
UC Riverside
UC Riverside Previously Published Works

Title
The geometry of weighted low-rank approximations

Permalink
https://escholarship.org/uc/item/08m9c4z6

Journal
IEEE Transactions on Signal Processing, 51(2)

ISSN
1053-587X

Authors
Manton, J H
Mahony, R
Hua, Y

Publication Date
2003-02-01
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08m9c4z6
https://escholarship.org
http://www.cdlib.org/


500 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 2, FEBRUARY 2003

The Geometry of Weighted
Low-Rank Approximations

Jonathan H. Manton, Member, IEEE, Robert Mahony, and Yingbo Hua, Fellow, IEEE

Abstract—The low-rank approximation problem is to approx-
imate optimally, with respect to some norm, a matrix by one of
the same dimension but smaller rank. It is known that under
the Frobenius norm, the best low-rank approximation can be
found by using the singular value decomposition (SVD). Although
this is no longer true under weighted norms in general, it is
demonstrated here that the weighted low-rank approximation
problem can be solved by finding the subspace that minimizes a
particular cost function. A number of advantages of this param-
eterization over the traditional parameterization are elucidated.
Finding the minimizing subspace is equivalent to minimizing a
cost function on the Grassmann manifold. A general framework
for constructing optimization algorithms on manifolds is pre-
sented and it is shown that existing algorithms in the literature
are special cases of this framework. Within this framework, two
novel algorithms (a steepest descent algorithm and a Newton-like
algorithm) are derived for solving the weighted low-rank ap-
proximation problem. They are compared with other algorithms
for low-rank approximation as well as with other algorithms
for minimizing a cost function on a Grassmann manifold.

Index Terms—Grassman manifold, low-rank approximations,
optimization on manifolds, reduced rank signal processing.

I. INTRODUCTION

T HE weighted low-rank approximation problem is to com-
pute

rank

vec vec (1)

for a given data matrix and positive definite
symmetric weighting matrix . Here, vec
denotes the vec operator [18], and it is important to note that
the norm is more general than the usual weighted norm

tr , where tr is the trace operator. The
minimizing in (1) is the best rank approximation of
under the norm . If is the identity matrix, denoted
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, then (1) reduces to the well-studied unweighted
low-rank approximation problem. This paper analyzes the
geometry of the low-rank approximation problem, drawing
connections between the weighted and unweighted cases. It
then uses this analysis to construct efficient algorithms for
locally minimizing (1).

The weighted low-rank approximation problem has received
less attention in the literature than the unweighted low-rank
approximation problem [16]. Presumably, this is because a
closed-form solution does not exist for the weighted low-rank
approximation problem in general. Furthermore, existing
algorithms for the weighted case only converge to a local
minimum of (1) in general. Despite this though, the following
applications illustrate that it is still beneficial to consider the
weighted low-rank approximation problem.

A. Applications

One application that benefits from the use of a weighted low
rank matrix approximation is the two-dimensional (2-D) filter
design problem. The approach in [17] and [30] to the 2-D filter
design problem is to start with a matrix whose elements
correspond to samples of the desired frequency response and
then decompose the 2-D design task into a set of simpler
one-dimensional design tasks by applying the singular value
decomposition (SVD) to . A disadvantage of using the SVD
to decompose the desired frequency responseis that it treats
all entries of equally, which in some cases leads to degraded
designs. In order to discriminate between the important and
unimportant elements of , the idea of replacing the SVD
with a weighted low-rank approximation was proposed in [16],
[27]. (See [16] for a design example.)

Although finding the global minimum of (1) is ideal, it may
still be the case that a filter design resulting from finding a local
minimum of (1) outperforms the unweighted filter design. Fur-
thermore, since the performance of the resulting filter is readily
measurable, if it so happens that the weighted design is worse
than the unweighted design, the weighted low-rank approxima-
tion can be recomputed with a different initial condition in the
hopes that a better local minimum of (1) will be found.

A second application requiring the solution of a weighted
low-rank approximation problem is the convolutive re-
duced-rank Wiener filtering problem [20]. Motivated by the
same idea of using a double minimization (2) to reformulate
the original optimization problem (1), it was shown in [20] that
the convolutive reduced-rank Wiener filter can be found by
solving a weighted low-rank approximation problem. As in the
2-D filter design problem, because the mean-square error of the
resulting convolutive reduced-rank Wiener filter can be readily

1053-587X/03$17.00 © 2003 IEEE
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calculated and compared with that of the standard (nonconvo-
lutive) reduced-rank Wiener filter [3], [14], even a suboptimal
solution of (1) can lead to a convolutive reduced-rank Wiener
filter whose performance is verifiably better than that of the
standard reduced-rank Wiener filter.

B. Known Properties and Related Work

In (1), if , then is the Frobenius norm. The
low-rank approximation problem with respect to the Frobenius
norm was first studied by Eckart and Young [7]. They proved
that if is the compact SVD [12] of , then
the best rank approximation of is , where

is obtained from by setting all but the first singular
values to zero. This result is commonly referred to as the
Eckart–Young–Mirsky Theorem (Mirsky [21] proved the result
also holds under the 2-norm).

The best unweighted rankapproximation is also readily
computed from the eigenvector decomposition (EVD) of .
If contains the normalized (so that )
eigenvectors associated with thelargest eigenvalues of ,
then . This follows almost immediately from the
Eckart–Young–Mirsky Theorem and the fact that the eigenvec-
tors of are the right singular vectors of. In a sense to be
made precise later, this result is generalized in the present paper
to the weighted case.

An alternative to performing an SVD or EVD and one that
immediately extends to the weighted case, is to first over-pa-
rameterize the problem to remove the rank constraint and then
apply an alternating projection algorithm [16]. Specifically, the
algorithm proposed in [16] works as follows. Replacein (1)
with the matrix product , where , and .
Fix a value for and minimize over , then fix , minimize
over , and repeat until the product converges. It can be
shown that, in general, converges to a local minimum
of (1).

Remark : If in (1), then it is known [13] that (1)
has no local minimum other than the global minimum. It does,
however, have saddle points.

