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Coordination Failure as a Source of Congestion in
Information Networks

Ann M. Bell, William A. SetharesMember, IEEEand James A. Bucklev&enior Member, IEEE

Abstract—Coordination failure, or agents’ uncertainty about model simplified model of a large class of congestion and co-
the action of other agents, may be an important source of conges- grdination problems that arise in modern engineering and eco-
tion in large decentralized systems. Thé&l Farol problem provides nomic systemsEl Farol is a bar in Santa Fe, NKI.The bar is

a simple paradigm for congestion and coordination problems that lar but b ded wh than 60 |
may arise with over utilization of the Internet. This paper reviews POPUI@r but becomes overcrowded when more than bU people

the El Farol problem and surveys previous approaches, which typ- attend on any given evening. Everyone enjoys themselves when
ically involve complex deterministic learning algorithms that ex- fewer than 60 people go, but no one has a good time when the
hibit chaotic-like trajectories. This paper recasts the problemina par is overcrowded.

stochastic framework and derives a simple adaptive strategy that How should an agent decide whether or not to go outto the bar,

has intriguing optimization properties; a large collection of decen- . .
tralized decision makers, each acting in their own best interests given that the actions of other agents are unknown? The problem

and with limited knowledge, converge to a solution that (optimally) S€t up emphasizes the difficulty of coordinating the actions
solves a complex congestion and social coordination problem. A of independent agents without a centralized mechanism. The

variation in which agents are allowed access to full information is - analogy between tHgl Farol problem and decentralized resource
not nearly as successful. The algorithm, which can be viewed as agllocation is noted by Greenwakt al.[10], as well as in our
kind of habit formation, is analyzed using a weak convergence ap- Ki4] 1221, G dH .b ’ 91and Hub
proach, and simulations illustrate the major results. prevous work[4], [22]. ancfe andnfu ermgn[ landHu grman
_ ) and Lukose [13] also consider the dynamics of congestion on
Index Terms—Adaptation, decentralized networks, El Farol,  {ha |nternetwhen externalities similar to those found with public
habit formation, learning, minority game, weak convergence. . . - -
goods prevail. Unlike the standard public good framework, in
the El Farol scenario, fully informed optimizing agents will not
|. INTRODUCTION increase consumption of a publicly available resource until it

TANDARD models of congested public resources focus dﬁ(periences an inefficient level of Congestion: If agents could

he costs that an individual user imposes on other potentEdict the behavior of other agents perfectly, the bar would never
users. For example, each person who travels on a congedtggrowded, and all patrons would have a good tirfiére only
highway or visits a popular web site increases the waiting ting@urce of congestion, atleastin adeterministic framework, is the
of subsequent users. Congestion arises because individualé"@#ility of agents to coordinate their actions.
not consider the effects of their actions on other users. Explicitly Arthur originally posed thé&l Farol problem to illustrate the
charging users for these unobserved costs can eliminate dggregate dynamics of a system composed of bounded rational
socially inefficient congestion of a scarce, shared resource. Ho#@ents who rely on inductive learning. Agents attempt to predict
ever, this approach often utilizes equilibrium solutions in whicte aggregate behavior of other agents, which simultaneously
all agents are fully informed about the structure of the probleflepends onall agents’ predictions. Consequently, the interaction
and the behavior of other agents. Consequently, the relationshgween individual learning strategies and the environment
between agents’ behavior and the congestion they experiencé@ agents face plays a key role in determining the dynamics of
easily discerned. This reliance on information-intensive equilif?e system. Using| Farol to model the Internet environment
rium solutions limits the usefulness of these models in solvirinphasizes that congestion can arise from coordination failure
resource allocation problems in large-scale systems such asafoss agents, as well as from absolute constraints on bandwidth.
Internet. In contrast, this paper focuses on imperfect informatifirthermore, in contrast to many game theoretic treatments of
and coordination failure across agents as a source of congest@ning and coordination, the level of congestiorEaFarol
inlarge decentralized systems. We utilize a coordination problélapends on the actions of a relatively large number of individual

or simple congestion game, framed by Arthia], asasimplified agents. These features make it an especially useful tool for
analyzing information technology systems characterized by
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agents to solve thiel Farol coordination problem in a decentral-long delays for both messages. The quality of audio and video
ized environment while avoiding the seemingly random fluctualata streams degrades rapidly when packets are dropped. In
tions in aggregate attendance that Arthur’s simulations demayeneral, systems that experience congestion at a bottleneck will
strated. Here, we consider th# Farol problem in a stochastic respond nonlinearly when traffic increases even slightly above
setting. We analyze a stochastic adaptive algorithm analogoustte capacity of the bottleneck. The preference structure of the
the one introduced in [4] and [22] and consider the dynamic aid Farol problem mimics the discontinuous and nonlinear re-
equilibrium characteristics of the system in relation to the mixesponses to increases in traffic observed in information systems.
and pure strategy equilibria of the corresponding game. We emin addition, the discontinuity in agents’ response to atten-
ploy some novel convergence results [5] that approximate tance levels helps distinguish between congestion arising from
dynamics of the (stochastic) system using (deterministic) ordiveruse of a public good and congestion arising from coordi-
nary differential equations (ODES) and allow a concrete descripation failure. When the value of attendance declines slowly in
tion of its convergence and stability properties. In addition, wesponse to larger turnouts, agents will continue to attend until
demonstrate that the information structure plays a crucial rdlee value of attendance for all bar goers has been reduced to the

in determining the behavior of the system. value of staying at home. Congestion in this case may be op-
_ timal for the individual but nonetheless inefficient for society:
B. How do Agents Decide to Attend El Farol? Everyone could be made better off by a compensation scheme

