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Coordination Failure as a Source of Congestion in
Information Networks
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Abstract—Coordination failure, or agents’ uncertainty about
the action of other agents, may be an important source of conges-
tion in large decentralized systems. TheEl Farol problem provides
a simple paradigm for congestion and coordination problems that
may arise with over utilization of the Internet. This paper reviews
the El Farol problem and surveys previous approaches, which typ-
ically involve complex deterministic learning algorithms that ex-
hibit chaotic-like trajectories. This paper recasts the problem in a
stochastic framework and derives a simple adaptive strategy that
has intriguing optimization properties; a large collection of decen-
tralized decision makers, each acting in their own best interests
and with limited knowledge, converge to a solution that (optimally)
solves a complex congestion and social coordination problem. A
variation in which agents are allowed access to full information is
not nearly as successful. The algorithm, which can be viewed as a
kind of habit formation, is analyzed using a weak convergence ap-
proach, and simulations illustrate the major results.

Index Terms—Adaptation, decentralized networks, El Farol,
habit formation, learning, minority game, weak convergence.

I. INTRODUCTION

STANDARD models of congested public resources focus on
the costs that an individual user imposes on other potential

users. For example, each person who travels on a congested
highway or visits a popular web site increases the waiting time
of subsequent users. Congestion arises because individuals do
not consider the effects of their actions on other users. Explicitly
charging users for these unobserved costs can eliminate the
socially inefficient congestion of a scarce, shared resource. How-
ever, this approach often utilizes equilibrium solutions in which
all agents are fully informed about the structure of the problem
and the behavior of other agents. Consequently, the relationship
between agents’ behavior and the congestion they experience is
easily discerned. This reliance on information-intensive equilib-
rium solutions limits the usefulness of these models in solving
resource allocation problems in large-scale systems such as the
Internet. In contrast, this paper focuses on imperfect information
and coordination failure across agents as a source of congestion
in largedecentralizedsystems.Weutilizeacoordinationproblem
orsimplecongestiongame, framedbyArthur1 [3], asasimplified
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1The market entry game analyzed by [18] and [23] has a similar structure as
does the “minority game” analyzed by Challet and Zhang [7] and Savitet al.[20].

model simplified model of a large class of congestion and co-
ordination problems that arise in modern engineering and eco-
nomic systems.El Farol is a bar in Santa Fe, NM.2 The bar is
popular but becomes overcrowded when more than 60 people
attend on any given evening. Everyone enjoys themselves when
fewer than 60 people go, but no one has a good time when the
bar is overcrowded.

How should an agent decide whether or not to go out to the bar,
given that the actions of other agents are unknown? The problem
set up emphasizes the difficulty of coordinating the actions
of independent agents without a centralized mechanism. The
analogybetweentheElFarolproblemanddecentralizedresource
allocation is noted by Greenwaldet al. [10], as well as in our
prevous work [4], [22]. Glance and Huberman [9] and Huberman
and Lukose [13] also consider the dynamics of congestion on
the Internet when externalities similar to those found with public
goods prevail. Unlike the standard public good framework, in
theEl Farol scenario, fully informed optimizing agents will not
increase consumption of a publicly available resource until it
experiences an inefficient level of congestion: If agents could
predict the behavior ofotheragentsperfectly, the barwouldnever
be crowded, and all patrons would have a good time.3 The only
source of congestion, at least in a deterministic framework, is the
inability of agents to coordinate their actions.

Arthur originally posed theEl Farol problem to illustrate the
aggregate dynamics of a system composed of bounded rational
agents who rely on inductive learning. Agents attempt to predict
the aggregate behavior of other agents, which simultaneously
depends on all agents’ predictions. Consequently, the interaction
between individual learning strategies and the environment
that agents face plays a key role in determining the dynamics of
the system. UsingEl Farol to model the Internet environment
emphasizes that congestion can arise from coordination failure
across agents, as well as from absolute constraints on bandwidth.
Furthermore, in contrast to many game theoretic treatments of
learning and coordination, the level of congestion atEl Farol
depends on the actions of a relatively large number of individual
agents. These features make it an especially useful tool for
analyzing information technology systems characterized by
decentralized decision making and rapid endogenous changes in
the operating environment.