Copious works deal with the unweighted low-rank approx-
imation problem and applications thereof. This is because
appropriate usage of reduced-rank approximations can result
in increased computational efficiency and robustness against
noise and model errors. Fundamental results on optimal re-
duced-rank estimators and filters can be found in [3], [9], [10],
[15], [23]–[26], [28], and [29]. Other algorithms for solving
the (adaptive) unweighted low-rank approximation problem
include [6], [14]. However, the only algorithm the authors are
aware of for solving the weighted low-rank approximation
problem is the alternating projection algorithm presented in
[16].

A variant of the low-rank approximation problem appears in
[4] and references therein. Specifically, [4] uses a modified in-
verse power method to solve (1) under the extra constraints

i) ;
ii) is restricted to have some affine structure.
iii) is diagonal. This variant is discussed further in Sec-

tion II.

C. Contributions

The main contributions of this paper can be summarized as
follows.

• We introduce a novel reformulation of the weighted
low-rank approximation problem, which is more natural
than the reformulation traditionally used in
rank-reduced problems [16], [28].

• We determine conditions on the weighting matrixfor a
closed-form solution of (1) to exist.

• We derive efficient numerical algorithms that converge to
a local minimum of (1).

• We compare the existing alternating projection algorithm
with the novel algorithms proposed here for solving (1).

The other contributions, arising from the reformulation of the
weighted low-rank approximation problem as a constrained
optimization problem on the Grassmann manifold, are the
following.

• We derive a general framework for minimizing a cost func-
tion on a Grassmann manifold.

• We prove that the algorithms in [8] are a special case of
this framework.

• We discuss the advantages this framework has over the
narrower Riemannian framework in [8] and, in particular,
why it is misleading to interpret the algorithms proposed
here as approximations of the Riemannian-based algo-
rithms in [8].

These contributions are now discussed in relation to existing
results in the literature.

As already mentioned, the traditional approach to re-
duced-rank problems is to write the rankmatrix as the
product of two matrices, where has columns, and

has rows. The potential disadvantage of this approach is
that the decomposition is not unique, or equivalently,
too many parameters are used to represent rankmatrices.
The novel idea in this paper is to use a parameterization that
is one-to-one, thus reducing the number of parameters and ac-
cordingly reducing the dimension of the optimization problem.
This is achieved by reformulating (1) as an unconstrained op-
timization problem on a Grassmann manifold. (A Grassmann
manifold is the collection of all subspaces of a given dimension
[8], [13].) The authors believe this reformulation to be more
natural than the reformulation not only because the
parameterization is one-to-one but because conditions for (1) to
have a closed-form solution become readily apparent as well.

The reformulated problem of minimizing a cost function on
a Grassmann manifold can be solved numerically using the re-
cent algorithms in [8], and indeed, it is candidly stated that such
an approach leads to algorithms that perform comparably with
the proposed algorithms in this paper. Nevertheless, for reasons
given in Section III, the approach taken here is to derive first
a more general framework for optimizing a cost function on a
manifold and then specialize it to the weighted low-rank approx-
imation problem. Although the resulting algorithms might be
interpreted by some as “flat space approximations” of the al-
gorithms in [8], Section III explains why this interpretation is
misleading; the algorithms in [8] can just as well be interpreted
as approximations of the algorithms proposed here.
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Remark : If , then the resulting cost function on the
Grassmann manifold takes a special form (specifically, it is a
generalized Rayleigh quotient cost function) for which dedi-
cated minimization algorithms have been proposed in [1] and
[5]. This specific case has also been studied in detail in [8].

The algorithms proposed for solving (1), which are a mod-
ified steepest descent method and a modified Newton method,
are shown to have the following advantages over the alternating
projection algorithm in [16]. The alternating projection algo-
rithm asymptotically has a linear rate of convergence,1 meaning
that often, a significant number of iterations are required to
achieve an acceptable accuracy. The modified Newton method
presented here overcomes this problem since, asymptotically, it
has a quadratic rate of convergence in general and a cubic rate
of convergence if . Furthermore, simulations show that
closely spaced eigenvalues of adversely affect the con-
vergence rate of the alternating projection algorithm, whereas
they do not seem to affect the algorithms in this paper. [This ob-
servation is mathematically substantiated in [19] for the special
case of and or in (1).] Yet another
advantage is that here the optimization algorithms work over an

dimensional space (assuming ), whereas the
alternating projection algorithm works over an -dimen-
sional space [see (1) for the definitions of ]. When is
much larger than and is small, the reduction in dimension is
very significant. For instance, if , , and ,
then , yet .

D. Organization of Paper

The rest of this paper is organized as follows. Section II shows
how the low-rank approximation problem can be solved by first
computing the minimizing subspace of a certain cost function.
It also derives conditions for (1) to have a closed form solution.
Section III derives a general framework for finding a minimizing
subspace of a cost function. It highlights the advantages of this
more general framework over the Riemannian-based framework
presented recently in [8]. This framework is used to derive novel
steepest descent algorithms in Section IV and Newton methods
in Section V for solving the weighted low-rank approximation
problem. These algorithms are not standard steepest descent and
Newton algorithms; the cost function changes at each iteration.
A numerical study in Section VI demonstrates that the algo-
rithms are superior to the classical alternating projection algo-
rithm, which is the only other algorithm the authors’ are aware
of for solving the weighted low-rank approximation problem.
All proofs are relegated to Appendix A.

II. WEIGHTED LOW-RANK APPROXIMATION

This section derives a novel reformulation of the low-rank
approximation problem (1). This reformulation is used in this

1A linear rate of convergence means that the logarithm of the error decreases
linearly or, equivalently, that the number of correct digits in the answer increases
by approximately a fixed amount per iteration. Similarly, a quadratic rate of con-
vergence means that the logarithm of the error decreases quadratically, implying
that the number of correct digits approximately doubles each iteration. It is a
standard result that steepest descent methods asymptotically have a linear rate
of convergence, whereas Newton methods asymptotically have a quadratic rate
of convergence [22].

section to derive conditions for (1) to have a closed-form so-
lution, and it is used in subsequent sections to derive efficient
algorithms for converging to a local minimum of (1). Connec-
tions with the Riemannian SVD [4] are also discussed.

