cost func-
a_1bo_ut]\2f is df (AN) = 2tr{N f de}- Its second differen- tion (10) centred at the minimum gf more closely resembles
tialis d” f(dN,dN) = 2tr{dN" X" X dN }. Applying Proposi- 5 quadratic function than (14) does, then (10) should be used
tion 6 shows that the first and second differentials of (14) abojstead of (14).)
K =0are Last, to refute any claim that the algorithms in [8] are superior
da(dK) =2tr INTXT XN | dK 17 because they correctly exploit the geometry of the Grassmann
9(akK) { LK} (17) manifold, it is emphasised that the “geometry” in [8] isaatifi-

2 _ T AT vT
d*g(dK,dK) =2tr {dK"N] X" XN dK} cial geometry. In the original constrained optimization problem,
—2tr {N"X"XNdK"dK} (18) onlythe constraintset/ = {N : NTN = I} is given. Making
—otr {dKTNfXTXNldK M into a manifold is already adding an artificial structure (a

topology and an atlas), yet there is a clear choice here; making

M a Stiefel or Grassmann manifold means th4ti§ smooth as
Theorem 8 proves that the first and second derivatives of (1@function in Euclidean space, then it remains smooth as a func-

and (14) abouk = 0 are the same. tion on the Stiefel or Grassmann manifoltbwever, if nothing
Theorem 8:Let f(N) be a cost function such thatelse is known about, then there is no compelling reason to go

f(Ny) = f(N,) if range{N;} = ranggN,} and Ny, N, further and endow the constraint s&f with a metric, making

have full column rank. ChooseV and N, such that it @ Riemannian manifoldin other words, using the artificial

[N N T[N N.] = I. Then, the first and second differ-Riemannian structure is conceptually no better or no worse than

entials aboutk = 0 of g(K) defined in (10) are identical to Using the artificial local parameterization (10).
the first and second differentials abdkit= 0 of g(K) defined
in (14). 4Note that the asymptotic rate of convergence will be the same for

Theorem 8 shows that the St will be the same for both Poth algorithms (e.g., quadratic for Newton methods) but the constant of
roportionality will in general be different; one algorithm may require twice

A_Igorifchm 4, with Step 3 a Newton step and the NeWton. alg(g's many iterations as the other to achieve the same level of accuracy,
rithm in [8]. The only difference between the two algorithmsor instance.

—dKNT"XT"XNdK™} . (19)
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Remark: Note that (10) is a canonical parameterization df then uses this expression to derive steepest descent algorithms
the Grassmann manifold known as homogeneous coordindtassolving the low-rank approximation problem (1).
in the literature; if the cost function is not specified in advance, Theorem 10 (Steepest Descenbefine f(N) as in (5) and,
then an arbitrary choice must be made, and the choice (10) isaving fixedNV € R™*(™~") andN, € R™*", defineg(K) as
natural one, as is (14). in (10). Then, the gradient @f K') aboutK = 0 is

gradg = 2NT (X — B)" 4 (22)

whereA € R**(™~7) andB € R"*™ are the unique matrices

This section presents algorithms for solving the weightgfiat satisfy
low-rank approximation problem (1). The classical alternating 1
projection algorithm is derived in Section IV-A, whereas novel Vvec{A} = [(N ®L,) Q' (Nw In):| vec{ X N}
§te_epest descent algorithms are proposed in Section_ IV-B. It vec{B} =Q~! vec{ANT}. (23)
is important to note that these steepest descent algorithms are ) .
not standard descent algorithms; the cost function changedfg(f<) is instead defined as in (14), then under the extra con-
each iteration (see Algorithm 4). The performance of the§ifion that[N N_L]T[N N.] = I, the gradient ofy(K) about
algorithms is discussed in Section VI. K = 0is also given by (22).

The computational complexity of each algorithm is calcu- Note thatifQ = I and[N NLJP[N Ny] =1, then grad) =
lated for an arbitrary weighting matrix, a diagonal WeightinngXTXN! agreeing with (17). .
matrix, and the identity weighting matrix (unweighted case). It Complexity: Computing gradg requires O(n’m?(m —
is expected that in many applications the weighting matfix ™) + n’(m — r)*) flops. If Q is diagonal, this reduces to
will be diagonal. Indeed, taking to be diagonal correspondsQ(nm(m — r)* + nmr) flops. If @ = I and X" X is pre-

IV. FIRST-ORDER DESCENTMETHODS

to considering the weighted norm in [16]. computed, thei® (m?r) flops are required. If < m, then the
flop counts for these three cases arenm?), O(nm?), and
A. Alternating Projections O(m?r), respectively.