In Arthur’s simulations, agents attempt to predict how mar#at induces some agents to stay home. The discontinuous pref-
others will attencEl Farol each time using a simple kind of de-érences utilized in th&l Farol framework help minimize the
terministic inductive reasoning. If they predict attendance willnportance of individually optimal but socially inefficient con-
be less than 60, then they go to the bar; if they predict attenda@@stion.
will be greater than 60, then they stay at home. Each agent uses
a number of “rules of thumb” such as simple averages, movikg Other Approaches to El Farol
averages, and linear or nonlinear filters to formulate predictionsthe g| Farol problem has received a fair amount of atten-
and then acts on the prediction that was correct most frequenfli, from computer scientists and physicists as well as from
in the recent past. When Arthur simulated a bar-going society @lsearchers in the area of complex systems. Casti used the
100 inductively rational agents, he found that the population gk, problem to frame his definition of a complex adaptive
the bar tended to hover near 60 though attendance varied gregistem as one with “a medium-sized number of intelligent
often exceeding 70 or dropping below 50. The time series of agyaptive agents interacting on the basis of local information”
gregate attendance appeared random, despite the determinigticy 10]. The dynamics of Arthur's system are entirely
rules of the underlying agents. _ _deterministic (only the initial values of agents parameters are

Here, we consider th&l Farol problem in the stochastic ¢hosen randomly) the resulting pattern of attendance appears
setting. We briefly discuss the characteristics of pure and mixgghgom. The uncertainty or apparent randomness in the system
strategy equilibria of the corresponding congestion game adntirely endogenous, created by the interaction between the
then frame our adaptive learning rule in terms of a mixeglymper of agents attending the bar and the set of prediction
strategy profile. There are several advantages to considerijjgs active at any given time.
the stochastic version of the adaptive learning rule: a clearerjgnnsoret al.[14] consider how the variance in tf Farol
problem statement, a simpler algorithm that is amenaigspiem changes in response to the number of predictors avail-
to detailed analysis, and more general results. The analygie in the entire system and the number of predictors that each
demonstrates that the type and characteristics of the equilibgigent selects. zambrano [24] applies results from Bayesian
actually observed depends crucially on the nature of the inffame theory to show that a system composed of Bayesian
mation available to agents. In particular, we show that limitingarers will converge to the set of Nash equilibria. Greenwald
the information available to agents leads them to successflly | [10] examine whether or not boundedly rational agents
coordinate on a Pareto efficient equilibrium while providingap, jearn their way to a mixed strategy equilibrium. Note that
more information leads to an inefficient outcome. Our resullgyents in their model are not able to distinguish the effects of
emphasize the critical role that information exchange plays {fleir own actions on aggregate attendance, which we demon-
alleviating congestion that arise from coordination failure.  strate is a critical factor in determining system behavior. Challet

A somewhat unusual feature of thel Farol problem ang zhang [7] simplify theEl Farol problem even further by
statement is the discontinuous transition from uncrowded ¢8nsidering a “minority game” in which agents choose one
crowded that occurs when the 61st patron arrives. While thig o groups to join and receive positive payoffs when they
may seem like an unrealistic assumption for a bar, discontiniygose the smaller group. The information available to agents
ities and extreme nonlinearities are prevalent in informatiqq imited even further: They only observe which group was the

technology applications. For example, when a network sengfnority and not the number of agents who chose that group.
divides resources equally among users, the performance of

the entire system can dramatically decrease with the addition
of a single user. Many routers handling data packets have
fixed queue lengths: Additional packets are dropped. WhenTheEl Farol problem is a type of congestion game, first char-

data from two sources arrive simultaneously, exceeding queasterized by Rosenthal [19]. In congestion games, each agent
capacity, packets from both users may be dropped, leadingctmoses a resource to utilize. The agent'’s utility depends on the

Il. EL FAROLAS A GAME
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number of other agents who choose to utilize the same resourkg be the total number of agentd] be the total observed at-
Finding a Nash equilibrium of a congestion game is equivalet@ndance]N —¢ be the observed attendance exclusive of agent
to a constrained minimization problem. and\ be the maximum capacity of an uncrowded bar.

We consider th&l Farol problem as a one-shot simultaneous A mixed-strategy equilibrium must satisfy the condition
move game. Let agents have identical paydfis:the payoff an , ,
agent receives for attending a crowded bar, @isthe payoff an g Pr (N_Z SN - 1) +bPr (N_Z >N - 1) =0 (@
agent receives for attending an uncrowded bar. Without loss of
generality, leth, which is the payoff received for staying home®"
be zero. LetM be the total number of agents aind be the
maximum capacity of an uncrowded bar.