Without loss of generality, it is assumed throughout that
, where and are the number of rows and columns of the

data matrix . [If , simply replace by and adjust
in (1) accordingly.]
The underlying idea in this paper is to reformulate (1) as the

double-minimization

(2)

Close inspection shows that if and are the minimizing ar-
guments of the two minimizations in (2), then is the solu-
tion of the low-rank approximation problem (1); the restriction

enforces the constraint rank since every
column of must belong to the null space of. Theorem 1
below shows that the inner minimization has a closed-form so-
lution. Moreover, because the inner minimization depends only
on the span of the columns of and not on the individual el-
ements of , it will be shown in subsequent sections that the
outer minimization reduces to one of dimension .

Theorem 1: For any given data matrix and posi-
tive definite symmetric weighting matrix , define

(3)

where and is defined in (1). Then, the
minimizing is given by

vec vec

vec (4)

where is Kronecker’s product [18]. Furthermore, is
given by

vec

vec (5)

and depends only on the range space of; for any invertible
matrix , .

By considering the unweighted case , it will be seen
that (2) is the generalization of the EVD approach, which is
defined in Section I-B, to the weighted case.

Corollary 2: Define as in (3). If in (3), then (5)
becomes

tr (6)

If and , then (4) and (5) become

(7)

tr (8)
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The cost function (6) is called thegeneralized Rayleigh quo-
tient [13] since it is a generalization of the usual Rayleigh quo-
tient [12]. Furthermore, it is known that the minimum of (6), or
of (8) subject to , occurs when the columns of cor-
respond to the smallest eigenvectors of . That is,
(2) is precisely the EVD approach; if the columns of
are the largest eigenvectors of and if the columns of
are the smallest eigenvectors, then ;
therefore, (7) becomes .

The traditional approach [16], [28] to reduced-rank problems
is to enforce the rank constraint on by replacing by ,
where has columns and has rows. The interpretation is
that matrices with rank at mostare being parameterised by the
many-to-one map . Reasons for believing the
reformulation (2) to be more natural than the traditional refor-
mulation are now given.

1) The implicit mapping in (2) from a null space represented
by to a matrix of rank

at most is a one-to-one mapping.2

2) As shown above, if , then (2) is equivalent to the
EVD approach for computing a low-rank approximation.

3) The fact that the SVD or EVD can be used to solve (1)
for certain weighting matrices is not apparent from the

reformulation. However, as is shown below,
conditions on for (2) to have a solution in terms of an
SVD or EVD are easily found.

If is chosen so that (2) is equivalent to the minimization
of a generalized Rayleigh quotient, then (1) has a closed-form
solution in terms of an SVD or EVD. Such a must make (5)
a quadratic function when is appropriately restricted, cf., (8).
For (5) to be quadratic, it is necessary to “remove” the
term. This can be done wheneveris of the form .
Note that if , then tr .

Theorem 3: In (1), if , where
and are both positive definite and symmetric, then
the solution of (1) is given by the following closed-form ex-
pression. Let be the compact SVD [12]
of , where is the unique positive definite sym-
metric matrix such that and similarly for .
Then, , where is obtained from

by setting all but the first singular values to zero.
For completeness, connections with the Riemannian SVD [4]

are discussed briefly. The Riemannian SVD can be used to solve
(1) only in the special case of a rank one reduction ( ).
(It also requires to be diagonal.) If , then the algo-
rithm in [4] for computing the Riemannian SVD reduces to the
standard inverse power method, whereas the steepest descent
algorithm in Section IV-B specializes to the algorithm in [19].
As shown in [19], the steepest descent algorithm is preferable
to the inverse power method since it is not sensitive to closely
spaced eigenvalues. Furthermore, the Newton method in Sec-
tion V asymptotically has a cubic rate of convergence when

, whereas the inverse power method only has a linear
rate of convergence asymptotically.

2Specifically, it induces a one-to-one mapping from points on the Grassmann
manifold to matrices with rank at mostr. Since the mapping is not onto, it uses
even fewer parameters than the traditionalR = AB parameterization.

More detailed comparisons with the Riemannian SVD have
not been made because the Riemannian SVD is not used in prac-
tice to solve (1). Instead, it is used to solve (1) subject to the
extra constraint that the rank-reduced matrixhas a particular
affine structure [4]. Although not pursued here, it may be pos-
sible to incorporate this structural constraint into (2), leading to
modified steepest descent and Newton methods having superior
performance to the modified Inverse Power method in [4].

III. OPTIMIZATION ALGORITHMS ONGRASSMANN MANIFOLDS

The previous section showed that (1) can be solved by first
finding the matrix , which minimizes the cost function (5).
Directly minimizing is an dimensional opti-
mization problem because is by . However,
only depends on the range space ofand not on the individual
elements of . As recognized in [8], this symmetry can be ex-
ploited to reduce the dimension of the optimization problem to

parameters (see Section III-A for an elementary proof).
Moreover, the algorithms in [8] can be used to minimize
(once the necessary derivatives have been calculated), thus re-
sulting in efficient algorithms for solving the weighted low-rank
approximation problem.

For reasons given later though, this paper prefers to use the al-
gorithm in Section III-A for minimizing . The motivation
for considering alternatives to the algorithms in [8] is that [8]
introduces an artificial structure, namely, a Riemannian struc-
ture, into the optimization problem that, depending on the ac-
tual function to be minimized, may or may not be detrimental.
Specifically, unless possesses properties that make it nat-
ural or desirable to introduce a Riemannian structure, there is
no compelling reason to do so; see Section III-B. Therefore,
the algorithm in Section III-A takes the liberty of introducing
a different artificial structure into the constraint surface that
serendipitously appears to be better suited to the specific cost
function (5). It is candidly stated, however, that the improve-
ment over the algorithms in [8] for the specific cost function (5)
appears to be relatively minor and has not been rigorously estab-
lished; the reasons then for presenting this alternative approach
are that this approach is more accessible to readers since it does
not require knowledge of differential geometry, and moreover,
the secondary aim of this paper is to correct the possible miscon-
ception that only geodesic-based optimization algorithms are
“natural” or “correct” algorithms.