An alternating projection algorithm was proposed in [16] for Rgm;’“k- Evaluatmgg the °°§t functionf (N.> requires
finding the weighted low-rank approximation of a matrix. Sian(” T (m —r) +mn 2(m N r). ) flpps_for arbitrary Q. It
[16] used a differerit (and less general) weighting function, €auiresO(nm(m —)%) flops if @ is diagonal. IfQ = T,
their notation was somewhat cumbersome. Proposition9deri\'/te¥v'_II l_)e_ seen later that m|n|m|2|ngf_(N) IS eq“';’a'e”t 0
a compact form of the alternating projection algorithm. maximizing f(N_ ), and the latter requires onty(m=r) flops

O
Proposition 9: Let X € R™*™ be an arbitrary matrix. Then to _?E evaluatleod, pl‘O\él'de:g ).(r:s'::recprr?pu:eld. d four dif
for a fixed A € R"*", the B which minimizes| X — AB|?, is eorem 10 combined with Algorithm 4 leads to four dif-

ferent steepest descent algorithms, depending on which local
parameterization [(9) or (13)] is used and on whether or not
_ T -1 T @ = I. The two algorithms based on (9) are presented below.
vec{B} = [(Im ®4) Q(Im @ A)} (Im ® 4)" @ vecgg]; Their counterparts, based on (13), are presented in Appendix B.
o . . L They all use Armijo’s step-size rule [22, Sec. 1.2.3], and they
TXm J—
ilgnIQar!y, f(_)raﬂé)(edB € R, theA, which minimizes|.X are all tailored for the case when< m/2.
llg is given by Notation: The norm|| - || appearing in the algorithms is the
11 Frobenius norm. The “Q-Factor” operator{¢f is defined to
vec{A} = [(B ®1,)Q(B®I) } (B®I,)Qvec{X}.  pe the orthogonal part g} = Q of the QR decomposition
(21) X = QR.
Based on Proposition 9, the alternating projection algorithm

is as follows. InitializeA randomly. Use (20) to computB. Algorithm 11 (Steepest Descent Along
Use (21) to compute a nev. Repeat until convergence. TheStraight Lines)

given by

(locally) best rank: approximation ofX is thenR = AB. 1) Choose N e R™*(™=7") and N, € R™*" such
WhenQ = 7, (20) and (21) reduce t8 = (A" A)""A"X that [N N,]’[N N.] = I. Set step size A o=
andA = X BT (BBT)~!, respectively. 1

Complexity: One iteration of the alternating projection algo;z.) Evaluate  f(N)=vec {XN}T[(N®IL,)TQ YN
rithm requiresO(n®ma? + n?r?) flops. If Q is diagonal, only 7, )]-'vec {X N}.

O(nm~?) flops are required. (These flop counts are obtained) Compute descent direction K = —2NT(X -

by exploiting the block structure introduced by the Kroneckeg)” 4, where A and B are defined in (23).

product.) IfQ = I, there areD(nmr) flops per iteration. 4) Evaluate f(N + 2AN.K). If f(N) — f(N +
20N, K) > )||K|? then set A := 2), and re-

B. Steepest Descent peat Step 4.

This section first derives an expression for the steepest @&- Evaluate  f(N + AN, K). If f(N) — f(N +
scent direction of the local cost functigitK') in Algorithm 4. AN, K) < 1/2)||K|%, then set XA := 1/2), and

repeat Step 5.
5The weighted norm used in [16] takes the forix — R|*> = 6 pS Np'— NAAN K. R i N N.1b
Y, W2(X — R)?, for some weighting matri¥}'. This is equivalent to ) Set = N+AN K. Renormalize [ 1] by

restricting@ in (1) to be diagonal. setting [N N,.]:=0qf {N}. Go to Step 2.
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Complexity: Each

iteration of Algorithm 11 requires6) Set

507

N, := N, +)Z. Renormalize N,. Go to

O(n®>m2(m — r) + n3(m — r)3) flops in general and Step 2.

O(nm(m —r)% +nmr+m3) flops if Q is diagonal. Ifr < m,
then these flop counts approadh(nm?) and O(nm?),
respectively.

Remarks:

Complexity: Each
O(m?r) flops.
Remarks:

iteration of Algorithm 12 requires

1) Inany given iteration of Algorithm 11, if Step 4 is repeated) Algorithm 11 withQ = I and Algorithm 12 are equivalent
atleast once, then the test in step 5 becomes redundant. Thisp, that they both produce the same sequence of paints

holds for all the steepest descent algorithms.

However, Algorithm 12 requires fewer flops per iteration.

2) In practice, the algorithms must include a test for convegg It is not necessary to renormali2é, in Step 6 at every

gence. One possibility is to test to see if the magnitude o
the gradient| K || is sufficiently close to zero [22]. Once the

algorithm is terminated, the low-rank approximatiéhis
found by evaluating (4).

iteration. However N can become ill-conditioned if it is
not renormalized regularly.

3) The low-rank approximatio® is given byR = XN; NT
(providedNT N, = I).

3) RenormalizingV N | in Step 6 serves the purpose of com+) |f - — 1 or = m — 1, then the optimal step size rule can

puting anN, orthogonal taV.

be used instead of Armijo’s rule [19].

The disadvantage of Algorithm 11 is its computational com- | Algorithm 12, modest computational savings can be made

plexity; many flops are required to evaluate the cost functiopy first reducingX” X to tridiagonal form. Specifically, i ¢
The following algorithm overcomes this in the unweighted cagg»*x™ js an orthonormal matrix such thaf’ X7 X S is tridi-

by optimizing overf (NN ) rather than ovef (V). Specifically,
if f(N)=tr{NTXTXN},then
FIN)+ f(N.) =tr {[N"XTXN + NTXTXN,}
—tr {[N N T XTX [N NL]}

=tr {X"X}. (24)

Thus, performing steepest descent $0V) is identical to
performing steepest ascent ¢itN, ). Whenr < (m/2), it

is computationally more efficient to maximiz& N, ) rather
than minimize f(N).