A. Overview

In our previous treatments [4], [22], we proposed a determin-
istic adaptive algorithm based on habit formation that enabled

2Arthur’s El Farol scenario is also known as the Santa Fe bar problem.
3The stochastic or mixed-strategy framework may suffer from socially ineffi-

cient congestion as discussed below.
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agents to solve theEl Farol coordination problem in a decentral-
ized environment while avoiding the seemingly random fluctua-
tions in aggregate attendance that Arthur’s simulations demon-
strated. Here, we consider theEl Farol problem in a stochastic
setting. We analyze a stochastic adaptive algorithm analogous to
the one introduced in [4] and [22] and consider the dynamic and
equilibrium characteristics of the system in relation to the mixed
and pure strategy equilibria of the corresponding game. We em-
ploy some novel convergence results [5] that approximate the
dynamics of the (stochastic) system using (deterministic) ordi-
nary differential equations (ODEs) and allow a concrete descrip-
tion of its convergence and stability properties. In addition, we
demonstrate that the information structure plays a crucial role
in determining the behavior of the system.

B. How do Agents Decide to Attend El Farol?

In Arthur’s simulations, agents attempt to predict how many
others will attendEl Farol each time using a simple kind of de-
terministic inductive reasoning. If they predict attendance will
be less than 60, then they go to the bar; if they predict attendance
will be greater than 60, then they stay at home. Each agent uses
a number of “rules of thumb” such as simple averages, moving
averages, and linear or nonlinear filters to formulate predictions
and then acts on the prediction that was correct most frequently
in the recent past. When Arthur simulated a bar-going society of
100 inductively rational agents, he found that the population at
the bar tended to hover near 60 though attendance varied greatly,
often exceeding 70 or dropping below 50. The time series of ag-
gregate attendance appeared random, despite the deterministic
rules of the underlying agents.

Here, we consider theEl Farol problem in the stochastic
setting. We briefly discuss the characteristics of pure and mixed
strategy equilibria of the corresponding congestion game and
then frame our adaptive learning rule in terms of a mixed
strategy profile. There are several advantages to considering
the stochastic version of the adaptive learning rule: a clearer
problem statement, a simpler algorithm that is amenable
to detailed analysis, and more general results. The analysis
demonstrates that the type and characteristics of the equilibria
actually observed depends crucially on the nature of the infor-
mation available to agents. In particular, we show that limiting
the information available to agents leads them to successfully
coordinate on a Pareto efficient equilibrium while providing
more information leads to an inefficient outcome. Our results
emphasize the critical role that information exchange plays in
alleviating congestion that arise from coordination failure.

A somewhat unusual feature of theEl Farol problem
statement is the discontinuous transition from uncrowded to
crowded that occurs when the 61st patron arrives. While this
may seem like an unrealistic assumption for a bar, discontinu-
ities and extreme nonlinearities are prevalent in information
technology applications. For example, when a network server
divides resources equally among users, the performance of
the entire system can dramatically decrease with the addition
of a single user. Many routers handling data packets have
fixed queue lengths: Additional packets are dropped. When
data from two sources arrive simultaneously, exceeding queue
capacity, packets from both users may be dropped, leading to

long delays for both messages. The quality of audio and video
data streams degrades rapidly when packets are dropped. In
general, systems that experience congestion at a bottleneck will
respond nonlinearly when traffic increases even slightly above
the capacity of the bottleneck. The preference structure of the
El Farol problem mimics the discontinuous and nonlinear re-
sponses to increases in traffic observed in information systems.

In addition, the discontinuity in agents’ response to atten-
dance levels helps distinguish between congestion arising from
overuse of a public good and congestion arising from coordi-
nation failure. When the value of attendance declines slowly in
response to larger turnouts, agents will continue to attend until
the value of attendance for all bar goers has been reduced to the
value of staying at home. Congestion in this case may be op-
timal for the individual but nonetheless inefficient for society:
Everyone could be made better off by a compensation scheme
that induces some agents to stay home. The discontinuous pref-
erences utilized in theEl Farol framework help minimize the
importance of individually optimal but socially inefficient con-
gestion.

C. Other Approaches to El Farol

The El Farol problem has received a fair amount of atten-
tion from computer scientists and physicists as well as from
researchers in the area of complex systems. Casti uses theEl
Farol problem to frame his definition of a complex adaptive
system as one with “a medium-sized number of intelligent,
adaptive agents interacting on the basis of local information”
[6, p. 10]. The dynamics of Arthur’s system are entirely
deterministic (only the initial values of agents parameters are
chosen randomly) the resulting pattern of attendance appears
random. The uncertainty or apparent randomness in the system
is entirely endogenous, created by the interaction between the
number of agents attending the bar and the set of prediction
rules active at any given time.