A. Elementary Optimization Algorithm

This section derives an algorithm for the constrained mini-
mization of a function subject to and under
the assumption that the value ofat any point depends only
on the range space of . The algorithm itself is not new but its
interpretation is; previously, the algorithm was thought to be a
“flat space approximation” of the geodesic-based algorithms in
[8], whereas Section III-B shows that it is just as valid as the
algorithms in [8].

Henceforth, is used to denote the orthogonal complement
of , that is, is any full column rank matrix satis-
fying . Since is not uniquely defined, implicit
in any statement involving is that the statement holds for
any fixed choice of .
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Take an arbitrary matrix satisfying
, and consider a perturbation matrix . For cer-

tain , the range space of is the same as the range space
of (written range range ), and in this case,

. It is therefore not necessary to consider all
search directions when trying to minimize .

For fixed and , a perturbation uniquely
decomposes as , where
and . Since range range ,
it suffices to consider only search directions . It
is necessary to consider these directions because range

range implies . Since has
elements, minimizing is an -dimen-

sional problem.
The above suggests the following iterative minimization

scheme.

Algorithm 4
Let be a function that only depends
on the range of . A locally minimizing

, subject to , can be found as
follows.
1) Choose a starting position satis-
fying .
2) Choose such that .
Use the local parameterization from

into defined by

(9)

to form the local cost function

(10)

3) By applying a standard optimization
technique (such as steepest descent or
Newton’s method) to at the point

, compute a descent step .
4) Set to any matrix such that
range range and .
(Gram–Schmidt orthogonalization or the QR
algorithm [12] can be used to compute such
an .)
5. Repeat steps 2–4 until convergence.

The descent step typically is a function of the first and
second derivatives of . The following proposition gives
formulae for the first and second differentials of (10). (For the
definition of differentials, see [18]. See also Example 7 in Sec-
tion III-B.)

Proposition 5: Fix and , and define as in (10). If
and are the first and second differentials

of about the point , then the first and second differentials of
about are given by

(11)

(12)

Remark: A consequence of Proposition 5 is that will
never appear on its own but always in the form in
Algorithm 4. This fact can be exploited for a more efficient
implementation (cf., [8]) but is not done here for clarity of
presentation and because computing the derivatives of
in (5) and not computing is the most complex computation
per iteration.

B. Discussion

This section first states a general framework for deriving op-
timization on manifold algorithms and then shows that the Rie-
mannian framework in [8] is a special case of this more general
framework. This general framework is used to explain the simi-
larities and differences between Algorithm 4 and the algorithms
in [8]. Readers only interested in the low-rank approximation
problem are advised to skip this section.

Minimizing a function whose value only depends on
the range of can be posed as an optimization problem on a
Grassmann manifold [8]. There is no unique way of general-
izing Newton’s method in Euclidean space to a Newton method
on a manifold. One way is to continue to use Newton’s formula
by treating the first and second derivatives in Newton’s formula
as the gradient and Hessian of the cost function on the mani-
fold; this necessitates endowing the manifold with a Riemannian
structure and is the approach taken in [8]. Another way is to use
the manifold structure to form a local cost function at each itera-
tion and apply Newton’s method to this local cost function; this
is the approach taken here and is discussed in detail below. Yet
another way is to generalize the property that a Newton method
approximates the cost function by a quadratic function at each
iteration and then moves to the minimum of this quadratic ap-
proximation; this generalization is different from the above two
generalizations and is a topic for future research.

The general framework (but not the only possible framework)
proposed here for minimizing a functionon an dimensional
manifold is the following. (For this section only, the symbols

and have a new meaning.) For every pointon the manifold
, choose a particular local parameterization3

centred on , that is, is a diffeomorphism, and .
Different choices of local parameterizations lead to different op-
timization algorithms in general. Given the current iterate,
the next iterate is obtained as follows. Define the local
cost function that maps to . Apply to

a single iteration of an ordinary optimization algorithm (such
as Newton’s method in Euclidean space) at the origin (recall

) to obtain a such that . Finally, set
.

For brevity, any algorithm which can be written in the above
form (with a Newton method used to find) is called atrue
Newton method. Clearly, Algorithm 4 (with Step 3 a Newton
step) is a true Newton method.

An interesting and nontrivial observation is that the Newton
algorithm in [8] is also a true Newton method. Specifically,
the Newton algorithm in [8] is obtained from Algorithm 4 by

3In more general cases, the domain of� can be chosen to be an open subset
of rather than the whole of .
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making Step 3 a Newton step and by replacing the local param-
eterization (9) with the alternative local parameterization

(13)

where , , and
are obtained from the compact SVD

of (that is, , and is diagonal).
A proof of this follows from the facts stated in the proof of
Proposition 6.

Under the local parameterization (13), the local cost function
(10) becomes

(14)
Before arguing that Algorithm 4 is just as valid an algorithm as
those in [8], the derivatives of (14) are calculated.

Proposition 6: Let be a cost function such that
if range range and

. Choose and such that
and define , as in (14). If

and are the first and second differentials of
about the point , then the first and second differentials of

about are given by

(15)

(16)

The following example clarifies the notation in Proposition 6.
Example 7: The first and second differentials of will

be computed when is as defined in (3) and .
Since Proposition 6 assumes and, furthermore, only
requires to hold for orthogonal matrices
and not for invertible matrices , (8) can be used instead of
(6). Thus, define tr . Its first differential
about is tr . Its second differen-
tial is tr . Applying Proposi-
tion 6 shows that the first and second differentials of (14) about

are

tr (17)

tr

tr (18)

tr

(19)

Theorem 8 proves that the first and second derivatives of (10)
and (14) about are the same.

Theorem 8: Let be a cost function such that
if range range and

have full column rank. Choose and such that
. Then, the first and second differ-

entials about of defined in (10) are identical to
the first and second differentials about of defined
in (14).

Theorem 8 shows that the step will be the same for both
Algorithm 4, with Step 3 a Newton step and the Newton algo-
rithm in [8]. The only difference between the two algorithms

is that Algorithm 4 moves along the straight line
rather than along the geodesic , where

. Therefore, it is possible to derive Algo-
rithm 4 by starting with the algorithm in [8] and approximating
geodesics by straight lines and moreover; this makes Algorithm
4 appear to be a “flat space approximation” of the algorithms in
[8].