Algorithm 12 (Steepest Descent along
Straight Lines, Unweighted Case)

1) Choose N, € R™*" such that NIN, = I
Set step size A: = 1. Precompute XTX.

2) Evaluate  f(Ny)=tr {NTXTXN,}.

3) Compute ascent direction Z = 2(I -
N, NHXTXN,.

4) Evaluate  f(N. + 2)\Z), where f(Y)

S(NL+2XZ) — f(NL) >
A: =2), and repeat Step 4.
5) Evaluate  f(N. 4+ AZ), where f(Y)

tr {YTXTXY(YTY)" '} If  f(NL + \Z) — f(N,)
1/2)\]|Z]]?, then set X: = 1/2), and repeat
Step 5.

tr {YTXTXY(YTY) '}, If
A|Z||?, then set

N

agonal and iV, maximizes tt NTSTXTX SN, }, thenSN |
maximizesf (NN, ), and thus, the best rankapproximation of
XisR=XSN, NTST.

V. SECOND-ORDER DESCENTMETHODS

This section presents quadratically (and, in the unweighted
case, cubically) convergent algorithms for solving the low-rank
approximation problem (1). At each iteration, the algorithms
perform a Newton step in local coordinates.

The following theorem derives an expression for the Hessian
of g(K) in Algorithm 4. Its statement requires the commutation
matrix [18] C' € R"(m—7)xr(m=7) ‘which is the unique matrix
for which

vec{K"} = C vec{K} (25)

holds for all K € R™*(m="),

Theorem 13 (Quadratic ApproximationPefine f(IV) as in
(5) and, having fixedV € R™*(m=") and N, € R™*", define
g(K) as in (10). Then, the second-order Taylor series approxi-
mation ofg(K') aboutK = 0 is

3(K) = g(0)+vec{gradg}? vec[ K} + %vec{K}TH vec{ K}
(26)
where grady is defined in (22), andd € R"(m—7)xr(m-r) jg
the symmetric matrix in (27), shown at the bottom of the page.
The commutation matrix’ in (27) is defined in (25).

H :2{ (Im—r ® (X = B)NL)T [(N L) Q' (N® In)} (Im—r ® (X = B)N.)

s 0 (X - BN)T [N L) Q" (Ve 1) (Vo L)T Q7 (NL® 4)C

~ TN QT (e L) (Ve L) Q!

—CT (N, @A) (Ql —Q Y(N®I,) [(N ©I) Q' (Ne In)}

-1

(N®L)|  (Lner ® (X = B)N1)

-1

(N®I,)" Q1> (N, ® A) C}. 27)
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If g(K) is instead defined as in (14), then under the extrd) The constant 1/4 in Step 6 can be replaced by any constant

condition thaf N N, ]T[N N.] = I, the second-order Taylor

strictly between 0 and 1/2; see [22].

series approximation of(K) aboutK = 0 is also given by 3) Analogous to the algorithms in Section 1V-B, Algorithms

(26).

If @ = Iand[N N, ]"[N N.] = I, then the Hessian (27)

simplifies to

H=2(ln,®NX"XN,)-2(N"X"XN®I).

(28)
requires

Complexity: Computing the Hessian (27)

14 and 15 are deemed to have converged (and hence should
be terminated) if|G|| is sufficiently small.

In the unweighted case, (29) can be written in the form

NTXTXN K - KNTXTXN =-NTXTXN. (30)

Om3(m — )3 + n2m2(m — r)r) flops in general and Thus, the step sizK is found by solving the Sylvester equation

O(nm(m — r)?r?) flops if Q is diagonal. IfQ =
O(m?) flops are required if{ 7 X is precomputed. If < m,
then these flop counts ar@(n3m?), O(nm3r?), andO(m?),
respectively.

It is now straightforward to derive the Newton ste
0 for all dK. Since

K for which dg(K;dK) =
dj(K;dK) = |[vec{gradg}’ + vecd{K}" H]vec[dK},

I, then (30); efficient algorithms to do so appear in [2] and [11]. They

requireO(m?) flops.

Algorithm 15 (Newton Step, Unweighted

Rease)

1) Choose N e R™*(m=7) and N, € R™*" such
that [N N.])¥[N N,]=1I. Precompute X7TX.

the Newton stef is obtained by solving the linear equation 2) Compute one half times the negative of

Hved{K} = —vec{gradg}.

It requiresO ((m — r)*r?) flops to solve (29), which is fewer
than it takes to compute the Hessian (27) in the weighted ca

A Newton step is not guaranteed to decrease the cost functi
It is standard [22, Sec. 1.4.4] to include a test to ensure t@t
the Newton step significantly decreases the cost function. If
test fails, an alternative descent step, such as one iteratio

Algorithm 11, should be used.

Algorithm 14 (Newton Step)

1) Choose N € R™ (™= and N, € R™*" such
that [N NJ_]T[N NJ_] =1.

2) Compute the negative of the gradient

G = —-2NT(X — B)TA, where A and B are de-
fined in (23).