Johnsonet al. [14] consider how the variance in theEl Farol
problem changes in response to the number of predictors avail-
able in the entire system and the number of predictors that each
agent selects. Zambrano [24] applies results from Bayesian
game theory to show that a system composed of Bayesian
learners will converge to the set of Nash equilibria. Greenwald
et al. [10] examine whether or not boundedly rational agents
can learn their way to a mixed strategy equilibrium. Note that
agents in their model are not able to distinguish the effects of
their own actions on aggregate attendance, which we demon-
strate is a critical factor in determining system behavior. Challet
and Zhang [7] simplify theEl Farol problem even further by
considering a “minority game” in which agents choose one
of two groups to join and receive positive payoffs when they
choose the smaller group. The information available to agents
is limited even further: They only observe which group was the
minority and not the number of agents who chose that group.

II. EL FAROLAS A GAME

TheEl Farol problem is a type of congestion game, first char-
acterized by Rosenthal [19]. In congestion games, each agent
chooses a resource to utilize. The agent’s utility depends on the



BELL et al.: COORDINATION FAILURE AS A SOURCE OF CONGESTION IN INFORMATION NETWORKS 877

number of other agents who choose to utilize the same resource.
Finding a Nash equilibrium of a congestion game is equivalent
to a constrained minimization problem.

We consider theEl Farol problem as a one-shot simultaneous
move game. Let agents have identical payoffs:is the payoff an
agent receives for attending a crowded bar, andis the payoff an
agent receives for attending an uncrowded bar. Without loss of
generality, let , which is the payoff received for staying home,
be zero. Let be the total number of agents and be the
maximum capacity of an uncrowded bar.

In a deterministic setting where agents utilize only pure (de-
terministic) strategies, a Nash equilibrium occurs when exactly
sixty agents choose to attend. There are such equilibria.
There are no symmetric pure strategy Nash equilibria. Pure
strategy Nash equilibria are Pareto efficient.

Arthur’s approach sidesteps the usual game theoretic consid-
erations by focusing on the process of prediction in an endoge-
neously evolving environment rather than on the binary choice
between the strategies of attending and staying home. The only
information available to agents is attendance in each time pe-
riod. It is often reasonable to assume that agents do not and need
not remove themselves from the aggregate statistics before re-
acting to them. However, because theEl Farol problem contains
a knife-edge response to increased attendance, the analysis of
equilibria depends crucially on how the agent accounts for his
or her own behavior.

Suppose that agents use predictive rules like those suggested
by Arthur and that attendance atEl Farol for the last ten pe-
riods has been exactly 60. How should an individual agent de-
cide whether or not to attend in this case? Common sense sug-
gests that agents who have attended the bar every period should
continue to attend every period. On the other hand, agents who
have not attended at all in the last ten periods should remain
at home because the addition of another agent will result in at-
tendance of 61. The key issue is agents’ ability to account for
their own past behavior. The oft-repeated conjecture about the
El Farol problem (that “no shared, or common, forecast can pos-
sibly be an accurate one; deductive logic fails” [6]) depends cru-
cially on the assumption that agents cannot recognize their own
attendance pattern in the aggregate.

A formal treatment of the knife edge case when attendance
exactly equals 60 would alter the predictive rules to account for
the agent’s own behavior: Agents should attend if they predict
59 or fewer agentsother than themselveswill attend and stay
home if they predict 60 or more agentsother than themselves
will attend. In this scenario, Arthur’s formulation of theEl Farol
problem has well-defined steady states in which all agents can
utilize the same successful predictive rule. The heterogeneity
in agents’ actions arises from the heterogeneity in information:
Each agent’s information set is unique because only the agent
knows whether or not they were among the bar attendees at any
point in time. When agents do not account for their own be-
havior, they must draw different conclusions from the same data
set in order to produce average attendance of 60.

Moving to a stochastic framework that allows mixed-strategy
equilibria requires explicit payoffs for the different outcomes.
Each agents’ mixed-strategy profile consists of a single param-
eter , which indicates the probability that agentattends. Let

be the total number of agents, be the total observed at-
tendance, be the observed attendance exclusive of agent,
and be the maximum capacity of an uncrowded bar.

A mixed-strategy equilibrium must satisfy the condition

(1)

or

which states that the expected return to the pure strategy of at-
tending the bar exactly equals the expected return to the pure
strategy of staying home. This must hold for all agents simul-
taneously. In addition, note that the indifference condition that
determines a mixed strategy equilibrium depends on the distri-
bution of total attendance, which, in general, depends on the
probabilities for individual agents and not just on the mean of
the entire distribution.

For a symmetric mixed strategy equilibrium, the probability
that or fewer agents attend is

(2)

When the symmetric mixed-strategy equilibrium is ,
then .