However, the algorithms in [8] can equally well be thought
of as approximations of Algorithm 4; replace the straight line
parameterization (10) by the geodesic approximation (14). The
key point though is that thinking of either algorithm as an
approximation of the other is misleading because the term
“approximation” has the connotation of inferiority, yet both
algorithms are true Newton methods and neither can claim
superiority in general; for some cost functions, the algorithms in
[8] may converge more quickly,4 whereas for others, Algorithm
4 may be faster. The following simplified example in Euclidean
space is used to explain this phenomenon.

Consider the two cost functions
and . Newton’s method
applied to finds the exact solution after a single iteration.
However, it requires an infinite number of iterations to converge
to the exact solution if it is applied to . This is because
the standard Newton method assumes that the cost function is
approximately quadratic in Cartesian coordinates. Conversely, a
Newton method in polar coordinates converges in one iteration
when applied to . Clearly, the Newton algorithm in Cartesian
coordinates and the Newton algorithm in polar coordinates
are equally valid Newton algorithms, and neither can claim
superiority.

The difference between Algorithm 4 and the algorithms in [8]
is analogous to the above example; they merely use different co-
ordinate systems (cf., (10) and (14)). Which algorithm is better
depends on the particular cost function to minimize. (Roughly
speaking, for a given cost function, if the local cost func-
tion (10) centred at the minimum of more closely resembles
a quadratic function than (14) does, then (10) should be used
instead of (14).)

Last, to refute any claim that the algorithms in [8] are superior
because they correctly exploit the geometry of the Grassmann
manifold, it is emphasised that the “geometry” in [8] is anartifi-
cial geometry. In the original constrained optimization problem,
only the constraint set is given. Making

into a manifold is already adding an artificial structure (a
topology and an atlas), yet there is a clear choice here; making

a Stiefel or Grassmann manifold means that ifis smooth as
a function in Euclidean space, then it remains smooth as a func-
tion on the Stiefel or Grassmann manifold.However, if nothing
else is known about, then there is no compelling reason to go
further and endow the constraint set with a metric, making
it a Riemannian manifold.In other words, using the artificial
Riemannian structure is conceptually no better or no worse than
using the artificial local parameterization (10).

4Note that the asymptotic rate of convergence will be the same for
both algorithms (e.g., quadratic for Newton methods) but the constant of
proportionality will in general be different; one algorithm may require twice
as many iterations as the other to achieve the same level of accuracy,
for instance.
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Remark: Note that (10) is a canonical parameterization of
the Grassmann manifold known as homogeneous coordinates
in the literature; if the cost function is not specified in advance,
then an arbitrary choice must be made, and the choice (10) is a
natural one, as is (14).

IV. FIRST-ORDER DESCENTMETHODS

This section presents algorithms for solving the weighted
low-rank approximation problem (1). The classical alternating
projection algorithm is derived in Section IV-A, whereas novel
steepest descent algorithms are proposed in Section IV-B. It
is important to note that these steepest descent algorithms are
not standard descent algorithms; the cost function changes at
each iteration (see Algorithm 4). The performance of these
algorithms is discussed in Section VI.

The computational complexity of each algorithm is calcu-
lated for an arbitrary weighting matrix, a diagonal weighting
matrix, and the identity weighting matrix (unweighted case). It
is expected that in many applications the weighting matrix
will be diagonal. Indeed, taking to be diagonal corresponds
to considering the weighted norm in [16].

A. Alternating Projections

An alternating projection algorithm was proposed in [16] for
finding the weighted low-rank approximation of a matrix. Since
[16] used a different5 (and less general) weighting function,
their notation was somewhat cumbersome. Proposition 9 derives
a compact form of the alternating projection algorithm.

Proposition 9: Let be an arbitrary matrix. Then
for a fixed , the which minimizes is
given by

vec vec
(20)

Similarly, for a fixed , the , which minimizes
is given by

vec vec
(21)

Based on Proposition 9, the alternating projection algorithm
is as follows. Initialize randomly. Use (20) to compute.
Use (21) to compute a new. Repeat until convergence. The
(locally) best rank approximation of is then .

When , (20) and (21) reduce to
and , respectively.

Complexity: One iteration of the alternating projection algo-
rithm requires flops. If is diagonal, only

flops are required. (These flop counts are obtained
by exploiting the block structure introduced by the Kronecker
product.) If , there are flops per iteration.

B. Steepest Descent

This section first derives an expression for the steepest de-
scent direction of the local cost function in Algorithm 4.

5The weighted norm used in [16] takes the formkX � Rk =

W (X � R) for some weighting matrixW . This is equivalent to
restrictingQ in (1) to be diagonal.

It then uses this expression to derive steepest descent algorithms
for solving the low-rank approximation problem (1).

Theorem 10 (Steepest Descent):Define as in (5) and,
having fixed and , define as
in (10). Then, the gradient of about is

grad (22)

where and are the unique matrices
that satisfy

vec vec

vec vec (23)

If is instead defined as in (14), then under the extra con-
dition that , the gradient of about

is also given by (22).
Note that if and , then grad

, agreeing with (17).
Complexity: Computing grad requires

flops. If is diagonal, this reduces to
flops. If and is pre-

computed, then flops are required. If , then the
flop counts for these three cases are , , and

, respectively.
Remark: Evaluating the cost function requires

flops for arbitrary . It
requires flops if is diagonal. If ,
it will be seen later that minimizing is equivalent to
maximizing , and the latter requires only flops
to be evaluated, provided is precomputed.

Theorem 10 combined with Algorithm 4 leads to four dif-
ferent steepest descent algorithms, depending on which local
parameterization [(9) or (13)] is used and on whether or not

. The two algorithms based on (9) are presented below.
Their counterparts, based on (13), are presented in Appendix B.
They all use Armijo’s step-size rule [22, Sec. 1.2.3], and they
are all tailored for the case when .

Notation: The norm appearing in the algorithms is the
Frobenius norm. The “Q-Factor” operator qf is defined to
be the orthogonal part qf of the decomposition

.

Algorithm 11 (Steepest Descent Along
Straight Lines)
1) Choose and such
that . Set step size
.

2) Evaluate vec
vec .

3) Compute descent direction
, where and are defined in (23).