In a deterministic setting where agents utilize only pure (de-

terministic) strategies, a Nash equilibrium occurs when exacti{lich states that the expected return to the pure strategy of at-
sixty agents choose to attend. There (i][%)) such equilibria. ténding the bar exactly equals the expected return to the pure

There are no symmetric pure strategy Nash equilibria. Pufiategy of staying home. This must hold for all agents simul-

strategy Nash equilibria are Pareto efficient. taneou;ly. In ad_dmon, note that t.h'e |_nd|fference condition 'FhaF
Arthur’'s approach sidesteps the usual game theoretic con gg_ermlnes a mixed strategy equml:_)rlum depends on the distri-

erations by focusing on the process of prediction in an endo ition Of _total afcter?d_ance, which, in gene_ral, depends on the

neously evolving environment rather than on the binary choi éObab_'“t'es_ fo_r |n(_1I|V|duaI agents and not just on the mean of

between the strategies of attending and staying home. The Ot[}ﬂ?:entlre distribution. o -

information available to agents is attendance in each time pel " @ Symmetric mixed strategy equilibrium, the probability

riod. Itis often reasonable to assume that agents do not and ng@ﬂN — 1 or fewer agents attend is

not remove themselves from the aggregate statistics before re-  y-i_ 4

acting to them. However, because Hid-arol problem contains Z <N _41> (pN*’ (1- p)N—l—N*’) )

a knife-edge response to increased attendance, the analysis of N~

equilibria depends crucially on how the agent accounts for his

or her own behavior. When the symmetric mixed-strategy equilibriumpis= 0.6,
Suppose that agents use predictive rules like those suggedfé@g ~ —0.98 b.

by Arthur and that attendance Bt Farol for the last ten pe- The symmetric mixed strategy Nash equilibrium is not Pareto

riods has been exactly 60. How should an individual agent gaptimal because agents increase their probability of attending

cide whether or not to attend in this case? Common sense suiglil the expected return to attendance exactly equals that of

gests that agents who have attended the bar every period sh&tfing home: 0. In addition, the randomness in agents’ choice

continue to attend every period. On the other hand, agents wHstrategy will generate inefficient variance in attendance. Any

have not attended at all in the last ten periods should rem&tiendance outcome that falls short of the maximum capacity of

at home because the addition of another agent will result in &2 uncrowded bar can be improved by increasing attendance,

tendance of 61. The key issue is agents’ ability to account f8fd vice versa. The Pareto optimal symmetric mixed-strategy

their own past behavior. The oft-repeated conjecture about {#&file* can be calculated by

b

PT(N_LSN_I):H

N-i=0

El Farol problem (that “no shared, or common, forecast can pos- NeA NeM
sibly be an accurate one; deductive logic fails” [6]) depends cru- .« Z g N Pr(N) + Z bN Pr(N). (3)
cially on the assumption that agents cannot recognize their own L NN 41

attendance pattern in the aggregate.

A formal treatment of the knife edge case when attendantBis p maximizes the total expected payoff to all agents, which
exactly equals 60 would alter the predictive rules to account f8ls0 maximizes the expected return to individual agents. For
the agent's own behavior: Agents should attend if they pred@xample, whery = 1 andb ~ —0.98, the Pareto efficient
59 or fewer agentsther than themselvesill attend and stay Symmetric mixed-strategy profile i ~ .5, and the expected
home if they predict 60 or more agerather than themselves Payoff to an individual agent is- 0.48. In contrast, the sym-
will attend. In this scenario, Arthur’s formulation of teéFarol ~ Metric mixed-strategy Nash equilibrium js ~ 0.6, and the
problem has well-defined steady states in which all agents c@Pected payoff to an individual agent is 0. In this sense, the
utilize the same successful predictive rule. The heterogendi/Farol problem suffers from inefficient congestion similar to
in agents’ actions arises from the heterogeneity in informatiotftat observed in a standard public goods framework in a sto-
Each agent's information set is unique because only the agéh@stic framework: Inthe mixed strategy (stochastic) Nash equi-
knows whether or not they were among the bar attendees at 8agum, each individual agent’s probability of attendance is just
point in time. When agents do not account for their own b&igh enough that the expected return is 0.
havior, they must draw different conclusions from the same datalhere are no asymmetric mixed strategy equilibria. Con-
set in order to produce average attendance of 60. sider two agents with differing probabilities of attendance

Moving to a stochastic framework that allows mixed-strateg§nd, without loss of generality, label them agents 1 and 2
equilibria requires explicit payoffs for the different outcomesVith p1 < p2. The indifference condition (1) must hold for

Each agents’ mixed-strategy profile consists of a single paramae mixed-strategy profile that maximizes the expected return to each agent
eterp;, which indicates the probability that agerdattends. Let given the constraint that the expected return be equal for all agents.
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every agent, which implies that PN‘I <N - 1) equal literature [12]. However, the current situation is more compli-

Pr(N*2 <N - 1). The density function for attendancecated since the “true” value of the unknown depends explicitly

exclusive of agent 1 can be expressed in terms of the dengityeveryone’s behavior.

function for attendance exclusive of agents 1 and 2: SupposeM agents compete for th&" spaces aEl Farol.