The symmetric mixed strategy Nash equilibrium is not Pareto
optimal because agents increase their probability of attending
until the expected return to attendance exactly equals that of
staying home: 0. In addition, the randomness in agents’ choice
of strategy will generate inefficient variance in attendance. Any
attendance outcome that falls short of the maximum capacity of
an uncrowded bar can be improved by increasing attendance,
and vice versa. The Pareto optimal symmetric mixed-strategy
profile4 can be calculated by

(3)

This maximizes the total expected payoff to all agents, which
also maximizes the expected return to individual agents. For
example, when and , the Pareto efficient
symmetric mixed-strategy profile is , and the expected
payoff to an individual agent is 0.48. In contrast, the sym-
metric mixed-strategy Nash equilibrium is , and the
expected payoff to an individual agent is 0. In this sense, the
El Farol problem suffers from inefficient congestion similar to
that observed in a standard public goods framework in a sto-
chastic framework: In the mixed strategy (stochastic) Nash equi-
librium, each individual agent’s probability of attendance is just
high enough that the expected return is 0.

There are no asymmetric mixed strategy equilibria. Con-
sider two agents with differing probabilities of attendance
and, without loss of generality, label them agents 1 and 2
with . The indifference condition (1) must hold for

4the mixed-strategy profile that maximizes the expected return to each agent
given the constraint that the expected return be equal for all agents.
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every agent, which implies that Pr equal
Pr . The density function for attendance
exclusive of agent 1 can be expressed in terms of the density
function for attendance exclusive of agents 1 and 2:

Pr Pr

Pr Pr

Pr

By expanding and combining sums, the cumulative distribution
that agent 1 faces can be expressed as

Pr

Pr Pr

The cumulative distribution function that agent 2 faces differs
only by the term ( ), which is replaced by ( ). Conse-
quently, the indifference condition cannot hold simultaneously
for two agents with different probabilities.

III. L EARNING RULE FOR MIXED-STRATEGIES

Arthur’s inductive learning approach requires agents to ex-
plicitly predict how many others will attend. A mixed strategy
Nash equilibrium requires knowledge of the entire distribution
of attendance. Our boundedly rational adaptive learning rule
does not rely on prediction of or inference about other agents’
behavior; rather, agents adapt their probability of attending over
time based on the history of their own experiences atEl Farol.

It is tautological that people prefer to experience good times
rather than bad, to repeat the enjoyable, and to minimize the
unpleasant. Although theEl Farol situation provides a simple
setting in which good and bad are clearly defined, it is not pos-
sible to know in advance whether a trip to the bar will be good or
bad since this depends on the actions of everyone else. Suppose
that the agent initially attendspercent of the time. Consistent
with the desire to maximize pleasure and minimize painful ex-
periences, the agent goes more often (increasesslightly) if the
bar is uncrowded but prefers to go less often (to decrease)
if the bar is crowded. Over time, the agent gathers information
about the state of the bar and “remembers” this in the form of
the parameter. This learning rule can be interpreted as a kind
of habit formation or stimulus-response and is directly analo-
gous to certain adaptive algorithms from the signal processing

literature [12]. However, the current situation is more compli-
cated since the “true” value of the unknown depends explicitly
on everyone’s behavior.

Suppose agents compete for the spaces atEl Farol.
The probability that theth agent attends is . Let be a time
(iteration) counter and be the number of agents attending
at time . Let be a characteristic parameter that defines how
much each agent changesin response to new information, and
let designate the instantaneous value ofat the time .
Let

(4)

where the are independent Bernoulli random variables
that are 1 with probability and zero otherwise. The evolu-
tion of the is then defined by (5), shown at the bottom of
the page.

The operation of the algorithm is uncomplicated. At each
time , the agent flips a biased coin, attending with probability

. When the agent attends, then the parameter is ad-
justed, increasing it proportionally to if the bar is un-
crowded and decreasing it proportionally to if the bar
is crowded. Since the represent probabilities, they must be
constrained to lie within 0 and 1. When the agent does not at-
tend, is zero, and . Note that the stepsize
does not decrease over time. The simplicity of the scheme makes
it feasible to analyze the resulting behavior, as demonstrated in
Section V.

In Arthur’s formulation of the problem, agents have access to
information about attendance at the bar even on evenings when
they do not themselves attend. This can be incorporated into
the algorithm (5), giving the update equation (6), shown at the
bottom of the page, which mimics the information structure
used by Arthur’s agents. As will become clear, this information
structure is a key element in the behavior of the algorithm. When
agents base their updates on only their own experiences as in
(5), they utilize “partial information.” In contrast, (6) utilizes
“full information” because agents base their decisions on the
full record of attendance.

A related version of the stochastic algorithm updates ac-
cording to whether the bar is crowded or not, as in (7), shown
at the bottom of the next page.