4) Evaluate . If
, then set , and re-

peat Step 4.
5) Evaluate . If

, then set , and
repeat Step 5.
6) Set . Renormalize by
setting qf . Go to Step 2.
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Complexity: Each iteration of Algorithm 11 requires
flops in general and

flops if is diagonal. If ,
then these flop counts approach and ,
respectively.

Remarks:

1) In any given iteration of Algorithm 11, if Step 4 is repeated
at least once, then the test in step 5 becomes redundant. This
holds for all the steepest descent algorithms.

2) In practice, the algorithms must include a test for conver-
gence. One possibility is to test to see if the magnitude of
the gradient is sufficiently close to zero [22]. Once the
algorithm is terminated, the low-rank approximationis
found by evaluating (4).

3) Renormalizing in Step 6 serves the purpose of com-
puting an orthogonal to .

The disadvantage of Algorithm 11 is its computational com-
plexity; many flops are required to evaluate the cost function.
The following algorithm overcomes this in the unweighted case
by optimizing over rather than over . Specifically,
if tr , then

tr

tr

tr (24)

Thus, performing steepest descent on is identical to
performing steepest ascent on . When , it
is computationally more efficient to maximize rather
than minimize .

Algorithm 12 (Steepest Descent along
Straight Lines, Unweighted Case)
1) Choose such that .
Set step size . Precompute .
2) Evaluate tr .
3) Compute ascent direction

.
4) Evaluate , where
tr . If

, then set , and repeat Step 4.
5) Evaluate , where
tr . If

, then set , and repeat
Step 5.

6) Set . Renormalize . Go to
Step 2.

Complexity: Each iteration of Algorithm 12 requires
flops.

Remarks:

1) Algorithm 11 with and Algorithm 12 are equivalent
in that they both produce the same sequence of points.
However, Algorithm 12 requires fewer flops per iteration.

2) It is not necessary to renormalize in Step 6 at every
iteration. However, can become ill-conditioned if it is
not renormalized regularly.

3) The low-rank approximation is given by
(provided ).

4) If or , then the optimal step size rule can
be used instead of Armijo’s rule [19].

In Algorithm 12, modest computational savings can be made
by first reducing to tridiagonal form. Specifically, if

is an orthonormal matrix such that is tridi-
agonal and if maximizes tr , then
maximizes , and thus, the best rankapproximation of

is .

V. SECOND-ORDER DESCENTMETHODS

This section presents quadratically (and, in the unweighted
case, cubically) convergent algorithms for solving the low-rank
approximation problem (1). At each iteration, the algorithms
perform a Newton step in local coordinates.

The following theorem derives an expression for the Hessian
of in Algorithm 4. Its statement requires the commutation
matrix [18] , which is the unique matrix
for which

vec vec (25)

holds for all .
Theorem 13 (Quadratic Approximation):Define as in

(5) and, having fixed and , define
as in (10). Then, the second-order Taylor series approxi-

mation of about is

vec grad vec vec vec
(26)

where grad is defined in (22), and is
the symmetric matrix in (27), shown at the bottom of the page.

The commutation matrix in (27) is defined in (25).

(27)
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If is instead defined as in (14), then under the extra
condition that , the second-order Taylor
series approximation of about is also given by
(26).

If and , then the Hessian (27)
simplifies to

(28)
Complexity: Computing the Hessian (27) requires

flops in general and
flops if is diagonal. If , then

flops are required if is precomputed. If ,
then these flop counts are , , and ,
respectively.

It is now straightforward to derive the Newton step
for which for all . Since

vec grad vec vec ,
the Newton step is obtained by solving the linear equation

vec vec grad (29)

It requires flops to solve (29), which is fewer
than it takes to compute the Hessian (27) in the weighted case.

A Newton step is not guaranteed to decrease the cost function.
It is standard [22, Sec. 1.4.4] to include a test to ensure that
the Newton step significantly decreases the cost function. If the
test fails, an alternative descent step, such as one iteration of
Algorithm 11, should be used.

Algorithm 14 (Newton Step)
1) Choose and such
that .
2) Compute the negative of the gradient

, where and are de-
fined in (23).
3) Compute the Hessian as defined in
(27).
4) Solve the linear equation vec
vec for the matrix .
5) Evaluate vec

vec .
6) Evaluate . If tr or

tr , then abort
Newton step.
7) Set . Renormalize by
setting qf . Go to Step 2.

Complexity: One iteration of Algorithm 14 requires
flops in general and

flops if is diagonal. If , then these
flop counts are and , respectively.

Remarks:

1) It is straightforward to modify Algorithm 14 to move along
geodesics rather than straight lines; refer to Algorithm 16 to
see how. Such a modification does not alter the order of the
computational complexity of the algorithm. The same goes
for Algorithm 15 as well.

2) The constant 1/4 in Step 6 can be replaced by any constant
strictly between 0 and 1/2; see [22].

3) Analogous to the algorithms in Section IV-B, Algorithms
14 and 15 are deemed to have converged (and hence should
be terminated) if is sufficiently small.

In the unweighted case, (29) can be written in the form

(30)

Thus, the step size is found by solving the Sylvester equation
(30); efficient algorithms to do so appear in [2] and [11]. They
require flops.

Algorithm 15 (Newton Step, Unweighted
Case)
1) Choose and such
that . Precompute .
2) Compute one half times the negative of
the gradient .
3) Compute , ,
and solve the Sylvester equation

for .
4) Evaluate tr .
5) Evaluate , where
tr . If tr or

tr ; then, abort
Newton step.
6) Set . Renormalize by
setting qf . Go to Step 2.

Complexity: One iteration of Algorithm 15 requires
flops.

Remarks:

1) Algorithm 15 is equivalent to Algorithm 14 with
in that they both produce the same sequence of points

.
2) In practice, in Step 5 of Algo-

rithm 15 should be computed by first setting
, renormalizing , and then

computing tr . Moreover, the value
should be saved for subsequent use in Step

3.
3) Since it is faster to compute qf rather than qf , a

small computational saving will be made by maximizing
rather than minimizing ; refer to Algorithm

12 to see how.
4) Dedicated algorithms for minimizing in the un-

weighted case appear in [1], [5]. They have similar nu-
merical behavior to Algorithm 15 but require fewer flops
per iteration.