3) Compute the Hessian H as defined in

(27).

4) Solve the linear equation Hvec {K} =
vec {G} for the matrix K € Rr(m=m),

5) Evaluate  f(N)=vec{XN}T[(N®L)'Q YN ®
I,)] 'vec {XN}.
6) Evaluate  f(N + N, K). If r {KTG} < 0 or

f(N) — f(N + N.K) < 1/4tr {KTG}, then abort
Newton step.

7) Set N := N + N, K. Renormalize [N N,] by
setting [N N,]:=0qf {N}. Go to Step 2.

Complexity: One iteration of Algorithm 14

flop counts ared (n3m?) andO(nm?r?), respectively.
Remarks:

(29)

H
W

requires
O(n*(m — r)* + n*m*(m — r)r) flops in general and
O (nm(m —r)*r?) flops if Q) is diagonal. Ifr < m, then these

the gradient G=-NTXTXN.
3) Compute A = NTXTXN,, B = NTXTXN,

and solve the Sylvester equation AK—-KB =
for K e R>(m=7),

%{_Evaluate f(N)=tr {NTXTXN}.
Evaluate  f(N + N_K), where f(Y) =
{YTXTXY(YTY)"'}. f r  {KTG} < 0 or

W)~ J(N+ N.K) < 1/2tr {KTG}; then, abort
Newton step.

6) Set N := N + N, K. Renormalize [N N,] by
setting [N N,]:=qf {N}. Go to Step 2.

Complexity: One iteration of Algorithm 15 require8(m?)
flops.
Remarks:

1) Algorithm 15 is equivalent to Algorithm 14 witqp = I
in that they both produce the same sequence of points
[N N,.].

2) In practice, f(N + N, K) in Step 5 of Algo-
rithm 15 should be computed by first setting
N := N + N, K, renormalizing[N N,], and then
computing t{NTXTXN}. Moreover, the value
NTXTX N should be saved for subsequent use in Step
3.

3) Since itis faster to compute¥, } ratherthan gf N}, a
small computational saving will be made by maximizing
f(N1) rather than minimizing’ (IV); refer to Algorithm
12 to see how.

4) Dedicated algorithms for minimizing(N) in the un-
weighted case appear in [1], [5]. They have similar nu-
merical behavior to Algorithm 15 but require fewer flops
per iteration.

The rate of convergence of Algorithm 15 is cubic because,

1) Itis straightforward to modify Algorithm 14 to move alongabout the minimum off(IV), the local cost functiog(K) de-
geodesics rather than straight lines; refer to Algorithm 16 fmed in either (10) or (14) is symmetrica}(K') = g(—K) for
see how. Such a modification does not alter the order of th# K) if ) = I. This means that the Taylor series expansion
computational complexity of the algorithm. The same goes ¢(K') has no cubic term, and thus, the approximation (26) is

for Algorithm 15 as well.

correct up to degree three [8].
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Fig. 1. Graphs illustrating the poor performance of the alternating projectidiig. 2. Graphs illustrating comparable performance of the steepest descent
method yet good performance of the steepest descent method when there isw@thod and alternating projection method when the singular values of the data

little separation in the singular values of the data matrix. matrix are well separated.
10 v v : 10°
VI. NUMERICAL STUDY e
o NS %,
This section compares the performance of the following al X
gorithms in a limited number of situations. w ,
. o . . . 10
AP: The Alternating Projection algorithm described in
Section IV-A. 2

10° |

SD: The Steepest Descent algorithm (Algorithm 11) and,
in the unweighted case, its equivalent version (Algorithm$
12).

SD (geod): The Steepest Descent along Geodesics al "
gorithm (Algorithm 16) and, in the unweighted case, its
equivalent version (Algorithm 17). ol :
NS: The Newton Step algorithm (Algorithm 14) and, in the o
unweighted case, its equivalent version (Algorithm 15).
NS (geod):The Newton Step algorithm (either Algorithm . , , , " , , ,
14 or Algorithm 15) appropriately modified tomove along ~ ° " ae *° ¢ o e
geodesics rather than straight lines.

Figs 1-6 show the performance of the various aIgorithms Iﬁ;g 3. Graphs illustrating better performance of the steepest descent method
’ over the alternating projection method on arandomly chosen matrix. In addition,

six different situations. Each figure contains two graphs, corrgutice that the Newton method will converge to the closest critical point rather
sponding to initializing the algorithms at two different randomlyhan continue downhill.

chosen points. Within each graph, all algorithms were initialized

identically. The error, which is defined as the current ¢igsy) In Fig. 2, the data matriXX’ = diag{1,2,3,4,5,6,7} was
(defined in (3)) minus the minimum cost, is graphed against tkhosen to have well-separated singular values. Each algorithm
number of iterations taken by each algorithm. Only Fig. 4 usedaught to find the best rank= 3 approximation. Fig. 2 shows
weighting matrix; the other five figures studied the unweightetthat both AP and SD perform comparably in this situation. The

case = Iin(1)]. NS algorithm exhibits cubic convergence. However, since the
In Fig. 1, the data matrixX was chosen to be NS algorithm converges to the nearest critical point, it is just as
X = diag{1,1,1,0.99,0.99,0.99,0.99}. Notice that the likely to attempt to move uphill rather than downhill. (The test

eigenvalues ofX 7 X (equivalently, the singular values 6f) in Step 6 of Algorithm 14 will detect this, however.) It is thus
are closely spaced. Each algorithm was required to find thecessary to start the NS algorithm after the fourth iteration of
best rankr = 3 approximation ofX. As Fig. 1 shows, the SD in the graph on the left of Fig. 2 and after the sixth iteration
AP algorithm performs extremely poorly. The SD methodyf SD in the graph on the right.