None of these updating rules rely explicitly on payoffs. The
reliance of the update rules on attendance rather than payoffs is

if
if
otherwise.

(5)

if
if
otherwise

(6)
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not a crucial feature of our learning rule. An alternative specifi-
cation of the game in which the payoff for attending is (

) and the payoff for staying home is 0 would make the first
partial information algorithm (5) depend on payoffs. A game in
which the payoffs were for attending an uncrowded bar,
for attending a crowded bar, and 0 for staying home would make
the “signed” algorithm depend on payoffs. Asymmetric payoffs
would merely entail different stepsizes for the crowded and un-
crowded outcomes. The speed of convergence of a system with
updates that depend on payoffs may depend on the magnitude
(or units of measurement) of the payoffs.

Note that when the payoff to staying home is 0, a payoff-de-
pendent updating rule as described above will correspond to par-
tial information. Some treatments of theEl Farol problem and of
related problems like the minority game [7], [20] utilize a pecu-
liar form of full information updating: Agents update according
to which strategy performed best regardless of their own ac-
tions. So when 59 agents attend, for example, all 41 agents who
remained at home assume that the strategy of attending would
have had a higher payoff. Of course, had they all actually at-
tended, the bar would have been crowded. The strategy updating
in the minority game suffers from the same illusion: All agents
who were in the majority assume that they would have been in
the minority if they had chosen the other group. These updating
schemes implicitly rely on agents’ ignorance of the fallacy of
composition: Not everyone can attend an uncrowded bar, nor
can everyone be in the minority.

IV. GENERIC BEHAVIOR OF THE ALGORITHMS

This section explores the generic behavior of the system when
each of the agents follows the strategy defined by (5).
Although details of the various simulations differ, a typical case
is illustrated in Fig. 1. The probabilities were initialized
randomly.

Perhaps the most striking aspect of these simulations is the
rapid convergence to near the optimal value of and the
associated decline in the variance of attendance. The outcome
approaches that which would be chosen with centralized con-
trol, despite the fact that each agent is autonomous and makes
the decision to go (or not to go) based on local information, that
is, on its own experiences.

Fig. 2 shows values of the probabilities over the course
of a typical simulation run. By the final iteration, the agents have
divided themselves into two groups. The probability parameter
for 60 of the agents has risen very near 1, indicating that they
attend nearly every time. The remaining 40 agents attend less
and less frequently, with their probability parameter very near
zero. This division of the population appears nowhere in the
algorithm statement; rather, it is an emergent property of the
adaptive solution to theEl Farol problem. Despite the stochastic

Fig. 1. When all agents use the “partial information” adaptive solution, the
number of attendees appears to converge rapidly and then only rarely exceeds
the criticalN = 60.

Fig. 2. Probability parameters for each of theM = 100 agents in Fig. 1 as
a function of iteration number (time). An emergent property of the adaptive
solution is that the population divides itself into “regulars” and “casuals.”

nature of agents of the adaptive learning rule, it converges to a
pure strategy Nash equilibrium.

In contrast, Fig. 3 uses the “full information” algorithm (6)
to investigate the effect of allowing the agents to update their
probabilities at every iteration, whether they have personally at-
tended the bar or not. This reflects the information structure in
Arthur’s simulations. Mean attendance is approximately 60, but
the variance does not decline over time, indicating that seats in
the bar often remain unfilled, and the bar is often overcrowded.
Note that the transient behavior in the initial periods is masked
by the long time scale. Fig. 4 should be compared with Fig. 2; the
probability parameters for these agents continue to bounce ran-
domly about some fixed value as their probabilities all increase
or decrease simultaneously in response to the same signals.

Somewhat paradoxically, agents successfully coordinate
their behavior and the system achieves a Pareto efficient
outcome only when agents have access to less information.
Several authors have noted a similar phenomena in trans-
portation routing. Mahmassani and Jayakrishnan [17] use

if
if
otherwise.

(7)
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Fig. 3. When all agents use the “full information” adaptive solution, the
number of attendees fluctuates wildly about the optimalN = 60.

Fig. 4. Probability parameters for 15 of theM = 100 agents in Fig. 3 (the full
information algorithm) as a function of iteration number (time). Others exhibit
similar behavior. In contrast to the partial information case, parameters remain
diverse.

simulations to demonstrate that when individuals pursue a
strict best-response strategy, changing their route, no matter
how small the improvement over their current choice, the
performance of the system as a whole degrades if more than
25% of drivers have access to real time information about
congestion. Arnottet al. [1], [2] show that congestion can arise
because of “concentration,” or similar responses to common
information, and that consequently, more information can lead
to increased congestion.