. 1o The probability that théth agent attends ig;. Let k£ be a time

PIIN™" = 0) =Pr(N""7" = 0)(1 - p2) (iteration) counter andV (k) be the number of agents attending

P(N™! =2) =Pr(N~57% = 2)(1 — po) at timek. Let ;1 be a characteristic parameter that defines how
+Pr(N"L72 =g — 1) po. much each agent changgsn response to new information, and

let p; (k) designate the instantaneous valuepét the timek.
By expanding and combining sums, the cumulative distributiqrst

that agent 1 faces can be expressed as
M

Pr(N ! < X) N(k) =" (k) @)
=1

r=X—

_ Z 1 P(N"172 = 2) + PN 172 = X)(1 — po). where thez;(k) are independent Bernoulli random variables
= that are 1 with probability; (k) and zero otherwise. The evolu-
tion of thep; (k) is then defined by (5), shown at the bottom of

e page.

The operation of the algorithm is uncomplicated. At each
¥ne k, the agent flips a biased coin, attending with probability
p:(k). When the agent attends, then the parametgr) is ad-
justed, increasing it proportionally t§ (%) — A if the bar is un-
crowded and decreasing it proportionally¥gk) — A if the bar

Arthur’s inductive learning approach requires agents to ebs-crowded. Since thg; (k) represent probabilities, they must be
plicitly predict how many others will attend. A mixed strategyonstrained to lie within 0 and 1. When the agent does not at-
Nash equilibrium requires knowledge of the entire distributiotend,z;(k) is zero, ang; (k+1) = p; (k). Note that the stepsize
of attendance. Our boundedly rational adaptive learning rudees not decrease overtime. The simplicity of the scheme makes
does not rely on prediction of or inference about other agenisfeasible to analyze the resulting behavior, as demonstrated in
behavior; rather, agents adapt their probability of attending ov@ection V.
time based on the history of their own experiences|&arol. In Arthur’s formulation of the problem, agents have access to

It is tautological that people prefer to experience good tim@sormation about attendance at the bar even on evenings when
rather than bad, to repeat the enjoyable, and to minimize ey do not themselves attend. This can be incorporated into
unpleasant. Although thEl Farol situation provides a simple the algorithm (5), giving the update equation (6), shown at the
setting in which good and bad are clearly defined, it is not posettom of the page, which mimics the information structure
sible to know in advance whether a trip to the bar will be good mised by Arthur’'s agents. As will become clear, this information
bad since this depends on the actions of everyone else. Suppiaecture is a key element in the behavior of the algorithm. When
that the agent initially attendspercent of the time. Consistentagents base their updates on only their own experiences as in
with the desire to maximize pleasure and minimize painful ex8), they utilize “partial information.” In contrast, (6) utilizes
periences, the agent goes more often (increaséghtly) if the  “full information” because agents base their decisions on the
bar is uncrowded but prefers to go less often (to decrgasefull record of attendance.
if the bar is crowded. Over time, the agent gathers informationA related version of the stochastic algorithm updates ac-
about the state of the bar and “remembers” this in the form oérding to whether the bar is crowded or not, as in (7), shown
the parametep. This learning rule can be interpreted as a kindt the bottom of the next page.
of habit formation or stimulus-response and is directly analo- None of these updating rules rely explicitly on payoffs. The
gous to certain adaptive algorithms from the signal processirajiance of the update rules on attendance rather than payoffs is

The cumulative distribution function that agent 2 faces diffe
only by the term [ — p»), which is replaced byl(— p;). Conse-

guently, the indifference condition cannot hold simultaneous{
for two agents with different probabilities.

I1l. L EARNING RULE FOR MIXED-STRATEGIES

0, if pi(k) — p(N (k) = N) @i(k) <0
pi(k+1) = { L, if pi(k) — p(N (k) = N) zi(k) > 1 (5)
pi(k) — p(N(k) — N) z;(k), otherwise.

0, if p;(k) — u(N(k) —N) <0
pi(k+1)=141, if pi(k) — u(N(k) = N)>1 (6)
pi(k) — p(N(k) = N), otherwise
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not a crucial feature of our learning rule. An alternative specifi- g 80

cation of the game in which the payoff for attending&(¢) — 70

N) and the payoff for staying home is 0 would make the first g 60 ot .
partial information algorithm (5) depend on payoffs. Agamein § 5q

which the payoffs were for attending an uncrowded ba¥u § 40

for attending a crowded bar, and O for staying home would make é 30 , , ,
the “signed” algorithm depend on payoffs. Asymmetric payoffs © ~ 0 500 1000 1500

would merely entail different stepsizes for the crowded and un- time (iteration number)
crowded outcomes. The speed of convergence of a system with

updates that depend on payoffs may depend on the magnitﬁiﬂel- When all agents use the “partial infO(mation” adaptive solution, the
number of attendees appears to converge rapidly and then only rarely exceeds