The rate of convergence of Algorithm 15 is cubic because,
about the minimum of , the local cost function de-
fined in either (10) or (14) is symmetrical ( for
all ) if . This means that the Taylor series expansion
of has no cubic term, and thus, the approximation (26) is
correct up to degree three [8].
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Fig. 1. Graphs illustrating the poor performance of the alternating projection
method yet good performance of the steepest descent method when there is very
little separation in the singular values of the data matrix.

VI. NUMERICAL STUDY

This section compares the performance of the following al-
gorithms in a limited number of situations.

AP: The Alternating Projection algorithm described in
Section IV-A.
SD: The Steepest Descent algorithm (Algorithm 11) and,
in the unweighted case, its equivalent version (Algorithm
12).
SD (geod): The Steepest Descent along Geodesics al-
gorithm (Algorithm 16) and, in the unweighted case, its
equivalent version (Algorithm 17).
NS:The Newton Step algorithm (Algorithm 14) and, in the
unweighted case, its equivalent version (Algorithm 15).
NS (geod):The Newton Step algorithm (either Algorithm
14 or Algorithm 15) appropriately modified to move along
geodesics rather than straight lines.

Figs. 1–6 show the performance of the various algorithms in
six different situations. Each figure contains two graphs, corre-
sponding to initializing the algorithms at two different randomly
chosen points. Within each graph, all algorithms were initialized
identically. The error, which is defined as the current cost
(defined in (3)) minus the minimum cost, is graphed against the
number of iterations taken by each algorithm. Only Fig. 4 used a
weighting matrix; the other five figures studied the unweighted
case [ in (1)].

In Fig. 1, the data matrix was chosen to be
diag . Notice that the

eigenvalues of (equivalently, the singular values of )
are closely spaced. Each algorithm was required to find the
best rank approximation of . As Fig. 1 shows, the
AP algorithm performs extremely poorly. The SD method,
however, exhibits rapid convergence. In fact, the SD method
converges more quickly than it does in Fig. 2, showing that an
ill-conditioned problem for the AP algorithm is a well-condi-
tioned problem for the SD algorithm. Fig. 1 also shows that
only two iterations of the NS algorithm (run after the second
iteration of the SD algorithm) are required for convergence.

Fig. 2. Graphs illustrating comparable performance of the steepest descent
method and alternating projection method when the singular values of the data
matrix are well separated.

Fig. 3. Graphs illustrating better performance of the steepest descent method
over the alternating projection method on a randomly chosen matrix. In addition,
notice that the Newton method will converge to the closest critical point rather
than continue downhill.

In Fig. 2, the data matrix diag was
chosen to have well-separated singular values. Each algorithm
sought to find the best rank approximation. Fig. 2 shows
that both AP and SD perform comparably in this situation. The
NS algorithm exhibits cubic convergence. However, since the
NS algorithm converges to the nearest critical point, it is just as
likely to attempt to move uphill rather than downhill. (The test
in Step 6 of Algorithm 14 will detect this, however.) It is thus
necessary to start the NS algorithm after the fourth iteration of
SD in the graph on the left of Fig. 2 and after the sixth iteration
of SD in the graph on the right.

In Fig. 3, the data matrix was a randomly chosen 120100
matrix. The algorithms attempted to find the best rank
approximation. In both cases, the NS algorithm was run after
ten iterations of the SD algorithm. In the first case, the NS con-
verged to a local minimum, whereas in the second case, it con-
verged to the global minimum. It is interesting to see how the
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Fig. 4. Graphs illustrating more robust performance of the steepest descent
method over the alternating projection method on a randomly chosen data and
weighting matrix.

local minimum affects the performance of the AP and SD algo-
rithms. The SD algorithm escapes from the local minimum on
its 23rd iteration. The AP algorithm is still significantly ham-
pered by the local minimum after 39 iterations.

In Fig. 4, the data matrix was a randomly chosen 1010
matrix. The weighting matrix was chosen at random with sin-
gular values between 0.2857 and 1. Each algorithm was required
to find the best rank approximation of . For the NS al-
gorithm to converge, it was necessary to run it after the 13th
iteration of SD in the left-hand graph and after the fifth itera-
tion of SD in the right-hand graph. The left-hand graph shows
the AP algorithm converging to a local minimum, whereas the
SD algorithm escapes the local minimum. The right-hand graph
shows the AP algorithm performing slightly better than the SD
algorithm.

The final two figures compare the straight line algorithms
with the geodesic algorithms. Fig. 5 uses the same data as in
Fig. 1, and Fig. 6 uses the same data as in Fig. 2. Figs. 5 and 6
show that the straight line and geodesic SD algorithms perform
comparably, whereas the straight line NS algorithm is superior
to the geodesic NS algorithm.

One important factor that the above results have neglected
to show is the number of flops required per iteration. The AP
algorithm generally requires the least number of flops per itera-
tion. However, as Fig. 1 illustrates, the AP algorithm can suffer
from exceptionally slow convergence. Moreover, the SD algo-
rithm empirically appears to be more robust than the AP algo-
rithm; Figs. 3 and 4 show the SD algorithm escaping from local
minima. In certain circumstances, the quadratic (or, in the un-
weighted case, cubic) convergence of the NS algorithm more
than compensates for its computational complexity.

A small number of simulations were done to compare the
number of flops (as calculated by Matlab’s flops command) re-
quired for the straight line and geodesic versions of SD and NS
algorithms. It was found that SD and SD (geod) perform com-
parably; sometimes SD requires fewer flops per iteration, and
other times, SD (geod) does. (The step selection rule in the SD

Fig. 5. Graphs illustrating better performance of straight line Newton method
over geodesic Newton method and comparable performance of straight line
steepest descent and geodesic steepest descent.

Fig. 6. Graphs illustrating better performance of straight line Newton method
over geodesic Newton method and comparable performance of straight line
steepest descent and geodesic steepest descent.

algorithms makes the actual number of flops per iteration un-
predictable in advance.) It was also found that the NS algorithm
requires fewer flops per iteration than NS (geod) does.