V. ANALYSIS OF THE ADAPTIVE SOLUTIONS

This section analyzes the steady states and convergence be-
havior of the proposed algorithms by comparing and contrasting
the different algorithm forms (5) and (6). The first subsection
describes the various possible steady states. The simulations in
Figs. 1 and 3 suggest that these are quite different; the analysis
describes these differences in a concrete way. Section V-C re-
views the relevant technical background on weak convergence
and states the theorem that will be used in Section V-D to de-
scribe the convergence and stability behavior of the algorithms
about their steady states.

One simple way to understand the asymptotic behavior of the
algorithms is to observe that each evolves on a finite state
space: a lattice with steps of size(because the updates are

always an integer times the stepsize). For algorithm
(5), the zero state is absorbing (since is guaranteed once

). Since is reachable, the algorithm can be viewed
as a finite-state Markov chain with reachable absorbing states
and, hence, must converge. In contrast, for algorithm (6),
is not an absorbing state, and no convergence (to zero) can be
expected.

A. Steady States of the Algorithms

The first step in the analysis of the dynamic behavior of the
algorithms is to determine the conditions under which the means
of the remain fixed, that is, to determine the steady states
of the averaged system.

1) Algorithm With Partial Information:Taking the expecta-
tion of both sides of (5) gives

assuming that the are not at the boundary points 0 or 1.
This expectation remains unchanged exactly when the update
portion is zero, that is, when

Using (4) and the fact that (which
follows directly from the definition of as a Bernoulli 0–1
random variable), this can be rewritten

Because the term in parenthesis is independent of , this
becomes

(8)

Consider any candidate steady statewith ones and
– zeroes. Let be the indices of the ones and be the

indices of the zeroes. Then, there are two kinds of terms in (8).
When , ; therefore

(9)
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When , , , and hence

Hence, is a steady state.
Now, consider any for which that is not of

the form of ones and – zeroes. Thus, for at
least one . In this case, the relevant term in (8) is

This cannot be zero, and hence,is not a steady state. Hence,
the only steady states of algorithm (5) are at, consisting of

ones and – zeroes. In particular, the symmetric mixed
strategy Nash equilibrium at for all (for

) is not a steady state of this algorithm.
2) Algorithms With Full Information:In contrast, consider a

similar analysis carried out for the “full information” algorithm.
Taking the expectation of both sides of (6) gives

Steady states occur when , i.e.,
whenever

Hence, any with is a steady state of this
algorithm. Note that these are not mixed strategy equilibria of
theEl Farol game unless for every agent.

B. Derivation of the Algorithms From a Global Cost Function

To further understand the global behavior of the system, we
relate the algorithms utilized by individuals to a global cost
function. The algorithm can be derived as an approximation to
an instantaneous gradient descent for minimization of the cost
function

(10)

where

(11)
is the expected number of attendees at time. The typical gra-
dient strategy is to update the state using

(12)

With as in (10)

From (11), the derivative is , and hence

Replacing by its instantaneous value gives

which is an instantaneous approximation to the gradient of.
Substituting this into (12) gives

(13)

In the limited information case, this update occurs only when
, and in the full information case, this update occurs

every iteration, regardless of the agent’s attendance. Adding the
a priori limits on then gives the algorithms (5) and (6).
For both algorithms, in a steady state. How-
ever, because the limited information algorithm converges to
a pure strategy equilibria, the actually observed costs will be
0, whereas with full information, the expected costs will be

.
Similarly, algorithm (7) based on the sign of ( )

can be derived from the absolute value cost function
. By analogy, these algorithms are variants of

the least mean square (LMS) algorithms, which are common in
the context of linear system identification and adaptive filtering
[21]. Algorithm (7) is an analog of the signed LMS algorithm
[15].

C. Weak Convergence

The convergence of the algorithms to these steady states can
be examined by looking at the stability properties of a related
ODE. This requires considerably more technical machinery,
which is reviewed here. The basis of the analytical approach
is to find an ODE that accurately mimics the behavior of the
algorithm for small values of . Studying the ODE then gives
valuable information regarding the behavior of the algorithm.
For example, if the ODE is stable, then the algorithm is
convergent (at least in distribution). If the ODE is unstable,
then the algorithm is divergent. We follow the approach of
[5], which is based on the techniques of [8]. This approach is
conceptually similar to stochastic approximation theory, but its
assumptions (and hence conclusions) are somewhat different.
First, the stepsize in (5) and (6) is fixed, unlike in stochastic
approximations, where the stepsize is required to converge to
zero [16]. Thus, the algorithms do not necessarily converge to
a fixed vector; rather, they converge in distribution. Second, no
continuity or differentiability assumptions need to be made on
the update terms. Hence, (7) is as amenable to the method as
(5) and (6).
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To be specific, consider the algorithm as a discrete time iter-
ation process

(14)

where is a vector of weights that define the probabilities,
is the stepsize, and is a (random) input vector. The func-
tion represents the update term of the algorithm and is,
in general, discontinuous, as in (7), although it may also be dif-
ferentiable as in (5) and (6).