(or units of measurement) of the payoffs. the critical \V = 60.
Note that when the payoff to staying home is 0, a payoff-de-

pendent updating rule as described above will correspond to pa W

tial information. Some treatments of teéFarol problem and of = 09 %

related problems like the minority game [7], [20] utilize a pecu- g sl

liar form of full information updating: Agents update according & X

to which strategy performed best regardless of their own acS ,, 07
tions. So when 59 agents attend, for example, all 41 agents wh i
remained at home assume that the strategy of attending wou &
have had a higher payoff. Of course, had they all actually at: ég
tended, the bar would have been crowded. The strategy updatir 2= 04
in the minority game suffers from the same illusion: All agents § 0.3
who were in the majority assume that they would have been ir'8
the minority if they had chosen the other group. These updatint <
schemes implicitly rely on agents’ ignorance of the fallacy of i L
composition: Not everyone can attend an uncrowded bar, nc ) 1000 1500
can everyone be in the minority.

eter fol
M agents
o
D

time (iteration number)

IV. GENERIC BEHAVIOR OF THE ALGORITHMS Fig. 2. Probability parameters for each of thé = 100 agents in Fig. 1 as
. . . . a function of iteration number (time). An emergent property of the adaptive
This section explores the generic behavior of the system wheiution is that the population divides itself into “regulars” and “casuals.”

each of theV = 100 agents follows the strategy defined by (5).
Although details of the various simulations differ, a typical casgature of agents of the adaptive learning rule, it converges to a
is illustrated in Fig. 1. The probabilities (0) were initialized pure strategy Nash equilibrium.
randomly. In contrast, Fig. 3 uses the “full information” algorithm (6)
Perhaps the most striking aspect of these simulations is thenvestigate the effect of allowing the agents to update their
rapid convergence to near the optimal valud\bf= 60 and the probabilities at every iteration, whether they have personally at-
associated decline in the variance of attendance. The outcdereded the bar or not. This reflects the information structure in
approaches that which would be chosen with centralized cokrthur’s simulations. Mean attendance is approximately 60, but
trol, despite the fact that each agent is autonomous and makesvariance does not decline over time, indicating that seats in
the decision to go (or not to go) based on local information, thtite bar often remain unfilled, and the bar is often overcrowded.
is, on its own experiences. Note that the transient behavior in the initial periods is masked
Fig. 2 shows values of the probabilitipg k) over the course by the long time scale. Fig. 4 should be compared with Fig. 2; the
of atypical simulation run. By the final iteration, the agents havygrobability parameters for these agents continue to bounce ran-
divided themselves into two groups. The probability parametdomly about some fixed value as their probabilities all increase
for 60 of the agents has risen very near 1, indicating that theydecrease simultaneously in response to the same signals.
attend nearly every time. The remaining 40 agents attend lesSomewhat paradoxically, agents successfully coordinate
and less frequently, with their probability parameter very nedtreir behavior and the system achieves a Pareto efficient
zero. This division of the population appears nowhere in tlotcome only when agents have access to less information.
algorithm statement; rather, it is an emergent property of tis®veral authors have noted a similar phenomena in trans-
adaptive solution to thEl Farol problem. Despite the stochasticportation routing. Mahmassani and Jayakrishnan [17] use

0, if pi(k) — psgn(N (k) = N) z;
pi(k+1) =41, if pi(k) — psgn(N (k) = N) ;
pi(k) — psgn(N(k) — N) z;(k), otherwise.

—
S

N S
—

)

~

V

—

(7)
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,_g 80 always an integeN (k) — N times the stepsize). For algorithm

il ) (5), the zero state is absorbing (singe= 0 is guaranteed once

5 60 Bl p; = 0). Sincep; = 0 is reachable, the algorithm can be viewed

8 as a finite-state Markov chain with reachable absorbing states
é 50 and, hence, must converge. In contrast, for algorithmp(6}; 0

& 40 ‘ . . is not an absorbing state, and no convergence (to zero) can be
570 500 1000 1500

expected.
time (iteration number)

A. Steady States of the Algorithms
Fig. 3. When all agents use the “full information” adaptive solution, the

number of attendees fluctuates wildly about the optifai= 60. The first step in the analysis of the dynamic behavior of the
algorithms is to determine the conditions under which the means
of thep(k) remain fixed, that is, to determine the steady states
of the averaged system.

1) Algorithm With Partial Information: Taking the expecta-
tion of both sides of (5) gives

b ipas

AR B O

i

E{pi(k+ 1)} = E{pi(k)} — pE{(N (k) = N) zi(k)}

assuming that the; (k) are not at the boundary points 0 or 1.