however, exhibits rapid convergence. In fact, the SD methodin Fig. 3, the data matriX was a randomly chosen 120100
converges more quickly than it does in Fig. 2, showing that anatrix. The algorithms attempted to find the best rank 4
ill-conditioned problem for the AP algorithm is a well-condi-approximation. In both cases, the NS algorithm was run after
tioned problem for the SD algorithm. Fig. 1 also shows th&tn iterations of the SD algorithm. In the first case, the NS con-
only two iterations of the NS algorithm (run after the seconderged to a local minimum, whereas in the second case, it con-
iteration of the SD algorithm) are required for convergence. verged to the global minimum. It is interesting to see how the
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Fig. 4. Graphs illustrating more robust performance of the steepest desdéit 5. Graphs illustrating better performance of straight line Newton method

method over the alternating projection method on a randomly chosen data Q48" 9eodesic Newton method and comparable performance of straight line
weighting matrix. steepest descent and geodesic steepest descent.

10° - v : . 10

local minimum affects the performance of the AP and SD algc
rithms. The SD algorithm escapes from the local minimum o
its 23rd iteration. The AP algorithm is still significantly ham-
pered by the local minimum after 39 iterations.

In Fig. 4, the data matriX was a randomly chosen X010
matrix. The weighting matrix) was chosen at random with sin-
gular values between 0.2857 and 1. Each algorithm was requir 10’k
to find the best rank = 3 approximation ofX. For the NS al- §
gorithm to converge, it was necessary to run it after the 13 0’
iteration of SD in the left-hand graph and after the fifth itera
tion of SD in the right-hand graph. The left-hand graph show o}
the AP algorithm converging to a local minimum, whereas th

10' b

10°

SD algorithm escapes the local minimum. The right-hand graj -} ’ ] 10" 555

shows the AP algorithm performing slightly better than the SI » .o R et ,

algorithm. - o ol Nseon|  ©
The final two figures compare the straight line algorithm:  ° % femion. °© " © 0 feaon  ©

with the geodesic algorithms. Fig. 5 uses the same data asF_in6 Grahs ilustrating bet . ¢ straiaht line Newt thod
. . . . . . rapns lllustrating better perrormance of stralg Ine Newton metno

Fig. 1, and Fig. 6 Hses_the same data _as in Fig. 2 Figs. 5 an&i/ geodesic Newton method and comparable performance of straight line

show that the straight line and geodesic SD algorithms perfogmgepest descent and geodesic steepest descent.

comparably, whereas the straight line NS algorithm is superior

to the geodesic NS algorithm. algorithms makes the actual number of flops per iteration un-

¢ OQ € mpg\rtam fatftor tfhﬁt the abqve dresul_tts h?ve n_?ﬁlez dictable in advance.) It was also found that the NS algorithm
0 showis the number of Tiops required per iteration. The equires fewer flops per iteration than NS (geod) does.

algorithm generally requires the least number of flops per itera-
tion. However, as Fig. 1 illustrates, the AP algorithm can suffer
from exceptionally slow convergence. Moreover, the SD algo-
rithm empirically appears to be more robust than the AP algo-This paper studied the weighted low-rank approximation
rithm; Figs. 3 and 4 show the SD algorithm escaping from locptoblem (1). It generalized the EVD method for the unweighted
minima. In certain circumstances, the quadratic (or, in the uocase to the weighted case by showing that the best low-rank
weighted case, cubic) convergence of the NS algorithm mapproximation can be found by first computing the minimizing
than compensates for its computational complexity. subspace of a certain cost function (Theorem 1). This novel
A small number of simulations were done to compare ttapproach led to the derivation of closed-form solutions of
number of flops (as calculated by Matlab’s flops command) rét) for certain weighting matrices (Theorem 3). A general
quired for the straight line and geodesic versions of SD and Nlamework for numerically finding the minimizing subspace
algorithms. It was found that SD and SD (geod) perform conof a cost function was given in Section Ill. The advantage of
parably; sometimes SD requires fewer flops per iteration, attds framework is that it considerably reduces the dimension
other times, SD (geod) does. (The step selection rule in the $the optimization problem. This framework was then applied

VIl. CONCLUSION
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in Sections IV and V to derive modified steepest descent amthere use has been made of (32). Using the fact that
Newton algorithms for the low-rank approximation problem.

These algorithms are not standard optimization algorithmjsg4 _p1 !
because the cost function changes at each iteration. The”T ¢ }
numerical study in Section VI demonstrated the advantages

of these algorithms over the traditional alternating projection =
algorithm. For practical applications of weighted low-rank
approximations, see [16] and [20].