What is the nature of the random process { }? When is
this process stable? How can we characterize its convergence
to steady states? These questions can be addressed by relating
the behavior of algorithm (14) for smallto the behavior of the
associated integral equation

or, equivalently, to the associated deterministic ODE

(15)

where is a version of that is smoothed, or averaged,
over all possible inputs. Speaking loosely, the ODE of (15)
represents the “averaged” behavior of the parameters in
(14).

Suppose that ( ) is adapted to the filtration { },
and define

(16)

to be a version of that is smoothed by the distribution of the
inputs . This smoothed version is often differentiable
even if itself is discontinuous. A time-scaled version ofis
defined as

where [ ] means the integer part of. Note that represents
the discrete iteration process, whereas represents a con-
tinuous time-scaled version. (with no subscript) is the ODE
(15) to which converges weakly.

Let ( ) denote a metric space with associated Borel field
, and let be the space of right continuous

functions with left limits mapping from the interval [ )
into . We let denote the subspace of continuous
functions and assume that is endowed with the
Skorohod topology.

Let { } (where ranges over some index set) be a family
of stochastic processes with sample paths in , and let

be the family of associated probability
distributions (i.e., for all ).
We say that { } is relatively compact if { } is relatively
compact in the space of probability measures en-
dowed with the topology of weak convergence. The symbol
will denote weak convergence, whereas the arrowwill denote
convergence under the appropriate metric. An excellent refer-
ence for all the mathematical terms and probabilistic constructs
used in this section is [8].

Consider the following technical assumptions.

1) { } is uniformly integrable.
2)

Theorem 5.1:Under assumptions 1–2, {} is relatively
compact, and every possible limit point is a random process in

. Furthermore, every limit point of { } satisfies (15).
This is a special case of Theorem 1 in [5]. Both the uniform

integrability (technical assumption 1) and the mean convergence
in assumption 2 follow directly from the boundedness of the

.
The theorem asserts that the iteration (14) will behave like

the ODE (15) for small enough. If the solution to the ODE
is unique, then the sequence actually converges in probability
(not just having a weakly convergent subsequence). The
solution of the ODE is continuous, and the Skorohod topology
for continuous functions corresponds exactly to uniform
convergence on bounded time intervals. Hence, convergence
in probability means that for every , , and

. This is useful
because the algorithm behaves like the relevant ODE, and the
ODE can often be analyzed in a straightforward manner.

D. Convergence of the Algorithms

This section considers the convergence behavior of the algo-
rithms (5) and (6) by finding the appropriate ODE (15) and ex-
amining its stability properties.

1) Algorithm With Partial Information:The appropriate
smoothed update (16) for algorithm (5) is

for

This can be rewritten exactly as in Section V-A1 as

and the ODE (15) is then

... ...

(17)
The theorem of the previous section shows that the iteration (5)
behaves like this ODE. The remainder of this section shows that
this ODE (and, hence, the algorithm with partial information)
converges to steady statesthat consist of ones and –
zeroes by showing that the ODE is stable about these steady
states.

Let be the “error” term. Stability of the ODE
(17) about is equivalent to stability of

for (18)

about the origin .
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Fig. 5. Numerical simulation of the “partial information” ODE (17) for the
case whereM = 100 andN = 60.

If (the set of indices of with zero entries), then
and , and (18) becomes

(19)

Thus, for small perturbations away from steady state, these
states are exponentially stable.

If (the set of indices of with entries equal to one),
then , , and (18) becomes

(20)

which is not stable about , as can be seen from a
linearization argument. However, algorithm (5) clips , and
hence, the ODE must clip , that is, is enforced
by the algorithm statement. (This is a result of the meaning of

as a probability.) Hence, ,
which implies that once (19) has converged.
Hence, the right-hand side of (20) is positive for small ,

, and from below (equivalently,
from below for ). Formally, this requires a decomposition
into the exponentially stable states and the clipped states

. (See [11] for such a formalization.) The exponential sta-
bility of (19) guarantees that the states converge rapidly, after
which, the states converge. The practical upshot is that the re-
gion of convergence about each steady state is correspondingly
smaller.