0:4 thWW“WMWWWWM This expectation remains unchanged exactly when the update

0.3 ‘ * portion is zero, that is, when

the M agents

bk bl Ly ]

i

probablility parameter for each of

0.2 F R A E{(N(k) — N) zi(k)} = 0.
0.1 ‘ ‘

v . . . , Using (4) and the fact thdE {z2(k)} = E{x;(k)} = p; (which
09 500 1000 1500 2000 g4 {zi(k)} {wi(k)} = pi (

follows directly from the definition of;(k) as a Bernoulli 0-1
time (iteration number) random variable), this can be rewritten

Fig. 4. Probability parameters for 15 of thé = 100 agents in Fig. 3 (the full M
information algorithm) as a function of iteration number (time). Others exhibjg Z x](k) N %(k)
similar behavior. In contrast to the partial information case, parameters remain =

diverse.
M
simulations to demonstrate that when individuals pursue a =F Zﬂfj(k)-l- 1=N| pi(k)
strict best-response strategy, changing their route, no matter j=1
how small the improvement over their current choice, the e

performance of the system as a whole degrades if more thaf.quse the term in parenthesis is independen @), this
25% of drivers have access to real time information aboyt.omes

congestion. Arnoteét al.[1], [2] show that congestion can arise
because of “concentration,” or similar responses to common

information, and that consequently, more information can lead M
to increased congestion. = | 1=N+)_ E{a;(k)} | pi(k)

j=1
i

V. ANALYSIS OF THE ADAPTIVE SOLUTIONS

M
This section analyzes the steady states and convergence be- =|1-N+> pi(k) | pi(k). (8)
havior of the proposed algorithms by comparing and contrasting J=1
the different algorithm forms (5) and (6). The first subsection o
describes the various possible steady states. The simulations i@onsider any candidate steady statewith A" ones and
Figs. 1 and 3 suggest that these are quite different; the analygis \r zeroes. Letl; be the indices of the ones arig be the

describes these differences in a concrete way. Section V-C ifgices of the zeroes. Then, there are two kinds of terms in (8).
views the relevant technical background on weak convergenggen; ¢ 1, S pt =N — 1; therefore
) 7= ] )

and states the theorem that will be used in Section V-D to de-
scribe the convergence and stability behavior of the algorithms
about their steady states. u

One simple way to understand the asymptotic behavior of the . . .
algorithms is to observe that eaph evolves on a finite state =N+ lej pi=(1-N+N-1)p;=0. (9
space: a lattice with steps of size(because the updates are g

IES
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Wheni € I, Z;\ilp’; =N, pf =0, and hence With .7(k) as in (10)
i
dJ (k) dE{N(k)}
= (F{N — _—
u dpi(hy ~ PN =N =44
1-N+Y p | pi=(1-N+N)0=0.
j=1 From (11), the derivative i8E{N (k)}/dp;(k) = 1, and hence
J#i
Hencep* is a steady state. dI(k) _ pearn Y
Now, consider any* for which Zj‘il p} = N thatis not of dp; (k) Nk} '
the form of V” ones and/-\/ zeroes. Thug) < p} < 1 for at . o .
least onex. In this case, the relevant term in (8) is ReplacingE{N (k)} by its instantaneous value gives
,, dJ (k)
M M ~ N(k)—-N
1-N+3 0 p2=<1—N+Zp}f—pZ) 8 dpi(k)
Z? = which is an instantaneous approximation to the gradiesitbj.
=(1-N+N=p}) p;, =1-0p})p;. Substituting this into (12) gives
This cannot be zero, and hengé,is not a steady state. Hence, pi(k + 1) = pi(k) — p (N(k) — N). (13)

the only steady states of algorithm (5) arepét consisting of

N ones andV/-\ zeroes. In particular, the symmetric mixeqy, e |imited information case, this update occurs only when
strategy Nash equilibrium gf; = .6 forall j (forg = 1. b~ () = 1, and in the full information case, this update occurs
—0.98) is not a steady state of this algorithm. _ every iteration, regardless of the agent’s attendance. Adding the
2) Algorithms With Full Information:In contrast, consider a 5 priori limits on p; (k) then gives the algorithms (5) and (6).
similar analysis carried out for the “full information™ algorithm. g potn algorithmsE{N(k)} = A in a steady state. How-

Taking the expectation of both sides of (6) gives ever, because the limited information algorithm converges to

M a pure strategy equilibria, the actually observed costs will be

E{pi(k+ 1)} = E{pi(k)} — uE ij(k) NV 0, whereas with full information, the expected costs will be
= (1/2)Var[N (k)].

Similarly, algorithm (7) based on the sign a¥ (k) — N)
Steady states occur thﬁ{zj']\i1xj(k’) — /\/} = 0, i.e.,, can be derived from the absolute value cost functioh) =
whenever |E{N(k)} — N|. By analogy, these algorithms are variants of
the least mean square (LMS) algorithms, which are common in

M M M . . . pr . . . .
the context of linear system identification and adaptive filtering
E {in(k)} = ZE{xi(k)} = ij(k) =N [21]. Algorithm (7) is an analog of the signed LMS algorithm
j=1 j=1 j=1 [15].

Hence, anyp* with Zj-\ilp;f = N is a steady state of this
algorithm. Note that these are not mixed strategy equilibria
the El Farol game unlesg; = .6 for every agent. The convergence of the algorithms to these steady states can
o ) ~ be examined by looking at the stability properties of a related
B. Derivation of the Algorithms From a Global Cost Functionope. This requires considerably more technical machinery,
To further understand the global behavior of the system, wéich is reviewed here. The basis of the analytical approach
relate the algorithms utilized by individuals to a global cods to find an ODE that accurately mimics the behavior of the
function. The algorithm can be derived as an approximation &gorithm for small values ofi.. Studying the ODE then gives
an instantaneous gradient descent for minimization of the cagluable information regarding the behavior of the algorithm.