VII. CONCLUSION

This paper studied the weighted low-rank approximation
problem (1). It generalized the EVD method for the unweighted
case to the weighted case by showing that the best low-rank
approximation can be found by first computing the minimizing
subspace of a certain cost function (Theorem 1). This novel
approach led to the derivation of closed-form solutions of
(1) for certain weighting matrices (Theorem 3). A general
framework for numerically finding the minimizing subspace
of a cost function was given in Section III. The advantage of
this framework is that it considerably reduces the dimension
of the optimization problem. This framework was then applied
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in Sections IV and V to derive modified steepest descent and
Newton algorithms for the low-rank approximation problem.
These algorithms are not standard optimization algorithms
because the cost function changes at each iteration. The
numerical study in Section VI demonstrated the advantages
of these algorithms over the traditional alternating projection
algorithm. For practical applications of weighted low-rank
approximations, see [16] and [20].

APPENDIX A
PROOFS

Equalities (31)–(33), shown at the bottom of the page, are
used in the following proofs.

A. Proof of Theorem 1

The method of Lagrange multipliers, as elucidated in [18], is
applied to (3). Define

vec vec

Minimizing subject to results in the Lagrangian

tr

where is the Lagrange multiplier. Its differential
is

vec vec vec vec

tr

vec vec tr

vec vec vec vec

where the last line is obtained by using (31). This shows that
for all if and only if

vec vec

Writing both this condition and the condition in
matrix form yields

vec
vec

vec
(34)

where use has been made of (32). Using the fact that

where denotes unimportant elements, (34) is readily solved
for vec , yielding (4). Substituting this solution into the
cost function immediately gives (5). Finally, the reason

for any invertible matrix is that if
and only if , that is, the constraint set
in (3) equals the constraint set .

B. Proof of Corollary 2

If , then (5) becomes

vec

vec

vec

vec

vec vec

tr

where the second last line is obtained by using (32) and the last
line by (31). Equation (7) is obtained similarly.

C. Proof of Theorem 3

Substituting into (5) yields

vec vec

tr

tr

where , and . Since is a
generalized Rayleigh quotient in, cf., (6), its minimum occurs
when the columns of span the same space as do the
smallest eigenvectors of . The solution of (1) is found by

vec vec tr

provided and have the same dimensions (31)

vec vec

where is the number of rows of (32)

vec

where is the number of columns of

vec vec (33)
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substituting this value of into (4). Substituting
into (4) yields

If the columns of span the same space as the
smallest eigenvectors of and if is the
SVD of , then . Thus,

.

D. Proof of Proposition 5

Since is affine in , (11) clearly holds. Similarly,
(12) follows from the chain rule for second differentials [18, Ch.
6, Th. 11].

E. Proof of Proposition 6

Under the Levi-Civita connection, the gradient and Hessian of
a function on the Grassmann manifold are equivalent to the first
and second derivatives of the function expressed in normal coor-
dinates around the point at which the derivatives are taken. Since

is the exponential map (that is, it traces
out geodesics) [8, Th. 2.3], in (14) is precisely ex-
pressed in normal coordinates. Thus, the first and second deriva-
tives (and hence the differentials) of are readily obtained
from the formulae for the gradient and Hessian of a function on
a Grassmann manifold, as given in [8, Sec. 2.5.3 and 2.5.4].

F. Proof of Theorem 8

Comparing (15) and (16) with (11) and (15) shows that they
will be the same if for all . Under the
hypothesis of the theorem, for

sufficiently small because range
range provided ( ) is invertible. Therefore,

for all , implying for all as well.

G. Proof of Proposition 9

If either or is fixed, the cost function is
quadratic. By differentiating it and setting the result to zero, the
proposition readily follows.

H. Proof of Theorem 10

The gradient grad of is defined to be the unique matrix
grad for which tr grad . It
is thus necessary to first compute . From Proposition 5,

. The differential is now determined.
For convenience, define the symmetric bilinear function

(35)

Define and . Then,
(5) becomes vec vec . Since

vec vec

vec vec

vec vec

vec vec

where is defined in (23). Defining as in (23) shows that
can be compactly written as

tr vec vec

tr (36)

Therefore, tr ,
verifying (22).

I. Proof of Theorem 13

Taylor’s theorem implies that is the unique symmetric ma-
trix, which satisfies

vec vec (37)

In order to first calculate , define as in (35), and note that
. Differentiating (36) yields

vec vec

vec vec

Differentiating (23) gives

vec vec

vec

vec vec

vec

Thus

vec vec

vec

vec

vec

vec

After replacing with (see Proposition 5), it follows
that

This is equivalent to (27).
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APPENDIX B
GEODESIC-BASED ALGORITHMS

This section presents the geodesic based counterparts to the
algorithms in Section IV-B.

Algorithm 16 (Steepest Descent Along
Geodesics)
1) Choose and such
that . Set Step size
.

2) Evaluate
vec vec .
3) Compute descent direction

, where and are defined in (23).
4 Determine the compact SVD of ,
that is, compute , , and so that

, is square and diagonal,
and .
5 Evaluate . If

then set
, and repeat Step 5.

6) Evaluate . If
,

then set , and repeat Step 6.
7) Set . Compute
by setting qf . Go to Step 2.

Complexity: Each iteration of Algorithm 16 requires
flops in general and

flops if is diagonal. If ,
then these flop counts approach and ,
respectively.

Algorithm 17 (Steepest Descent Along
Geodesics, Unweighted Case)
1) Choose such that .
Set Step Size . Precompute .
2) Evaluate tr .
3) Compute ascent direction

.
4) Determine the compact SVD of , that
is, compute , , and so that

, is square and diagonal, and
.

5) Evaluate , where
tr . If

, then set ,
and repeat Step 5.
6 ) Evaluate , where

tr . If
, then set

, and repeat Step 6.
7) Set . Renor-
malize . Go to Step 2.

Complexity: Each iteration of Algorithm 17 requires
flops.

Remarks:

1) Algorithm 16 with and Algorithm 17 are equivalent
in that they both produce the same sequence of points,
although Algorithm 17 requires fewer flops per iteration.

2) If is not renormalized in the last step of Algorithm 17,
round off error can cause the Armijo rule in Step 6 to repeat
indefinitely.
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