Thus, the ODE converges to one of the steady states, as-
suming it is initialized close enough and the stepsize is small
enough. The algorithm (5) converges similarly. Fig. 5 shows
a numerical simulation of this ODE (17) for the case where

and .
2) Algorithm With Full Information: The appropriate

smoothed update (16) for the algorithm (6) with full informa-
tion is

for

As in Section V-A2, this can be rewritten

Fig. 6. Numerical simulation of the “full information” ODE (21) for the case
whereM = 100 andN = 60.

The relevant ODE (15) consists of identical copies of the
scalar ODE

(21)

which has steady states at any with . The
stability properties are easy to describe. Given any with

, all entries in (21) increase or decrease to-

gether until . Thus, the ODE converges to
. Accordingly, for each initial condition ,

there is a unique steady state to which the algorithm will con-
verge.

Fig. 6 shows a numerical simulation of this ODE (21) for the
case where and . The content of the weak
convergence theorem is that the actual trajectories of algorithms
(5) and (6) must, on average, follow the trajectories of the ODEs
(17) and (21), at least for small. Since the steady states of
the ODEs (17) and (21) are stable, these algorithms must also
converge to a steady state if initialized close enough.

VI. DISCUSSIONS ANDCONCLUSIONS

The El Farol problem initially explored the collective dy-
namics of boundedly rational agents, but we have shown that
this model is also interesting as a simple model of congestion
and coordination behaviors that occur with shared resources like
Internet bandwidth.

Arthur [3] believed that any solution to theEl Farol problem
would require heterogeneous agents, that is, agents who pursue
different strategies. In contrast, we have presented a simple
adaptive solution that can be followed by all agents and can
readily solve a decentralized resource allocation problem. Each
agent in the adaptive solution is characterized by a parameter
that determines how often the agent attends and a stepsize that
determines how much to change the parameter in response to
each visit to the bar.

The stochastic adaptive solution to theEl Farol problem dif-
fers from previous treatments in several ways. We allow agents
to proceed stochastically, as is commonly required for optimal
game-theoretic decision making schemes. We do not require
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agents to make explicit predictions of the state of the bar, and
we allow them to use only the information that they have readily
available, i.e., their own experiences. This makes our model
more realistic (it is not clear how the agents in Arthur’s model
learn what happened at the bar when they are absent). Certainly,
in applications like the Internet, such information is not avail-
able; the only way to know if a website is crowded is log on and
try to use it.

Arthur’s solution, in which each agent maintains a bank of
strategies, leads to patterns of attendance that fluctuate consid-
erably above and below the optimal. When crowded, none of
the agents enjoys themselves. When undercrowded, there is a
wasted resource represented by the empty seats at the bar. The
stochastic adaptive solution, in contrast, leads to patterns of at-
tendance with much smaller variance and, hence, much less
waste. Generically, the attendance at the bar converges to an
optimal solution: one where the bar is neither under nor over-
crowded.

On the other hand, changing the information structure in the
algorithm so that agents adapt their probabilities at every itera-
tion causes the algorithm to no longer converge to such an op-
timal solution; rather, the attendance patterns continue to fluc-
tuate wildly. Thus, we posit that the information structure is the
crucial difference in our approaches. When agents each receive
or utilize a subset of total information, then the system is far
better behaved than when all act on complete information. In
other words, the homogeneity of information may be the key
ingredient driving theEl Farol “problem.” With more heteroge-
neous information, the problem may vanish.

The adaptive solution thus provides a simple mechanism
whereby a large collection of decentralized decision makers,
each acting in their own best interests and with only limited
knowledge, can solve a complex congestion and social coor-
dination problem. Moreover, convergence to the solution is
relatively rapid (depending on the initial conditions) and robust.

Do we believe that customers ofEl Farol tick off the time until
they can go again, increasing or decreasing the probability of a
coin flip with each new visit? Of course not. But the incentives
are in agreement with the common sense idea that people tend to
minimize bad experiences and maximize good ones. Moreover,
the global behavior of the population is consistent with certain
kinds of coordination phenomena. For instance, users of an In-
ternet provider can spread demand over much of the day, even
though everyone might prefer (all else being equal) to log on
in the middle of the afternoon. By developing certain habits (for
instance, always logging on at the same time), users send signals
to others to avoid these times. In this way, demand is smoothed.

There are many ways to generalize the adaptive solution to
decentralized resource allocation problems. For instance, dif-
ferent people have different tolerances for what constitutes a
crowd or an unacceptable delay. Each agent could also have a
parameter that represents their tolerance for congestion. Addi-
tionally, to more closely model the Internet situation, one might
incorporate time-of-day or day-of-week as a parameter in the
process of logging on. It would also be instructive to create a
hybrid situation in which a number of Arthur-like agents and a
number of adaptive agents compete for spaces at the bar.
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