G Weak Convergence

function For example, if the ODE is stable, then the algorithm is
1 convergent (at least in distribution). If the ODE is unstable,

J(k) = S(E{N(k)} - N)? (10) then the algorithm is divergent. We follow the approach of

[5], which is based on the techniques of [8]. This approach is

where conceptually similar to stochastic approximation theory, but its

M M M assumptions (and hence conclusions) are somewhat different.
E{N(k)} =E Zévi,(k) = Z E{z;(k)} = Zpi(k) First, the stepsizg in (5) and (6) is fixed, unlike in stochastic
=1 1=1

i=1 (11) approximations, where the stepsize is required to converge to

is the expected number of attendees at tim&he typical gra-
dient strategy is to update the state using
dJ(k)

zero [16]. Thus, the algorithms do not necessarily converge to
a fixed vector; rather, they converge in distribution. Second, no
continuity or differentiability assumptions need to be made on
the update terms. Hence, (7) is as amenable to the method as

pi(k+1) = pi(k) — u(k) (5) and (6).

12)
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To be specific, consider the algorithm as a discrete time iter-Theorem 5.1:Under assumptions 1-2pjf} is relatively
ation process compact, and every possible limit point is a random process in
_ C|0, o) . Furthermore, every limit point off, } satisfies (15).

p(k +1) = p(k) + pG(p(k), U(k + 1) (14) [This)is a special case of Theorem 1 in %]. Both the uniform
wherep(k) is a vector of weights that define the probabilitigs, integrability (technical assumption 1) and the mean convergence
is the stepsize, antl (k) is a (random) input vector. The func-in assumption 2 follow directly from the boundedness of the
tion G(-,-) represents the update term of the algorithm and igt).
in general, discontinuous, as in (7), although it may also be dif-The theorem asserts that the iteration (14) will behave like
ferentiable as in (5) and (6). the ODE (15) for small enough. If the solution to the ODE

What is the nature of the random proceg$i)}? When is is unique, then the sequence actually converges in probability
this process stable? How can we characterize its converge(iest just having a weakly convergent subsequence). The
to steady states? These questions can be addressed by relgtihgion of the ODE is continuous, and the Skorohod topology
the behavior of algorithm (14) for smallto the behavior of the for continuous functions corresponds exactly to uniform
associated integral equation convergence on bounded time intervals. Hence, convergence

t in probability means that for every > 0, ¢ > 0, and
/ G lim,, o P(supg<;<7 |pu(t) — p(t)| > €) = 0. This is useful
because the algorithm behaves like the relevant ODE, and the

or, equivalently, to the associated deterministic ODE ODE can often be analyzed in a straightforward manner.

B(t) = G(p(1)) (15) _
R D. Convergence of the Algorithms
whereG(-) is a version of7(-, -) that is smoothed, or averaged,

over all possible inputs. Speaking loosely, the OE of (15)
represents the “averaged” behavior of the parametgrs in

This section considers the convergence behavior of the algo-
rithms (5) and (6) by finding the appropriate ODE (15) and ex-
amining its stability properties.

(14). : 4 . . .
. . ' . 1) Algorithm With Partial Information: The appropriate
aniudpeaionsee thaty(k), U (k)) is adapted to the filtration £}, smoothed update (16) for algorithm (5) is

G(p(k)) = E{G(p(k), U(k + 1))|Fx} @)  Gi)=BE{NKk) ~N)zi(k)}, fori=1,2,.... M.

to be a version of7 that is smoothed by the distribution of theThis can be rewritten exactly as in Section V-Al as
inputsU(k + 1). This smoothed version is often differentiable

even if G itself is discontinuous. A time-scaled versionofs M
defined as L=N+> pi(k) | pi(k)

j=1

pu( )= p[f/u]( ), t€[0,00) "

where k] means the integer part of Note thaty(k) represents and the ODE (15) is then

the discrete iteration process, whergga$ét) represents a con-

tinuous time-scaled versiop(t) (with no subscript) is the ODE (=N + J; p;(®) p1(t)
(15) to whichp,,(t) converges weakly. p1(t) M

Let (£, r) denote a metric space with associated Borel field . pa(t) (L=N+ 3 p;(t) p2(t)
B(E), and let D[0,00) be the space of right continuous P(*) = : - i#2
functions with left limits mapping from the intervab[co) ])AI-(t) M:
into £. We let Cg[0,0) denote the subspace of continuous (L=N+ 3 pi(8) par(t)

functions and assume thd@?g[0,00) is endowed with the i
Skorohod topology. a7)

Let {X,} (Where « ranges over some index set) be a familyhe theorem of the previous section shows that the iteration (5)
of stochastic processes with sample pathBijf{0, oc), and let behaves like this ODE. The remainder of this section shows that
{P,} € P(Dg[0,00)) be the family of associated probabilitythis ODE (and, hence, the algorithm with partial information)
distributions (i.e.,P,(B) = P{X, € B} forall B € B(E)). converges to steady state’sthat consist of\" ones and\//—-\