AT A'B(BTA'B) T BTATL &
—(BTA'B) ' BTA ! x

wherex denotes unimportant elements, (34) is readily solved
APPENDIX A for vec{R}, yielding (4). Substituting this solution into the
PROOES cost functiong(R) immediately gives (5). Finally, the reason
" f(N) = f(NS) for any invertible matrixS is thatRN = 0 if
Equalities (31)-(33), shown at the bottom of the page, alg only ifRN'S = 0, that is, the constraint s¢f2 : RN = 0}
used in the following proofs. in (3) equals the constraint seR : RN S = 0}.

A. Proof of Theorem 1
h h f ltipli G ] B. Proof of Corollary 2
The method of Lagrange multipliers, as elucidated in [18], is If Q = I, then (5) becomes

applied to (3). Define

#(R) =vec{X — R}T Qvec{X — R} € R F(N) =vec[X}T (N @ I, [(N ® L) (N® In)] B
G(R) =RN e R (™), (N ®I,)T vec[ X}
Minimizing ¢( R) subjecttaG (R) = 0 results in the Lagrangian =vec[X}T (N®I,,) [(NTN) e In}
W(R) = $(R) — tr {LTG(R)} ((N®1I,)" vec{X}

—vec| XN} vec! XN (NTN) ™!
whereL € R**(™~") is the Lagrange multiplier. Its differential {XN} { ( ) }

is =r {NTXTXN (NTN) T

— —_dm\7T _ - RrR\T —
dp =vec| df} Q@ ved X — It} + veclX — R} Q ved{—d1i} where the second last line is obtained by using (32) and the last
-u {L (dR>N} line by (31). Equation (7) is obtained similarly. O
=2vec{R — X}"Q vec[dR} — tr {NL"dR}

=2 vec{R _ X}TQ vec{dR} . vec{LNT}T vec{dR} C. Proof of Theorem 3

Substitutingl = Q1 ® Q- into (5) yields
where the last line is obtained by using (31). This shows that

dip = 0 for all dR if and only if f(N) =ved{X}T [N (NTQl—lN)_1 NT Q2] vec{ X'}
2 vec(R — X}7Q = vec{LN"}" . =tr {XTQZXN (NTQT'N) ™ NT}
Writing both this condition and the conditicf(R) = 0 in —tr { NTXT XN ( NT N)‘l}
matrix form yields
TZQ ~(N® In)} {VGC{R}} whereX = Q3/>XQ7/?, andN = Q;"/*N. Sincef(N) is a
(NT®I,) 0 vec{L} generalized Rayleigh quotient M, cf., (6), its minimum occurs

2Q vec{ X} 24 when the columns oV span the same space as do the- r
0 (34) smallest eigenvectors & ” X . The solution of (1) is found by

vec{A}" vec{B} =tr {A" B}

providedA and B have the same dimensions (31)
vec{AB} = (B" ® I,,) vec{A}
wheren is the number of rows oft (32)

=(In ® A)vedB}
wherem is the number of columns ds.
vec{ABC} = (CT ® A) vec{B}. (33)
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substituting this value oWV into (4). Substituting) = Q, ® Q, Define h(N) = h(N,N) andh~'(N) = [h(N)]~!. Then,

into (4) yields (5) becomesf(N) = vec{XN}Th=1(N)vec{XN}. Since
dh(dN) = 2h(N,dN)
R=X - XN (NTQ;'N) ' NTQ;* df(dN) =2 vec{ X N}Th~'(N)vec{ XdN}
aple eefera\l s 1) —2 vec{ XN} A= (N)h(N,dN)h™'(N)vec{ XN}
=@ [X —AN (NTN) NT] @ =2 vec{A}'vec[XdN}

—2vec{A}T (N®I,)" Q ' (dN ® I,,) vec{ A}

If the columns of V span the same space as the— r \here4 is defined in (23). Defining3 as in (23) shows thaif
smallest eigenvectors ok’ X and if X = UXV' isthe g, pe compactly written as

SVD of X, thenX — XN(NTN)"'NT = U%,VT. Thus,

R = PUs, vTQrye, - df(dN) =2tr { AT XdN} — 2 vec{ B} vec{AdN"}
=2tr {A"(X — B)dN} . (36)
D. Proof of Proposition 5 Thereforedg(dK) = df (N1 dK) = 2 tr{AT(X-B)N,dK},
verifying (22). O

SinceN + N, K is affine in K, (11) clearly holds. Similarly,
(12) follows from the chain rule for second differentials [18, Ch. pyoof of Theorem 13

6, Th. 11]. _ . . :
] Taylor's theorem implies thafl is the unique symmetric ma-

trix, which satisfies
d?g(dK,dK) = vec{dK}T Hvec[dK}. (37)
Under the Levi-Civita connection, the gradient and Hessian of q i lculate? f. defineh as in (35 d h
a function on the Grassmann manifold are equivalent to the fill Ojrv edr]:[o ES; ij\?ud?\tf é’_ﬁe met. ?S m?fﬁ ),_alr:j note that
and second derivatives of the function expressed in normal co |‘-( ,dN) = h(dN, dN). Differentiating (36) yields
dinates around the point at which the derivatives are taken. Sinég (dN, dN) = 2 vec{(X — B)dN}*d vec{A}
NV cos(%) + Usin(X) is the exponentigl map'(that is, it traces 9 vec{AdNT}T d vec[B}.
out geodesics) [8, Th. 2.3}( K) in (14) is preciselyf(N) ex- o ]
pressed in normal coordinates. Thus, the first and second derfPifferentiating (23) gives
tives (and hence the differentials) ofK’) are readily obtained ;7 yec{A} =p~1(N) [vec{(X — B)dN}
from the formulae for the gradient and Hessian of a function on
a Grassmann manifold, as given in [8, Sec. 2.5.3 and 2.514]. —(N®IL,)" Q‘lvec{AdNT}}

dvec{B} =Q™" (N ® I,,) d vec{ A}
+ Q 'vec{AdN"}.

E. Proof of Proposition 6

F. Proof of Theorem 8

Comparing (15) and (16) with (11) and (15) shows that the’ths
will be the same ifif(NdKTdK) = 0 for all dK. Under the ) T oy .
hypothesis of the theorenf,(N + NL) = f(N) for L € d*f(dN,dN) = — 2 vec{ AdN"}" Q™ 'vec{AdN" }

R(m=m)x(m=r) syfficiently small because ranf®y + NL} = + 2[vec{(X — B)dN}

range N} provided (+ ) is invertible. Thereforelf (NdL) = .
0 for all L, implying df (NdKTdK) = 0 for all dK as well. —(N®I,)" Qflvec{AdNT}}
O

% h~Y(N) [vec{ (X — B)dN}
G. Proof of Proposition 9 (N L,)" Q—lveC{AdNT}]

If either A or B is fixed, the cost functiol X — AB||3, is . . " .
guadratic. By differentiating it and setting the result to zero, tq’%f;?r replacingd N with N, d K (see Proposition 5), it follows

proposition readily follows.
H=2 {(Im,r ® (X — B)N.)T

H. Proof of Theorem 10 -h™Y(N) (Im—r ® (X = B)NL)
The gradient gragl of g( K) is defined to be the unique matrix — (Im—r ® (X = B)N.)T h=*(IN)

gradg € R™*(m=") for which dg(dK) = tr{(gradg)TdK}. It (Ne L) Q"' (N.®A)C

is thus necessary to first computg(dK). From Proposition 5, T " T 4

dg(dK) = df (N, dK). The differentialdf is now determined. —C (NLeA) QT (Nel)

For convenience, define the symmetric bilinear function YN) (Im—r ® (X = B)N1) — CT (N ® A)"
—1

he
: (Q — Q7 (N®I,)h ' (N)
(NeL)" Q*l) (N. @ A) o} .
+ (N0 1) Q7N (N1 In)} - (35) Thisis equivalent to (27). O

h(Ny, Np) = [(N1 ® 1) Q71 (No ® 1)

N =
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APPENDIX B Remarks:
GEODESIGBASED ALGORITHMS 1) Algorithm 16 withQ = I and Algorithm 17 are equivalent
This section presents the geodesic based counterparts to thdn that they both produce the same sequence of pdints
algorithms in Section IV-B. although Algorithm 17 requires fewer flops per iteration.

2) If N, is not renormalized in the last step of Algorithm 17,

Algorithm 16 (Steepest Descent Along round off error can cause the Armijo rule in Step 6 to repeat

Geodesics) indefinitely.
1) Choose N e R™*(m=7) and N, € R™*" such
that [N NL]T[N NL] = 1. Set Step size A = ACKNOWLEDGMENT
1.
2) Evaluate F(N) _ The authors would like to thank P. Stoica for initial discus-
vec {XN}T[(N ® I,)TQ (N ® I,,)]'vec {XN} sions on the weighted low-rank approximation problem and an
3) Compute descerrln direction " K = —2NT(X — anonymous reviewer for valuable comments.
- L

B)T'A, where A and B are defined in (23).
4 Determine the compact SVD of N K, REFERENCES
that is, compute T U’, ¥, and V so ,that [1] P.-A. Absil, R. Mahony, R. Sepulchre, and P. Van Dooren, “A Grass-
N.K = UXV®, X is square and diagonal, mann-Rayleigh quotient iteration for computing invariant subspaces,”
and UTy = vTv = 1. in Proc.Conf. Dec. ConirSydney, Australia, 2000, pp. 4241-4246.

Eval N 2\% n(2an)). If [2] R.H.Bartels and G. W. S"tewart, “Algorithm 432: Solution of the matrix
5 E aiuat]evv f( /\‘; cosng. ))\E +> ) ?lg(ta ) t equationd X +X B = C” Commun. ACWvol. 15, pp. 820826, 1972.
J(N) = f( cos(AX) + Usin(AX)) > M| K| en se [3] D.R. Brillinger, Time Series: Data Analysis and TheoryNew York:
A= 2\, and repeat Step 5. " gog, R'\i/r|1ehart, alndéNinston, 1975.f | e R

: . De Moor et al, “Convergence of an algorithm for the Riemannian
6) Evaluate f(NV COS(/\E) . + U Sm(/\z))' |f2 SVD,” in Open Problems in Mathematical Systems and Control Theory
f(N) — f(NVcos(AX) + Usin(AY)) < 1/2)\|K|]?, V. D.Blondeletal, Eds. New York: Springer, 1999, ch. 20, pp. 95-98.
then set A:=1/2)\, and repeat Step 6. [5] J.W. Deénmel, “Thr:eeagwethogg fg;relfgnégg estimates of invariant sub-
,_ : spaces,’'Comput, vol. 38, pp. 43-57, .