We say that {,,} is relatively compact if {P,} is relatively zeroes by showing that the ODE is stable about these steady
compact in the space of probability measuPé® [0, 00)) en-  states.

dowed with the topology of weak convergence. The symbol  Letj(t) = p(t) —p* be the “error” term. Stability of the ODE

will denote weak convergence, whereas the arrowill denote  (17) aboutp* is equivalent to stability of

convergence under the appropriate metric. An excellent refer-

ence for all the mathematical terms and probabilistic construct

used in this section is [8]. Pit) = (1 N+ pr + Zm) t) +97)

Consider the following technical assumptions. i ”;L S 1y V(8

1) {G(pgk ): k€ Z*, p > 0}is uniformly integrable. Ot =52 (18)

2) 12 S E{(G(p(k), U(k +1)) — G(p(k)))?} — 0. about the origini(t) =
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Fig. 5. Numerical simulation of the “partial information” ODE (17) for theFig- 6. Numerical sinlulation of the “full information” ODE (21) for the case
case wherel/ = 100 and V' = 60. whereM = 100 and A = 60.

If i € I, (the set of indices of* with zero entries), then The relevant ODE (15) consists af identical copies of the

>4 P; = N andp; = 0, and (18) becomes scalar ODE
M
pi(t)=— |1+ p;(t) | pi(t) i € Io. (19) pit)=— D _pit) =N (21)
i i=1

Thus, for small perturbationg away from steady state, thes
states are exponentially stable.

If i € I (the set of indices op* with entries equal to one),
thend> ., p; =N —1,p; = 1, and (18) becomes

Svhich has steady states at apiyy with Z;‘il p; = N.The
stability properties are easy to describe. Given afy) with
Z;\ilpj(o) = po, all entries in (21) increase or decrease to-
) gether untilZ?ilpj(t) = N. Thus, the ODE converges to

pit) ==Y _5;(t) [Bi(t) + 1] (20) p* = (NV/po)p(0). Accordingly, for each initial conditiop(0),

NE there is a unique steady state to which the algorithm will con-

which is not stable aboyi(¢) = 0, as can be seen from averge.
linearization argument. However, algorithm (5) cligg), and Fig. 6 shows a numerical simulation of this ODE (21) for the
hence, the ODE must clig(t), thatis,0 < p(t) < 1is enforced case wheré// = 100 and N = 60. The content of the weak
by the algorithm statement. (This is a result of the meaning cénvergence theorem is that the actual trajectories of algorithms
p(t) as a probability.) Hence; (¢t) = p;(t) — pf < 0Vi € I;, (5)and(6) must, on average, follow the trajectories of the ODEs
which implies thatzjg1 p;(t) < 0 once (19) has converged.(17) and (21), at least for small. Since the steady states of
Hence, the right-hand side of (20) is positive for snigllt), the ODEs (17) and (21) are stable, these algorithms must also
p;(t) > 0, andp;(t) — 0 from below (equivalentlyp; () — 1 converge to a steady state if initialized close enough.
from below for: € ;). Formally, this requires a decomposition
into the exponentially stable states I, and the clipped states VI. DISCUSSIONS ANDCONCLUSIONS

i € I,. (See[11] for such a formalization.) The exponential sta- +1,4 £/ Earol problem initially explored the collective dy-

bility of (19) guarantees that thig states converge rapidly, afternamiCS of boundedly rational agents, but we have shown that
which, thel; states converge. The practical upshot is that the o ’

: ¢ bout h steady state | d"}ﬂls model is also interesting as a simple model of congestion
glrﬁg”oerconvergence about each steady state IS Corresponaingiy - ordination behaviors that occur with shared resources like

Th he ODE f th d Internet bandwidth.
us, the converges to one of the steady sgtipas- Arthur [3] believed that any solution to th# Farol problem

suming it IS |n|t|al|z.ed close enough anq the step§|ze IS SmW!)uld require heterogeneous agents, that is, agents who pursue
enough. .The glgont_hm ©) converges similarly. Fig. 5 Shov\@fferent strategies. In contrast, we have presented a simple
a numerical simulation of this ODE (17) for the case Whergdaptive solution that can be followed by all agents and can
M =100 "’?”(W = 60. . _ readily solve a decentralized resource allocation problem. Each
2) Algorithm With Full Information: The appropriate agent in the adaptive solution is characterized by a parameter

smoothed update (16) for the algorithm (6) with full informafhat determines how often the agent attends and a stepsize that

tion is . determines how much to change the parameter in response to
G(pi) = E{(N(k) —N)} fori=1,2,..., M. each visit to the bar.
As in Section V-A2, this can be rewritten The stochastic adaptive solution to tEeFarol problem dif-
M fers from previous treatments in several ways. We allow agents
Z pi(t) = N. to proceed stochastically, as is commonly required for optimal
i=1 game-theoretic decision making schemes. We do not require
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agents to make explicit predictions of the state of the bar, and
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