7) Set . N:=NV COS()‘E) + Usm(/\E). Compute N, [6] K. I. Diamantaras and S.-Y. Kung, “Multilayer neural networks for re-
by setting [N Ni]:=df {N}. Go to Step 2. duced-rank approximationJEEE Trans. Neural Networksol. 5, pp.

684-697, Sept. 1994.
. . . . . [7] G. Eckart and G. Young, “The approximation of one matrix by another
Complexity: Each iteration of Algorithm 16 requires of lower rank,”Psychometricavol. 1, pp. 211-218, 1936.
O(n*m?(m — r) + n3(m — r)®) flops in general and [8] A.Edelman, T.A. Arias, and S. T. Smith, “The geometry of algorithms
2 ; ; ; with orthogonality constraints SIAM J. Matrix Anal. Applicat.vol. 20,
O(nm(m — r)* 4+ nmr) flops if Q is ?agonal. Ifr <« 7;1 no. 2. pp. 303353, 1998,
then these flop counts approadh(n°m”) and O(nm?), [9] J.S. Goldstein and I. S. Reed, “Reduced-rank adaptive filteriEE
respectively. Trans. Signal Processingol. 45, pp. 492-496, Feb. 1997.
[10] J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A multistage representa-
tion of the Wiener filter based on orthogonal projectiodEEE Trans.

Algorithm 17 (Steepest Descent Along Inform. Theoryvol. 44, pp. 2943-2959, Dec. 1998.
Geodesics, Unweighted Case) [11] G.H.Golub,S. Na§h,ar]dc.F.V?nLoan,“AHessenberg—Schurmethod
1) Choose N, € R™" such that NINJ_ - I g)cr:tgip;)rgbg%ngfg\l;-i‘;% C," IEEE Trans. Automat. Confwol.
Set Step Size A:=1. Precompute X7TX. [12] G. H. Golub and C. F. Van LoanMatrix Computations 3rd
2) Evaluate f(NL) =tr {NIXTXNL}. ed. Baltimore, MD: Johns Hopkins Univ. Press, 1996.

. . [13] U. Helmke and J. B. MooreQOptimization and Dynamical Sys-
3) Compute ascent direction Z = 2(I - tems New York: Springer-Verlag, 1994.
NJ_N}:)XTXNJ_. [14] Y. Hua and M. Nikpour, “Computing the reduced-rank Wiener filter by
4) Determine the compact SVD of Z, that IQMD,” IEEE Signal Processing Letwol. 6, pp. 240-242, Sept. 1999.

[15] Y. Hua, M. Nikpour, and P. Stoica, “Optimal reduced-rank estimation

is, compute U, %, and V so that Z = and filtering,” IEEE Trans. Signal Processingol. 49, pp. 457-469,

UxVT, ¥ is square and diagonal, and Mar. 2001.
UTy = vITy = J. [16] W.-S.Lu, S.-C. Pei, and P.-H. Wang, “Weighted low-rank approximation
. of general complex matrices and its application in the design of 2-D
5) Evaluate  f(N.V cos(2AX) + Usin(2AY)), where digital filters,” IEEE Trans. Circuits Syst, kol. 44, pp. 650-655, July
fY)y = tr {YTXTXY}. If  f(NLVcos(2\X) + 1997.
USin(Q)\Z)) _ f(NJ_) > )‘HZH?’ then set A = 2), [17] W.'-S. Lu, H.-P. Wang, and A. Anton_i_ou, “Design of 2-D digital_filte(s
using the singular value decomposition and balanced approximation,”
and repeat Step 5. IEEE Trans. Signal Processingol. 39, pp. 2253-2262, Sept. 1991.
6 ) Evaluate F(NLV cos(AX) + Usin(AXY)), where [18] J. R. Magnus and H. Neudeckatatrix Differential Calculus With Ap-
f(Y) — tr {YTXTXy}_ If f(NiV Cos(/\E) + plications in Statistics and EconometricsNew York: Wiley, 1994.
g . 2 [19] J. H. Manton, “A new algorithm for computing the extreme eigenvec-
U Sm(/\z) - f(NJ-) < 1/2/\||Z|| , then set tors of a complex Hermitian matrix,” iRroc. Eleventh IEEE Workshop
A= (1/2)\, and repeat Step 6. Statist. Signal ProcessSingapore, Aug. 2001.
7) Set N, := N,V COS(AE) + U sin()\Z). Renor- [20] J. H. Manton and Y. Hua, “Convolutive reduced-rank Wiener filtering,”
. in Proc. IEEE Conf. Acoust., Speech, Signal ProgeSalt Lake City,

[21] L. Mirsky, “Symmetric gauge functions and unitarily invariant norms,”
. . . . . Quart. J. Math. Oxfordvol. 11, pp. 50-59, 1960.
Complexity: Each iteration of Algorithm 17 requires [22] E. Polak, Optimization: Algorithms and Consistent Approxima-

O(m?r) flops. tions New York: Springer-Verlag, 1997.
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